5,220 research outputs found

    Under vehicle perception for high level safety measures using a catadioptric camera system

    Get PDF
    In recent years, under vehicle surveillance and the classification of the vehicles become an indispensable task that must be achieved for security measures in certain areas such as shopping centers, government buildings, army camps etc. The main challenge to achieve this task is to monitor the under frames of the means of transportations. In this paper, we present a novel solution to achieve this aim. Our solution consists of three main parts: monitoring, detection and classification. In the first part we design a new catadioptric camera system in which the perspective camera points downwards to the catadioptric mirror mounted to the body of a mobile robot. Thanks to the catadioptric mirror the scenes against the camera optical axis direction can be viewed. In the second part we use speeded up robust features (SURF) in an object recognition algorithm. Fast appearance based mapping algorithm (FAB-MAP) is exploited for the classification of the means of transportations in the third part. Proposed technique is implemented in a laboratory environment

    An adaptive appearance-based map for long-term topological localization of mobile robots

    Get PDF
    This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor

    An adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    A simple method to obtain visual attention data in head mounted virtual reality

    Get PDF
    Automatic prediction of salient regions in images is a well developed topic in the field of computer vision. Yet, virtual reality omnidirectional visual content brings new challenges to this topic, due to a different representation of visual information and additional degrees of freedom available to viewers. Having a model for visual attention is important to continue research in this direction. In this paper we develop such a model for head direction trajectories. The method consists of three basic steps: First, a computed head angular speed is used to exclude the parts of a trajectory where motion is too fast to fixate viewer's attention. Second, fixation locations of different subjects are fused together, optionally preceded by a re-sampling step to conform to the equal distribution of points on a sphere. Finally, a Gaussian based filtering is performed to produce continuous fixation maps. The developed model can be used to obtain ground truth experimental data when eye tracking is not available
    corecore