4,243 research outputs found

    A design recording framework to facilitate knowledge sharing in collaborative software engineering

    Get PDF
    This paper describes an environment that allows a development team to share knowledge about software artefacts by recording decisions and rationales as well as supporting the team in formulating and maintaining design constraints. It explores the use of multi-dimensional design spaces for capturing various issues arising during development and presenting this meta-information using a network of views. It describes a framework to underlie the collaborative environment and shows the supporting architecture and its implementation. It addresses how the artefacts and their meta-information are captured in a non-invasive way and shows how an artefact repository is embedded to store and manage the artefacts

    Rationale Management Challenges in Requirements Engineering

    Get PDF
    Rationale and rationale management have been playing an increasingly prominent role in software system development mainly due to the knowledge demand during system evaluation, maintenance, and evolution, especially for large and complex systems. The rationale management for requirements engineering, as a commencing and critical phase in software development life cycle, is still under-exploited. In this paper, we first survey briefly the state-of-the-art on rationale employment and applications in requirements engineering. Secondly, we identify the challenges in integrating rationale management in requirements engineering activities in order to promote further investigations and define a research agenda on rationale management in requirements engineering.

    Toward Visualization and Analysis of Traceability Relationships in Distributed and Offshore Software Development Projects

    Full text link
    Offshore software development projects provoke new issues to the collaborative endeavor of software development due to their global distribution and involvement of various people, processes, and tools. These problems relate to the geographical distance and the associated time-zone differences; cultural, organizational, and process issues; as well as language problems. However, existing tool support is neither adequate nor grounded in empirical observations. This paper presents two empirical studies of global software development teams and their usage of tools. The results are then used to motivate and inform the construction of more useful software development tools. The focus is on issues that are tool-related but have not yet been solved by existing tools. The two software tools presented as solutions, Ariadne and TraVis, explicitly address yet unresolved issues in global software development and also integrate with prevalent other solutions

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Collaborative traceability management: a multiple case study from the perspectives of organization, process, and culture

    Get PDF
    Traceability is crucial for many activities in software and systems engineering including monitoring the development progress, and proving compliance with standards. In practice, the use and maintenance of trace links are challenging as artifacts undergo constant change, and development takes place in distributed scenarios with multiple collaborating stakeholders. Although traceability management in general has been addressed in previous studies, there is a need for empirical insights into the collaborative aspects of traceability management and how it is situated in existing development contexts. The study reported in this paper aims to close this gap by investigating the relation of collaboration and traceability management, based on an understanding of characteristics of the development effort. In our multiple exploratory case study, we conducted semi-structured interviews with 24 individuals from 15 industrial projects. We explored which challenges arise, how traceability management can support collaboration, how collaboration relates to traceability management approaches, and what characteristics of the development effort influence traceability management and collaboration. We found that practitioners struggle with the following challenges: (1) collaboration across team and tool boundaries, (2) conveying the benefits of traceability, and (3) traceability maintenance. If these challenges are addressed, we found that traceability can facilitate communication and knowledge management in distributed contexts. Moreover, there exist multiple approaches to traceability management with diverse collaboration approaches, i.e., requirements-centered, developer-driven, and mixed approaches. While traceability can be leveraged in software development with both agile and plan-driven paradigms, a certain level of rigor is needed to realize its benefits and overcome challenges. To support practitioners, we provide principles of collaborative traceability management. The main contribution of this paper is empirical evidence of how culture, processes, and organization impact traceability management and collaboration, and principles to support practitioners with collaborative traceability management. We show that collaboration and traceability management have the potential to be mutually beneficial—when investing in one, also the other one is positively affected

    Collaborative traceability management: a multiple case study from the perspectives of organization, process, and culture

    Get PDF
    Traceability is crucial for many activities in software and systems engineering including monitoring the development progress, and proving compliance with standards. In practice, the use and maintenance of trace links are challenging as artifacts undergo constant change, and development takes place in distributed scenarios with multiple collaborating stakeholders. Although traceability management in general has been addressed in previous studies, there is a need for empirical insights into the collaborative aspects of traceability management and how it is situated in existing development contexts. The study reported in this paper aims to close this gap by investigating the relation of collaboration and traceability management, based on an understanding of characteristics of the development effort. In our multiple exploratory case study, we conducted semi-structured interviews with 24 individuals from 15 industrial projects. We explored which challenges arise, how traceability management can support collaboration, how collaboration relates to traceability management approaches, and what characteristics of the development effort influence traceability management and collaboration. We found that practitioners struggle with the following challenges: (1) collaboration across team and tool boundaries, (2) conveying the benefits of traceability, and (3) traceability maintenance. If these challenges are addressed, we found that traceability can facilitate communication and knowledge management in distributed contexts. Moreover, there exist multiple approaches to traceability management with diverse collaboration approaches, i.e., requirements-centered, developer-driven, and mixed approaches. While traceability can be leveraged in software development with both agile and plan-driven paradigms, a certain level of rigor is needed to realize its benefits and overcome challenges. To support practitioners, we provide principles of collaborative traceability management. The main contribution of this paper is empirical evidence of how culture, processes, and organization impact traceability management and collaboration, and principles to support practitioners with collaborative traceability management. We show that collaboration and traceability management have the potential to be mutually beneficial—when investing in one, also the other one is positively affected

    Web-based support for managing large collections of software artefacts

    Get PDF
    There has been a long history of CASE tool development, with an underlying software repository at the heart of most systems. Usually such tools, even the more recently web-based systems, are focused on supporting individual projects within an enterprise or across a number of distributed sites. Little support for maintaining large heterogeneous collections of software artefacts across a number of projects has been developed. Within the GENESIS project, this has been a key consideration in the development of the Open Source Component Artefact Repository (OSCAR). Its most recent extensions are explicitly addressing the provision of cross project global views of large software collections as well as historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR is widely adopted and various steps to facilitate this are described
    corecore