
A Design Recording Framework to Facilitate Knowledge Sharing in
Collaborative Software Engineering

Phyo Kyaw, Cornelia Boldyreff, and Stephen Rank
Department of Computer Science,

University of Durham,
UK

Tel : (+44) 191 334 1736
Fax : (+44) 191 334 1701

ABSTRACT
This paper describes an environment that allows a devel-
opment team to share knowledge about software artefacts
by recording decisions and rationales as well as support-
ing the team in formulating and maintaining design con-
straints. It explores the use of multi-dimensional design
spaces for capturing various issues arising during develop-
ment and presenting this meta-information using a network
of views. It describes a framework to underlie the collab-
orative environment and shows the supporting architecture
and its implementation. It addresses how the artefacts and
their meta-information are captured in a non-invasive way
and shows how an artefact repository is embedded to store
and manage the artefacts.

KEY WORDS
Collaborative Software Engineering, Software Artefacts,
Component-based development

1 Introduction

Recently, in the domain of software engineering, one of
the main areas of focus has been the emergence of global
distributed developments [1]. Accordingly, software engi-
neering has turned into the process of distributed develop-
ment, where teams of engineers and others share design
information, knowledge, and artefacts. In a software de-
velopment within a project, many artefacts1 are produced
throughout the various stages. These artefacts may ranging
from architectural diagrams to code modules of a compo-
nent. Furthermore, many different techniques, practices,
workflow models, tools, and modelling and implementa-
tion languages are used to produce these artefacts. Accord-
ingly, developers must collaborate to resolve various issues
related to different types of artefacts.

When an artefact is produced and evolved throughout
the development, many different types ofmeta-information
can related to the artefact, such as modelling information,
architectural decisions, design decisions and rationales, de-
sign constraints, process information, alternative solutions,

1Artefacts are referred to as any things (or work products) produced as
a result of design and development.

etc. These types of meta-information are produced as a
result of collaborative activities amongst the development
team, as well as by individuals using various development
tools. At present, currently available tools (i.e. mod-
elling tools and groupware-based tools), only provide lim-
ited means of capturing such considerations, (e.g. via de-
sign critics provided in ArgoUML [2]). They do not pro-
vide facilities to capture the meta-information related to
the artefacts. Unless this information is captured during
the development process, it is likely to go un-recorded and
subsequently be lost. Some information may be manually
recorded, but most is un-recorded.

Such meta-information is important from three differ-
ent perspectives. Firstly, from the software reuse point of
view, such information provides valuable knowledge about
the artefact when it is reused in different projects or do-
mains. Secondly, it provides better feedback and under-
standing amongst the development team who are sharing
the artefacts. Finally, this information captures how the
artefacts have evolved during the development, e.g. linking
the artefacts produced during the requirements capturing
stage to the implementation and deployment stages of the
development. Currently available tools and methods pro-
vide no integrated environment for recording such meta-
information.

In this paper, we present a novel approach that pro-
vides a framework based on the concept of presenting
multi-dimensional design spaces within a collaborative en-
vironment. It allows engineers to share artefacts and their
meta-information, and to work together in a distributed
manner. By doing so, it also provides an artefact repos-
itory, captures meta-information, and allows the develop-
ment team to view the system in various levels of abstrac-
tion. This is the main objective of the Collaborative De-
termination, Elaboration and Evolution of Design Spaces
(CoDEEDS) project. It focuses on mapping the artefacts
with their meta-information. The artefacts are filtered us-
ing this information and presented as a network of multi-
dimensional design spaces within the collaborative envi-
ronment. Therefore artefacts can be assessed at various
level of abstraction with appropriate information by the de-
velopers depending on their roles.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A simple example scenario to illustrate the
motivation

To illustrate the need for such a collaborative environ-
ment, we have analysed our own CoDEEDS project. In the
project, two developers are working on different aspects of
the development. The situations where collaborative activ-
ity is needed are:-

• when defining development process,

• when making design and architectural decisions,

• in the process of dividing work activities,

• when identifying and using shared artefacts and het-
erogenous components such as commercial and open-
source databases,

• during component integration and definition of inter-
face contracts,

• and most importantly when changes are made to de-
velopment artefacts and their interfaces.

In the early stage of the development,management
andprocessaspects of the development are key consider-
ations, thus producing management and processtypesof
artefacts. As a part of the process, we have chosen RUP
[3] to represent various views of the system usingUnified
modelling language or UML.

It is a recognised principle that the approach and pro-
cess of development, e.g. RUP or Catalysis [4], and the
practice, e.g. eXtreme Programming (XP) [5], dictate the
types of artefacts that are produced in each stage of the de-
velopment. The type of an artefact can range from high
level architectural model of a system to a simple source
code module. At the other end of the spectrum, it could
be a large scale heterogenous component featuring its own
architecture, views, API, and guidelines of usage.

In this case, amongst manydevelopment artefacts,
three artefacts that have been produced are as follows:
conceptual model, use case model, andcomponent design
modelof the system. These artefacts have been produced
as a part of the RUP process for capturing various views of
the system. At this point, there are many different types of
meta-information related to each of the artefacts. Different
aspects of meta-information related to the artefacts are as
follows :-

• Language information : As the models are docu-
mented in UML, they follow notations and semantic
information specified in UML. Furthermore, they may
contain other types of documents written in natural
languages.

• Process information :As the models apply RUP, they
are based on the standards and guidelines specified by
that process.

• View information : In the case of the conceptual
model, it presents a high level view of the system.
This artefact is more appropriate for a developer with
the architect role than the programmer role. Similarly,
this applies to use case model and component model
artefacts.

• Relationship information : The component model
artefact realises functionalities presented in the con-
ceptual model. Therefore there is a relationship be-
tween these two artefacts.

• Traceability information : The conceptual model
also addresses the system level design constraints. In
the case of CoDEEDS, one of the constraints is the
ability to capture these information in a collaborative
environment. When the component model is devel-
oped, various architectural and design decisions are
made to comply with these constraints.

To this end, currently available tools do not provide an
integrated environment that shows all the meta-information
presented above in a structured way.

As the development continues, the design evolves as
the component model is changed to fit in new ideas. The
decision and rationale for these changes follow from col-
laboration amongst the members of the development team.
The following new meta-information needs to be recorded
:-

• Configuration Management information: As the
artefacts change over time, CM information is re-
quired.

• Collaborative process information: In a collabora-
tive process, asynchronous and synchronous commu-
nications are made to resolve various issues arising in
the production of the artefacts. For this case study, two
main types of information can be recorded. Firstly,
there are decisions and rationales for the changes
made to the component model against the system level
constraints defined in conceptual model artefact. Sec-
ondly, there are alternative solutions for various as-
pects of the component model. Information about
other resources or artefacts could also be linked or
documented as alternative solutions.

As an overview, by studying different collaborative
activities in our own development, we can identify the fol-
lowing problems:-

The lack of collective meta-information All the meta-
information presented above are stored in different lo-
cations by different tools.

The lack of constraint checking across artefactsThere
is a need for a collaborative environment to support
automatic or semi-automatic constraint checking
by analysing the artefact’s meta-information. The
constraint checking needs to be done at different
levels of abstraction as the design progresses.

Project management /

workflow

Development of artefacts

Recording of

collaboration

Storing and retrieving

artefacts

Checking constraints

for artefacts

Apply development tools

(emacs, jbuilder, rose,

etc...)

Engineering of

methods / processes

Abstract and refined

views of the system

i
M
a
c

Development Team

Software agents

OSCAR

CoDEEDS

Overlap

OSCAR & CoDEEDS
}

Figure 1. An overview use case for CoDEEDS framework

The lack of different views of the systemThere is also a
need to provide different views the system. These
views should be accessible within the collaborative
environment depending on the role of the developer.

Inability to find the rationale for decisions There is also
a need to record design decisions and their rationales
for each artefact as it is evolved throughout the devel-
opment.

In this case, when applying currently available group-
ware tools, automation and collaborative support is limited
only to workflow activities, and shared workspace [6, 7].
Other important issues with respect to collaborative soft-
ware development process such as automatic constraint
checking, change management and traceability between
artefacts will go unrecorded with existing tools. The study
of collaborative activities during the CoDEEDS framework
development outlined above has highlighted the need for
focused collaboration support amongst developers with re-
spect to recording and presenting different aspects of the
artefacts that are produced. There is also a need for record-
ing of how the design and artefacts are evolved during the
development.

The following section describes the CoDEEDS
framework. It presents how artefacts and their meta-
information can be captured and presented to the developer.

3 The CoDEEDS Framework

The main goal of the CoDEEDS framework is to provide
an environment that allows developers to determine and
elaborate the design constraints applicable in a particular
development and to facilitate their checking. At the same
time, the environment supports developers in the process
of decision making by presenting various design choices.
Based on the case study described above, we have outlined
a set of overview use cases to define our CoDEEDS sys-
tem boundary. Figure 1 shows the overview use case di-

Artefact management system

CoDEEDS web server

CoDEEDS server

Configuration management tools as plug-ins
 Event generator

Web-based

client 1

Web-based

client 2

Web-based

client N

Standalone

client

User proxies
 Collaboration support

Artefact

manager

Synchronous /

Asynchronous

communication

tools

Artefact Type Library

Artefact capture
 Agent-based constraint

checking

Artefact type configurator

….

Artefact matrix

Figure 2. CoDEEDS framework overview

agram that addresses the main issues that we focus on, as
the primary requirements of the system. It shows two dif-
ferent system boundaries between CoDEEDS and the Open
Source Component Artefact Repository (OSCAR), which
will be addressed fully in the Artefact Management Sys-
tem section. The CoDEEDS framework and its supporting
tool (CoDEEDS tool) are not intended to provide a new
groupware tool nor to enforce a particular process model or
method, but to instrument the existing development mod-
els, tools and to provide traceability in various aspects of
the artefacts.

The system itself has been implemented using exist-
ing heterogenous components and frameworks to provide a
collaborative environment and a collection of services. Fig-
ure 2 shows the architecture of the CoDEEDS framework.
The following sections describe the components forming
the architecture.

3.1 Artefact Type Library

The Artefact type library is one of the core components of
the system. It contains the default type hierarchical struc-
ture for various classes of artefacts. This is used to structure
the meta-information when capturing the artefact descrip-
tions and when presenting the artefact matrices with multi-
dimensional views. As it is a default structure, it can be
rearranged using theartefact type configurator.

The six main base classes of the artefact type hier-
archy aredevelopment, system constraints, process, lan-
guage, managementandcollaborative information. There
are many different sub-trees for various classes of artefacts
that can be described. The main nodes under the develop-
ment class tree arearchitecture, requirement, design and
analysis, implementation, integration, testingandcompo-
nents. Although thesystem constraintsclass can be clas-
sified under development, it is treated as a special class
for performing constraint checking. As we adopted these
classes from the OPEN process framework, a full list of
similar classifications is presented in [8].

As described above, the type hierarchy is used to clas-
sify different classes of artefacts that can be added to the

system. As an example, at the beginning of a project, a
process artefact can be added, which may contain guide-
lines, standards and template documents. Similarly, if the
process involves modelling, modelling language artefacts
such as UML diagrams can be added, which may include
notation and semantic information. The type hierarchy is
also used to configure the artefact matrices to present dif-
ferent aspects of the system as a network of views.

In the case of three artefacts presented in the case
study, the conceptual model, the use case model and the
component model can be classified under the architectural,
requirement, and design and analysis class of the type hi-
erarchy. As all artefacts are models based on RUP process
and UML language, they could be linked to other process
and language artefacts.

3.2 Artefact Capture

When a developer creates an artefact, the CoDEEDS en-
vironment can be used store and maintain the artefact. Its
data is wrapped with different layers of meta-information.
Similarly, when an artefact is changed, the meta-
information such as relationships, decisions/rationales and
constraints may also be changed. The Artefact Capture
component is used to record such meta-information before
passing it onto the Artefact Manager to be serialised by the
Artefact Management System (which will be described in
the following section).

Figure 4 shows how the artefact data is wrapped
inside its meta-information. The three layers of meta-
information are as follows:-

• The first layer of meta-information wrapped around
the data is CM information, relationships and other
RDF/Dublin Core metadata [9].

• In the second layer, meta-information related to work-
flow, process, language, tool, project, and resource as-
pects of the artefact are stored.

• The outermost layer has development and design
meta-information, such as design constraints, deci-
sions and rationales. The information may be de-
rived partly from the artefact type hierarchy and partly
though instrumentation of collaborative processes.

Some aspects of the meta-information can be cap-
tured automatically and some have to be filled in manually.
Presently, this component is not integrated with any devel-
opment tool to capture the meta-information automatically.
However, the structure is provided for mapping and import-
ing the data from external tools. As the CoDEEDS frame-
work matures over time, extra components can be added as
plug-ins for mapping the external data structures from the
IDEs. Figure 3 shows how the meta-information is seri-
alised as XML in the Oscar artefact repository. It illustrates
a snapshot of an artefact’s meta information which reflects
the conceptual model presented in 4.

Figure 3. Snapshot of Codeeds artefact meta-information

Artefact Data

(code, UML, etc.)

CM Info

(version, branch, etc.)

Development and

design Info

Relationships

(types, artefact IDs,

etc)

Workflow, Process,

Language,

and Project Info

Figure 4. An overview of CoDEEDS artefact

In the case of CoDEEDS artefacts presented in the
case study, the component model is created in the Ratio-
nal Rose modelling tool [10]. As the component model
changes over time, the model integrator provided by Rose
can be used to determined any changes to the model. How-
ever any decisions and rationales must be recorded manu-
ally.

3.3 Artefact Management system

Another core component of the CoDEEDS framework is
OSCAR artefact management system [11]. It provides the
artefact repository necessary to store, manipulate and re-
trieve artefacts. It also encapsulates configuration man-
agement (CM) systems as plug-ins to the system. Further-
more, in OSCAR, an artefact is referred to as ”active arte-
fact”. This means it has the awareness of its own creation,
modification and can generates events to be consumed by
any monitoring tasks. In OSCAR, each artefact’s meta-
information and contents are serialised into XML docu-
ments and stored in the repository managed by a CM sys-
tem. OSCAR, also supports the creation of artefact types,
such as software, annotation, project, etc. These types are
mapped to artefact type hierarchy from the Artefact Type
Library. Accordingly, various aspects of meta-information
can be configured and added to each type of the artefact.

3.4 Artefact Manager

The OSCAR artefact repository exposes its services using
two different interfaces, namely, Java RMI for local clients

Figure 5. A sample artefact matrix

and Web-services for remote clients. The Artefact Man-
ager acts as a client (i.e. it acts as a local proxy) to OS-
CAR within CoDEEDS environment. Accordingly, ser-
vices can be consumed locally through the Artefact Man-
ager. The services include, storing and retrieving artefacts,
getting branching information, querying artefacts by types
and IDs, etc. It also reflects a configuration management
system, and provides facilities such as update, commit and
notification of conflict resolution.

3.5 Artefact Matrix

The CoDEEDS framework is designed not only to capture
the meta-information of the artefacts, but also to separate
concerns for specific areas of focus or design viewpoints.
We have adopted the concept ofdesign space, which has
been applied to different domain areas, including HCI and
requirement engineering [12, 13, 14]. The idea is to present
possible design choices (as design parameters) against var-
ious aspects of the system (as design constraints). In the
CoDEEDS framework, each user has their own view of the
design matrix depending on their role. As a default view,
the artefacts are grouped based on the artefact type hierar-
chy (as columns) against the system constraints (as rows)
in a large spreadsheet, as shown in Figure 5. Accordingly,
the cell linking a particular row and column will point to
another view of the matrix, showing more detailed view of
a particular artefact and a system constraint. The main ob-
jective of providing artefact matrices as design spaces in
the CoDEEDS framework is to provide clear separation of
concerns and to present artefacts at an appropriate level to
abstraction. Furthermore, of assist the developers in mak-
ing decisions by presenting design choices and alternative
solutions.

In the case of CoDEEDS artefacts presented in the
case study, the three models:- conceptual, use case and
component can be grouped under the static architecture
and the dynamic behavior views [15]. These can be pre-
sented as columns of a matrix. One of the system con-
straints is capturing artefact’s meta-information in various
ways. Similarly, this constraint can be presented in one of
the rows in the same view of a matrix. The cell linking the
constraint and the use case model will point to more views
or more information on how these various use cases are sat-

isfying this particular constraint. The same applies to the
cell linking the constraint and the component model. This
it is a default view, however, the matrix can be rearranged
usingmatrix configurator.

3.6 Agent-based constraint checking

One of the requirements of the CoDEEDS framework is
automatic constraint checking. If a particular aspect or
functionality of an artefact is changed, other artefacts re-
lated to this artefact need to be notified. There are vari-
ous design choices to accomplish this constraint monitor-
ing task. One approach is to provide a component act-
ing as an event notification system for monitoring events
generated by OSCAR. However, we chose an agent-based
approach for monitoring constraints. The main reason is
that this provides a smart way of analysing and monitoring
the changes against the relationships amongst artefacts by
adding rules to agents. In the framework, the agent-based
monitoring is attached to the Artefact Matrix. Therefore an
agent can be assigned to a particular row or column of the
matrix.

As an example, an agent can be assigned to a con-
straint such as capturing an artefact’s meta-information.
The agent will monitor and notify events according to the
rules that are given. Similarly, the agent can also be as-
signed to a row, a collection of rows or a cell linking a row
and a column.

3.7 Collaboration support

Generally, various types of collaboration activities, such
as meetings or discussions communicated via mailing list,
chat, and shared whiteboard occur to revolve different is-
sues arising during the design of artefacts. Most of these
activities can be performed using groupware tools[16, 17].
The recording of the data presented in these sessions can
be stored as meta-information for traceability of design de-
cisions and rationales behind the changes. The CoDEEDS
framework provides a mail list facility for the collaboration
process related to artefacts based on various classes of arte-
fact type hierarchy. The developers can use this facility to
make collaborative decisions and other activities. As the
framework matures over time, different asynchronous and
synchronous communication facilities will be added.

3.8 CoDEEDS framework summary and the
review of the scenario

As a summary, the CoDEEDS server provides services to
standalone clients whilst a web server acts as proxy to
CoDEEDS server. Each user is assigned with auser proxy
to monitor the state of the user. TheArtefact Capturecom-
ponent can be used to add and manipulate an artefact’s
data and its meta-information. The structure of the meta-
information is stored inArtefact Type Library. The struc-

ture and the contents of the artefact types can be modi-
fied usingartefact type configurator. The artefacts can be
stored and retrieved using the OSCAR artefact manage-
ment system, which contains CM tools as plug-ins. The
Artefact Matrix is used to present various constraints and
views of the artefacts.

We can review the development of three artefacts pre-
sented as the example scenario. The necessary project and
resource tasks can be performed via the CoDEEDS server.
After we have decided to use RUP process and UML mod-
elling we can configure the Artefact Type Library to in-
clude specific properties under the process and modelling
langauge tree in the type hierarchy.

When the first conceptual model is produced, a de-
veloper can login to the CoDEEDS server. Each user is
assigned with a user proxy object to monitor the state of
the user. The developer can store the artefact and its meta-
information using the Artefact Capture component. The
component will present the necessary meta-information
structure to be recorded, depending on the information pro-
vided by the Artefact Type Library. After adding the meta-
information, the Artefact Manager is used to store the cap-
tured component and its relevant meta-information in OS-
CAR. The artefact is then added to the repository with ad-
ditional CM information determined by OSCAR. As it is a
architectural level component, system constraints may also
be recorded as separate artefacts.

Other developers may then view the artefact by nav-
igating through the Artefact Matrix. When another devel-
oper produces the component model that realises some or
all functionalities presented in the conceptual model, he or
she may create an agent to monitor the conceptual model
artefact. The rules can be given via direct relationship be-
tween both artfacts’ meta-information or via system con-
straints. The two developers may also use collaboration
facilities to resolve any issues with respect to these two
artefacts. Whether or not the two developers use the col-
laboration facilities provided by the CoDEEDS server, the
decisions and rationales made during the collaborative pro-
cess may then be added as extra meta-information to these
artefacts. Figure 6 shows a simple scenario on how meta-
information is added in the CoDEEDS framework.

4 CoDEEDS tool development

We are currently developing the CoDEEDS tool as a refer-
ence implementation. However, as with many other frame-
works that are supported by tools, the success of our ap-
proach depends not only on a sound architecture of the
framework but also on the features supported by the tool
and its quality.

4.1 Components of the tool

We employ various existing open-source heterogenous
components and groupware frameworks. Our main focus

Knowledge

Develop, bug

fix, test,

release, check-

in, check-out

Artefacts, version,

project info, constraints,

design decisions/

rationales, views

Collaboration,

brainstorming,

assessment,

review

Alternative

solutions, ideas,

potential problems,

decisions

Group

Knowledge

Figure 6. A simple scenario on the changes of meta-
information

is on integrating the components to facilitate the services
that underlie the architecture. Figure 7 shows the overview
of the CoDEEDS implementation framework. The integra-
tion of all these components represents a CoDEEDS server
for both web-based and stand-alone distributed clients.

The main components we have used are as follows:-

• A J2EE server based with JBoss implementation [18].
- The JBoss J2EE serverprovides an infra-structure
for creating various components. The reason we have
chosen JBoss as a J2EE server implementation is that
it provides the necessary technological services such
as JMS server, servlet engine, datasource, container
and security.

• An artefact management system (based on OS-
CAR [11]) to allow manipulation and storing of arte-
facts.The OSCAR artefact management system is im-
plemented entirely in Java language. It currently sup-
ports the CVS configuration management system as
a plugin for storing artefact contents and a database
for storing meta-information. It provides interface for
storing artefacts in any binary or text form and seri-
alises them into XML.

• An agent server (based on JADE [19]) to perform
monitoring of the Artefact Matrix and to support con-
straint checking. - JADE agent framework supports
easy creation of collaborative agents.

• An EJB application deployed on the JBoss server.-
This provides core functionalities of the framework.
These include the Artefact type library, the Artefact
Capture, and the Artefact Matrix.

• An EJB-based collaboration component that is de-
ployed on the JBoss server.- This component uses
Sun’s JSDT [20] collaboration framework to support
various groupware facilities such as mailing list, chat,
and white board.

• JBoss Web server.- This allows the CoDEEDS server
to expose services to web-based clients.

• MySQL database- Finally a JDBC compliant data-
source to provide a generic storage for design records,

Web-based Clients
 Standalone Clients

Datastore (JDBC compliant database)

JADE Agent

Server

JBoss J2EE Server

OSCAR Artefact Management System

CoDEEDS Server (Web server / EJB application Server)

Agent pool

Collaboration support

component

JSDT

EJB appication

Figure 7. An overview architecture for CoDEEDS tool

collaboration notes, as well as process and project
management records.

4.2 The status and the features of the tool

Currently we are adding different features that are needed
to realise the framework. We take a non-invasive approach
by allowing developers to use the tool at different levels.
Firstly, it can be used as a simple client to configuration
management repository such as CVS within team develop-
ment. It can also be used as workflow tool, because it can
map the artefacts to project management activities. Since
meta-information is presented in XML, each type of arte-
fact may have its own structure for meta-information, such
as decisions, rationales and design constraints. We are in
the completion stage of building the first prototype of the
tool.

5 Related Works

We can compare the work on CoDEEDS project with re-
search areas in many different domains. Some of the design
making and recording problems have been researched and
addressed in many different systems that support argumen-
tation and decision rationale for various types of groups
and application areas. gIBIS hypertext tool is one of the
early groupware tools which aims to capture the rationale
for a design process [21]. Many different tools derived
in the same context includeEuclid [22], which provides
a graphical representation language for generic argumen-
tation, SEPIA [23], which is a knowledge-based author-
ing and design knowledge capturing tool,QuestMap[24],
which aims to capture key issues and ideas during meeting,
are placed on the “whiteborad” and are presented graphi-
cally as maps,SIBYL[25], which manages group decision
rationale and provides services for management of depen-
dency and viewpoints, and finallyHermes[26], which aims
to capture collaborative arguments against issues. Follow-
ing the same context, there are many Web-based discussion
forms, some for closed subjects and some open to general
issues.

The systems described aim to support decision mak-
ing by providing argument recoding facilities and environ-
ments for discussions are not specific to the development

of software artefacts and software design decisions. Con-
trary to those systems, the CoDEEDS framework focuses
on presenting decisions that are made about indivitual arte-
facts with respect to the role of each developer in software
engineering domain.

We can also compare and address the more specific
requirement engineering (RE) and software documentation
research areas, because system level constraints are cap-
tured during the acquisition of requirements. In this con-
text, research has been done since early 90s, such as in
REMAP [27], which is a model to support requirement
analysis by relating process knowledge to the artefacts that
are produced during RE. Following such approach, more
generic automated rationale and conflicts resolution and
management have been presented in different systems, such
as the prototype presented asOz [28]. The concept of
CoDEEDS that those systems share is the principle of cap-
turing rationale and constraints of the system. The main
difference is, in CoDEEDS, constraints are attached to arte-
facts as meta-information not to the requirement stage of
the development. In other words, if the artefact is a high
level use case model, constraints and rationale may relate
to system level requirements.

The concept of design space involving the application
of a matrix-based approach to record and analyse design
decisions has been presented in the field of HCI [13] and
software structures in [14].

On the other hand, we can focus on the concept of
traceability and change management among all project el-
ements, such as the approach adapted in the OPHELIA
project [29]. Their approach focuses on integrating prod-
ucts resulting from various development tools and perform-
ing traceability as well as automatic notifications about
changes to the products. However our main concern is
providing much more high-level collaborative support by
recording meta-information and presenting it within arte-
fact matrices.

When designing a new application, the determination
of relevant design methods, design parameters and con-
straints is important to all members of the development
team. In this paper, we have presented a way of recording
such important information in a collaborative environment.
Associated automatic constraint checking can also be per-
formed. However, we do not analyse the actual data content
of the artefacts, the richness of the meta-information is lim-
ited to the data provided by the developers and the tools.

6 Conclusion

As an overview, we have described a collaborative envi-
ronment with a design recording facility to assist software
development teams engaged in collaborative software de-
velopment. The framework also addresses the use of vari-
ous views that separate various concerns during the design.
The research of the CoDEEDS project is to provide a closer
relationship amongst the CSCW-based research on collab-

oration environment, traceability of the design, and evolu-
tion of design spaces.

References

[1] A. Braun, A. H. Dutoit, and B. Brugge. A software ar-
chitecture for knowledge acquisition and retrieval for
global distributed teams. InProceedings of the 3rd
International Workshop on Global Software Develop-
ment, Portland, Oregon, 2003.

[2] A. Ramirez.ArgoUML user manual, 2001.

[3] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified
Software Development Process. Object Technology
Series. Addison-Wesley, 1999.

[4] Desmond F. D’Souza and Alan Cameron Wills.Ob-
jects, components, and frameworks with UML: the
catalysis approach. Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

[5] S. W. Ambler. Agile modeling. Wiley, New York,
2002.

[6] The MITRE Corporation. Collaborative Virtual
Workspace Overview. The MITRE Corporation.,
1999. Overview.

[7] P. Garcia, O. Montala, and C. Pairot. Move: Compo-
nent groupwave foundations for collaborative virtual
environments. InACM Collaborative Virtual Envi-
ronments 2002, Bonn, Germany, 2002. ACM.

[8] D. G. Firesmith and B. Henderson-Sellers.The OPEN
Process Framework. The OPEN Series. Addison
Wesley, 2002.

[9] Consortium for hte Computer Interchange of Museum
Information. Guide to best practice: Dublin core.

[10] Rational Rose. Rose visual modelling tool, 2002.
Avaliable atwww.rational.com .

[11] Cornelia Boldyreff, David Nutter, and Stephen Rank.
Architectural requirements for an open source com-
ponent and artefact repository system within GENE-
SIS. In Cristina Gacek and Budi Arief, editors,Pro-
ceedings of the Open Source Software Development
Workshop, pages 176–196, Newcastle, UK, February
2002.

[12] Lothar Baum, M. Becker, Lars Geyer, and Georg
Molter. Mapping requirements to reusable compo-
nents using design spaces. InICRE, pages 159–167,
2000.

[13] Allan Maclean and Diane McKerlie. Design space
analysis and use representations. InScenario-based
design: envisioning work and technology in system
development, pages 183–207. John Wiley and Sons,
Inc., 1995.

[14] Thomas G. Lane. Studying software architecture
through design spaces and rules. Technical Report
CMU/SEI-90-TR-18, Software Engineering Institute,
November 1990.

[15] Philippe Kruchten. The 4+1 view model of architec-
ture. IEEE Software, 12(6):45–50, 1995.

[16] phpGroupware. phpgroupware home page, 2002.
Avaliable atwww.phpgroupware.org .

[17] Pedro Garcia Lopez, Robert Rallo Molla, Merce Gis-
bert, and Antiono Gmez Skarmeta. Ants a new col-
laborative learning framework. InEuropean Confer-
ence on Computer Supported Collaborative Learn-
ing, 2001.

[18] JBoss. Jboss home page, 2002. Avaliable at
www.jboss.org .

[19] JADE. Jade home page, 2002. Avaliable at
jade.cselt.it .

[20] The Sun Microsystems. Java shared
data toolkit JSDT, 2002. Avaliable at
java.sun.com/products/java-media/jsdt .

[21] J Conklin and ML Begeman. gibis: A hypertext tool
for exploratory policy discussion.ACM Transactions
on Office Information Systems, 6(4):303–331, Octo-
ber 1988.

[22] B. Bernstein. Euclid: Supporting collaborative argu-
mentation with hypertext. Technical Report CU-CS-
596-92, Department of Computer Science, University
of Colorado at Boulder, Boulder, USA, 1992.

[23] Norbert A. Streitz, Jorg M. Haake, Jorg Hannemann,
Andreas C. Lemke, Wolfgang Schuler, Helge Schutt,
and Manfred Thuring. SEPIA: A cooperative hyper-
media authoring environment. InEuropean Confer-
ence on Hypertext, pages 11–22, 1992.

[24] J Conklin. Designing organisational mem-
ory: Preserving intellectual assets in a
knowledge economy, 1996. Avaliable at
http://www.gdss.com/wp/DOM.htm .

[25] J. Lee. Sibyl: A tool for managing group deci-
sion rationale. InProc. CSCW-90: Conference on
Computer-Supported Cooperative Work, pages 79–
92, Los Angeles, CA, 1990.

[26] Nikos I. Karacapilidis and Dimitris Papadias. Her-
mes: Supporting argumentative discourse in multi-
agent decision making. InAAAI/IAAI, pages 827–
832, 1998.

[27] B. Ramesh and V. Dhar. Supporting systems develop-
ment by capturing deliberations during requirements
engineering. IEEE Transactions on Software Engi-
neering, 18(6):498–510, 1992.

[28] W. Robinson and S. Fickas. Automated support for
requirements negotiation, 1994.

[29] K. Kowalczykiewicz and D. Weiss. Traceability:
Taming uncontrolled change in software develop-
ment, 2002.

