42 research outputs found

    Vibroacoustic diagnostics of a radial microturbine and a scroll expander operating in the organic Rankine cycle installation

    Get PDF
    The article presents the results of vibroacoustic research on a prototypical 4-stage radial microturbine and a scroll expander operating in the organic Rankine cycle with the low-boiling fluid HFE7100. The high-speed microturbogenerator had the electrical capacity of 3 kWe at the nominal speed of 24000 rpm. The low-speed expander with a capacity of 1 kWe and a nominal speed of 3600 rpm was made by Air Squared. The frequency characteristics and overall vibration level (vibration velocity Vrms) measurements were conducted for both the microturbine and the expander, depending on the rotational speed and on the power consumption of electrical energy receivers. The level of noise emitted by the microturbine and expander was also determined. The research was carried out for various electrical loads of the expansion devices generators running in the ORC system. The devices were tested in the following electric power ranges: from 550 We to 1150 We (scroll expander) and from 800 We to 1800 We (radial microturbine). Based on the obtained results, dynamic state assessment of the tested machines was performed and their noise and vibration levels were analysed

    Application of variational mode decomposition in vibration analysis of machine components

    Get PDF
    Monitoring and diagnosis of machinery in maintenance are often undertaken using vibration analysis. The machine vibration signal is invariably complex and diverse, and thus useful information and features are difficult to extract. Variational mode decomposition (VMD) is a recent signal processing method that able to extract some of important features from machine vibration signal. The performance of the VMD method depends on the selection of its input parameters, especially the mode number and balancing parameter (also known as quadratic penalty term). However, the current VMD method is still using a manual effort to extract the input parameters where it subjects to interpretation of experienced experts. Hence, machine diagnosis becomes time consuming and prone to error. The aim of this research was to propose an automated parameter selection method for selecting the VMD input parameters. The proposed method consisted of two-stage selections where the first stage selection was used to select the initial mode number and the second stage selection was used to select the optimized mode number and balancing parameter. A new machine diagnosis approach was developed, named as VMD Differential Evolution Algorithm (VMDEA)-Extreme Learning Machine (ELM). Vibration signal datasets were then reconstructed using VMDEA and the multi-domain features consisted of time-domain, frequency-domain and multi-scale fuzzy entropy were extracted. It was demonstrated that the VMDEA method was able to reduce the computational time about 14% to 53% as compared to VMD-Genetic Algorithm (GA), VMD-Particle Swarm Optimization (PSO) and VMD-Differential Evolution (DE) approaches for bearing, shaft and gear. It also exhibited a better convergence with about two to nine less iterations as compared to VMD-GA, VMD-PSO and VMD-DE for bearing, shaft and gear. The VMDEA-ELM was able to illustrate higher classification accuracy about 11% to 20% than Empirical Mode Decomposition (EMD)-ELM, Ensemble EMD (EEMD)-ELM and Complimentary EEMD (CEEMD)-ELM for bearing shaft and gear. The bearing datasets from Case Western Reserve University were tested with VMDEA-ELM model and compared with Support Vector Machine (SVM)-Dempster-Shafer (DS), EEMD Optimal Mode Multi-scale Fuzzy Entropy Fault Diagnosis (EOMSMFD), Wavelet Packet Transform (WPT)-Local Characteristic-scale Decomposition (LCD)- ELM, and Arctangent S-shaped PSO least square support vector machine (ATSWPLM) models in term of its classification accuracy. The VMDEA-ELM model demonstrates better diagnosis accuracy with small differences between 2% to 4% as compared to EOMSMFD and WPT-LCD-ELM but less diagnosis accuracy in the range of 4% to 5% as compared to SVM-DS and ATSWPLM. The diagnosis approach VMDEA-ELM was also able to provide faster classification performance about 6 40 times faster than Back Propagation Neural Network (BPNN) and Support Vector Machine (SVM). This study provides an improved solution in determining an optimized VMD parameters by using VMDEA. It also demonstrates a more accurate and effective diagnostic approach for machine maintenance using VMDEA-ELM

    Book reports

    Get PDF

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    The 1992 Research/Technology report

    Get PDF
    The 1992 Research & Technology report is organized so that a broad cross section of the community can readily use it. A short introductory paragraph begins each article and will prove to be an invaluable reference tool for the layperson. The approximately 200 articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Lewis technology programs

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments

    Smart Flow Control Processes in Micro Scale

    Get PDF
    In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems

    Microscopy and Analysis

    Get PDF
    Microscopes represent tools of the utmost importance for a wide range of disciplines. Without them, it would have been impossible to stand where we stand today in terms of understanding the structure and functions of organelles and cells, tissue composition and metabolism, or the causes behind various pathologies and their progression. Our knowledge on basic and advanced materials is also intimately intertwined to the realm of microscopy, and progress in key fields of micro- and nanotechnologies critically depends on high-resolution imaging systems. This volume includes a series of chapters that address highly significant scientific subjects from diverse areas of microscopy and analysis. Authoritative voices in their fields present in this volume their work or review recent trends, concepts, and applications, in a manner that is accessible to a broad readership audience from both within and outside their specialist area
    corecore