15 research outputs found

    A Multi-Stage Multi-Codebook VQ-VAE Approach to High-Performance Neural TTS

    Full text link
    We propose a Multi-Stage, Multi-Codebook (MSMC) approach to high-performance neural TTS synthesis. A vector-quantized, variational autoencoder (VQ-VAE) based feature analyzer is used to encode Mel spectrograms of speech training data by down-sampling progressively in multiple stages into MSMC Representations (MSMCRs) with different time resolutions, and quantizing them with multiple VQ codebooks, respectively. Multi-stage predictors are trained to map the input text sequence to MSMCRs progressively by minimizing a combined loss of the reconstruction Mean Square Error (MSE) and "triplet loss". In synthesis, the neural vocoder converts the predicted MSMCRs into final speech waveforms. The proposed approach is trained and tested with an English TTS database of 16 hours by a female speaker. The proposed TTS achieves an MOS score of 4.41, which outperforms the baseline with an MOS of 3.62. Compact versions of the proposed TTS with much less parameters can still preserve high MOS scores. Ablation studies show that both multiple stages and multiple codebooks are effective for achieving high TTS performance

    Controllable music performance synthesis via hierarchical modelling

    Full text link
    L’expression musicale requiert le contrôle sur quelles notes sont jouées ainsi que comment elles se jouent. Les synthétiseurs audios conventionnels offrent des contrôles expressifs détaillés, cependant au détriment du réalisme. La synthèse neuronale en boîte noire des audios et les échantillonneurs concaténatifs sont capables de produire un son réaliste, pourtant, nous avons peu de mécanismes de contrôle. Dans ce travail, nous introduisons MIDI-DDSP, un modèle hiérarchique des instruments musicaux qui permet tant la synthèse neuronale réaliste des audios que le contrôle sophistiqué de la part des utilisateurs. À partir des paramètres interprétables de synthèse provenant du traitement différentiable des signaux numériques (Differentiable Digital Signal Processing, DDSP), nous inférons les notes musicales et la propriété de haut niveau de leur performance expressive (telles que le timbre, le vibrato, l’intensité et l’articulation). Ceci donne naissance à une hiérarchie de trois niveaux (notes, performance, synthèse) qui laisse aux individus la possibilité d’intervenir à chaque niveau, ou d’utiliser la distribution préalable entraînée (notes étant donné performance, synthèse étant donné performance) pour une assistance créative. À l’aide des expériences quantitatives et des tests d’écoute, nous démontrons que cette hiérarchie permet de reconstruire des audios de haute fidélité, de prédire avec précision les attributs de performance d’une séquence de notes, mais aussi de manipuler indépendamment les attributs étant donné la performance. Comme il s’agit d’un système complet, la hiérarchie peut aussi générer des audios réalistes à partir d’une nouvelle séquence de notes. En utilisant une hiérarchie interprétable avec de multiples niveaux de granularité, MIDI-DDSP ouvre la porte aux outils auxiliaires qui renforce la capacité des individus à travers une grande variété d’expérience musicale.Musical expression requires control of both what notes are played, and how they are performed. Conventional audio synthesizers provide detailed expressive controls, but at the cost of realism. Black-box neural audio synthesis and concatenative samplers can produce realistic audio, but have few mechanisms for control. In this work, we introduce MIDI-DDSP a hierarchical model of musical instruments that enables both realistic neural audio synthesis and detailed user control. Starting from interpretable Differentiable Digital Signal Processing (DDSP) synthesis parameters, we infer musical notes and high-level properties of their expressive performance (such as timbre, vibrato, dynamics, and articulation). This creates a 3-level hierarchy (notes, performance, synthesis) that affords individuals the option to intervene at each level, or utilize trained priors (performance given notes, synthesis given performance) for creative assistance. Through quantitative experiments and listening tests, we demonstrate that this hierarchy can reconstruct high-fidelity audio, accurately predict performance attributes for a note sequence, independently manipulate the attributes of a given performance, and as a complete system, generate realistic audio from a novel note sequence. By utilizing an interpretable hierarchy, with multiple levels of granularity, MIDI-DDSP opens the door to assistive tools to empower individuals across a diverse range of musical experience

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically

    Disentanglement Learning for Text-Free Voice Conversion

    Get PDF
    Voice conversion (VC) aims to change the perceived speaker identity of a speech signal from one to another, while preserving the linguistic content. Recent state-of-the-art VC systems typically are dependent on automatic speech recognition (ASR) models and they have gained great successes. Results of recent challenges show these VC systems have reached a level of performance close to real human voices. However, they are highly relying on the performance of the ASR models, which might experience degradations in practical applications because of the mismatch between training and test data. VC systems independent of ASR models are typically regarded as text-free systems. They commonly apply disentanglement learning methods to remove the speaker information of a speech signal, for example, vector quantisation (VQ) or instance normalisation (IN). However, text-free VC systems have not reached the same level of performance as text-dependent systems. This thesis mainly studies disentanglement learning methods for improving the performance of text-free VC systems. Three major contributions are summarised as follows. Firstly, in order to improve the performance of an auto-encoder based VC model, the information loss issue caused by the VQ of the model is studied. Two disentanglement learning methods are exploited to replace the VQ of the model. Experiments show that these two methods improve the naturalness and intelligibility performance of the model, but hurt the speaker similarity performance of the model. The reason for the degradation of the speaker similarity performance is studied in the further analysis experiments. Next, the performance and the robustness of Generative Adversarial Networks (GAN) based VC models are studied. In order to improve the performance and the robustness of an GAN based VC model, a new model is proposed. This new model introduces a new speaker adaptation layer for alleviating the information loss issue caused by a speaker adaptation method based on IN. Experiments show that the proposed model outperformed the baseline models on VC performance and robustness. The third contribution studies whether Self-Supervised Learning (SSL) based VC models can reach the same level of performance of the state-of-the-art text-dependent models. An encoder-decoder framework is established for experiments. In this framework, the performance of a VC systems implemented with a SSL model can be compared to a VC system implemented with an ASR model. Experiment results show that SSL based VC models can reach the same level of naturalness performance of the state-of-the-art text- dependent VC models. Also, SSL based VC models gained advantages on intelligibility performance when tested on out of domain target speakers. But they performed worse on speaker similarity

    Synthesising prosody with insufficient context

    Get PDF
    Prosody is a key component in human spoken communication, signalling emotion, attitude, information structure, intention, and other communicative functions through perceived variation in intonation, loudness, timing, and voice quality. However, the prosody in text-to-speech (TTS) systems is often monotonous and adds no additional meaning to the text. Synthesising prosody is difficult for several reasons: I focus on three challenges. First, prosody is embedded in the speech signal, making it hard to model with machine learning. Second, there is no clear orthography for prosody, meaning it is underspecified in the input text and making it difficult to directly control. Third, and most importantly, prosody is determined by the context of a speech act, which TTS systems do not, and will never, have complete access to. Without the context, we cannot say if prosody is appropriate or inappropriate. Context is wide ranging, but state-of-the-art TTS acoustic models only have access to phonetic information and limited structural information. Unfortunately, most context is either difficult, expensive, or impos- sible to collect. Thus, fully specified prosodic context will never exist. Given there is insufficient context, prosody synthesis is a one-to-many generative task: it necessitates the ability to produce multiple renditions. To provide this ability, I propose methods for prosody control in TTS, using either explicit prosody features, such as F0 and duration, or learnt prosody representations disentangled from the acoustics. I demonstrate that without control of the prosodic variability in speech, TTS will produce average prosody—i.e. flat and monotonous prosody. This thesis explores different options for operating these control mechanisms. Random sampling of a learnt distribution of prosody produces more varied and realistic prosody. Alternatively, a human-in-the-loop can operate the control mechanism—using their intuition to choose appropriate prosody. To improve the effectiveness of human-driven control, I design two novel approaches to make control mechanisms more human interpretable. Finally, it is important to take advantage of additional context as it becomes available. I present a novel framework that can incorporate arbitrary additional context, and demonstrate my state-of- the-art context-aware model of prosody using a pre-trained and fine-tuned language model. This thesis demonstrates empirically that appropriate prosody can be synthesised with insufficient context by accounting for unexplained prosodic variation

    Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques

    Full text link
    The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization.Comment: PhD Thesis Pierre Champion | Universit\'e de Lorraine - INRIA Nancy | for associated source code, see https://github.com/deep-privacy/SA-toolki
    corecore