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Abstract
Prosody is a key component in human spoken communication, signalling emotion,
attitude, information structure, intention, and other communicative functions
through perceived variation in intonation, loudness, timing, and voice quality.
However, the prosody in text-to-speech (TTS) systems is often monotonous and
adds no additional meaning to the text. Synthesising prosody is difficult for
several reasons: I focus on three challenges. First, prosody is embedded in the
speech signal, making it hard to model with machine learning. Second, there is
no clear orthography for prosody, meaning it is underspecified in the input text
and making it difficult to directly control. Third, and most importantly, prosody
is determined by the context of a speech act, which TTS systems do not, and will
never, have complete access to. Without the context, we cannot say if prosody is
appropriate or inappropriate. Context is wide ranging, but state-of-the-art TTS
acoustic models only have access to phonetic information and limited structural
information. Unfortunately, most context is either difficult, expensive, or impos-
sible to collect. Thus, fully specified prosodic context will never exist. Given
there is insufficient context, prosody synthesis is a one-to-many generative task:
it necessitates the ability to produce multiple renditions. To provide this abil-
ity, I propose methods for prosody control in TTS, using either explicit prosody
features, such as F0 and duration, or learnt prosody representations disentangled
from the acoustics. I demonstrate that without control of the prosodic variability
in speech, TTS will produce average prosody—i.e. flat and monotonous prosody.

This thesis explores different options for operating these control mechanisms.
Random sampling of a learnt distribution of prosody produces more varied and
realistic prosody. Alternatively, a human-in-the-loop can operate the control
mechanism—using their intuition to choose appropriate prosody. To improve
the effectiveness of human-driven control, I design two novel approaches to make
control mechanisms more human interpretable. Finally, it is important to take ad-
vantage of additional context as it becomes available. I present a novel framework
that can incorporate arbitrary additional context, and demonstrate my state-of-
the-art context-aware model of prosody using a pre-trained and fine-tuned lan-
guage model. This thesis demonstrates empirically that appropriate prosody can
be synthesised with insufficient context by accounting for unexplained prosodic
variation.
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Lay Summary
Text-to-speech (TTS) synthesis is the task of producing synthetic speech auto-
matically from text. TTS has many applications, from smart assistants and voice
user interfaces, to audiobooks and dubbing. However, the synthetic speech from
these systems is not as expressive as natural human speech. In my research, I
demonstrate that one reason for the lack of expressivity is the systems’ inability
to produce multiple versions of a sentence. As such, the first approach I develop
is able to produce multiple renditions of a sentence.

Humans are able to perform a sentence in many different ways, possibly
conveying different meanings. This is achieved through prosody: the use of pitch,
loudness, and rhythm. Unfortunately, prosody has no clear written form. This
means it is difficult to specify what prosody to use for a sentence. I develop new
approaches that allow a human operator to control prosody more easily in TTS,
providing control of emotion, attitude, and speaking style.

While a human-controlled TTS system is useful for the offline creation of me-
dia, such as audiobooks and dubbing, it is not suitable for real-time applications
of TTS, such as smart assistants and voice user interfaces. In order to automati-
cally predict better prosody we need to know what situation a sentence is being
delivered within, for example: should the speech sound happy or sad, what was
said in the previous sentence, or is a joke being told? This situational information
is referred to as the context. In TTS, we have access to only a small amount of
context and this is insufficient to predict prosody that is appropriate to a spe-
cific situation. The final approach I explore introduces new context information
to automatically predict prosody. Using methods from natural language under-
standing, my approach is able to make a significant improvement over existing
state-of-the-art TTS systems.
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Chapter 1

Introduction

Speech is a rich form of communication that can convey information more effi-
ciently than written language, especially social information, like emotion (Ben-
David et al., 2016) and attitude (Mitchell and Ross, 2013). Speech conveys more
than the utterance’s written form; this additional information is communicated
using prosody. However, unlike written language, prosody has no clear orthog-
raphy. This leads to a challenge for text-to-speech (TTS) synthesis as we must
produce prosody without any orthographic specification. My research focuses on
controlling prosody without such an orthography of prosody: by learning repre-
sentations of prosody, by investigating the interpretability of such representations,
and by predicting prosody using the same contextual factors available to humans
when planning prosody.

Speech consists of lexical content and prosodic content. Lexical content
refers to the spoken words that make up an utterance, while prosodic content
refers to the delivery of the lexical content. The choice of both lexical and prosodic
content is imperative to communicating both effectively and efficiently.

Text-to-speech (TTS) synthesis is the process of generating a waveform
from a sentence. In TTS, we take the lexical content as given, while we must
choose an appropriate prosodic delivery for the fixed lexical content. Approaches
that also generate or modify the lexical content—such as concept-to-speech (Tay-
lor, 2009, Section 3.4), natural language generation (Gatt and Krahmer, 2018),
and paraphrasing (Androutsopoulos and Malakasiotis, 2010)—are not considered
here.

1



2 Chapter 1. Introduction

Prosody is the use of phrasing, timing, intonation, loudness, and voice
quality to communicate: meaning, emphasis, emotion, humour, sarcasm, and
other paralinguistic functions. Prosodic choices are influenced by many factors
relating to the context in which a speech act occurs. For example, knowledge of
what is new or known to your interlocutor may determine if you emphasise or
reduce a word (Krifka, 2008). Or, your relationship with a person can change
what emotion you express in your speech.

For a human speaker, the context of a speech act is readily available when
making prosodic (and lexical) choices. However, in TTS, where we are given the
lexical specification but must choose the prosodic delivery, there is often a lack
of relevant prosodic context information. Prosodic context is the contextual
information typically used by human speakers, consciously or otherwise, to plan
their prosodic delivery. The relationship of prosodic context with other context
is discussed further in Chapter 2. The lack of prosodic context in TTS leads
to prosody being treated as unpredictable variation.1 Thus, TTS voices that
lack sufficient context produce speech that is not appropriate to the context,
potentially leading to an “uncanny valley” phenomenon (Mori et al., 2012). In
practice, TTS voices in consumer products are designed to take little risk with
prosodic choices (Wan et al., 2019), leading to uninformative prosody.

Prosodic appropriateness is a measure of how well a prosodic rendition
aligns with listener expectations for the speech act’s prosody, given its surround-
ing context (Campbell, 2007; Cole, 2015). This metric for prosodic quality is
defined with respect to an utterance’s context, meaning that evaluating appro-
priateness requires the use of context (Wagner et al., 2019; Clark et al., 2019).
Since there are multiple valid prosodies in any situation, defining which is “bet-
ter” is not straightforward. By instead measuring appropriateness, we focus on
understanding which prosodies are more/less acceptable.

The context required to predict appropriate prosody, as a human would,
is very broad. Prosodic context ranges from local information such as: syntax,
semantics, focus, affect, and relevant or nearby speech acts, to more global in-
formation such as setting, personality, interpersonal factors, general knowledge

1More precisely, when there is insufficient context, prosody appears to be unexplained vari-
ation. However, due to modelling assumptions made by typical TTS approaches, realistic
prosody is unpredictable: only the non-existent average prosody can be modelled, as explored
in Chapter 3.



3

(e.g. current news events), world/semantic knowledge (e.g. that a chair is some-
thing you sit on), and social knowledge (e.g. how to behave around a superior).
Prosody is also influenced by previous prosodic choices in relevant speech acts,
i.e. prosody used in the surrounding utterances. Different types of context, and
their relation to prosody are discussed further in Section 2.2.6.

Unfortunately, much of this information is difficult to codify, and some is
not attainable or is impractical to collect. Consider the relationship between
conversation partners: even a customer service interaction includes complex in-
terpersonal behaviour, such as subtle clues about personality and the hierarchical
relationship between the speakers. Or, consider the internal emotional state of a
speaker: since we only observe their somatic emotional expression (Clynes, 1977;
Picard and Picard, 1997), it may not be possible to know the cause for certain
prosodic choices. In addition, certain context information that can be annotated
may be prohibitively expensive to collect. More generally, Lewis (1979) posits
that interlocutors utilise a mental representation of a conversation. By this theory
alone, there is unattainable context information. This limitation—that much of
the prosodic context used by humans cannot be explicitly collected—is illustrated
by the vertical dotted line in Figure 1.1. While internal information held by in-
terlocutors cannot be annotated, it may be possible for future machine learning
methods to capture similar contextual representations. Such learnt representa-
tions would, in effect, move the vertical line of limited context to the right.

The relationship of achievable appropriateness with respect to the amount
of prosodic context used is depicted by Figure 1.1. The lower triangle, labelled
“accounted-for prosody”, illustrates how much of the prosody can be predicted
deterministically: the more context available the more appropriate the predicted
prosody can be. In practice, TTS models cannot exist past the vertical dotted
line representing limited context. While we are far from reaching this boundary,
it will become infeasible to push for more types of context information, this line of
reasoning leads us to the same situation as typical TTS: dealing with unexplained
variation. Unexplained variation includes both deterministic variation lacking
context (i.e. unaccounted-for variation) and random variation.

Not all prosodic choices are deterministic; there is stochasticity in human
prosodic behaviour (Goodhue et al., 2016). That is, the same intent can be con-
veyed in multiple ways by the same person in the same situation. This is not to
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Figure 1.1: Illustration of the positive correlation between prosodic context and
prosodic appropriateness, the limited range of attainable prosodic context, stochas-
tic prosody that can be modelled regardless of context, and the resulting need for
modelling unaccounted-for prosody with insufficient context. The relative sizes of
categories in this illustration should not be interpreted as meaningful.

say that prosody can be modelled entirely as a random process—this would lead to
inappropriate prosody—but to be fully natural, any model must consider the ran-
domness present in some aspects of prosody. In Figure 1.1, “stochastic prosodic
variation” represents this aspect of prosody. No matter what context is available,
there is always some random behaviour that must be modelled. While stochastic
variation is unexplained, it is separated from “unaccounted-for prosody” as there
is no missing context.

To match human prosodic behaviour and improve appropriateness in speech
synthesis, we need to synthesise the unaccounted-for prosodic variation, i.e. prosody
with insufficient context. The approach taken in this thesis is to model the distri-
bution of prosodic renditions an utterance could take on, turning prosody synthe-
sis into a task of picking an appropriate rendition from all candidate renditions,
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or a subset thereof. This selection task still requires knowledge of context, but
we can rely on human-in-the-loop operators to intuitively pick an appropriate
rendition, effectively inferring missing context.

By exploring new approaches to modelling prosody, I improve appropriate-
ness across the three categories in Figure 1.1: incorporating additional context,
correctly modelling stochastic variation, and exposing prosody control to human-
in-the-loop operators. In Chapter 3, I address some problematic modelling as-
sumptions, that are present in current TTS systems, in order to better capture the
prosodic distribution. I design and expose interpretable control for human-in-the-
loop operators in Chapters 4 and 5. In Chapter 5, I also investigate what context
would be most beneficial to prosody prediction. And, in Chapter 6, I design a
state-of-the-art TTS model that incorporates additional context. Summarising,
I explore the following claim,

Appropriate prosody can be synthesised with insufficient context, but
prosodic variation not determined by the available context must be
controlled by a human or modelled probabilistically.

1.1 Research themes

My research explores three themes:

1. Prosody control provides the ability to vary the prosodic delivery of an
utterance.

2. Interpretability allows human users to intuitively understand the impact
of the control inputs used to change the prosody.

3. Appropriateness is the degree to which prosody fits the context of a
speech act.

I focus primarily on researching methods to control prosody, including learn-
ing representations of prosody—since prosody has no clear orthography. This
approach splits prosody modelling into two tasks: control and prediction. Predic-
tion can either be achieved using human-in-the-loop control or automatic context-
based models.

Interpretability most directly aids human-in-the-loop control, making it much
more efficient to interact with the control interface. Relying on a human provides
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a solution (albeit not a scalable solution) to the insufficient context problem now,
by exploiting human intuition (i.e. using inferred context). As additional context
data becomes available we can transition from the labour-intensive human-in-the-
loop design, to context-based control. Interpretability also benefits context-based
prediction as it can be important to inspect and debug a system’s behaviour; this
is made much easier if there is human-interpretable meaning associated with the
prosody representations.

1.1.1 Theme 1: Prosody control

In this thesis, control refers to the ability to vary the prosodic delivery of a
sentence. Most TTS systems produce only a single prosodic rendition of a given
sentence. As discussed in Chapter 3, this will lead to the production of average
prosody which does not correspond to real human prosodic behaviour. As evi-
denced in that work, it is important that the range of prosodic choices is correctly
modelled, this can include exposing choices through control inputs.

A controllable voice must have some mechanism to change the delivery,
though the interface used can take any form. Control inputs include: human
labelled concepts like emotion (Ekman, 1992; Fontaine et al., 2007) and attitude
(De Moraes, 2011); prosodic correlates like F0 (Fernandez et al., 2014; Wang,
2018), intensity (Wan et al., 2019; Klimkov et al., 2019), segment and pause du-
ration (Turk et al., 2006; Rendel et al., 2017), and speaking rate (Henter et al.,
2017b); engineered representations like ToBI (Silverman et al., 1992), SLAM
(Obin et al., 2014), and wavelets (Ribeiro and Clark, 2015; Suni et al., 2015); or
learnt representations (van den Oord et al., 2017; Wang et al., 2018a; Baevski
et al., 2020). Discrete representations (Ronanki et al., 2016a; Wang et al., 2019b)
can also be used to provide a different control interface that may be more usable
or intuitive.

The level of detail in a control interface should be determined by the applica-
tion. Detailed acoustic representations or learnt representations may be good for
automatic context-based prediction, while human labelled concepts or discrete
representations may be more suited to human-in-the-loop control.
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1.1.2 Theme 2: Interpretability

Interpretability is a broad topic in machine learning, often focusing on explana-
tions of a model’s behaviour. Here, I use interpretability in a narrower sense:
designing representations that can be intuitively understood by a human user.
Generally, this is achieved by linking, directly or indirectly, to some more abstract
human-understood concept through annotation.

By using a control input based directly on human labels, interpretable control
can be achieved with the correct model design. However, this clearly incurs an
annotation cost. Active learning (Settles, 2009) or pseudo-labelling (Lee, 2013)
can be used instead to more efficiently collect labels, or re-use found resources.
Representations like acoustic correlates of prosody, or those engineered correctly,
can be interpretable by design.

Alternatively, representation learning can be augmented with approaches
that make representations more interpretable, though making their interpretation
reliable is an open challenge. Disentanglement can be used to remove unwanted
information (Hsu et al., 2017b; Williams et al., 2021). These approaches can be
noisy or imperfect, therefore, improving interpretability in learnt representations
still requires human annotations—e.g. auxiliary tasks (Caruana, 1998; Ren et al.,
2020). Another approach, is to assign meaning to unlabelled representations
post-hoc using human annotation effort, this approach is well suited to discrete
representations.

1.1.3 Theme 3: Appropriateness

Appropriateness is a measure of how well the prosody fits its context. It’s im-
portant that the context of an utterance is considered when evaluating prosody,
since it’s only with respect to the context that prosody can be considered better
or worse.

Currently, much of the TTS literature focuses on improving naturalness—a
general term that includes all aspects of the quality of speech, including prosody
(van Heuven et al., 1995, Section 1.4.6). Evaluating prosody quality separately
from general measures of naturalness or listener preference is an open problem
(Clark et al., 2019). Evaluating prosody quality together with acoustic and pro-
nunciation quality leads to lower precision, as listeners must consider multiple
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phenomena. This is especially important with advances in sequence-to-sequence
acoustic modelling and neural vocoding, where naturalness tests misleadingly re-
port that synthetic speech has reached parity with human speech (Kalchbrenner
et al., 2018; Elias et al., 2021).

Fortunately, as the field shifts to focus on controlling style (Wang et al.,
2018a) and prosody (Wan et al., 2019), there has been an increasing focus on
prosody evaluation in the TTS literature (Latorre et al., 2014; Wagner et al.,
2019), including the importance of context (Mendelson and Aylett, 2017; Loupi,
2017; Clark et al., 2019).

In addition to evaluation, this theme includes methods to generate more ap-
propriate prosody. This could be achieved through new context features (Dall
et al., 2016; Tyagi et al., 2020; Karlapati et al., 2021), architectures (Yu et al.,
2019), losses (Ren et al., 2020; Williams et al., 2021), or data (Goodhue et al.,
2016; Zen et al., 2019). As illustrated in Figure 1.1, increasing the amount of
available context allows for more prosody to be modelled deterministically. Im-
proved modelling of stochastic variation and the ability of prosody control to
expose an appropriate rendition also form part of this theme.

1.1.4 Thesis outline

I focus primarily on one theme in each of the research chapters, the themes
touched on in each chapter are summarised in Table 1.1. Chapter 3 focuses
exclusively on control, investigating the issues that emerge when unexplained
prosody is not modelled. Through this work, I demonstrate the need to factor
prosody out from the phonetic content of speech, allowing it to be controlled
explicitly when there is insufficient context.

Chapters 4 and 5 focus on interpretability using two different approaches to
explore interpretable control. In Chapter 4, the motivation is to design a system
usable for human-in-the-loop control; this is achieved using human annotations
derived from found data. Chapter 5 uses discrete representation learning and
is motivated by the need for a better understanding of what perceived effects
unsupervised representations capture and what context would be most impactful
to improve appropriateness. In these chapters, I attempt to control unexplained
prosodic variation, and use human-in-the-loop control to operate the controllable
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Table 1.1: Research themes explored in context chapters. Larger ticks indicate the
primary focus of each chapter.

Theme 1 Theme 2 Theme 3

Controllability Interpretability Appropriateness

Chapter 3 3

Chapter 4 3 3

Chapter 5 3 3

Chapter 6 3 3

voices during evaluation. While no new context information is incorporated in
these two chapters, the methods described in them could be extended to auto-
matically predict prosody, as explored in Chapter 6.

I investigate appropriateness in Chapter 6, utilising additional contextual in-
formation to predict prosody. The proposed model uses a prosodically-informed
loss to ensure the available context information is used to predict prosody. This
model achieves state-of-the-art performance using contextualised word embed-
dings to encode semantic and syntactic context. Additional context can be easily
incorporated into this system. While the prosodic context explored in Chapter 6
is far from exhaustive, my approach enables incremental improvement in prosodic
appropriateness.

1.2 Contributions

The four chapters outlined above make up the research content in this thesis.
The work in them has been published in the following peer-reviewed conferences:

Chapter 3 — Using generative modelling to produce varied intonation for speech
synthesis (Hodari et al., 2019) presented at the Speech Synthesis
Workshop 2019, Vienna, Austria.

Chapter 4 — Learning interpretable control dimensions for speech synthesis by
using external data (Hodari et al., 2018) presented at Interspeech
2018, Hyderabad, India.

Chapter 5 — Perception of prosodic variation for speech synthesis using an un-
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supervised discrete representation of F0 (Hodari et al., 2020) pre-
sented at Speech Prosody 2020, Tokyo, Japan.

Chapter 6 — CAMP: A two-stage approach to modelling prosody in context (Ho-
dari et al., 2021) presented at ICASSP 2021, Toronto, Canada.

The contributions and findings from these chapters are spread across the
three research themes. For clarity, the key takeaways from each piece of research
are broken down below by research theme:

Theme 1 Controllability

Chapter 3 — By learning a distribution of F0 using a variational autoencoder,
I was able to develop a synthesis-time approach to generate more
varied prosodic renditions.

Chapter 4 — Using pseudo-labelling, I proposed an approach to automatically
label TTS data. This was used to train controllable TTS voices
without the need for human annotations.

Chapter 5 — Using a multi-modal prior, I proposed a novel latent variable model
for sequence data. In my model, for each phrase in the utterance, a
multi-modal latent variable captured intonation and timing. This
is important due to my earlier findings regarding average prosody
and the need to consider the multi-modal nature of prosody.

By taking each mode as a category of prosodic variation, this model
allows for control using a learnt “orthography” of prosody. How-
ever, the interpretability is not a given, and was also evaluated.

Chapter 6 — The proposed model learns a word-level prosody representation
from the spectrogram. The representation is disentangled from
phonetic content using two information bottlenecks. This model
is intended for context-based control as it is not designed to be
interpretable.

Theme 2 Interpretability

Chapter 4 — The controllable voice uses emotion categories as the control input.
I conducted a listening test to validate if the voice can successfully
control perceived emotion using the control inputs. By comparing
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the results with related work on human agreement for emotion
labelling, I demonstrated that the control inputs are interpretable.

Chapter 5 — The discrete “orthography” learnt by the multi-modal prior is not
guaranteed to be interpretable. I conducted qualitative interviews
to understand if the discrete categories corresponded to certain
prosodic behaviours. Unfortunately, no consistent behaviour was
observed, possibly due to stimuli design and the small size of the
experiment. However, it was clear that different perceived prosodic
behaviours were produced by the learnt categories.

Theme 3 Appropriateness

Chapter 3 — The phenomenon known as “average prosody” is where typical sta-
tistical models produce an average of the prosodic behaviour seen
in the data. This average does not correspond to realistic prosody.
While average prosody can be perceived in many TTS voices, it
had not been formally studied. I designed an evaluation that de-
tected the flatter intonation of average prosody, demonstrating that
it is present.

In the same evaluation, I showed that typical modelling assump-
tions in TTS voices are responsible for average prosody. Many
models implicitly generate from the mean of the prosodic distribu-
tion. However, much of prosody is multi-modal: it is due to this
mismatch that typical models produce average prosody. By avoid-
ing the mean, more realistic and varied prosody can be generated,
i.e. stochastic variation of prosody is more effectively captured.

Chapter 4 — Different approaches for controlling the emotive voice in long-
form content were compared. A listening test demonstrated that
prosodic variation must be appropriate to the prosody in the previ-
ous utterances.

Chapter 5 — Through a qualitative evaluation of the discrete categories, it was
clear that adding context information relating to affect would be
most useful to improving appropriateness. This is likely specific to
the children’s audiobook style of speech that was used to train the
model.
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In addition, it was found that when listening to an out-of-context
utterance with multiple distinct prosodic renditions, listeners imag-
ined contexts that would be appropriate to the different renditions.

Chapter 6 — I proposed using a prosodically-relevant loss, instead of the typical
spectrogram losses, when adding context information. This should
ensure context is used to predict prosody, instead of focussing on
frame-level acoustic quality. Related work in the literature used
the same context features, but did not see an improvement in ap-
propriateness. This suggests that a prosodically-relevant loss is
important when incorporating context information.

Adding semantic and syntactic context features led to a very sub-
stantial improvement in quality, measured by listener preference.
Compared to a strong state-of-the-art baseline, my approach is
26% closer to reaching parity with natural human speech.

1.2.1 Additional contributions

During the course of my research I produced two open-source software libraries:
Morgana (Hodari, 2020a), and tts-data-tools (Hodari, 2020b). The research in
Chapters 3 and 5 used these two libraries. Similar to the popular TTS toolkit,
Merlin (Wu et al., 2016b), Morgana aims to make reproducing TTS models easy.
Between these libraries, model training is handled by Morgana, while data prepa-
ration is separated out into tts-data-tools. This allows for more transparency of
what is required to train a TTS voice. Morgana is a “model-first” wrapper of
PyTorch (Paszke et al., 2017), and it provides support code for training, metric
logging, data loading, and visualisation. Model-first describes the user-interface
of the software; a user should only need to define a model and run that as an ex-
ecutable. Morgana’s object-oriented design allows any process to be customised
easily. tts-data-tools is a collection of tools and wrappers of other software, al-
lowing for dataset-level pre-processing required for training neural-network-based
TTS voices. In Chapter 4, I use the ModNN library, a piece of software written
during my Masters by Research (Hodari, 2017a). While completing the research
for Chapter 4, I contributed additional features to ModNN.

The four papers described, and their corresponding chapters, cover the bulk



1.2. Contributions 13

of the work completed during my thesis. However, I also completed some smaller
projects and collaborated on two other papers:

• In late 2017, I collaborated on the 2018 Voice Conversion Challenge (Lorenzo-
Trueba et al., 2018) with Srikanth Ronanki, Sam Ribeiro, Felipe Espic, and
Cassia Valentini-Botinhao. Voice conversion aims to convert an utterance
(in a source speaker’s voice) to sound like a given target speaker. Some
training/adaptation data for the target speaker is used to define the voice
identity.
My contribution was aligning and improving the parallel data. I performed
per-speaker HMM forced-alignment (Toledano et al., 2003) on the 3 datasets
we were using. For parallel voice conversion, the two utterances must be
the same length, initially we simply clipped the longer utterance. To avoid
this loss of information, I also performed DTW alignment on the parallel
sentences to upsample the shorter utterance.
When bringing together the contributions of the team, our system did not
provide a significant enough improvement to be competitive in the chal-
lenge.

• I experimented with WaveNet (van den Oord et al., 2016) in early 2018,
both for TTS and neural vocoding. My motivation was to explore the ability
to train with smaller found datasets, and to quickly create usable vocoders
with smaller architectures for faster prototyping.
Getting the vocoder stable with the CMU Arctic database (Kominek and
Black, 2004) was relatively straightforward.2 I found training for roughly 24
hours was required to create a neural vocoder with good enough quality to
evaluate the pronunciation and prosodic quality of an acoustic model. Early
in training the vocoder would struggle to produce consonants, especially
plosives. To get satisfactory acoustic quality, the model needed 2-3 days of
training.3

• I collaborated on Fong et al.’s (2019) paper: Investigating the robustness of
sequence-to-sequence text-to-speech models to imperfectly-transcribed train-
ing data, presented at Interspeech 2019, Graz, Austria.

2After some difficulty with one implementation, I found more success with Ryuichi Ya-
mamoto’s implementation, available here: r9y9.github.io/wavenet_vocoder.

3A brief overview of these findings as well as audio samples can be found at the bottom of
this tutorial: zackhodari.github.io/wavenet_tutorial.

https://r9y9.github.io/wavenet_vocoder/
https://zackhodari.github.io/wavenet_tutorial/index.html
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• I collaborated on Karlapati et al.’s (2021) paper: Prosodic representa-
tion learning and contextual sampling for neural text-to-speech presented
at ICASSP 2021, Toronto, Canada.



Chapter 2

Background

This thesis approaches the challenges of prosody modelling from a machine learn-
ing perspective. However, many of the ideas explored are motivated by existing
linguistic and intonational phonology research. The contributions in this thesis
are primarily related to the practical aspects of prosody modelling for speech
synthesis, as opposed to a more general theoretical understanding of prosody. I
begin by discussing text-to-speech technology and techniques in Section 2.1, be-
fore providing an overview of prosody and prosody modelling in Section 2.2. In
Sections 2.3 and 2.4, I cover considerations and challenges relating to evaluation
and data collection—including the data used in this thesis. In Section 2.5, I
provide some machine learning background as a primer for the methods that are
used and developed in this thesis.

2.1 Text-to-speech

Text-to-speech (TTS) synthesis is the process of rendering an audio waveform
for a given sentence. TTS is typically split into two stages: the front-end and
the back-end. The front-end handles text analysis, while the back-end handles
acoustic modelling (Section 2.1.1) and vocoding (Section 2.1.2).

TTS front-end

The front-end’s main goal is to determine how to pronounce the input sentence
as a sequence of words (Sproat, 2008). The front-end must perform, at a bare

15
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minimum, text normalisation and grapheme-to-phoneme conversion.1 It is also
common to extract additional syntactic information (Black et al., 1998), however
in more recent models this is not typically used, as human-defined front-end
features are outperformed by a learnt linguistic encoder (Watts et al., 2019).

Text normalisation is the process of converting written language to spoken
language (Ebden and Sproat, 2015). Written language may include non-standard
words such as: abbreviations, dates, and numbers (Sproat et al., 2001).

Grapheme-to-phoneme conversion refers to the prediction of pronunciation
from a sequence of graphemes. This process may use a pronunciation lexicon (Fitt
and Isard, 1999), letter-to-sound rules (Taylor, 2009), a grapheme-to-phoneme
model (Bisani and Ney, 2008), or a combination thereof.

TTS back-end

The back-end must produce a waveform according to the phonetic specification
provided by the front-end. In the past, TTS used non-parametric methods where
a waveform was concatenated together from recorded speech units. Diphone syn-
thesis (Hamon et al., 1989) was an early concatenative method, but this was
superseded by unit-selection (Hunt and Black, 1996) and later by hybrid unit-
selection (Kominek and Black, 2006). Hybrid unit-selection combines paramet-
ric speech models, introduced below, with the non-parametric unit-selection ap-
proach. It was state-of-the-art until 2016 (Zen et al., 2016) when neural vocoders
advanced enough to create purely synthetic speech of higher quality than con-
catenated speech (van den Oord et al., 2016; Wu et al., 2019).

Parametric modelling of speech poses many challenges—concatenative meth-
ods avoided a number of these by design. There is a severe mismatch in length,
information density, and information content between the back-end’s input pho-
netic information and output waveform samples. Phonetic information has much
lower information density than the waveform: 39 bits/s (Coupé et al., 2019).2

In state-of-the-art TTS, the waveform is typically sampled at 24 kHz with a bit
depth of 16 (Hsu et al., 2019; Merritt et al., 2018; Wu et al., 2020a). This means

1For character-based models, grapheme-to-phoneme conversion is performed implicitly by
the acoustic model and is not part of the front-end (Wang et al., 2017b).

2Coupé et al. (2019) also report the information density in terms of speaking rate: the
number of tokens spoken per second. They found that, across languages, speech contains an
average of 6.6 syllables per second.
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a parametric back-end must predict 24,000 16-bit amplitude values for every sec-
ond of synthesised audio. Phones are a very compact representation of speech,
and while the waveform does contain additional information and a lot of redun-
dant information, this compactness is evident in the length mismatch and the
difference in information density. This makes it challenging to train a model that
maps from a phone sequence to waveform samples. Much of the information in
the waveform is not represented in the phone sequence; this includes articulation,
speaker identity, prosody, and channel information. The back-end must generate
all information not present in its inputs.

To make parametric modelling of speech more tractable, the back-end is split
into an acoustic model and a vocoder. In some cases the front-end provides ad-
ditional inputs for the acoustic model, such as: part of speech, phrase breaks,
or emotion labels (Black et al., 1998). Additional models can be incorporated
into the back-end, such as intonation models (Wang, 2018). The acoustic model
predicts an intermediate acoustic representation. This representation is extracted
from the waveform using signal processing by the vocoder’s analysis stage (Imai,
1983; Kawahara, 2006; Morise et al., 2016). Vocoders also convert this intermedi-
ate representation back to a waveform in their synthesis stage. Vocoder synthesis
uses either signal processing (Imai, 1983; Kawahara, 2006; Morise et al., 2016)
or, more recently, neural networks (Shen et al., 2018).

Acoustic modelling initially used hidden Markov models (HMMs) and deci-
sion trees to model acoustic features and phone durations (Tokuda et al., 1995;
Zen et al., 2009). This was later improved by using two neural networks (NNs)
to model acoustic features and phone durations (Zen et al., 2013) and, more re-
cently, by using a single sequence-to-sequence model (Sotelo et al., 2017; Wang
et al., 2017b). Thanks to neural vocoders (van den Oord et al., 2016; Shen et al.,
2018), parametric models have greatly surpassed previous methods in terms of
naturalness (Wu et al., 2019). Synthesis can also be performed directly from a
phone sequence instead of using a separate acoustic model and vocoder (Weiss
et al., 2020). Various approaches for NN-based TTS back-ends are illustrated
in Figure 2.1. In the following two sections I discuss acoustic modelling and
vocoding in more detail.
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Figure 2.1: Different TTS paradigms, from SPSS to state-of-the-art S2S models.
(a) NN-based SPSS with a traditional vocoder (Zen et al., 2013). (b) Linguistic
WaveNet directly generating the waveform from linguistic features with a duration
model (van den Oord et al., 2016). (c) S2S model with attention and a neural
vocoder (Shen et al., 2018). (d) Non-attentive S2S model with a duration model and
a neural vocoder (Yu et al., 2019). (e) S2S model with attention directly generating
the waveform from phones (Weiss et al., 2020).

2.1.1 Acoustic modelling

I use the two most recent acoustic modelling techniques in this thesis: NN-based
statistical parametric speech synthesis (SPSS), and sequence-to-sequence (S2S)
models. SPSS uses separate duration and acoustic models (Figure 2.1a), whereas
S2S models typically use attention to enable prediction of acoustic features di-
rectly from phonetic information in a single model (Figure 2.1c). However, there
are many variations upon both paradigms, and in reality SPSS and S2S models
bear a lot of similarity.

2.1.1.1 Statistical parametric speech synthesis

NN-based SPSS uses two stages to predict the vocoder’s acoustic features, as
illustrated in Figure 2.1a (Zen et al., 2013; Wu et al., 2016b): a duration model
and an acoustic model. SPSS models use linguistic features as input to synthesise
speech. The duration model takes the linguistic features as input and predicts
the duration of each phone. The linguistic features are upsampled to frame-level
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using the predicted durations. At training time, natural durations, extracted
using forced alignment (Toledano et al., 2003), are used to upsample the linguistic
features. The acoustic model uses the upsampled frame-level linguistic features
to predict acoustic features for each frame. The target acoustic features depend
on the vocoder. However, in SPSS it is common to use mel-cepstral coefficients,
band aperiodicity, F0, and voiced-unvoiced state (Kawahara, 2006; Morise et al.,
2016).

NN-based SPSS uses linguistic features as input to the duration and acoustic
models, these were inherited from unit-selection and HMM-based SPSS. The
linguistic features describe the sequence of phones to be synthesised. Other hand-
engineered features are common, such as: tri-phones or quin-phones, part of
speech, word class, pitch height, and a variety of structural information (Zen,
2006). A full overview of the linguistic features used in this thesis can be found
in Appendix A. A majority of the features are a flattened representation of the
utterance’s structure—this means useful relational information is either poorly
represented or discarded.

Modelling duration and acoustics separately is a limitation for NN-based
SPSS, but it is a practical solution for handling mismatched input and output
sequence lengths. This mismatch makes it difficult to define a differentiable loss.
For NN-based SPSS, duration modelling is separate as backpropagating through
the upsampling operation was non-trivial with auto-differentiation libraries avail-
able when NN-based SPSS was introduced. A few recent S2S models—including
my research detailed in Chapter 6—use separate duration and acoustic models
that are trained jointly, as illustrated in Figure 2.1d (Ren et al., 2020; Łańcucki,
2021), this bears similarity to NN-based SPSS models.

2.1.1.2 Sequence-to-sequence TTS

Sequence-to-sequence (S2S) models provided a big improvement in naturalness for
TTS, surpassing both NN-based SPSS and hybrid unit-selection (Wu et al., 2019).
S2S modelling originated in NLP, which faces the same challenge of handling
mismatched input and output sequence lengths. Sutskever et al. (2014) proposed
S2S modelling for machine translation to resolve this issue. S2S models consist
of an encoder and decoder, each operating on a sequence of a different length.
Initially, S2S encoders used recurrent layers to summarise the input sequence in
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one fixed-length representation (Graves, 2013). This context representation was
used by the decoder to generate the output. Bahdanau et al. (2014) replaced this
fixed-length representation with the attention mechanism.

Attention was developed to improve the transmission of information between
the encoder and decoder in machine translation (Bahdanau et al., 2014). For
each output time-step, attention produces a context vector that summarises the
input information relevant to that output. Thus, attention aligns information
in the input to the decoder output sequence. The ability to dynamically align
information was particularly important for machine translation, where the source
and target sentence can have a non-monotonic alignment. Attention is described
in more detail in Section 2.5.1.4.

Typical S2S TTS models (Figure 2.1c) use a phonetic encoder which takes
phone identity as input, instead of the linguistic features used in SPSS. The
phone embeddings output by the encoder are attended over by an autoregressive
acoustic decoder which outputs mel spectrograms for a neural vocoder (Shen
et al., 2018). However, there are many variations on this architecture. Attention
can be replaced with a duration model, as shown in Figure 2.1d. A reference
encoder can be used to learn control features (Skerry-Ryan et al., 2018), making
the S2S model an autoencoder. The decoder can predict the waveform directly
(Figure 2.1e), instead of predicting spectrogram features (Weiss et al., 2020).
Parallel decoders can be used to speed up the slow synthesis speed of typical
autoregressive decoders (Li et al., 2019; Elias et al., 2020), using convolutional or
self-attention layers (Tachibana et al., 2018; Li et al., 2019).

The attention mechanism has been improved upon in many forms, mostly
to enhance robustness and stability (Chorowski et al., 2015; Battenberg et al.,
2020). There even exist attention variants intended for specific applications, such
as interpretability (Wang et al., 2019c), controllability (He et al., 2019), and sum-
marisation (Gu et al., 2016). For TTS, we do not need to perform non-monotonic
alignment like in machine translation. Therefore, different forms of attention
have been proposed that parameterise monotonic alignments: alignments that do
not progress backwards (Chiu and Raffel, 2018). Additionally, some approaches
replace attention’s alignment with durations either implicitly through hard align-
ments (He et al., 2019; Yasuda et al., 2019), or explicitly through a duration
model (Yu et al., 2019; Ren et al., 2020). This suggests that attention is not
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necessary for state-of-the-art S2S TTS, as observed in Chapter 6 and in the shift
towards explicit duration models in the literature (Yu et al., 2019; Ren et al.,
2020; Shen et al., 2020; Łańcucki, 2021).

While there are many minor differences between variants of these two paradigms,
S2S has a few common design differences compared to SPSS:

• Phone encoder — S2S models use a phone encoder to learn rich repre-
sentations from phone identity, instead of using human-defined linguistic
features.

• Joint duration modelling — S2S maps between phonetic inputs and
acoustic outputs directly in a single jointly-trained model, instead of using
separately trained duration and acoustic models.

• Neural vocoding — S2S models predict mel-scale spectrograms and use
neural vocoders, whereas SPSS typically uses signal processing vocoders.

However, these are design choices and can be modified in any SPSS or S2S model.
The line between the two paradigms is a blurred one. If an S2S model used ad-
ditional linguistic features, a duration model, a signal processing vocoder, or any
combination thereof, would it become an SPSS model? While the classification of
a given system as SPSS or S2S could be discussed at length, this is not important
here; it is more important to acknowledge that the two paradigms are not so
different.

2.1.2 Vocoding

Vocoders define a representation of the waveform that is easier for acoustic models
to predict. Specifically, vocoding consists of two stages: analysis and synthesis. A
vocoder’s analysis stage converts speech waveforms to acoustic features—a more
compact representation of the waveform. A vocoder’s synthesis stage converts
these acoustic features back into a waveform. The ideal synthesis stage should be
agnostic of where the acoustic features come from: human speech or an acoustic
model. It should also be robust to different speakers, accents, and languages.

Typical signal processing vocoders adopt the source-filter model of speech
production. The source-filter model assumes that the source—e.g. vibration or
frication of the vocal folds—is filtered into speech sounds by the shape of the vocal
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tract and articulators (Stevens, 2000). These vocoders model the excitation signal
(i.e. the source), aperiodic energy (for unvoiced sounds), and spectral envelope
(i.e. the filter) as separate acoustic features (Kawahara, 2006; Morise et al., 2016).

To improve vocoder synthesis, it is important to consider the analysis stage.
This can include extracting more compact acoustic features which can improve
acoustic modelling. For example, we can use warped frequency scales, such as
the mel scale (Stevens et al., 1937) and bark scale (Zwicker, 1961), since human
perception of frequency is non-linear. This makes the acoustic features more
compact, and thus easier to predict, without sacrificing quality. Alternatively, we
can use additional acoustic features, such as phase, to improve synthesis using
additional information (Espic et al., 2017).

More recently, neural vocoders have become widespread (Zhou et al., 2020).
Neural vocoders vastly improve vocoder synthesis. They use a very simple anal-
ysis stage, typically extracting the mel-scale magnitude spectrogram. The first
iteration of a neural vocoder was WaveNet, this used stacked dilated convolutions
and residual connections (van den Oord et al., 2016)—however, this WaveNet
performed acoustic modelling in addition to vocoding (Figure 2.1b). Tacotron-2
(Figure 2.1c) was the first application of WaveNet’s techniques to the task of
vocoding (Shen et al., 2018). The quality of WaveNet was big improvement on
what was possible with traditional signal processing vocoders. Precisely why is
not entirely clear, however it may be due to: increased receptive field from dilated
convolutions, or the summarisation from residuals (van den Oord et al., 2016);
larger, or higher quality data (Podsiadło and Ungureanu, 2018); or improved
training techniques (Kalchbrenner et al., 2018).

While WaveNet’s quality is excellent, the model is autoregressive and very
slow at synthesis time. Many methods have been developed to parallelise neu-
ral vocoders (van den Oord et al., 2018; Prenger et al., 2019; Yamamoto et al.,
2019) or make them more efficient (Kalchbrenner et al., 2018; Jin et al., 2018;
Valin and Skoglund, 2019). Research on neural vocoders has also been influenced
by source-filter theory (Wang et al., 2019a). Source-filter models can be very
efficient, and have been used for signal compression. The most notable exam-
ple is linear predictive coding (LPC) (Atal and Hanauer, 1971). The ideas from
LPC have also been adapted and incorporated into neural vocoder architectures
by predicting source and filter components (Juvela et al., 2019) or by predict-
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ing linear prediction coefficients directly (Valin and Skoglund, 2019). Valin and
Skoglund’s (2019) LPCNet outperforms other fast neural vocoders like WaveRNN
(Kalchbrenner et al., 2018), but not autoregressive models like WaveNet.

2.1.3 Controllability in TTS

Providing control over various aspects of speech can be important for many ap-
plications of TTS. Control of speech is very broad, and can include changing
the speaker identity (Jia et al., 2018); accent (Henter et al., 2018a); or prosody,
e.g. speaking style (Wang et al., 2018a), emotion (Henter et al., 2017a), promi-
nence (Malisz et al., 2017), phrase breaks (Rosenberg, 2010; Rendel et al., 2017;
Klimkov et al., 2017), or intonation patterns (Zou et al., 2021). Learnt representa-
tions can be used to control many aspects of speech, including those that are not
easily labelled. If interpretability is important, e.g. for human-in-the-loop control,
methods such as disentanglement can be used to guide what the representations
learn (Williams et al., 2021), this is discussed further in Section 2.2.5.

Control in TTS is most often achieved through auxiliary features (Dehak
et al., 2011; Luong et al., 2017). Other approaches for speech control include
model-based adaptation (Swietojanski and Renals, 2014) and feature-space nor-
malisation (Neto et al., 1995). These have been explored in TTS for emotion
control, speaking style control, and expressive speech synthesis (Yamagishi et al.,
2004; Schröder, 2009; Barra-Chicote et al., 2010).

In SPSS, control techniques roughly fall into two categories: explicitly la-
belled control and latent control. Labelled control provides human-usable control,
however the labels are typically labour-intensive and expensive to collect. It’s also
possible to automatically label data at the expense of accuracy (Rosenberg, 2010;
Cai et al., 2020), as explored in Chapter 4. Without access to labels, unsuper-
vised methods must determine which variation is salient. Despite this additional
challenge, latent control can achieve similar results to supervised control (Henter
et al., 2018b). The fact that latent control can perform similarly to supervised
methods may be, in part, related to the low inter-annotator agreement of labels
(Roy et al., 2017).

The same approaches can be, and have been, applied in the S2S paradigm
for: emotion control (Henter et al., 2018b), style adaptation (Prateek et al.,
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2019), and prosody control (Wan et al., 2019; Klimkov et al., 2019; Yu et al.,
2019; Ren et al., 2020; Mohan et al., 2021). However, for S2S models the use
of representation learning through a reference encoder has become a common
approach. A reference encoder provides a mechanism for TTS models to learn a
representation that controls unlabelled variation in speech (Wang et al., 2018a;
Kang et al., 2021).

2.2 Prosody
Now we move onto prosody: the variation in speech used to communicate ad-
ditional information. Prosody is a channel of communication carried in speech
alongside lexical information (Shattuck-Hufnagel and Turk, 1996). Prosody can
augment the lexical information (Wallbridge et al., 2021) and make speech eas-
ier to comprehend by: indicating information structure (Calhoun, 2010), resolv-
ing ambiguities (Tran, 2020), or grounding communication (Clark and Brennan,
1991). Alternatively, prosody can convey additional meaning: holding or yield-
ing the floor (Gravano and Hirschberg, 2009), marking irony or humour (Bryant,
2011; Gironzetti, 2017), or expressing emotion (Ben-David et al., 2016). Prosody
can be unique to each speaker, it can signal linguistic functions, convey attitude
towards the content, and express emotional state (Monrad-Krohn, 1947).

Prosody is realised through perceived variation in suprasegmental aspects of
speech, such as intonation, loudness, timing, and voice quality. Evidence suggests
that prosody has discrete elements, often referred to as prosodic constructions
(Ward, 2019). Prosody operates over many different levels, from micro-prosody
below the segment domain to suprasegmental prosody at the syllable, intonational
phrase, and utterance domains, forming a hierarchical structure (Nespor and
Vogel, 2007).

Prosody is a natural part of verbal communication. But, unlike written com-
munication, which has a clear orthography, prosody is not generally transcribed.
Punctuation can indicate prosodic phrasing, but there are mismatches between
grammatical punctuation and pausing. In writing, prosody can be conveyed by
other means, such as, acting directions in a script, or narrative writing of charac-
ter behaviour in a book. Alternatively, prosody can be improvised by a speaker,
and then transcribed. However, existing descriptions of prosody, whether original
or annotated, only describe a fraction of what is perceived.
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As with written language, the structure and usage of prosody varies across
languages. In this thesis, I focus exclusively on English. There are multiple
annotation schemes, taxonomies, and grammars for English prosody (Silverman
et al., 1992; Dilley and Brown, 2005; Cole et al., 2017; Goodhue et al., 2016; Ward,
2019; Steedman, 2014), however there is no agreed upon prosodic orthography and
the perceptual validity of such a categorical system is still “uncertain” (Steedman,
2000, Section 3).

In this section, I cover different aspects of prosody: its use in communication
(Section 2.2.1), how to annotate it (Section 2.2.2), its acoustic realisation (Sec-
tion 2.2.3), how it is structured (Section 2.2.4), learning new representations of it
(Section 2.2.5), and what information is used to plan it (Section 2.2.6). Bringing
all this together, I discuss prosody modelling in Section 2.2.7.

2.2.1 Functions of prosody

Prosody serves many communicative purposes, covering both linguistic and par-
alinguistic functions. These are the goals used when planning prosody. In speech
act theory (Searle, 1969), prosody can contribute to illocutionary force (Cole,
2015)—the intended meaning of a speech act (Austin, 1975). A statement may
serve only to inform the interlocutor (1-a), while a question may aim to make
them do something, i.e. share information (2-a). Illocutionary force also considers
that speech acts can communicate other intentions: a statement may be a brag
(1-b), or a question may be rhetorical (2-b).

(1) Statements

a. I went on holiday. (inform)

b. I went on holiday. (brag)

(2) Questions

a. Do you know what time it is? (solicit information)

b. Do you know what time it is? (rhetorical)

Prosody can play a role in grounding illocutionary force. For example, de-
livering an apology requires more than just a sequence of words—other require-
ments, including prosody, must be satisfied. As observed in Chapter 5 for syn-
thetic speech, the same “apology” can be seen as sincere, insincere, or forced,
depending on its delivery. However, the mapping between prosody and illocu-
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tionary force is complicated, meaning that even with sufficient context, achieving
the intended effect through prosody prediction or human-in-the-loop control is
difficult.

Prosody can signal linguistic functions. Newness and givenness can be
signalled through accent placement (Hirschberg and Pierrehumbert, 1986, Sec-
tion 4.2). Prominence and pausing can be used to resolve semantic ambigu-
ity (Cutler et al., 1997). Pragmatic information, such as the connotations of
words and concepts—which vary according to a speaker’s views—can be conveyed
through speaking style or voice quality (Gobl and Chasaide, 2003), although these
mechanisms are complicated (Barth-Weingarten et al., 2009).

Paralinguistic effects add more richness to verbal communication. Emotion,
mood, humour, and irony are all illustrated using prosody, as well as through
lexical choices and body language. Attitude—such as authoritative, friendly, or
uncertain—is another paralinguistic function of prosody that can indicate infor-
mation about a speaker’s mental state, or their views towards a topic or inter-
locutor (De Moraes, 2011).

2.2.2 Prosodic annotation

To study the functions of prosody and to train models for prosody synthesis,
it can be useful to have a compact representation of prosody. Unlike natural
language which is codified both in written language and phonetics, prosody has
no agreed upon prosodic orthography. As such, a lot of research effort has focused
on codifying prosody. While I do not make use of these methods for annotating
prosody, the hypotheses explored in Chapter 3 and my ideas for learning a discrete
representation in Chapter 5 are inspired by these contributions.

Intonation, along with other aspects of prosody—including pausing, promi-
nence, and voice quality—exhibits discrete structure. This has been studied ex-
tensively in intonational phonology (Pierrehumbert, 1980; Silverman et al., 1992;
Hirschberg, 1999; Ladd, 2008; Cole, 2015). Goodhue et al. (2016) proposed an
“intonational bestiary”: a collection of prosodic renditions categorised according
to a taxonomy of discrete intonation contours. Similarly, Ward (2019) discusses
various prosodic constructions: discrete prosodic structures used to convey dif-
ferent information. As explored by Goodhue et al. (2016), three well-known
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constructions include: (3-a) rise-fall-rise (Ward and Hirschberg, 1985; Wagner,
2012; Constant, 2012), (4-a) contradiction contour (Liberman and Sag, 1974;
Ladd, 1980; Ward and Hirschberg, 1985), and (5-a) yes/no rise (Pierrehumbert
and Hirschberg, 1990; Bartels, 2014; Truckenbrodt, 2011)
(3) Rise-fall-rise—example from Constant (2012)

A: Why isn’t the coffee here?

a. B: I don’t know. I was expecting there to be coffee...
(4) Contradiction contour—example from Goodhue and Wagner (2018)

A: Alvarado doesn’t like movies.

a. B: Alvarado likes movies.
(5) Yes/no rise—example from Gravano et al. (2008b)

A: Marianna made some great marmalade.

a. B: Marianna made the marmalade?

B: I thought she was allergic.

However, attributing prosodic renditions to patterns in a taxonomy is not
straightforward and requires expensive human annotation, not least because an-
notation is subject to variation in human perception (Roy et al., 2017). Ward
(2014) explored the variation present in the Switchboard (Godfrey et al., 1992)
and Maptask (Anderson et al., 1991) corpora using PCA, finding many prosodic
forms with many different purposes. Categorising these is difficult, and deter-
mining what they are used for is even more so. Lai (2012a) found evidence that
some speakers use the contradiction contour in a contradiction context, though
other speakers did not behave as consistently. Goodhue et al. (2016) found some
behaviours can be difficult to elicit or detect. In the appropriate context the in-
credulity contour was never observed in their data, or at least it wasn’t perceived.
Goodhue et al. (2016) discuss how this could be related to experimental design,
or because the incredulity contour may not be a valid construction—it may be
a variant of rise-fall-rise, as suggested by Hirschberg and Ward (1992). These
issues demonstrate the difficulty of creating a taxonomy of prosodic forms and
understanding their usage.

The classic approach to prosodic annotation is Tone and Break Indices
(ToBI) (Silverman et al., 1992). The ToBI paradigm aims to describe intonation
and phrasing through discrete categories, such as high and low tones. Timing is
represented implicitly in ToBI’s pitch accent and boundary annotations. ToBI
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was developed from autosegmental-metrical theory which posits that intonation
is made up of a sequence of distinct elements (Pierrehumbert, 1980). It captures
the perceptual delivery of prosody, but requires expert annotators, and annotator
agreement is low (Syrdal and McGory, 2000).

The more recent rapid prosody transcription (RPT) paradigm simplifies
prosody annotation through word-level binary decisions and “wisdom of the
crowd” (Cole et al., 2017). RPT has been demonstrated for prominence and
phrase break annotation. Compared to annotation schemas like ToBI which cod-
ify prosody, RPT focuses on capturing prosodic variation as perceived by humans.
Annotations from cohorts of less than 5 annotators are shown to contain a lot
of variation, this makes them less reliable but also demonstrates the presence
of different opinions. RPT’s utility lies in its use of inter-annotator agreement
statistics, which makes it possible to easily measure annotation consistency. De-
spite the use of more annotators than other paradigms, the simple task design
means RPT is much lower cost and has better annotator agreement.

Alternatively, stylised parameterisations of prosody can be used to more
precisely describe prosody. Stylisation is the process of identifying perceptually
salient prosodic events and representing their characteristics parametrically, e.g.
their shape. Representations such as Tilt (Taylor, 1998), ProsoGram (Mertens,
2004), and SLAM (Obin et al., 2014) provide parameterised representations that
are useful for prosody synthesis. Despite the additional detail compared to, say,
prosodic constructions, stylisation also risks omitting useful information (Obin,
2011, pp. 53) as they use small sets of human-defined parameters.

By design, ToBI, RPT, prosodic constructions, and stylised parameterisa-
tions omit detail present in the prosodic realisation. When these are used to
control TTS systems, the acoustic model must generate the missing acoustic de-
tail, including micro-prosody. The resulting prosody may deviate from what was
expected, as the model must extrapolate from these high-level annotations. How-
ever, this is not a failure in the design of annotation schemas, it is the nature of
TTS. Fundamentally, TTS is a generation task: it must add detail to an under-
specified input. It would be more challenging to precisely and accurately specify
all prosodic detail with these representations. That is, annotation schemas are
useful because they omit the least important information.
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2.2.3 Acoustic correlates

Acoustic correlates capture the objective acoustic realisation of prosody (Wagner
and Watson, 2010), contrasting with annotation schemas which attempt to cap-
ture perceptual effects, such as prominence and phrasing. Acoustic correlates are
extracted algorithmically from the waveform and can be used to control prosody
in TTS. The acoustic correlates: F0, intensity, segment and pause duration, and
spectral tilt, are counterparts of perceptual correlates of prosody: intonation (or
pitch), loudness, timing (or quantity), and voice quality.

The perceptual correlates of prosody relate to perceptual effects. For ex-
ample, loudness and timing, and to a lesser extent intonation, correlate with
prominence (Kochanski et al., 2005). By working with acoustic correlates, it is
possible to control such perceptual effects, such as prominence (Malisz et al.,
2017). While acoustic correlates are more detailed than annotations of prosody,
there is a gap between acoustic correlates and the prosodic information listeners
perceive in speech. Despite this, acoustic correlates are popular in part because
they are cheaper and easier to extract than human annotations.

Intonation is the perceived fundamental frequency (F0) at which the vocal
folds vibrate. The signal produced by this vibration is often referred to as the
source, or the excitation signal (Stevens, 2000). In a wideband spectrogram
these glottal pulses—the source—can be seen as vertical pulses of energy. The
distance between these pulses are a single pitch period. F0 is defined as the
reciprocal of a pitch period’s duration. In a narrowband spectrogram, F0 can
be seen as harmonics, which present as stacked horizontal curves. Unvoiced
sounds have an undefined F0, but there is evidence that listeners perceive pitch
during unvoiced segments (Taylor, 2009, Section 9.1). Many methods exist to
automatically extract F0 (Talkin, 2015; Morise et al., 2016; Kim et al., 2018).

Loudness is difficult to measure in digital recordings as amplitude values
depend on the levels set by the recording engineer. Loudness’ acoustic correlate,
intensity, is the logarithm of the short-term average energy (Toledano et al., 2009,
pp. 1286). Intensity can also be approximated using the first cepstral coefficient,
C0. Shimmer, another acoustic feature related to loudness, measures the relative
variability of the signal’s amplitude (Teixeira et al., 2013).

Timing, or the rhythm of speech, refers to: shortening or lengthening of
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syllables, change of speaking rate, phrasing, pausing, and filled pauses (Turk
et al., 2006). In TTS, we often model the acoustic realisation of timing, known
as surface timing (Taylor, 2009, pp. 254). Surface timing is the durations of
units in speech, often measured as the durations of segments (i.e. phones) and
pauses. Durations are typically extracted using forced-alignment (Toledano et al.,
2003). To account for errors in this automatic process, manual alignment can be
performed by human annotators. Effects such as coarticulation mean that surface
timing cannot be an entirely accurate measurement (Turk et al., 2006). Surface
timing, like with other acoustic correlates, does not capture all perceptual effects.
For example, phrase breaks that have no associated pause or only a baseline
reset must be annotated manually (Cole et al., 2017). Non-silent pauses are also
important, but can be much harder to extract reliably (Székely et al., 2019). In
addition to duration, speaking rate—typically measured in syllables or words per
second—can be modelled in TTS systems (Habib et al., 2020). The relationship
between durations and speaking rate is non-linear and depends on segmental
information, utterance length, and other contextual factors (Yuan et al., 2006).

Voice quality, or timbre, is often described as the colour or texture of
speech (Truax, 1999). Voice quality can include behaviours such as breathy,
creaky, whispered, or tense speech and can convey emotion, mood, and attitude
(Gobl and Chasaide, 2003). Voice quality has wide-ranging effects on the speech
signal, affecting both the source and filter in the source-filter model of speech pro-
duction (Stevens, 2000). The broad impact of voice quality makes it difficult to
measure. Additionally, it is rarely controlled in TTS as synthesis of different voice
qualities is challenging. Many correlates of voice quality are based on spectral
properties, such as the spectral envelope (Terasawa et al., 2005), which corre-
sponds to the shape of the vocal tract, i.e. the filter. Voice qualities can impact
the source by producing irregular source behaviour or removing voicing entirely—
as with whispered speech. The acoustic correlate jitter captures irregular source
behaviour. Jitter is the variation of the pitch period over time (Teixeira et al.,
2013). Due to the wide-ranging impact of voice quality, defining new acoustic
correlates using data is a promising approach. Kane and Gobl (2011) represent
speech using wavelets and fit a linear model for each voice quality class, they find
that the slopes of the linear models are useful discriminative features for the voice
qualities investigated.
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Together these acoustic features describe most of prosody, but do not com-
pletely define it. Fundamentally, there is gap between what is captured by these
physical measures and what is perceived by listeners. Additionally, automatic ex-
traction of acoustic correlates can be subject to extraction errors. For example,
pitch tracking error modes include pitch halving, pitch doubling, and incorrect
voicing detection, although improved methods, such as ensemble methods, can
mitigate errors (Drugman et al., 2018). These limitations—completeness and
accuracy—are part of the motivation for learning representations of prosody. Be-
fore moving on to discuss representation learning, it is important to introduce
the concept of domain.

2.2.4 Prosodic domain

Prosody operates over different linguistic constituents. We do not need to consider
this for acoustic correlates as they are represented in the time domain. However,
in prosody modelling, considering which linguistic constituents to use in a model
is important as it can impact downstream performance (Wang et al., 2019b).
In linguistics, domain refers to the linguistic constituent over which an effect
occurs.

Prosody has structure over multiple domains (Nespor and Vogel, 2007). Ev-
idence from intonational phonology suggests that this hierarchical structure is
recursive (Ladd, 1986). While multiple hierarchies are described in the literature
(Ribeiro, 2018b, Section 3.1.2), a common version includes: syllable, prosodic
foot, prosodic word, clitic group, phonological phrase, intonational phrase, and
utterance (Selkirk, 1980). Some of these domains are difficult to work with in TTS
as they require expensive annotation. Annotation introduces further challenges
relating to the perception of boundaries within a domain. What is important for
this thesis is that prosody can operate over all of these domains.

Utilising a prosodically-relevant domain is an important inductive bias for
learning to model prosody, as demonstrated by Wan et al. (2019) and Wang
et al. (2019b). Prosody also varies over longer domains, such as utterances and
paragraphs, or turns and dialogues (Farrús et al., 2016). Intuitively, the variation
expressed at these domains relates to higher level information, including: emotion,
attitude, dialogue structure, or setting.
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The syllable is the shortest domain that prosody operates within (Itô, 2018),
carrying lexical stress as well as prosodic prominence. Although micro-prosody
exists below the segment level, this should not need to be explicitly considered
as it should be handled implicitly by the acoustic model.

The intonational phrase is the longest unit below the utterance (Pierrehum-
bert, 1980) and is another candidate for a prosodic domain. It is typically defined
by the presence of perceived phrase breaks, which may or may not correspond to
a pause or a baseline reset. Domains in the prosodic hierarchy do not necessarily
align with syntactic structure (Selkirk, 1980). Thus, locating phrase breaks in
speech is difficult to do algorithmically, and typically relies on human annotation
(Silverman et al., 1992; Cole et al., 2017). Predicting the placement of phrase
breaks at synthesis time is also very challenging. Despite pause placement being
a core task in prosody synthesis, there is limited work in this area, as discussed
in Section 2.2.7.

2.2.5 Prosodic representation learning

Representation learning provides another method to represent prosodic infor-
mation. Unlike annotations and acoustic correlates, representation learning uses
variation observed in data to determine which information is worth capturing. By
learning from data, representation learning can capture any aspect of prosody;
whereas for acoustic correlates new features can be difficult to design, e.g. for
voice quality. Additionally, learnt representations do not require expensive hu-
man labelling like prosodic annotations. Learnt representations exist in an ab-
stract embedding space, this structure is amenable to other downstream machine
learning models.

Representation learning avoids certain pitfalls of manually defined prosody
representations, such as unreliability in human annotations, incompleteness in
stylised representations, and extraction errors in acoustic correlates. However, it
has its own challenges. Most notably, learning to separate out, or disentangle,
relevant information is difficult, and in some cases may not be theoretically pos-
sible. For example, micro-prosody is linked closely to segmental structure, and
there are correlations between syntax and prosody (Köhn et al., 2018). Thus,
representation learning models must be carefully designed to ensure the correct
information is disentangled.
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As with many machine learning methods, it is hard to interpret what a
representation learning model captures. Therefore, evaluating what information
is, or isn’t, contained in representations is a common approach to validate learnt
representations. Extrinsic evaluations like downstream tasks (Schölkopf et al.,
2021, Section 2.5), or intrinsic metrics like mutual information (Schölkopf et al.,
2021, Section 3.6) can be used to determine what the model has, or has not,
learnt.

Representation learning models rely heavily on their loss. Self-supervised
losses, such as autoencoder reconstruction (Skerry-Ryan et al., 2018) and con-
trastive learning (Baevski et al., 2020) are common in the representation learning
literature (Wan et al., 2019; Devlin et al., 2019; Baevski et al., 2020, 2022).
Autoencoders attempt to reconstruct the input following an information bottle-
neck. Contrastive learning, another self-supervised approach, defines a loss using
positive and negative pairs of data points, such as predicting if an audio sam-
ple follows the current audio clip (Schneider et al., 2019). Self-supervised losses
enable the design of powerful inductive biases that guide what information the
model is likely to learn.

There are many techniques that can affect what a model learns. Auxiliary
tasks, conditioning, and information bottlenecks, illustrated in Figure 2.2, are
common components in representation learning models.

• Auxiliary tasks can be used to encourage certain information to be in-
cluded in the representation (Figure 2.2a), and gradient reversal can be
combined with auxiliary tasks to remove information from a representation
(Figure 2.2b).

• Conditioning involves adding additional features as input to the model.
This is typically information we don’t want the representation to capture;
by conditioning, it becomes redundant to represent this information in the
learnt representation. For example, when learning a prosodic representa-
tion, conditioning on phonetic features can help disentangle the represen-
tations (Figure 2.2c).

• Information bottlenecks typically involve limiting the number of dimen-
sions in the representation (Figure 2.2d). This approach is particularly ef-
fective when combined with conditioning or auxiliary tasks. The bottleneck
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Figure 2.2: Disentanglement techniques in representation learning using an autoen-
coder. (a) Auxiliary tasks to encourage certain information to be captured. (b)
Auxiliary task with gradient reversal to encourage disentanglement. (c) Conditioning
to make phonetic information redundant. (d) Dimensional information bottleneck.
(e) Temporal information bottleneck.

forces the model to capture the information most useful for the auxiliary
task, as opposed to including all information. In the case of conditioning, a
bottleneck makes it less likely for the representation to capture redundant
information.

Information bottlenecks can also be temporal (Figure 2.2e). A temporal
bottleneck can simply be at the utterance domain, as is common for con-
trollable speech synthesis models (Skerry-Ryan et al., 2018; Wan et al., 2019;
Karlapati et al., 2021). However, we can choose a domain for the temporal
bottleneck that matches the domain of the information we want to repre-
sent. For example, using a phrase-domain temporal bottleneck means the
representation will have a dynamic number of vectors: one for each phrase
in an utterance. This is a powerful inductive bias for encouraging the model
to represent information from the chosen domain (Wang et al., 2019b).

A common approach to unsupervised representation learning for controllable
TTS uses autoencoders or variational autoencoders (VAE) (Kingma and Welling,
2013). VAEs have been applied to TTS (Hsu et al., 2019; Akuzawa et al., 2018),
voice conversion (Hsu et al., 2017a), and prosody modelling (Wang et al., 2019b;
Wan et al., 2019). Discrete representations have also been incorporated into the
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VAE framework, which provides another information bottleneck (Rolfe, 2016;
van den Oord et al., 2017). Prior work using VAEs has focused on modelling
segmental features (van den Oord et al., 2017; Hsu et al., 2019), with some ap-
plications to prosody modelling, e.g. for prosody transfer (Wan et al., 2019) and
learning unsupervised intonation representations (Wang et al., 2019b).

Many representation are designed to capture variation at the sentence do-
main not otherwise explained by the phonetic content (Skerry-Ryan et al., 2018).
It is not clear exactly what information such representations capture, as they
summarise over an arbitrary number of intonational phrases. Typically the vari-
ation captured is described as sentence style. The importance of a representa-
tion’s domain and the perceived content of learnt representations is discussed in
Chapter 5.

Before discussing prosody modelling in Sections 2.2.7, we now turn to con-
text: the information missing from the input sentence in TTS.

2.2.6 Context

Context is the information used by humans to choose their words and prosody
for a given speech act. Context in linguistics is hard to define formally, so defini-
tions are often constructed specifically for individual problem domains (Goodwin
et al., 1992). Context includes, but is not limited to: information structure, par-
alinguistic and social information, common ground, background knowledge, and
setting—social and spatial information relating to a speech act (Goodwin et al.,
1992, Chapters 2 and 3).

Prosodic context refers to the information used by humans when planning
prosody. There is a wide range of prosodic behaviour influenced by context
(Wagner and Watson, 2010). Prosodic context may be the same as “linguistic
context”, it may be a proper subset, or it be composed of additional information
(Grice, 1989, Chapter 6). In this section, I detail relevant challenges surrounding
context: it can be local or global, it is broad, it can influence prosodic behaviour
(Section 2.2.6.1), and it is hard to collect (Section 2.2.6.2).

Different types of context information change at different rates, and affect
prosody over different domains (Cole, 2015). I categorise context as local or
global: local context varies throughout a dialogue or monologue, whereas global
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context is typically static. However, the line between global context and local
context can be blurred. For example, the setting of a speech act may be static,
or may change over the course of a conversation. Similarly, local context such as
emotion, which can change continuously, could stay the same for the duration of
a conversation. Other types of local context (such as information structure) are
inherently linked to individual utterances (Krifka, 2008), and will always vary.

2.2.6.1 Relationship between context and prosody

Here, I demonstrate the breadth of prosodic context by providing specific ex-
amples of the relationship between context and prosody. Goodwin et al. (1992)
illustrates the breadth of context by defining four wide-reaching categories of
context: setting, behavioural environment, language as context, and extrasit-
uational context. Similarly, Lewis’s (1979) conversational scoreboard provides
a framework for considering all contextual information held in speakers’ minds
that is relevant to a dialogue. While these formulations may include context in-
formation we cannot practically collect, they do illustrate how broad and complex
context is.

Syntax and semantics, and information structure more generally (Chafe,
1976), can influence prominence placement to indicate focus or givenness (Krifka,
2008). Information structure can also resolve ambiguities surrounding relative
salience (Lewis, 1979). The theme (topic of the utterance) and rheme (comments
on the theme) may be used to convey new connotations or attitudes (Halliday
and Matthiessen, 1999) and the prosody should reflect these according to the
common ground (Tench, 2003).

Common ground is the information shared between dialogue partners (Stal-
naker, 1974) or, in monologues, between the speaker and the audience. This can
include background knowledge, information explicitly stated, or inferences pre-
supposed by a speaker. Background knowledge is more global and covers multiple
sources: general, encyclopedic, or common knowledge (e.g. current news events);
semantic knowledge (e.g. that a chair is something you sit on); and social knowl-
edge (e.g. how to behave around a superior). Background knowledge intuitively
plays into prosodic appropriateness as a speaker will hold certain feelings about
different knowledge which can manifest as emotions and attitudes.
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Presuppositions are assumptions brought about implicitly in the course of
natural language (Stalnaker, 1974). Prosody is used to indicate new presupposi-
tions with less ambiguity, as exemplified by Krifka (2008),

(6) Presuppositions

a. John only showed Mary the pictures.

b. John only showed Mary the pictures.

(6-a) presupposes there were other things to show and they were not shown to
Mary, while (6-b) presupposes there were other people and they were not shown
the pictures.

Emotion and attitude both affect prosodic behaviour (Klabbers et al., 2007;
De Moraes, 2011). Other paralinguistic context such as body language could
equally provide useful information for determining appropriate prosody. Social
information can impact prosody in dialogues and monologues. For example, in-
terpersonal attitudes such as confidence, persuasion, sarcasm, and superiority are
conveyed through prosody (Mitchell and Ross, 2013).

During dialogues, the discourse state can be signalled through prosody; e.g.
terminal rises can suggest the discourse has not reached a stopping point (Lai,
2012b, Chapter 5). However, the mapping between context and prosody, or
similarly between prosody and pragmatics, is not one-to-one. For example, in
task-oriented dialogues, the rise-fall-rise construction can communicate a desire
to coordinate and synchronise, or for a dominant interlocutor the same rise-fall-
rise construction is used when eliciting confirmation (Lai, 2012b, Chapter 6).

Prosody planning in humans is a complex topic and the mechanisms used
by humans are not considered in this thesis. Instead, I am concerned with mod-
elling appropriate prosody in TTS. Cole (2015) reviews the myriad ways in which
prosody signals context. Modelling improvements that incorporate wider context
information would also provide an invaluable tool for computational linguists.

Even when context is available, incorporating it into TTS is non-trivial.
Prevost and Steedman (1994) present a rule-based grammar for generating ToBI
annotations based on a discourse model and a knowledge base. Efforts to utilise
additional context in more recent systems have seen varying degrees of success
(Dall et al., 2016; Ijima et al., 2017; Ribeiro et al., 2017; Rosenberg et al., 2018;
Hayashi et al., 2019; Fang et al., 2019). Advances in S2S modelling (Tyagi et al.,
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2020; Kenter et al., 2020) and representation learning (van den Oord et al., 2017;
Wan et al., 2019; Wang et al., 2019b) have allowed prosody models to exploit
context information more effectively, as we will see in Chapter 6.

2.2.6.2 Annotation of context

Unfortunately, most contextual information is difficult to collect, requiring ex-
pensive human annotation. By definition, constructs such as Lewis’s (1979) con-
versational scoreboard cannot be fully codified as they exist solely in the minds
of dialogue participants. The same goes for information like emotion, which ex-
ists as an internal emotional state, and can only be inferred through external
expression, i.e. through somatic expression (Clynes, 1977). Instead of attempting
to collect the most complete and fundamental context information, it may seem
reasonable to target more coarse context, such as the perceived external emotion,
rather than underlying social dynamics. However, defining annotation schema
for more coarse information can also be non-trivial, as is the case for emotion
annotation (Douglas-Cowie et al., 2003).

Due to the wide range of context types that can influence prosodic behaviour,
annotation for TTS data is prohibitively expensive, even if other practical chal-
lenges are ignored. Further, annotated context must be specified (or inferred) at
synthesis time.

Automatic annotation of certain context information is possible, especially
for low-level context such as syntax and semantics. The use of additional context
derived automatically has been investigated for SPSS (Dall et al., 2016; Aubin
et al., 2019). For S2S TTS—a relatively new paradigm—this has only recently
been considered, and only using syntactic and semantic information (Hayashi
et al., 2019; Fang et al., 2019; Kenter et al., 2020; Tyagi et al., 2020; Karlapati
et al., 2021) (cf. Chapter 6).

Prosodic context includes different information depending on the mode of
speech; choosing what context is most informative or relevant is, in itself, a
challenge (cf. Chapter 5). For example, prosody in dialogues relies on more so-
cial information as it is used to establish common ground and rapport (Cassell
et al., 2007) and will change as interlocutors converge (Sinha and Cassell, 2015).
Whereas, prosody in monologues may be influenced more by the intended au-
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dience (Montaño and Alías, 2017). Certain local context information, namely
syntax and semantics, are likely to be useful for all modes of speech.

Together, these challenges, in particular that context is broad and hard to
collect, mean we will always lack sufficient context needed to model appropriate
prosody perfectly in TTS. While any additional context information manually an-
notated or automatically extracted should be helpful when synthesising prosody,
we need to consider how to improve prosody with insufficient context, as posed
by this thesis. My broad approach is to expose interpretable prosody control.
When there is insufficient context, a human-in-the-loop can control the prosody.
Alternatively, when relevant context information is available, control parameters
can be predicted automatically.

2.2.7 Prosody modelling

Having discussed what prosody is used for, how it can be represented, and how
context influences prosodic choices, I now cover methods to model and synthesise
prosody. During synthesis in TTS systems, prosodic information is generated
by the front-end and the acoustic model (Zen et al., 2013; Ren et al., 2020).
Additional prosody models are becoming common in the back-end to predict a
prosodic specification for the acoustic model (Wan et al., 2019; Shechtman and
Sorin, 2019).

For SPSS, the front-end is mostly used to predict discrete aspects of prosody,
such as pitch accent and pause placement (Rosenberg, 2010; Rendel et al., 2017;
Klimkov et al., 2017), whereas the back-end typically predicts more fine-grained
and continuous representations of prosody such as F0 (Wang, 2018; Ronanki,
2019), intensity (Ren et al., 2020; Mohan et al., 2021), and durations (Chen
et al., 2017; Henter et al., 2017b). For SPSS, the front-end also extracts other,
prosodically relevant, features such as: syntactic structure, syllabification, and
word-class or part of speech (Black et al., 1998). These can be used by the
back-end as context information when predicting prosody.

This is a fragmented approach to prosody modelling; some aspects are pre-
dicted in the front-end and others in the back-end. This will lead to inefficiencies
as errors are propagated, and information provided to, or learnt by, one model is
not necessarily shared. Prediction or extraction of features in the front-end of-
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ten uses simple heuristic rules or simple models. Most notably, pause placement
is often determined by punctuation (Black et al., 1998), this greatly limits the
acoustic model’s use of prosodic phrasing.

S2S models have moved away from this fragmented approach by relying on a
more minimal front-end, using phone identity as the only input (Shen et al., 2018).
Any additional features are extracted or predicted in the back-end. Prosody has
been predicted explicitly in S2S using a separate prosody model (Wan et al.,
2019; Shechtman and Sorin, 2019) and jointly as part of the acoustic model (Ren
et al., 2020). However, these models don’t necessarily improve on the existing
limitations of prosody models; we must address the limitations explicitly. For
example, we can mitigate the lack of context information by providing additional
information: Tyagi et al. (2020) models surrounding utterances together in the
front-end; while my work in Chapter 6 introduces additional context features to
the prosody model.

Separate prosody models are most often used to predict F0, durations, and
pause placement. As early as the 1980s, F0 was modelled with neural networks
(Scordilis and Gowdy, 1989; Traber, 1990), while early work on phrase break pre-
diction used classification and regression trees (CART) (Ostendorf and Veilleux,
1994; Hirschberg and Prieto, 1996). In HMM-based SPSS, durations were mod-
elled with phone-dependent Gaussian or gamma distributions (Zen et al., 2007),
and F0 was modelled as a component of the HMM emission distribution (Zou
et al., 2010; Qian et al., 2010).

In NN-based SPSS, neural networks have been used widely for F0 mod-
elling (Fernandez et al., 2014; Wang, 2018). Latorre and Akamine (2008) explic-
itly model F0 variation hierarchically over multiple prosodic domains. Feature
streams can also be modelled hierarchically, first predicting the voiced-unvoiced
decision followed by F0 in voiced regions (Lei et al., 2010; Wang et al., 2017a).
Alternatively, F0 can be interpolated during unvoiced regions and modelled as
a continuous signal (Yu and Young, 2011). Some methods learn discrete repre-
sentations of F0, inspired by the discrete structure intonation exhibits (Ronanki
et al., 2016a; Wang et al., 2019b). Recent S2S models have explicitly predicted
F0 either as a separate task (Arik et al., 2017b,a) or as part of a single, jointly
trained model (Ren et al., 2020).



2.2. Prosody 41

Duration models in NN-based SPSS use NNs (Zen et al., 2013). These mod-
els assume a Gaussian structure, yet phone durations are non-Gaussian—segment
durations form a right-tailed gamma distribution. Henter et al. (2016) and Ro-
nanki et al. (2016b) solved this using a non-parametric approach, while Chen
et al. (2017) use a discrete random variable to model durations. In S2S models,
duration is often modelled implicitly with attention. However, many approaches
take advantage of the monotonic alignment between phones and speech using at-
tention variants (Lim et al., 2020; Shen et al., 2020) or an explicit duration model
(Yu et al., 2019; Ren et al., 2020).

In phrase break modelling, much of the difficulty lies in defining phrase
break labels for supervision, since annotation is expensive. Often, pauses above
a threshold are used to capture more salient phrase breaks (Rendel et al., 2017;
Klimkov et al., 2017). Mishra et al. (2015) explored using additional context
specifically for phrase break prediction, including part of speech and dependency
relations. Dall et al. (2014) investigate the importance of filled pauses and demon-
strate improved pause insertion using an RNN and an n-gram language model.

Prosody modelling can also be improved using new feature representations,
such as wavelets. Wavelets are a generic representation of temporal signals (Mal-
lat, 1989). The wavelet transform is function decomposition that produces a
“scalogram”, this is analogous to how the Fourier transform produces a spectro-
gram. While a spectrogram represents a signal in frequency space, the scalogram
represents a signal by the contribution of different scales of a template signal: the
mother wavelet. Decomposing by scales makes the wavelet transform useful for
prosodic signals as prosody operates over different domains (Vainio et al., 2013;
Ribeiro and Clark, 2015). Suni et al. (2017) proposed an approach to represent
intonation, loudness, and duration within a single scalogram—this would allow
for prosody control over multiple domains with a single representation.

We have covered a broad background on both TTS and prosody. However,
three important topics remain. In the following section, I discuss evaluation of
TTS and prosody. In Section 2.4, I discuss important considerations regarding
speech data. Finally, I introduce the machine learning methods used in this thesis,
in Section 2.5.
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2.3 Evaluation

Evaluation is important for any machine learning system. For generation tasks,
including speech synthesis and prosody synthesis, the quality of an output is
subjective, i.e. the quality depends on an individual’s opinions.

There are two broad approaches to speech evaluation: objective and subjec-
tive. Objective evaluations refer to metrics that can be computed algorith-
mically, in contrast with subjective evaluations which rely on human judge-
ments. In TTS, it is common to evaluate intelligibility and naturalness. Other
aspects, such as speaker similarity (Wester et al., 2016), likeability (Campbell,
2007, Section 3.2), and cognitive load (Govender and King, 2018) can be impor-
tant, however they are less relevant to this thesis. To evaluate prosody quality,
we must consider how appropriate a rendition is for a given context.

Intelligibility—how accurately listeners understand the lexical content—is
solved for high-quality data in high-resource languages for non-technical language
when listeners have normal hearing and are listening in quiet conditions. I do
not conduct any intelligibility evaluations, though evaluating intelligibility is still
important for certain data, languages, or listeners, and during initial testing of a
voice.

Naturalness is often considered as an overall measure of how close synthetic
speech is to human speech, covering both acoustic and prosodic quality. Yet, as
explored in Chapter 3, state-of-the-art synthetic voices can be highly natural while
having unsatisfactory prosody. This is possible as the pronunciation, articulation,
and acoustic fidelity are all satisfactory, but the prosody is flat and not chosen
specifically for any context.

Naturalness and appropriateness are hard to separate in evaluations.3 To
provide a clear distinction between these two related concepts, I define natu-
ralness as the similarity of acoustic quality to human speech, which includes
acoustic artefacts, background noise, audio fidelity, as well as the lack of unre-
alistic prosody (cf. Chapter 3). Appropriateness measures how suitable the
prosody is for a given context and is discussed in Section 2.3.3.4

3Recent work explicitly demonstrated that naturalness and appropriateness are fundamen-
tally different (O’Mahony et al., 2021).

4While definitions in the literature may not make the distinction between naturalness and
appropriateness, it is overwhelmingly common to evaluate single out-of-context sentences. Such
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Naturalness is still an open challenge, though recent work, using S2S models
(Ren et al., 2020) and neural vocoders (Kalchbrenner et al., 2018), has greatly
improved acoustic quality.

For mean-opinion score tests, the naturalness of state-of-the-art systems is
now high enough that the difference with human speech can’t be precisely mea-
sured (Jia et al., 2021; Elias et al., 2021). This is not to say that TTS has reached
parity with human speech, but that certain testing paradigms are no longer suf-
ficient. Naturalness is still an important aspect of TTS performance, and more
precise evaluations should be used. However, more attention is being given to the
evaluation of appropriateness in TTS (Latorre et al., 2014; Mendelson and Aylett,
2017; Loupi, 2017; Clark et al., 2019; Wagner et al., 2019). As naturalness reaches
parity with human speech, the next task for achieving general-purpose TTS is
prosody synthesis. Unfortunately, evaluation of prosody is not straightforward
(Clark et al., 2019).

2.3.1 Objective evaluation

Objective evaluations are reasonably accurate in measuring some aspects of TTS
quality, such as pronunciation quality or pronunciation errors (Janssen, 1957;
Steeneken and Houtgast, 1980; Taghia and Martin, 2013). For high-resource lan-
guages, intelligibility can be reliably evaluated with ASR (Karbasi and Kolossa,
2017). However, for many aspects of speech, objective metrics are not guaranteed
to correlate with human perception—hence the need for subjective evaluations.
In SPSS, objective metrics that evaluate predicted vocoder features are useful as
a debugging tool, these are introduced in Chapter 4.

There do exist approaches to replicate perceptual measures of naturalness
using objective methods. The most notable is Perceptual Evaluation of Speech
Quality (PESQ) (Recommendation P.862, 2001). PESQ was designed for tele-
phone speech, and while Cernak and Rusko (2005) did demonstrate correlation of
PESQ with subjective results for synthetic speech, it is too weak to make PESQ
a reliable replacement for subjective tests.

Recent work has taken a more direct approach to replicating subjective re-

evaluations cannot determine if the prosody is appropriate, but only if it is invalid. Therefore,
evaluations with single out-of-context sentences will mainly capture naturalness as defined here:
acoustic quality and prosodic “plausibility”.
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sults; Patton et al. (2016) and Lo et al. (2019) train neural networks to predict
naturalness results from synthetic speech using human ratings as targets. These
models are very noisy on a per-utterance or per-listener basis, but predictions
are usable at the system level. Such models must be used within domain, i.e.
using the same dataset and performing the same task (e.g. voice conversion). Ul-
timately, objective evaluation is not yet able to replace the quality of feedback
human participants provide, especially for evaluation of naturalness and appro-
priateness.

2.3.2 Subjective evaluation

Subjective evaluations attempt to measure the opinion of users, often to assess
quality or preference. While evaluation tasks can have objectively correct answers,
such as a transcription task, human responses depend on many factors and will
always be subjective. The end-users for TTS voices are humans, meaning there
is no better proxy than asking listeners directly. However, human perception is
subjective, meaning judgements in listening tests will be noisy (Roy et al., 2017),
thus it is important that listening tests are designed carefully and that statistical
significance is tested (Wester et al., 2015). By using many listeners, a subjective
evaluation aims to capture the wisdom of the crowd.

The statistical tests used for evaluations depends on the task. Where rel-
evant, I introduce the statistical tests performed within each chapter. If many
statistical hypotheses are being tested then multi-test correction must be used
(Wester et al., 2015). For a given p-value, say 5%, 1 in 20 significant statistical
inferences within a single study will be erroneous inferences. By using multi-test-
correction, this ensures that 1 in 20 studies will contain an incorrect statistical
inference, as opposed to 1 in 20 incorrect inferences within a single study (Holm,
1979).

Depending on what is being evaluated, different variables must be controlled.
In naturalness tests, linguistic content is typically a control variable. This can be
enforced by using a variety of sentences and having each participant hear every
sentence. If this would make the listening test too long, a Latin square design
can be used (Kirk, 2013, Chapter 14). By treating a group of participants as a
single “virtual” participant, a Latin square design can control for the necessary
variables for each virtual participant.
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A major design choice for listening tests is the task: the structure in which
listeners can respond. This may simply be a Likert scale (Likert, 1932) as used
in mean-opinion score (MOS) tests (Recommendation P.85, 1994). MOS tests
present a single stimulus at a time and ask for a rating independently of other
stimuli. For state-of-the-art S2S voices, MOS tests lack the precision (i.e. listener
agreement) to demonstrate differences in system performance. This can be ob-
served in the results of many papers where confidence intervals commonly overlap
with natural speech (Shen et al., 2018, 2020; Jia et al., 2021; Elias et al., 2021).
This is not to say that these voices are equal in quality to human speech, but
that these studies should use tasks that produce more precise results.

The preference test, or “AB” test, directly compares stimuli from two sys-
tems. Due to this, preference tests have a higher precision than MOS tests, which
rate stimuli separately. A single preference test is restricted to comparing exactly
two systems, however, there are many situations where more than two systems
need to be compared on a single axis. Fortunately, by performing multiple pref-
erence tests—one for each pair of systems—it is possible to combine the results
and provide a rating for each system on a single axis. Multiple preference test re-
sults can be combined using multi-dimensional scaling (Borg and Groenen, 2003)
or ordinary least squares (proposed in Chapter 3). The cost of this approach is
quadratic in the number of systems as it requires a preference test for each pair
of systems, i.e. systems must be compared combinatorially. Despite the quadrat-
ically increasing cost of this approach, preference tests are the only task that can
scale to many systems without sacrificing precision or accuracy. This approach
does not sacrifice precision as stimuli are always compared directly. Accuracy is
not sacrificed as the task is comparative, unlike MOS tests, and is simpler for
listeners than a MUSHRA test with many systems.

The multiple stimuli with hidden reference and anchor (MUSHRA) test (BS
Series, 2014) is designed to directly compare multiple systems, unlike the prefer-
ence test. It was developed for evaluation of speech coding algorithms. MUSHRA
is comparative, like preference tests. Additionally, participants must identify one
stimulus as the anchor (i.e. a lower-bound) and one stimulus that matches a vis-
ible reference (i.e. an upper-bound). This ensures the rating scale is normalised
per listener, instead of solely relying on labels. MUSHRA tests typically use
a scale between 0 and 100. This allows participants to represent relative differ-
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ences between stimuli. Unlike preferences tests which require a quadratic number
of pairwise tests to compare multiple systems, MUSHRA relies on participants
performing a quadratic number of comparisons when rating. For this reason,
increasing the number of systems above 4 or 5 makes the task more difficult and
will impact the test’s precision and accuracy.

In TTS, variants of MUSHRA are relatively common, including: removing
the requirement to identify the lower-bound or upper-bound, removing the vis-
ible reference, or using an ordinal scale to directly capture rankings instead of
ratings. By deviating from the original evaluation spec (BS Series, 2014), these
modifications may impact the reliability of the test. However, to explore a given
hypothesis, it can be more important to modify the test. Ideally, substantial
changes should be validated to ensure the test remains reliable.

Other listening tests with different tasks include: forced-choice annotation
(e.g. labelling tasks to evaluate interpretability), free-form annotation (e.g. tran-
scription to evaluate intelligibility), or free-form interviews for phenomena that
are harder to codify. Changing the structure in which participants respond also
impacts how listeners behave.

An evaluation’s question or prompt also has a major effect on its efficacy.
When using keywords, such as intelligibility, naturalness, or likeability, it is im-
portant to consider the varying interpretations participants might hold. While
complicated technical terms can be explained, participants’ interpretations are
more likely to vary if lengthy explanations are required. Other detail can also
be presented to influence what information the test is capturing, such as: the
purpose of the evaluation, surrounding sentences and audio, or other modalities
like text and video.

2.3.3 Prosody evaluation

Evaluating synthetic prosody is challenging as a sentence can have multiple ren-
ditions, only some of which will be suitable for the context (Latorre et al., 2014).
A prosodic rendition can only be considered “good” if it is suitable for the given
context. This measure of prosody quality is appropriateness. Without the con-
text we cannot know if a prosodic rendition is appropriate or not. In addition,
many TTS systems use isolated utterances and do not provide control of prosody.
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Such TTS systems cannot change an utterance’s prosodic delivery and are unable
to intentionally produce appropriate prosody.

While the context needed to predict prosody is very broad, subjective eval-
uations require less context. In subjective evaluations of prosody, we can rely on
the human participants to infer missing contextual information given some lim-
ited context. To evaluate the appropriateness of an utterance, the context can be
explicit, such as a description of a situation (Goodhue et al., 2016), or implicit,
such as the surrounding sentences (Clark et al., 2019).

Explicit context that describes a situation must be carefully designed, and
conceiving of sentence-context pairs is time consuming. In addition, the written
description of the context must be concise, so that participants can quickly and
correctly understand the situation. Goodhue et al. (2016) study which prosodic
constructions are appropriate for different explicit contexts. For the phrase “You
like John.” they describe three contexts: when the interlocutor failed to mention
they like John, when the interlocutor falsely claimed they didn’t like John, and
when the interlocutor falsely claimed they did like John. They demonstrate that
multiple prosodic constructions can be appropriate for each context, and that the
most commonly used construction is different for each context.

While highly specific sentence-context pairs like those from Goodhue et al.
(2016) are not used in TTS evaluations, much simpler situations are used to eval-
uate controllable TTS systems. For emotion control, asking “Does the stimulus
sound happy?” provides explicit context, i.e. this situation calls for a happy re-
sponse. Clearly this context is limited, but it enables evaluation of the prosodic
variation the system is designed to control.

A simpler approach to defining context is to provide participants with sur-
rounding context. In this way, the context is implicit and must be interpreted
by participants. However, evaluating long sequences of utterances is not without
challenges (Clark et al., 2019). For example, cognitive biases can impact evalu-
ations. The recency bias, where recent events are more salient, and the primacy
effect, where initial events are more salient, can both impact the judgements
provided by listeners for long stimuli (Deese and Kaufman, 1957). While the
anchoring effect can make it difficult to present multiple renditions to listeners—
anchoring refers to the bias where judgements are influenced by a, possibly arbi-
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trary, reference point (Sherif et al., 1958). Unfortunately, there is little research
on the efficacy of prosody evaluations that use longer stimuli or provide surround-
ing context.

A complementary school of thought says evaluations should be designed ac-
cording to the intended use-case (Campbell, 2007; Mendelson and Aylett, 2017;
Wagner et al., 2019). Campbell (2007) argues that we need to evaluate how end
users experience and perceive our systems, not how well our technology improves
upon a previous approach. Mendelson and Aylett (2017) focus on the importance
of the end use-case and propose an interactive evaluation paradigm to conduct
conversations using a Wizard-of-Oz design. This places the whole system within
the context of its intended application which should lead to more relevant find-
ings. This interactive approach to evaluation can be seen as an extension of
explicit and implicit context, where the explicit context is the goal of conducting
a conversation, and the turns of the conversation are the implicit context.

It is important to consider listener agreement in any evaluation. Human
perception is subjective, and listeners can form different interpretations of the
task instructions. This can be observed for ToBI annotation: despite the detailed
instructions, training, and examples, ToBI annotations have low inter-annotator
agreement (Syrdal and McGory, 2000). Human perception of prosody can be af-
fected by what listeners are told to attend to, the context made available, and the
type of content. Cole et al. (2014) found that listeners varied their prominence
judgements depending on whether they were told to attend to an utterance’s
meaning or just its acoustics. Turnbull et al. (2017) found that listeners were
more likely to identify certain accented words as prominent in contrastive con-
texts, embedded in dialogues. While Hinterleitner et al. (2011) find that content
type—e.g. long sentences, direct speech, poetic, action, or children’s books—
has a significant effect on the perception of: speech pauses, intonation, emotion,
and stress. Additionally, different listener demographics can exhibit different be-
haviour. Klimkov et al. (2017) found that vetted listeners (i.e. employees) were
consistently less decisive than listeners from Amazon Mechanical Turk, using the
“no preference” option more frequently. Many factors can impact human be-
haviour, but ultimately judgements from different listeners are inherently noisy
(Roy et al., 2017).

While evaluating “good” prosody, i.e. appropriateness, is challenging, it is
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much more straightforward to evaluate “bad” prosody. Obvious prosodic mis-
takes can be evaluated without the need for context by using naturalness as a
proxy. Such an evaluation will indicate unrealistic prosody, but will also capture
participants’ perception of other factors, such as pronunciation quality, acoustic
quality, and likeability (Campbell, 2007). As discussed in Chapter 3, unrealistic
prosody corresponds to the prosody humans can’t, won’t, or shouldn’t produce in
any context. Unrealistic prosody evaluation can use isolated utterances, making
it more straightforward than appropriateness evaluations. Investigating when and
where systems make mistakes can be very informative for making improvements.
However, this is not a replacement for measuring appropriateness.

The focus of this thesis is not prosody evaluation. However, in investigating
the absence or use of context in prosody synthesis, it is of course necessary to
evaluate prosody. Since prosody evaluation is still an unsolved problem, in each
chapter I design novel listening tests to answer specific questions. I also rely on
existing approaches, such as naturalness tests, where applicable.

2.4 Data

Data is the backbone of modern TTS systems as they rely on neural networks.
Model improvements can be made to improve performance, robustness, and data
efficiency. However, neural networks may be unable to produce a behaviour unless
it is exhibited by the data (Jacot et al., 2018; Domingos, 2020). For TTS, there
is increasing evidence that new styles can be produced if data in that style is
available (Prateek et al., 2019; Cotescu et al., 2019). Thus, the style and content
of a TTS dataset is especially important.

2.4.1 Quality and variability

There are many desirable and undesirable traits of speech data. The status quo
for commercial synthetic voices is to use “clean” data—having no background
noise and being recorded with high-quality equipment. However, such data is
typically elicited or acted, with limited range of styles and variability. Podsiadło
and Ungureanu (2018) demonstrated, that for assistant-style speech data, state-
of-the-art performance can be achieved using only ~10% of the data compared
to what is used in previous systems. This suggests that there is little additional
variation in the remaining ~90% of the data.
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From a machine learning perspective, data with less variability is easier to
model (Geman et al., 1992). However, the prosody in such data will not reflect
natural human prosody. This trade-off between quality and variability is espe-
cially noticeable for long-form speech (Clark et al., 2019). For example, one early
commercial smart home assistant used assistant-style TTS voices to read out a
morning news briefing, impressionistically this resulted in an uninteresting user
experience. The feature’s synthetic speech was later replaced with human-read
briefings.5 One solution to this poor listener experience is to collect data by elic-
iting the desired news-reading style (Prateek et al., 2019). While this approach
resolves the issue, it is not a scalable solution.

2.4.2 Found data

Designing and collecting data that exhibits interesting prosodic behaviour is chal-
lenging (Goodhue et al., 2016). Typically, it requires the use of actors and careful
script design to elicit certain behaviour (Douglas-Cowie et al., 2003). Instead,
data can be sought out from other domains and re-purposed for TTS. Such data
is known as found data. Many datasets used in academic TTS research are de-
rived from found data, most notably: audiobooks (Stan et al., 2013; King et al.,
2013; King and Karaiskos, 2016; Ribeiro, 2018a; Zen et al., 2019) and podcasts
(Lotfian and Busso, 2017; Székely et al., 2019; Clifton et al., 2020).

Found data often contains much more realistic speech. However, this may be
at the expense of acoustic quality. Found monologue or dialogue data can have
various challenging qualities, including: background noise (Canavan and Zip-
perlen, 1997; Ito, 2017; Hernandez et al., 2018; Zen et al., 2019), distant speakers
(Carletta, 2006), overlapping speakers (Canavan and Zipperlen, 1997; Carletta,
2006), and disfluencies (Carletta, 2006; Székely et al., 2019). While audiobooks
are a high quality source of found data, there may also be channel variability
across different speakers or recordings; this is easily avoided when collecting new
data.

Prosody in audiobooks is distinct from prosody in dialogues, as the commu-
nicative task is different. While both are challenging, the importance of taking

5No references or news articles could be found. The failure was caused by the intrinsic
style of the data, as evidenced by Podsiadło and Ungureanu (2018) and Prateek et al. (2019).
Modelling assumptions that lead to average prosody may also contribute.
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turns and interpersonal relations, among other things, means that dialogue data
presents an even more challenging prosody synthesis task for TTS.

One approach to dealing with the variable quality of found data is to filter out
problematic data (Baljekar and Black, 2016; Gallegos et al., 2020). Information
such as low signal-to-noise ratio might indicate bad data, but could be caused by
overlapping speech which can be related to back-channelling. Filtering out data
that contains back-channelling means removing realistic and interesting prosody.
Ideally, any filtering should avoid removing interesting data.

2.4.3 Usborne children’s audiobook dataset

In Chapters 3, 4, and 5, I use the Usborne children’s audiobook dataset. This
dataset was introduced for the Blizzard Challenge 2016 (King and Karaiskos,
2016), and was provided by Usborne Publishing. It consists of professionally-
recorded audiobooks intended for a 4–6 year-old audience. The dataset is single
speaker—a female speaker of standard southern British English—and contains
6.5 hours of speech, or roughly 7,250 sentences.

The choice of this dataset is motivated by the need for interesting and chal-
lenging prosodic variation. The data exhibits different modes of variation that are
captured by the control mechanisms introduced in the following chapters. Stories
in the dataset include: traditional stories (e.g. Little Red Riding Hood), simplified
Shakespeare (e.g. Macbeth), and non-fiction (e.g. The Story of Chocolate). These
are read in an expressive style, with various character voices and a substantial
quantity of direct speech.

Additional datasets are used in Chapters 4 and 5, and a different TTS dataset
is used in Chapter 6. These are introduced and discussed within the relevant
chapters.

2.5 Machine learning

TTS relies on a number of machine learning techniques. Within the front-end,
decision trees, linear regression, and logistic regression are all used (Black et al.,
1998). In hybrid unit-selection and statistical parametric speech synthesis, hid-
den Markov models and decision trees were widely used. However, over the past
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decade, neural networks have become the predominant technique for TTS (Watts
et al., 2016, 2019). My research focuses on the back-end, specifically the acoustic
and prosodic models. In the following sections, I introduce the machine learn-
ing techniques used in this thesis, which includes neural networks and graphical
models.

2.5.1 Neural networks

Neural networks (NNs) have been studied in niche applications for decades (Rosen-
blatt, 1958; Rumelhart et al., 1986; Bishop et al., 1995). Following popularisation
in computer vision, NNs have become pervasive (Krizhevsky et al., 2012), thanks
to: increasing computational power, improvement of algorithms for efficient train-
ing, and the ability to train on successively larger datasets (Goodfellow et al.,
2016). NNs are often seen as universal function approximators, able to learn any
process given sufficient capacity and data (Csáji et al., 2001). Some theoreti-
cal research suggests that NNs may not be able to generalise past the provided
data (Jacot et al., 2018; Domingos, 2020). This is relevant to prosody and style
control as we must ensure the data contains the variation we are interested in
synthesising (Podsiadło and Ungureanu, 2018; Prateek et al., 2019).

In their simplest form, NNs are very similar to logistic regression: a learnt
projection followed by a non-linearity. Unlike logistic regression, where a pro-
jection matrix, or weight matrix, that minimises the loss can be analytically
computed, NNs use optimisation algorithms to learn the weight matrices. Typi-
cally, optimisation uses stochastic gradient descent (SGD), or a similar variant,
where the weights are iteratively updated in small steps to improve performance
on a subset of the data—a “mini-batch”. Compared to logistic regression, NNs
can use a variety of non-linearities, not just the sigmoid function.

Designing a NN involves two main components: architecture and loss. Ar-
chitecture includes the choice of layers and activation functions. Choosing or
designing a loss is very important, though in many applications there may be
one obvious choice, such as cross-entropy for classification. However, designing
a loss determines how the model behaves and what it learns. The loss design is
especially important for self-supervised learning.

Other aspects, such as the optimisation routine, may be considered integral
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to designing a model. However, off-the-shelf algorithms are relatively robust,
such as adaptive variants of SGD (Kingma and Ba, 2014), random initialisation
(Glorot and Bengio, 2010), and backpropagation (Rumelhart et al., 1986). Models
are still sensitive to the learning rate, and empirically choosing the learning rate
or learning rate schedule is often very important to successful training.

The data also has an effect on the resulting model—arguably it has the
greatest effect. Choosing the data, as well as cleaning and filtering it is important.
Fortunately, the datasets used in this thesis are high quality, and have been used
extensively in the literature, thus data cleaning and filtering are not considered
here.

A model’s architecture is typically a sequence of layers and activation func-
tions applied consecutively. However, the forward pass in a model can be more
complex, such as for S2S models where auto-regression or upsampling are nec-
essary. The forward pass for most layers can be parallel (sometimes known as
“feed-forward”) or auto-regressive depending on the application, although re-
current models by design must be autoregressive. Autoregressive models using
recurrent, convolutional, or attention layers have all demonstrated state-of-the-
art performance for modern TTS (Wang et al., 2017b; Tachibana et al., 2018; Li
et al., 2019).

The model architecture and loss can impose various inductive biases. An
inductive bias is any assumption made by the model that allows it to generalise
beyond the training data (Mitchell, 1980). This can be as simple as restricting a
classification model to a fixed set of target labels. The main layer types—dense,
recurrent, convolutional, and attention-based—all impose structural inductive bi-
ases. Especially for self-supervised models, the loss plays an important part in
defining what the model learns. For example, the masked language modelling and
next sentence prediction losses used in BERT (Devlin et al., 2019) impose induc-
tive biases towards understanding semantics, syntax, and context, both short and
long range.

2.5.1.1 Dense layers

The first incarnation of neural networks—originally a computational analogue for
neurons in the brain—used dense layers (Rumelhart et al., 1986). Dense layers
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consider how each input contributes to each output through an affine transform.
Dense layers impose no structural assumptions, this makes learning less efficient
for complex data like speech. However, deep networks with many layers impose
an inductive bias for hierarchical and distributed representations (Bommasani
et al., 2021, Section 4.1).

2.5.1.2 Recurrent layers

For sequence data, it is important to take into account the temporal relationship
between time-steps. A recurrent layer combines information from the previous
time-steps with the input at the current time-step (Rumelhart et al., 1985). The
simplest recurrent layer is the repeated application of a dense layer across time,
with feedback of each time-step’s output to the next time-step’s input. This it-
erative design allows recurrent layers to use variable length sequences. Recurrent
neural networks (RNNs) are models that use at least one recurrent layer. RNNs
impose a temporal inductive bias, making them better at learning temporal pat-
terns.

More complex recurrent layers were introduced to resolve issues such as van-
ishing gradients, including: the long short-term memory (LSTM) cell (Hochreiter
and Schmidhuber, 1997), and the gated recurrent unit (GRU) (Cho et al., 2014).
LSTMs and GRUs use gates (i.e. the sigmoid function) to control what informa-
tion is used or discarded. These gates allow the model to use the input to adapt
how it processes that same input. This imposes an inductive bias to dynami-
cally adapt model behaviour to the current input. Variants such as bi-directional
RNNs allow recurrent models to incorporate past and future information (Schus-
ter and Paliwal, 1997). Another variant, the clockwork RNN, can operate at
different time scales (Koutnik et al., 2014). Clockwork RNNs allow for hierarchi-
cal prosody modelling over linguistic domains (Wan et al., 2019).

2.5.1.3 Convolutional layers

Convolutional neural networks (CNNs) use the mathematical convolution oper-
ation to extract local information from the input (Lecun et al., 1998).6 Con-
volutions use a kernel to extract this information. Importantly, this kernel is

6While neural network convolutions actually correspond to mathematical cross-correlation,
the difference is unimportant because the kernel is learnt.



2.5. Machine learning 55

reused across all points across the input: it is “convolved” over the input. Un-
like human-defined kernels from traditional computer vision (Sobel and Feldman,
1968), CNNs use stochastic gradient descent to learn the kernel. When many
convolution layers are stacked, early layers have been shown to learn low-level
information, while later layers learn more abstract high-level information (Erhan
et al., 2009). CNNs impose a structural inductive bias: they assume that local
regions of input contain the most relevant information, this can be in terms of
spatial, temporal, or graph distance. This is a more efficient parameterisation for
data with local structure. In addition, convolutions can be computed in parallel,
unlike recurrent layers, making their time complexity lower.

Convolutions are relatively limited in their receptive field: the size of the in-
put accessible from a given position in the output. However, van den Oord et al.
(2016) solved this problem by applying multiple dilated convolutions (Holschnei-
der et al., 1990) allowing the receptive field to scale exponentially with the number
of layers. Other convolution variants can be used to make training and inference
more efficient, such as depth-wise separable convolutions (Sifre, 2014; Kang et al.,
2021).

2.5.1.4 Attention

Attention was designed to handle sequence data for tasks where the input and tar-
get have different sequence lengths (Bahdanau et al., 2014). Attention learns to
compute scores that represent the relevance of different input time-steps to each
output time-step. For example, in machine translation we want to know which
source words help determine each translated word. However, by considering all
input-output pairs there are O(N2) scores to compute, making attention compu-
tationally expensive. Attention was initially only applied to align two sequences
of a different length, self-attention is the application of attention when the input
and output have the same sequence lengths (Vaswani et al., 2017). Vaswani et al.
(2017) also introduced multi-headed attention where multiple context vectors are
computed, each based on separate scores.

Attention is able to share information from arbitrarily far away from the
current output time-step using the context vector, unlike RNNs where information
must be propagated step-by-step through the recurrent state. This resolves issues
with vanishing gradients in time. Compared to RNNs, attention imposes an
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inductive bias on the importance of long-range dependencies.

Attention scores are computed dynamically based on the inputs. This pro-
vides an inductive bias for dynamic processing of inputs, similar to the dynamic
gating in LSTMs, but more powerful. It is also conceptually similar to meta-
learning, where a model is trained to predict network parameters for another
model (Vilalta and Drissi, 2002). In a sense, attention is a convolution with
arbitrary width and a meta-learnt kernel.

2.5.1.5 Regularisation

Neural networks are a powerful machine learning technique thanks to their flexible
parameterisation. However, due to their large representational capacity, they are
prone to relying on the training data too much. In the worst case, the model will
memorise data. If the model “overfits” to the training data in this way, it will not
generalise well to unseen data. Fortunately, a common cause of this behaviour
is very large weights, which can be regularised by penalising large weights. The
most common form of regularisation is to add an additional term to the loss,
typically the L2 norm of the weights (Ng, 2004). Minimising this jointly with
the loss will minimise the size of the weights, and thus mitigate some forms of
overfitting.

However, to resolve overfitting more generally (i.e. the use of misleading
patterns) other forms of regularisation are required, such as dropout, data aug-
mentation, and multi-task learning (Goodfellow et al., 2016, Chapter 7). Dropout
randomly removes parts of a layer’s input, this adds noise to the training data
making overfitting less likely (Srivastava et al., 2014). Data augmentation is com-
monly used in computer vision, where it improves position and rotation invariance
(Taylor and Nitschke, 2018). Multi-task learning adds additional regression or
classification tasks to a model (Caruana, 1998). The correct additional task can
focus the model on extracting desirable information from the inputs, thus reduc-
ing the chance of overfitting on misleading information.

2.5.1.6 Data normalisation

It is common practice in TTS, and in most fields, to normalise data streams
according to global statistics. This is important as neural networks train more
efficiently on normalised data (Bishop et al., 1995, Chapter 8). The type of
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normalisation to perform depends on the data. For real valued data, mean-
variance normalisation is common. While for ordinal integer data, such as lin-
guistic counter features (cf. Table A.1, pp. 168), min-max normalisation can be
used.

2.5.2 Graphical models

Graphical models, also known as probabilistic models, provide a powerful frame-
work for capturing latent information and incorporating distributional and struc-
tural assumptions. While neural networks can impose inductive biases through
various design choices, it is difficult to encode prior knowledge or assumptions
about the underlying process that generated the data. For example, in spectro-
grams of speech we have prior knowledge that the higher frequencies will contain
more noise than the lower frequencies, this type of knowledge can be encoded in
a graphical model.

Graphical models aim to learn the true distribution of the data, p∗(x). By
using this formalism, it is possible to impose independence assumptions, e.g. in
unvoiced regions we could assume the spectrogram is independent of F0. The con-
ditional independence and dependence relationships derived from these assump-
tions are represented as a graph, hence the name graphical models. Common
representations for graphical models include: belief networks, Markov networks,
factor graphs, and junction trees (Barber, 2012).

In addition to modelling the data distribution, graphical models can model
latent (i.e. unobserved) factors that correlate with observed behaviours. This al-
lows graphical models to explicitly capture unexplained variation, such as prosody
(cf. Chapters 3 and 5). There are a broad variety of graphical models that model
latent variables. The hidden Markov model, used for SPSS, is a classic exam-
ple of a latent variable model. Recent research has resulted in more powerful
graphical models, such as variational autoencoders (Kingma and Welling, 2013),
normalising flows (Dinh et al., 2017; Papamakarios et al., 2021), and diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020). These models are powerful
in part thanks to their complex parameterisation: large neural networks are used
to predict the parameters of the distributions that define these graphical models.

Learning the parameters of a graphical model’s distributions can be simple,
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such as for naïve Bayes, where maximum likelihood estimation corresponds to
counting occurrences in the data. While for other graphical models, especially
latent variable models, exact inference may not be possible. Learning algorithms
such as expectation maximisation, or its more general derivation, variational in-
ference, can be applied to learn an approximation of the true model.

Graphical models use data to learn their distributions’ parameters. However,
we only observe a finite number of data points, i.e. samples from the true data
distribution, p∗(x). Fundamentally, this means modelling p∗(x) is intractable.
Variational inference avoids the need to directly model p∗(x) by introducing
a variational distribution q(x) (Jordan et al., 1999). Instead of modelling p∗(x)
or minimising the divergence between q(x) and p∗(x) directly, we can derive
a variational lower bound on p∗(x). Maximising this lower bound brings the
variational approximation, q(x), closer to the true data distribution, p∗(x).

2.5.2.1 Variational autoencoders

This thesis uses variational autoencoders, a graphical model that learns a latent
distribution using variational inference (Kingma andWelling, 2013). Variational
autoencoders (VAEs) attempt to learn an approximate posterior qφ(z | x),
where z is the latent random variable being learnt (Doersch, 2016). This latent
variable represents the information required to reconstruct the data. Our aim is to
minimise the dissimilarity between the approximate posterior (i.e. the variational
distribution) qφ(z | x), and the true posterior pθ(z | x). Therefore, to derive
the variational lower bound for VAEs, we start with the following divergence
definition,

DKL(qφ(z | x) || pθ(z | x)) = Ez̃∼qφ(z|x) [log qφ(z̃ | x)− log pθ(z̃ | x)] (2.1)

However, we do not know the true posterior pθ(z | x); this is what we are
trying to approximate using variational inference. Therefore, we deconstruct
the KL divergence using Bayes rule, resulting in three terms in Equation 2.5:
a KL divergence between the approximate posterior and a prior term, p(z); a
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“reconstruction” term; and the data log likelihood.

DKL(qφ(z | x) || pθ(z | x)) = Ez̃∼qφ(z|x)

[
log qφ(z̃ | x)− log

(
pθ(x | z̃)pθ(z̃)

pθ(x)

)]
(2.2)

=Ez̃∼qφ(z|x)[log qφ(z̃ | x)− log pθ(x | z̃)− log pθ(z̃) + log pθ(x)] (2.3)

=Ez̃∼qφ(z|x)[log qφ(z̃ | x)− log pθ(z̃)]− Ez̃∼qφ(z|x)[log pθ(x | z̃)] + log pθ(x)
(2.4)

=DKL(qφ(z | x) || pθ(z))− Ez̃∼qφ(z|x)[log pθ(x | z̃)] + log pθ(x) (2.5)

The divergence term allows us to enforce structure using the prior, and is
discussed below, the reconstruction term represents an autoencoding task, and
the log likelihood is what we’re ultimately interested in modelling accurately.
Rearranging, we get the evidence lower bound (ELBO) for the log likelihood on
the right hand side,

log pθ(x)−DKL(qφ(z | x) || pθ(z | x)) = Ez̃∼qφ(z|x)[log pθ(x | z̃)]−DKL(qφ(z | x) || pθ(z))
(2.6)

log pθ(x) ≥ Ez̃∼qφ(z|x)[log pθ(x | z̃)]−DKL(qφ(z | x) || pθ(z)) (2.7)

This is a lower bound as DKL(qφ(z | x) || pθ(z | x)) is strictly non-negative.
However, two challenges remain: we need to compute the expectation over z for
both terms, and we need to differentiate through the sampling process required
by the expectation.

The stochastic gradient variational Bayes (SGVB) estimator uses two tricks
to resolve these issues—SGVB is the method used to train VAEs by gradient
descent. First, Monte Carlo sampling, with S samples, is used to approximate
the ELBO. Kingma and Welling (2013) found empirically that, for large enough
mini-batches, Monte Carlo sampling with one sample (Equation 2.9) could be
used.

Ez̃∼qφ(z|x)[log pθ(x | z̃)]−DKL(qφ(z | x) || pθ(z))

≈ 1
S

S∑
s=1

log pθ(x | z̃(s))−DKL(qφ(z̃(s) | x) || pθ(z̃(s))) where z̃(s) ∼ qφ(z | x)

(2.8)

≈ log pθ(x | z̃)−DKL(qφ(z̃ | x) || pθ(z̃)) where z̃ ∼ qφ(z | x)
(2.9)



60 Chapter 2. Background

Second, SGVB uses the reparameterisation trick to make Equation 2.9 dif-
ferentiable, as sampling is non-differentiable. This involves using an auxiliary
distribution, N (ε; 0, 1), in the computational graph that is not on a path between
the loss and parameters. Transforming samples from this auxiliary distribution is
equivalent to sampling directly from N (µ, σ2). Importantly, this does not require
us to differentiate through the sampling process.

z̃ = µ+ σε̃ where ε̃ ∼ N (0, 1) (2.10)

Given these solutions, a VAE is trained by maximising the following approx-
imation of the ELBO for observations X = {x(1), . . . , x(N)},

L(X;φ, θ) = 1
N

N∑
n=1

log pθ(x(n) | z̃)−DKL(qφ(z̃ | x(n)) || pθ(z̃)) (2.11)

where z̃ is sampled from qφ(z | x) using N (ε; 0, 1) and the reparameterisation
trick. In practice, the distributions qφ(z | x(n)) and pθ(x(n) | z) are parameterised
using neural networks.

VAEs share a similar structure to autoencoders, using an encoder, qφ(z |
x(n)); a decoder, pθ(x(n) | z); and a reconstruction loss term, Ez̃∼qφ(z|x)[log pθ(x |
z̃)]. Compared to autoencoders, VAEs explicitly model uncertainty in the latent
space, and are built on the foundation of variational inference. However, au-
toencoders also have a probabilistic interpretation: the hidden representation is
simply a distribution with unknown variance. This means we do not know if the
variational bound is in fact being maximised in an autoencoder and we cannot
enforce structure using a prior.

The prior and posterior

Structuring the problem in this way makes optimisation tractable as we are com-
puting the divergence with a prior, pθ(z), as opposed to a divergence with the
true posterior, as in Equation 2.1. The prior represents our assumptions about
the structure of the true data distribution and it enforces this structure on the
approximate posterior. The parametric form of both the prior and approximate
posterior are design choices. It is common to use an isotropic Gaussian for both.
However, it has been shown that a diagonal covariance matrix is too limiting for
the approximate posterior (Dorta et al., 2018). The choice of prior depends on
the application. If smoothness and a uni-modal peak is required, then a standard
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normal, N (0, I), can be used. As explored in Chapter 5, other traits, such as
multi-modal structure, can be achieved through bespoke priors.

Conditional VAEs

The latent variable will capture the most salient information for the task of re-
constructing the data. The latent variable’s dimension acts as an information
bottleneck, putting a threshold on how salient information must be, to be cap-
tured by the latent variable. However, if only certain information is desired to
be captured, conditioning can be used in a VAE to encourage disentanglement
(Sohn et al., 2015). The conditional VAE, also referred to simply as a VAE,
follows a similar derivation to the original VAE (Kingma and Welling, 2013).
However, technically it is no longer an autoencoder architecture. The ELBO and
likelihood for a conditional VAE are as follows,

log pθ(x | c) ≥ Ez̃∼qφ(z|x,c)[log pθ(x | z̃, c)]−DKL(qφ(z | x, c) || pθ(z | c)) (2.12)

L(X,C;φ, θ) = 1
N

N∑
n=1

log pθ(x(n) | z̃, c(n))−DKL(qφ(z̃ | x(n), c(n)) || pθ(z̃ | c(n)))

(2.13)
where z̃ is sampled from qφ(z | x, c) using N (ε; 0, 1) and the reparameterisation
trick. This model will avoid incorporating information contained in c, into the
latent variable, z. The training data consists of X = {x(1), . . . , x(N)} and C =
{c(1), . . . , c(N)}.

The original formulation of a conditional VAE conditions the encoder, qφ(z |
x, c); prior, pθ(z | c); and decoder pθ(x | z, c), on c. However, the encoder and
prior do not need to depend on c. While removing either dependency will change
the graphical model, it still has a valid probabilistic interpretation. However, the
decoder must be conditioned on c, as this is after the information bottleneck.
Without this, the conditioning will have no impact on disentanglement.

Posterior collapse

VAEs have a common failure mode known as posterior collapse. This refers to
the situation during training where the VAE’s approximate posterior collapses
onto the prior: qφ(z | x) = pθ(z). If the approximate posterior is always exactly
equal to the prior then it contains no information about the conditional variable
x.
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This degenerate case stems from the structure enforced on the approximate
posterior. A VAE enforces structure on the variational distribution, aiming to
make the aggregate posterior look as similar to the prior as possible. This is
achieved through the KL divergence term in the ELBO (Equation 2.7). The
optimisation performed by SGVB may find that reducing this term is more im-
pactful to the overall loss than improving reconstruction performance.

A common solution to mitigate posterior collapse is to anneal the weight
on the KL divergence loss term (Higgins et al., 2017). Down weighting the KL
divergence at the start of training reduces the cost of encoding information in
the latent space. This makes it possible for the model to learn a non-degenerate
encoder. Later in training when the annealing finishes, it is less likely for posterior
collapse to occur as the approximate posterior provides information useful for
reconstruction.

This brings us onto the final section of this chapter. Having covered TTS,
prosody, evaluation, data, and machine learning, I now wrap up by putting my
work in context with the rapidly progressing field of TTS.

2.6 Research context

Speech synthesis research has moved very rapidly in the past 3-5 years, advanc-
ing from “statistical parametric” models to sequence-to-sequence (S2S) models
(Watts et al., 2016, 2019) and from signal processing vocoders to neural vocoders
(Zhou et al., 2020). In certain chapters, my work does not use state-of-the-art
techniques. This is either due to the timing of when the research was conducted,
or the focus on other aspects of experimental design. Here, I outline the rele-
vant context of the techniques I use and their relation to the current research
landscape.

I use statistical parametric speech synthesis (SPSS) in Chapters 3, 4, and
5. This research was performed between 2016 and 2019, while S2S models were
popularised in 2017 (Wang et al., 2017b). As demonstrated by my research in
Chapter 6 and other recent research (Yu et al., 2019; Ren et al., 2019; Lim et al.,
2020; Ren et al., 2020), the attention in S2S can be replaced with duration predic-
tion. This results in S2S TTS becoming structurally similar to SPSS. Therefore,
it would be possible to apply the methods I propose for SPSS to S2S architectures.
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I use signal processing vocoders in Chapters 3, 4, and 5. However, direct
waveform generation (van den Oord et al., 2016) and neural vocoders (Shen et al.,
2018) were popularised between 2016 and 2018. In order to evaluate prosody,
listeners must be able to focus on this aspect of speech, i.e. without distractions
from low signal quality or bad pronunciation. While neural vocoders will reduce
the cognitive load incurred by signal processing artifacts, the prosodic variation
observed in these chapters was salient to listeners, despite the use of traditional
vocoders. Therefore, I was able to make conclusions about prosody without using
state-of-the-art vocoders.

Finally, in Chapters 3 and 5, I control F0, but not other aspects of prosody.
This was motivated by the importance of F0 as an acoustic correlate and the
quantity of research on F0 modelling in TTS. Unfortunately, before FastSpeech-
2 (Ren et al., 2020), it was not clear how to control acoustic correlates in S2S
TTS, thus my use of SPSS models. A WaveNet, driven by linguistic features and
acoustic correlates, could have been investigated, but such a model has not been
reliably reproduced with data available to academic researchers (van den Oord
et al., 2016; Wan et al., 2019).





Chapter 3

Diagnosing average prosody
through unsupervised control

This chapter covers the work in “Using generative modelling to produce varied
intonation for speech synthesis” (Hodari et al., 2019) presented at the Speech
Synthesis Workshop 2019, Vienna, Austria.

In this chapter, I investigate “average prosody”: flatter and more monotonous
intonation. Listening tests provide evidence of average prosody and suggest it is
a symptom of modelling assumptions. I conclude that designing a model with
control of the prosodic rendition is vital to improving prosody in situations with
insufficient context. This is the foundation of my argument involving Theme 1:
we must design controllable voices otherwise they may synthesise average prosody.

3.1 Introduction

Typical TTS systems are designed to synthesise isolated, out-of-context sentences.
An isolated sentence is a sentence with no additional context. Modelling iso-
lated sentences means prosodic choices in the data are unaccounted for, as the
relevant context is missing. This results in models that learn the mean of the
prosodic content. Learning the mean is a non-issue for uni-modal data.

However, some aspects of prosody, including intonation, exhibit discrete
structure (Silverman et al., 1992; Goodhue et al., 2016; Ward, 2019). Therefore,
voices that produce a single prosodic rendition are modelling the mean of a multi-
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modal distribution. I demonstrate that this incorrect assumption of uni-modality
leads to boring and flat prosody, known as “average prosody”. One solution to
this failure mode is to expose control over this unaccounted-for variation.

In this chapter, I experiment exclusively with intonation, which exhibits
discrete structure. The discrete structure of intonation challenges the uni-modal
assumption made by most TTS models. To account for this, I focus on modelling
the distribution of intonation. This means we can randomly sample any number
of renditions for isolated sentences, unlike typical approaches. Given the sampled
renditions are meaningfully distinct, the model will, by definition, not produce
average prosody. Using these random renditions, I study varied prosody (the
opposite of average prosody) for one component of prosody: intonation. I show
that controlling for unaccounted-for variation can mitigate average prosody even
when there is insufficient context.

Sampling random renditions of isolated sentences may produce inappropriate
prosody. In some cases the changes may affect the perceived meaning, in other
cases the changes may add variety to the speech without impacting the meaning.
One might note that random sampling is uninformed, i.e. it is not context-based.
However, as long as renditions are realistic, there will exist some context, or
multiple contexts, in which they are appropriate—no matter how uncommon a
particular rendition might be.1

Realistic prosody relates to the range of human prosodic behaviour, e.g.
could, would, or should a human produce this prosody in any situation? If the
answer is no, then the prosody is unrealistic and will not correspond to a real con-
text. A human could not produce certain voice qualities, pitch patterns, loudness
changes, or other physically limited behaviours. A human would not produce
prosody that breaks certain rules about stress, declination, syllable structure,
etc. A human should not produce prosody arbitrarily, e.g. emphasising arbitrary
words. I rely on what listeners judge as natural in order to empirically define real-
istic prosody, since the above definition is not thorough. Given that the prosody
is realistic, my investigation of average and varied prosody in isolated sentences
can be conducted independently from the question of appropriateness.

To model the distribution of intonation, I train a variational autoencoder
1This is supported by evidence in Chapter 5: when context is not given, listeners make an

effort to imagine some context in which the prosody would be appropriate.
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(Kingma and Welling, 2013) on F0 contours. The variational autoencoder’s
(VAE) latent variable captures otherwise unaccounted-for variation. Subjective
experiments are conducted to determine if average prosody exists in typical TTS
systems, if it is resolved by my proposed approach, and if unrealistic prosody
has been introduced. I demonstrate that: sampling from low-probability regions
of the VAE’s prior results in more varied intonation, and that typical TTS ap-
proaches produce more average intonation.

3.2 Related work

Various methods for unsupervised representation learning for control in TTS have
been explored. Watts et al. (2015) proposed sentence-level control using a novel
unsupervised approach with discriminant condition codes for TTS—a supervised
method originally designed for speaker adaptation in ASR (Xue et al., 2014).
Watts et al.’s (2015) sentence-level vectors allow for control of arbitrary varia-
tion. While there is a probabilistic interpretation for this approach, Henter et al.
(2018b) show it does not model uncertainty in the latent space. As discussed in
Section 3.4, uncertainty allows us to determine which renditions are idiosyncratic,
and thus more varied.

Global style tokens (GST) are another form of sentence-level control, but
using discrete tokens (Wang et al., 2018a). The GST model controls unlabelled
variation (i.e. it is unsupervised) and produces high quality speech. However, the
model is trained using weighted combinations of individual GST tokens. Syn-
thesising with individual tokens does not produce distinct styles and leads to
significantly degraded audio quality.2 A random weighting of tokens will likely
also produce speech with reduced naturalness, since GSTs include no constraints
to enforce smoothness on the GST embedding space.

Alternatively, unsupervised representations of prosody can be disentangled
from acoustic representations of speech using VAEs (Wan et al., 2019; Wang et al.,
2019b). The VAE model presented in this chapter is similar to Wan et al.’s (2019)
clockwork hierarchical VAE (CHiVE). However, in addition to F0, CHiVE also
models duration and C0 (a correlate of loudness). Wang et al. (2019b) also focus
on learning representations of intonation but, like CHiVE, they aim to produce a

2This can be observed in the accompanying speech samples for GST (Wang et al., 2018b).
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single best rendition. I design TTS systems that can synthesise multiple distinct
prosodic renditions in an unsupervised framework and study their behaviour.

3.3 Modelling assumptions in TTS

While many methods have been proposed to add control, there is a more fun-
damental issue, known as oversmoothing, which leads to flatter prosody. Typi-
cal neural TTS models are trained using mean squared error (MSE) to predict
acoustic features. Optimising MSE is equivalent to minimising the negative log-
likelihood of a fixed-variance uni-modal Gaussian. This has two effects on a
model: (1) it learns the mean of the data, and (2) it is sensitive to outliers.
Along with other modelling assumptions (Henter et al., 2014), this leads to over-
smoothing of the acoustic features. In the context of intonation, modelling the
mean leads to average prosody.

To mitigate the sensitivity to outliers, methods such as the ε-contaminated
Gaussian (Zen et al., 2016) can be used. However, a common approach to fix both
issues is to collect speech that is as controlled and consistent as possible in terms
of style. Training data with a single style results in models which produce more
natural speech (Podsiadło and Ungureanu, 2018), but it also limits the voice’s
stylistic range. To produce more varied style, prosody, or intonation, more varied
data is needed, but this additional variation must be handled appropriately by
the model.

Generative models, such as Mixture density networks (MDN), have the abil-
ity to handle multi-modal data (Bishop, 1994). MDNs parameterise a Gaussian
mixture model (GMM) for each acoustic frame which can help with oversmooth-
ing of spectral features (Zen and Senior, 2014). However, for prosodic features,
oversmoothing operates over a longer domains, for which frame-level GMMs are
less suitable. Instead, I use variational autoencoders, as these can learn an unsu-
pervised representation at whichever domain is preferred, in this case: sentences.

3.4 Sampling prosodic renditions using VAEs

Variational autoencoders (VAEs), introduced in Section 2.5.2, are a class of la-
tent variable models, i.e. they learn an unsupervised probabilistic representation
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of the data (Kingma and Welling, 2013). They consist of an encoder and a de-
coder: the encoder parameterises the approximate posterior qφ(z | x), which is an
approximation of pθ(z | x)—the underlying factors that describe the data. The
decoder is trained to reconstruct the input signal x from this latent space, i.e.
given a sample from the posterior, z̃ ∼ qφ(z | x), the original input is predicted
x̂ ∼ pθ(x | z̃). The encoder and decoder are trained jointly by maximising the
evidence lower bound (ELBO),

log pθ(x) ≥ Ez̃∼qφ(z|x) [log pθ(x | z̃)]−KL(qφ(z | x) || p(z)) (3.1)

Here I consider conditional VAEs (Sohn et al., 2015), modelling F0 condi-
tioned on linguistic features. I use a sentence-level approximate posterior. The
prior is an isotropic Gaussian, p(z) = N (z; 0,1), which gives an analytical form
of the KL term.

As an approximate method, variational Bayes—used to derive VAEs—results
in trade-offs. If the prior is too simple, as is often the case (Hoffman and Johnson,
2016), the model might prioritise reconstruction when optimising the ELBO,
resulting in a latent space that does not match the prior. This mismatch is
evidenced by the non-zero KL-divergence between the aggregate posterior and
the prior in most VAEs (Dai and Wipf, 2019). While I use a uni-modal prior
to model intonation (a multi-modal phenomenon), the latent space can contain
multi-modal structure due to this mismatch.3 This structure is exploited by the
tail-based synthesis scheme explained below. The multi-modal structure can be
seen in Figure 3.8 (pp. 84).

Enforcing a Gaussian prior gives another useful quality: how close qφ(z | x)
is to the prior mean (µ = 0) will be proportional to how similar x is to the
largest mode in the data (e.g. the most common prosodic style). That is, when
encoded, the most average x will be close to the peak at z = 0, and the most
idiosyncratic x will be far from the peak. This is helpful for generating varied
renditions; low-density regions in the prior will correspond to more idiosyncratic
renditions. Thus, to study average prosody, I define two models that use only the
VAE decoder,

3The mismatch between the aggregate posterior and the prior is a failure of VAE’s ap-
proximate inference. Dai and Wipf (2019) proved the fault can be resolved, though here the
mismatch is desirable. As we will see, this exposes the multi-modal nature of intonation.
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z̃peak = 0 x̂peak ∼ pθ(x | z̃peak) (3.2)

z̃tail ∼ vMF (κ = 0) x̂tail(r) ∼ pθ(x | r × z̃tail) (3.3)

where vMF is the von Mises-Fisher distribution (Fisher, 1953). For uniform con-
centration, κ = 0, this corresponds to a uniform distribution on a hypersphere’s
surface. r is the radius of this hypersphere.

x̂peak should correspond to the most common mode, e.g. the most common
speaking style or intonation pattern. However, due to the uni-modal prior, x̂peak

may instead correspond to an average of multiple styles, i.e. average prosody. My
proposed model uses z̃tail to produce idiosyncratic renditions x̂tail(r), where the
larger the radius r, the more unlikely the rendition.

3.5 Experiments

Average prosody has not been directly measured in the literature. The main
aim in this chapter is to provide evidence of average prosody, specifically for
intonation. I introduce various systems, including baselines, to enable the design
of a listening test that captures the quantity of prosodic variability, i.e. variedness.
This listening test can verify if my proposed solution, vae–tail, mitigates average
prosody.

3.5.1 Systems

Three models were trained: rnn, mdn, and vae.4 These are the left three di-
agrams in Figure 3.1. rnn’s and mdn’s acoustic models, and vae’s acoustic
encoder and decoder all use the same recurrent architecture: a feedforward layer
with 256 units, followed by three uni-directional recurrent layers using gated re-
current cells (GRUs) (Cho et al., 2014) with 64 units, finally outputs are projected
to the required dimension. Models are implemented in PyTorch (Paszke et al.,
2017) using the Morgana TTS toolkit (Hodari, 2020a), and are trained on the
Usborne children’s audiobook dataset—described in Section 2.4.3.

4Code and models are available at github.com/ZackHodari/average_prosody

https://github.com/ZackHodari/average_prosody
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Figure 3.1: F0 models used to assess average prosody. The first three models are
trained: rnn, mdn, and vae. While the last two, vae–peak and vae–tail, are
different synthesis-time configurations of vae. These two systems replace vae’s
acoustic encoder with a different prior sampling scheme. Linguistic features and F0

are all at frame level meaning the acoustic models operate at frame level. The yellow
latents for the vae systems are at the sentence level, but are upsampled to frame
level meaning that the acoustic decoder also operates at frame level.

The linguistic features consist of 600-dimensional linguistic labels from the
standard Unilex (Fitt and Isard, 1999) question-set (detailed in Appendix A)
and 9 frame-level positional features, as in the standard Merlin recipe (Wu et al.,
2016b). All linguistic features are min-max normalised. The linguistic labels are
upsampled to frame-level using natural durations, enabling the model to run at
frame-level to predict F0.

The models are trained to predict log F0, delta (velocity), and delta-delta
(acceleration) features with mean-variance normalisation. rnn is trained with
a mean squared error (MSE) loss, mdn uses negative log-likelihood (NLL), and
vae uses the ELBO defined in Equation 3.1. By modelling only F0, the risk
of producing unnatural speech is reduced as spectral features and durations are
taken from natural speech. However, it also limits the range of prosodic variation
that can be achieved.

Maximum probability parameter generation (Tokuda et al., 2000)—also known
as maximum likelihood parameter generation (MLPG)—is used to generate an
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F0 contour from the dynamic features. mdn uses predicted standard deviations
for MLPG. All other models use the global standard deviation of the training
data for MLPG. The WORLD vocoder (Morise et al., 2016) is used for analysis
and synthesis.

I use the Adam optimiser (Kingma and Ba, 2014) with an initial learning of
0.005 and a batch size of 32. The learning rate is increased linearly for the first
1000 batches, then decayed proportional to the inverse square of the number of
batches (Vaswani et al., 2017, Sec 5.3). Early stopping is used based on validation
performance.

mdn has four mixture components, whose variances are floored at 10−4. This
avoids the degenerate case where infinitely peaked modes are learnt. To synthesise
from mdn, I use the most likely component sequence (i.e. argmax) to select the
means and variances for MLPG. The various choices when synthesising from an
MDN are discussed further in Section 3.5.6.

vae uses a 16-dimensional isotropic Gaussian as the approximate posterior.
The latent sample z̃ is broadcast to frame-level and input to the decoder after
concatenating with the linguistic features. The decoder predicts static and dy-
namic log F0 features, using MSE as the reconstruction loss. vae’s KL-divergence
term is weighted by 0 during the first epoch and increased linearly to 0.01 over 40
epochs. Using this annealing schedule, the model converged to a KL-divergence
of 3.13. vae was sensitive to the KL-divergence schedule. Importantly, for the
first one or two epochs the weight had to be zero, or very small, otherwise the
latent never learns to encode information. Additionally, if the weight goes above
some upper bound, matching the prior becomes more beneficial than improv-
ing reconstruction, this also leads to posterior collapse, hence the slow annealing
schedule.

vae requires the reference F0 contour as input to the encoder. To synthesise
speech from vae without the reference F0, two sampling schemes are used in
place of the encoder: the prior’s mean z̃peak, and low-density samples z̃tail. The
systems vae–peak and vae–tail use these two sampling schemes, respectively.
Both systems use the same shared model: vae’s decoder.

To summarise, the 4 systems used to investigate average prosody are:5

5Speech samples available at zackhodari.github.io/SSW_2019_average_prosody.html

https://zackhodari.github.io/SSW_2019_average_prosody.html
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rnn Standard RNN-based SPSS model, using MSE.

mdn MDN with 4 mixture components, using NLL.

vae–peak vae’s decoder using x̂peak from Equation 3.2, i.e. the latent is the
zero vector: z̃peak = 0.

vae–tail vae’s decoder using x̂tail(r) from Equation 3.3 with r = 3, i.e. the
latent is sampled on the surface of a hypersphere with radius 3:
3× z̃tail, where z̃tail ∼ vMF (κ = 0).

3.5.1.1 Baselines

To measure average prosody and the presence of unrealistic prosody, we need
systems that anchor both aspects. The three baseline F0 systems, used as upper
and lower bounds for average prosody and realistic prosody, are:

copy–synth Natural F0.

baseline A quadratic polynomial fitted to the natural F0.

rnn–scaled F0 from rnn, with the standard deviation scaled by a factor of 3.

baseline is designed to serve as a lower bound demonstrating average
prosody. Whereas rnn–scaled is designed as an upper bound exhibiting more
varied F0. More varied intonation is only desirable if it doesn’t correspond to
unrealistic prosody, and if the resulting speech is natural. baseline and rnn–
scaled use purposefully simplistic methods to modify F0 variation, this is more
likely to result in unrealistic behaviour or unnatural speech. Thus these two
system serve as lower anchors on realistic prosody; no viable model should fall
beneath them in terms of naturalness. copy–synth is an upper bound for both
axes: it should have varied prosody and realistic prosody.

The amount of perceived variation in rnn–scaled and vae–tail was cal-
ibrated subjectively by matching the level of variation with copy–synth. The
calibration was successful for rnn–scaled and copy–synth, but not perfect
for vae–tail and copy–synth, as seen in the results that follow. Performing
this calibration automatically or manually is not straightforward, as discussed in
Section 3.5.6.1.
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3.5.2 Evaluation design

I evaluate the amount of variation produced by each system. Specifically, I test
the following two hypotheses regarding the variation of F0,

H1 Average prosody — The typical SPSS systems (rnn, vae–peak, and mdn)
will have a similar level of variedness, but will be less varied than copy–
synth and rnn–scaled.

H2 Varied prosody — vae–tail will be more varied than the typical SPSS
systems (rnn, vae–peak, mdn).

I use varied and variedness as antonyms of average or flat. It broadly sig-
nifies behaviour that is more dynamic or idiosyncratic. Since I am attempting to
categorise which systems produce average or flat F0, my evaluation of variedness
(described below) makes direct reference to “flat intonation”. In the evaluation
“flat intonation” is diametrically opposed with “varied intonation”. Thus, varied-
ness is defined by listeners.

However, variation alone is not a guarantee of “better” speech synthesis (La-
torre et al., 2014) and unrealistic prosody is especially undesirable as it can result
in an uncanny valley phenomenon. For this reason, in addition to measuring vari-
ation, I evaluate naturalness. My naturalness listening test uses a MOS design.
Naturalness serves as a proxy for signal quality and prosody quality, and can
indicate unrealistic prosody through low naturalness. I hypothesise that,

H3 Realistic prosody — vae–tail will have similar or better naturalness com-
pared to the typical SPSS systems (rnn, vae–peak, mdn).

H4 Unrealistic prosody — rnn–scaled and baseline will be less natural
than vae–tail and the typical SPSS systems (rnn, vae–peak, mdn).

3.5.2.1 Variedness listening test design

Quantity of prosodic variation, or conversely “prosodic flatness”, is a nuanced
concept. It would be hard to instruct listeners such that they rate the same con-
cept as one another. Unlike naturalness—a more intuitive concept that represents
overall quality—asking “How varied is this speech?” may not result in reliable
ratings for a MOS or MUSHRA test (BS Series, 2014).
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For a MOS test, the question design is the main challenge. We want listeners
to rate on the same perceptual scale. A MUSHRA test can alleviate this since
we can require listeners to use the full range of the scale using lower and upper
bound systems, e.g. the least varied stimuli is rated 0 and most varied stimuli is
rated 100. Thanks to the comparative design, MUSHRA should be more reliable
than MOS. However, my evaluation includes 7 systems, this would make for a
difficult evaluation task, thus reducing the reliability of a MUSHRA test.

Instead, I use preference (AB) tests to measure variation. Since AB tests
directly compare systems they are less noisy than MOS tests, leading to more
precise results. Each pairwise comparison is split into a separate AB test, these
simpler tasks lead to more reliable, or accurate, results than a MUSHRA test.
However, using preference tests comes at the expense of experimental costs.

It is important that listeners focus on the intonation. I ask listeners to choose
“which sentence has more varied intonation”, where one sentence must be marked
as “more flat” and the other as “more varied”. The focus on intonation is rein-
forced by presenting two identical sentences with different renditions side by side.
The specific reference to intonation is intended to stop listeners choosing based
on acoustic quality, which is meant to be captured separately in the naturalness
test.

Due to the large number of pairs for 7 systems (21 pairs), baseline was
excluded from the variedness test (6 systems, 15 pairs). It is clear in the speech
samples that it is the least varied (i.e. the most flat). However, this does mean
there is no lower-bound on variation in the variedness results.

3.5.2.2 Evaluation setup

Five stories were held out for the listening tests: Hamlet, Pirate Adventures, The
Secret Garden, The Story of Cars, and The Story of Chocolate—following the
training-validation-test split from Watts et al. (2015). The test stimuli for both
listening tests consisted of 32 randomly selected sentences of between 7 and 11
words (1.4 to 4.8 seconds).6 The listening tests were performed together, with
the naturalness MOS test being performed before the variedness AB tests. The
tests were performed using a 2x2 Lain square between-subjects design, as each

6This range was the inter-quartile range of utterance lengths in the dataset.
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sentence had 22 screens: 7 systems in the MOS test and 15 pairs for the AB
tests. In total 30 listeners completed the test—15 per listener group in the Latin
square. The test was ~45 minutes long and listeners were paid £8.

3.5.3 Naturalness results

A summary of the naturalness ratings is provided in Figure 3.2. A Wilcoxon
rank-sums significance test between all pairs of systems in the naturalness test was
conducted, followed by Holm-Bonferroni correction—the same statistical analysis
as for the Blizzard challenge (Clark et al., 2007). vae–tail, rnn, mdn, and
vae–peak form a group within which no significant differences were found. All
other system pairs are significantly different, with a corrected p-value of less than
0.00001.

3.5.4 Variedness results

While it is not guaranteed that human preferences are self-consistent, or globally
consistent,7 the variedness results in Figure 3.3 do form a consistent ordering
from most flat to most varied:

rnn → vae–peak → mdn → vae–tail → copy–synth → rnn–scaled

However, relative variedness is sometimes inconsistent, e.g. while rnn–scaled
is more varied than copy–synth (5th row), the difference between copy–synth
and rnn (13th row) is greater than the difference between rnn–scaled and rnn
(15th row). This shows that the subjective ratings produce a non-linear scale
along the axis of variedness.

A binomial significance test for the 15 pairs in the listening test was per-
formed, followed by Holm-Bonferroni correction. With multi-test correction the
1st row (vae–peak, rnn), 2nd row (mdn, vae–peak), and 5th row (rnn–scaled,
copy–synth) did not show a significant difference (p > 0.05): this is indicated
by the lighter colouring of those pairs in Figure 3.3. All other pairs are signifi-
cantly different, with a corrected p-value of less than 0.0002.

7As described by Arrow’s impossibility theorem (Arrow, 1950).
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Figure 3.2: Naturalness results. Solid red lines are medians, dashed green lines are
means, blue boxes show the 25th and 75th percentiles, and whiskers show the range
of the ratings, excluding outliers (of which there are none). Systems are ordered
according to the variation test.

3.5.4.1 Interpreting pairwise preference results

While the ordering of variedness matches the expected order in hypotheses H1

and H2, it is not immediately clear if the hypotheses are supported, as relative
variedness is inconsistent. For example, system A can be 50% better than system
C (i.e. A � C), and system B 25% better than system C (i.e. B > C), but A
could be 25% worse than system B (i.e. A < B). If we represent the 15 pairwise
preference tests in Figure 3.3 on a single dimension of relative variedness, it will
be possible to compare all systems.

Multi-dimensional scaling (MDS) could be used to summarise the pairwise
results (Borg and Groenen, 2003). However, MDS treats comparisons as dis-
tances, whereas the pairwise preferences correspond to directed edges. Instead, I
formulate the problem as a system of linear equations,

Ax = b (3.4)

where A ∈ {−1, 0, 1}15×6, x ∈ R6×1, and b ∈ R15×1. The linear equations Ai
encode two things for each pairwise test i: which two systems (n(i)

↑ , n(i)
↓ ) were
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0 25 50 75 100
Average preference (%)

rnn–scaled rnn80.4% 19.6%

rnn–scaled vae–peak80.2% 19.8%

copy–synth rnn84.4% 15.6%

rnn–scaled mdn77.7% 22.3%

copy–synth vae–peak83.1% 16.9%

vae–tail rnn72.7% 27.3%

rnn–scaled vae–tail66.2% 33.8%

copy–synth mdn80.2% 19.8%

vae–tail vae–peak74.4% 25.6%

mdn rnn59.4% 40.6%

rnn–scaled copy–synth52.9% 47.1%

copy–synth vae–tail64.6% 35.4%

vae–tail mdn70.4% 29.6%

mdn vae–peak54.8% 45.2%

vae–peak rnn54.4% 45.6%

Figure 3.3: Pairwise variedness results. Pairs are ordered such that the more varied
system is on the left. The top 5 rows give the pairs that are consecutive in the
ordering, with following rows showing systems that are increasingly further apart in
the ordering. No significant difference was found for pairs marked in a lighter colour.
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part of pair i, and which of these systems were more varied (n(i)
↑ ) and less varied

(n(i)
↓ ). xn is the unknown value for system n that we want to find, as described

below this is the relative variedness. bi represents how much better one system
was than another in pairwise test i.

For each system pair (n(i)
↑ , n(i)

↓ ) the equation Aix = bi contains only two
non-zero coefficients in Ai: +1 for the more varied system (n(i)

↑ ) and −1 for the
less varied system (n(i)

↓ ). The constant term, bi, describes the “excess preference”
of a system pair. Excess preference is defined as the number of percentage points
between the preferences in a single AB test,

bi = y
(i)
↑ − y

(i)
↓ (3.5)

where y(i)
↑ and y

(i)
↓ are the pairwise preference results for system pair i, i.e. the

percentages of row i in Figure 3.3. Thus, the equation for the ith pair, Aix = bi,
takes the following form,

(+1)x
n

(i)
↑

+ (−1)x
n

(i)
↓

= y
(i)
↑ − y

(i)
↓ (3.6)

By defining this system of linear equations, the unknown variables x will
represent the preference of each system when taking into account the relative
comparisons in all other pairwise tests. That is, x will represent the dimension
of relative variedness.

This system of linear equations is inconsistent and overdetermined: incon-
sistent because the rank of the coefficient matrix is different from the rank of its
augmented matrix, and overdetermined because there are more equations (pairs)
than unknowns (position of systems). While no exact solution exists for such a
system, ordinary least squares can be used to find a solution with minimal error
as follows,

x = (ATA)−1ATb (3.7)

The solution, x, is plotted in Figure 3.4. Since the scale of the solution
is arbitrary, no units are given.8 Systems to the left have flatter intonation
and systems to the right have more varied intonation. This axis represents hu-
man preference and is not intended to be a perceptual scale. Interestingly, this

8Only the distance between points in Figure 3.4 is meaningful. For example, x + 10 is also
a valid solution.
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Relative variedness

rnn
vae–peak

mdn vae–tail rnn–scaled
copy–synth

flat varied←− −→

Figure 3.4: Relative variedness derived by solving a system of linear equations repre-
senting the 15 pairwise preference results in Figure 3.3.

mathematically unbiased transformation places copy–synth as the most varied
system, not rnn–scaled. While the difference is insignificant, it illustrates how
relative variedness can be inconsistent; copy–synth was more varied than more
systems than rnn–scaled was, even though rnn–scaled was slightly more
varied than copy–synth in a direct comparison (5th row of Figure 3.3).9

3.5.5 Naturalness–variedness trade-off

The relative variedness results allow us to evaluate how the systems compare in
terms of average or varied prosody. In order to consider any trade-offs relating
to the production of unrealistic prosody or unnatural speech, relative varied-
ness (Figure 3.4) is plotted against mean naturalness (Figure 3.2) in Figure 3.5.
baseline was excluded from the variedness AB tests, so it is represented as a
horizontal line with no known value for relative variedness. Since baseline was
clearly less varied than all other systems in informal listening, it would be placed
some distance to the left of rnn in Figure 3.5. Though how far this distance
would be is unknown.

The clearest result seen in Figure 3.5 is the clustering among the typical SPSS
systems (rnn, vae–peak, mdn). These all have similar naturalness and are much
less varied than the other systems. This supports H1, providing evidence that
average prosody exists in typical SPSS systems. Whereas vae–tail is much more
varied, suggesting that it does not suffer from average prosody, at least not to
the same extent, supporting H2.

It is not possible to bound the axis of variedness as baseline was excluded
from the variation tests. However, the proximity of vae–tail to copy–synth

9The slight difference between rnn–scaled and copy–synth is insignificant. This compar-
ison is merely intended to illustrate how the proposed method deals with inconsistent pairwise
results.
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Figure 3.5: Naturalness-variedness trade-off. Ideally as the amount of prosodic vari-
ation is increased vae–tail will not decrease in naturalness. Direct comparisons
between any systems on either axis should only be made using the significance results

and rnn–scaled suggests that it produces varied prosody, further supporting
H2. Importantly, no significant difference in naturalness was found between vae–
tail and the typical SPSS systems, this provides evidence forH3: vae–tail does
not produce unrealistic prosody.

rnn–scaled and baseline produce significantly less natural speech, mean-
ing they produce either unrealistic prosody or unnatural speech, supporting H4.
This suggests the listening test was correctly designed—it captured the lower-
bounds as having lower overall quality. The test also successfully measures dif-
ferent amounts of variation independently of naturalness (e.g. vae–peak and
vae–tail have the same level of naturalness, but very different relative var-
iedness), and measures the same amount variation for systems with drastically
different prosodic and acoustic quality (e.g. copy–synth is significantly more
natural than rnn–scaled, but both have the same level of variedness).
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Figure 3.6: Histogram of log F0 values for each system over all the listening test
material. Ordered according to the variation test.

3.5.6 Analysis

3.5.6.1 Calibration

Perceptual phenomena such as naturalness are very challenging to measure ob-
jectively (Lo et al., 2019). The same is true for measuring the amount of F0

variation. This was problematic when calibrating the synthesis hyperparameters:
the radius, r, for vae–tail; and the scale factor for rnn–scaled.

In calibrating the radius and scale factor, the aim was to match the amount
of perceived variation with copy–synth. Initially, I used the standard deviation
of the F0 contours for different settings of the synthesis hyperparameters. His-
tograms of F0 predictions in Figure 3.6 illustrate this objective variation metric for
the 7 proposed systems. However, this objective metric (F0 standard deviation)
did not align with my perception of quantity of variation.

The mismatch between the objective and perceived variation can be illus-
trated using the variedness listening test results. A comparison between objective
variation—standard deviation of F0 predictions (Figure 3.6)—and the perceived
variation detailed by the relative variedness results (Figure 3.4) is presented in
Figure 3.7. mdn and vae–tail appear to be similar according to the objec-
tive metric, however there is a large disparity according to the subjective results.
Conversely, rnn–scaled seems to be more objectively varied compared with
copy–synth, but listeners thought they were equally varied. These disparities
show that this objective metric is misleading for calibration of perceived varia-
tion. For this reason, vae–tail was calibrated by hand to match copy–synth.
As seen in Figure 3.4, r could have been increased further.

Probability mass in vae–tail Further research into sampling from the prior
from Byrne (2021, Section 4.3.1) showed that: due to the curse of dimensionality,
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Figure 3.7: Subjective variedness vs. objective variation. Subjective variedness comes
from human preference results in Figure 3.4. Objective variation is the standard
deviation of F0 predictions, illustrated in Figure 3.6.

even for a standard Gaussian, the majority of probability mass lies outside the
hypersphere with r = 3 for 16 dimensions. This means that the tail sampling
approach presented here does not in fact index on idiosyncratic renditions. How-
ever, through the calibration process discussed above, the sampling did produce
perceivable variation, albeit more common F0 variation.

3.5.6.2 Multiple renditions

I argued that a system capable of producing multiple distinct prosodic rendi-
tions would not produce average prosody: this motivated the design of vae–
tail. While the listening tests provided evidence of varied intonation, I have not
demonstrated if vae–tail can produce multiple renditions, or how renditions
differ from each other.

Figure 3.8 illustrates the range of possible F0 contours produced by vae–
tail for a single sentence. This density plot was created by synthesising 10,000
F0 contours, x̂tail(3), using samples z̃tail ∼ vMF (κ = 0). Thanks to the use
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Figure 3.8: Density of F0 predictions made by vae–tail for the sentence "Goldilocks
skipped around a corner and saw..." Darker regions indicate a cluster of samples that
produce a similar F0 contour, i.e. a mode.

of a smooth prior in training, N (z; 0,1), there is continuous variation between
different F0 contours. This corresponds to moving across the surface of the hyper-
sphere that ztail samples from. More importantly, there are denser (i.e. darker)
collections of F0 contours, these clusters correspond to modes. These modes are
different distinct contours that can be controlled by the latent space even without
context. In Chapter 5, I look specifically at the distinctiveness of renditions in a
similar VAE model.

The presence of modes in Figure 3.8 when sampling symmetrically from the
prior suggests that the latent space learnt by the VAE is not a standard nor-
mal distribution. This is also corroborated by the non-zero KL divergence of the
VAE’s aggregate posterior. Typical SPSS systems produce average prosody as
they assume a uni-modal distribution. While the VAE uses a uni-modal prior,
Figure 3.8 demonstrates that, due to the approximate nature of variational infer-
ence, the VAE is not limited to learning uni-modal structure.10

10This could be seen as a failure of the graphical model, though by design if a VAE did
perfectly match the prior, the latent variable would be useless. In this case, we could consider
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3.5.6.3 MDN sampling

Like VAEs, MDNs are generative models. However, sampling from the frame-
level GMMs in an MDN is not straightforward. Though MLPG can be used to
select the single best trajectory (Tokuda et al., 2000, Case 3), producing multiple
renditions requires a sampling strategy.

Randomly choosing mixture components for each frame produced noisy F0

contours. Alternatively, using a single component for the entire sequence and
comparing to other components did not reveal distinct renditions. Both of these
sampling approaches likely failed for the same underlying reason: the components
don’t represent modes of F0 variation, but instead capture frame-level variation.
This may, in part, be because mixture components behave in a similar way to
the ε-contaminated Gaussian distribution (Zen et al., 2016): they use mixture
components to describe outliers. Ultimately, mdn is unable to produce significant
variation as it models uncertainty at the frame level, whereas the VAE captures
uncertainty at the sentence domain.

3.6 Conclusion

This chapter investigated the modelling assumptions made by typical SPSS sys-
tems. I presented two new TTS systems using a VAE: vae–peak was designed
to make the same modelling assumptions as typical SPSS models, and vae–
tail was designed to address these assumptions. Through a novel evaluation
design I provided the first direct evidence of average prosody—flatter, less var-
ied intonation—and demonstrated that this is due to a modelling assumption
where unaccounted-for variation is ignored. My evaluation also demonstrated
that designing a model which produces more varied prosody did not lead to the
generation of unrealistic prosody.

By comparing vae–tail to an MDN model, I was also able to demonstrate
the importance of the domain at which prosody variation is captured. There still
exist issues with using the sentence domain for capturing prosody. In Chapters 5
and 6, I explore phrase and word level prosody representations for improved
prosodic representation learning.

the mismatch between the prior and the aggregate posterior as “a feature not a bug”.
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The pairwise results visualised in Figure 3.4 could also be analysed using
pairwise rank aggregation (Bradley and Terry, 1952) to statistically rank the
systems. While pairwise rank aggregation does not calculate positions on an
axis like the approach taken here, it does produce an ordering and associated
significance results for consecutive systems in this ordering. This analysis could
be combined with the existing analysis to provide significance grouping within
the axis of relative variedness.

My results demonstrate the importance of Theme 1 (controllability): with-
out control of unaccounted-for variation, like in vae–tail, typical SPSS models
produce average prosody. This provides support for a portion of the thesis’s
claim: “. . . prosodic variation not determined by the available context must be
controlled. . . ” The following two chapters focus on two contrasting approaches
for achieving interpretable control (Theme 2).



Chapter 4

Interpretable control of variation
without human annotation

This chapter covers the work in “Learning interpretable control dimensions for
speech synthesis by using external data” (Hodari et al., 2018) presented at Inter-
speech 2018, Hyderabad, India.

As demonstrated in Chapter 3, unaccounted-for prosodic variation in speech
must be controlled. Control must either be predicted using context information, or
directed by a human-in-the-loop. If there is insufficient context, we must rely on
human control. However, to make such systems more usable, the control mecha-
nisms must be interpretable (Theme 2) to human users. I investigate a method
of control using human-defined labels, but without human annotation of the TTS
data—which is expensive. This is achieved using an additional non-TTS dataset
and pseudo-labelling. When evaluating a human-in-the-loop system using my ap-
proach, I find that listeners prefer intentionally controlled speech over randomly
varying speech, reinforcing that prosodic choices must be made appropriately.

4.1 Introduction

Most speech synthesis research focuses on non-controllable TTS, but as demon-
strated in Chapter 3, it is important that TTS systems can produce multiple
prosodic renditions. In order for representations to be useful for human-in-the-
loop control of prosody they must have some level of interpretability. This can

87
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also prove useful with context-based prosody prediction, for debugging and anal-
ysis purposes.

For a control mechanism to be interpretable the prosodic effects it controls
must relate to some abstract concepts in the mind of the human using the system.
These effects could relate to: prosodic context information, such as emotion,
attitude, or sentiment; prosodic phenomena such as prominence, phrase breaks, or
voice quality; or, acoustic correlates of prosody, such as F0, intensity, or durations.
Whichever abstract concepts are controlled, human operators must understand
what the effect will be on the resulting prosody.

The most straightforward approach to capture human-understood concepts
is to rely on human nomenclature, e.g. human annotations. This is a common
method for controllable TTS. Labels are collected to describe the variation of
interest, such as, emotion (Douglas-Cowie et al., 2003), emphasis (Cole et al.,
2017), speaking style (Wood and Merritt, 2018), or prosodic structure (Silverman
et al., 1992). Alternatively, the variation of interest may be elicited (Busso et al.,
2008; Goodhue et al., 2016; Prateek et al., 2019), in which case labels exist by
design. However, annotating or eliciting variation is expensive, especially for large
high quality TTS datasets. While existing labelled data may exist, it is unlikely
to be high enough quality for current TTS technology.

In this chapter, I make use of found TTS data—the Usborne children’s au-
diobook dataset discussed in Section 2.4.3. Found data that is produced with
genuine communicative intent, such as audiobooks (King et al., 2018; Zen et al.,
2019) and podcasts (Székely et al., 2019), includes interesting variation typically
avoided when recording TTS data. While found data is also unlikely to be la-
belled, it is high enough quality for statistical parametric speech synthesis (SPSS)
(King et al., 2018).

To account for the lack of labels, I propose the use of an additional external
dataset that contains human annotations of the variation to be controlled. The
primary TTS dataset is automatically annotated using the labelling schema of the
external dataset using pseudo labelling (Lee, 2013). This enables a TTS model to
be trained using the primary TTS data and controlled using the external dataset’s
labelling schema. I demonstrate this approach for emotion control. The primary
synthesis dataset (Usborne) must exhibit the variation described by the emotion
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labels. Since the external dataset is not directly used for training a TTS model,
its acoustic quality does not need to be as high, it also does not need to be
transcribed.

4.2 Related work

4.2.1 Emotion annotation

External emotional expression is a paralinguistic function and is conveyed, in part,
through prosody, e.g. in pitch, speaking rate, and loudness changes (Vinciarelli
et al., 2009). True emotional state is internal. Only through a person’s external
expression—conscious and unconscious choices of language, prosody, and body
language—can their internal emotional state be interpreted by others (Picard and
Picard, 1997). For facial expressions, emotion is interpreted consistently across
cultures (Ekman et al., 1987). Evidence for this consistency in speech has also
been found (Pell et al., 2009). The inaccessibility of any internal emotional state
underlies the difficulty of annotating emotion, as with many other context factors
that impact prosodic choices.

Various paradigms for describing emotion have been proposed. “Pure emo-
tions” is a psychological theory suggesting only one emotion can be portrayed at
a time (Plutchik, 1984). Annotations based on this theory are known as “cat-
egorical emotions” (Ekman, 1992). However, this schema does not account for
the intensity of emotions (Ekman et al., 1987). Additionally, it is rare to observe
pure emotions in natural speech (Cowie and Cornelius, 2003).

A practical solution to mitigate these drawbacks is to relax the “pure” nature
of categorical emotions. This can either be achieved using multiple annotators
(Busso et al., 2008), by annotating with a weighted combination of pure emotions
(Mower et al., 2011), or both.

However, a set of basic emotions must still be selected for this paradigm.
There is no agreement on such a set of emotions (Douglas-Cowie et al., 2003).
The most common set includes: happy, sad, angry, and neutral (Lee and Tashev,
2015; Kim et al., 2013; Lee et al., 2011). This clearly excludes a wide range of
emotional expression. From a machine learning research viewpoint, such a crude
schema might be necessary in the earlier stages of research.
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Appraisal-based emotions, or “dimensional emotions”, are an alternative
paradigm to categorical emotions. Dimensional emotion annotation is motivated
by cognitive theory (Lazarus, 1991). Dimensional emotions define a set of traits
relevant to emotion expression. Lazarus (1991) proposed: arousal, a measure of
activeness; and valence, a measure of positivity. Fontaine et al. (2007) demon-
strated that two dimensions are insufficient to capture emotion and suggested
adding: dominance, a measure of control; and expectancy, a measure of pre-
dictability. It is common to use only three dimensions: arousal, valence, and
dominance (Busso et al., 2008).

Annotation of dimensional emotions is not without issues. While it is much
more descriptive than categorical emotions, annotating dimensional emotions is
a much more complex task. More complex tasks typically lead to less accurate
annotator behaviour and lower inter-annotator agreement. In the emotion dataset
described in Section 4.4.1, inter-annotator agreement is measured with an average
Cronbach’s alpha of 0.67 (Busso et al., 2008)—the reliability of these labels may
be questionable (Cortina, 1993).

4.2.2 Emotion recognition

Emotion recognition can be a regression or classification task for both annotation
schemas: categorical and dimensional emotions. Categorical emotions can be
“soft” if using multiple annotators or weighted annotation. Conversely, dimen-
sional emotions can be discretised into categories. As such, the range of methods
for emotion recognition is broad.

At the time of conducting this research, there was no dominant machine
learning approach—except perhaps neural networks in general. Different mod-
elling approaches are summarised in Table 4.1 (pp. 99). A lot of focus was typi-
cally placed on the input features.1 Hand-engineered features were dominant, as
were brute-force exhaustive feature sets containing thousands of hand-engineered
sentence-level features (Valstar et al., 2014; Schuller et al., 2016). Following the
2015 Audio/Visual Emotion Challenge (AVEC), which used a smaller set of 102
features, the field shifted away from the brute-force feature set approach (Ringeval
et al., 2015). In particular, Eyben et al. (2016) demonstrated that these exhaus-

1Research also focused heavily on the correct design of datasets (Douglas-Cowie et al., 2003),
including the design of annotation schemas.
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tive feature sets were unnecessary, and that a minimal set of, at most, 88 features
could achieve state-of-the-art performance. In this chapter, I use Eyben et al.’s
(2016) minimal feature set: the extended Geneva Minimalistic Acoustic Param-
eter Set (eGeMAPS). eGeMAPS features were adopted for AVEC 2016 (Valstar
et al., 2016).

Research had also began to use raw input, as opposed to hand-crafted fea-
tures. Trigeorgis et al. (2016) used only the waveform as input, achieving sig-
nificantly better performance than state-of-the-art. Ghosh et al. (2016) used the
spectrogram as input, resulting in increased discrimination between happy and
angry. However, at the time of this work, such methods were not widespread.

4.3 Emotive TTS using pseudo labels

To create a controllable TTS model, I use additional features—also known as
input codes (Luong et al., 2017)—in an SPSS model. However, the Usborne TTS
data used to train the voice consists of (text, audio) tuples, with no additional
labels. While the phone sequence is augmented with other linguistic features
automatically extracted from the text, these additional linguistic features are
typically limited to syntactic information and some prosodic structure informa-
tion. Instead, my approach uses a secondary external speech dataset to train a
recognition model: an emotion predictor. This model is used to augment the
primary TTS dataset with labels, or pseudo labels. This can be thought of as an
offline version of pseudo-labelling (Lee, 2013; Arazo et al., 2020).

Given the predicted pseudo labels for the primary TTS dataset, a control-
lable SPSS model can be trained. This approach generalises to different types of
variation exhibited in speech. As discussed, I demonstrate the method for emo-
tion control. The stages of the training process are illustrated in Figure 4.1: (a)
train an emotion predictor on external non-TTS data (Section 4.3.1); (b) extract
pseudo labels using the emotion predictor; and (c) train the TTS model on the
primary TTS data using the predicted emotions (Section 4.3.2).

At synthesis time there are two methods for selecting control inputs. First,
when a natural reference rendition of the target emotion exists we can use the
emotion predictor to extract the emotion and transfer these control values. Sec-
ond, if no reference exists for a target emotion, the control values can be manually
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Figure 4.1: Stages of training a controllable TTS model using an external dataset
to label the primary TTS dataset. (a) The emotion predictor is trained using the
IEMOCAP emotion dataset. (b) The trained emotion predictor is used to predict
emotions for the Usborne TTS data that are used as labels, this process is referred
to as pseudo-labelling. (c) The controllable TTS model is trained using the Usborne
TTS dataset and the predicted emotion pseudo-labels.

specified: this human-in-the-loop control use-case is detailed in Section 4.3.3. A
third synthesis method could be added: use additional information to predict the
emotion, this third approach is explored in Chapter 6.

4.3.1 Emotion predictor

As discussed, there are two dominant emotion annotation approaches (Douglas-
Cowie et al., 2003): categorical, and dimensional. Dimensional emotions suffer
from lower inter-annotator agreement, and it is harder to evaluate their inter-
pretability in subjective tests. Therefore, I use categorical emotions as the pseudo
labels. Since there is useful information in the dimensional labels and they al-
ready exist in the emotion dataset used, I predict these as a secondary task when
training the recognition model.

My emotion prediction model classifies categorical emotions (e.g. happy),
and uses multi-task learning (Caruana, 1998) to predict dimensional emotions
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Figure 4.2: Emotion predictor, trained using IEMOCAP data. Used to label Usborne
TTS dataset with categorical emotion predictions.

(e.g. level of arousal) as a secondary task. The emotion predictor is illustrated
in Figure 4.2, the model uses 3 feed-forward layers: a shared layer of 200 units,
two parallel private layers of 20 units, and projections to the target dimension
for the classification task (4 dimensions) and regression task (3 dimensions). The
model was trained using categorical cross-entropy for classification, and binary
cross-entropy for regression. This architecture was the best performing model in
previous work (Hodari, 2017a).

I use the eGeMAPS features as inputs (Eyben et al., 2016). eGeMAPS
features are utterance-level statistics of low-level descriptors (LLDs). LLDs are
temporal features and include: frame-level energy, spectral, cepstral, prosodic,
and voicing descriptors. A full account of the LLDs can be found in Appendix A.
The features are designed to be predictive of emotions and are chosen for their
ability to model perceptually relevant changes in speech.

4.3.2 Controllable SPSS model

The TTS model is an SPSS model. Both the duration and acoustic models are
adapted using control inputs predicted by the emotion predictor, i.e. the pseudo
labels. This TTS model can control any aspect of speech described by the vocoder
features, unlike the systems explored in Chapter 3 which only varied F0.

The duration and acoustic models (Figure 4.3) consist of 6 tanh layers with
1024 hidden units, following the fls_blizzard2017 recipe in Merlin2 (Wu et al.,
2016b). The duration model (Figure 4.3a) is trained using phone-level linguistic
features—detailed in Appendix A—and emotion inputs from the emotion pre-
dictor, upsampled to phone-level by repetition. To train the acoustic model
(Figure 4.3b), natural durations are used to upsample the linguistic features and

2Available at github.com/CSTR-Edinburgh/merlin/tree/master/egs/fls_blizzard2017

https://github.com/CSTR-Edinburgh/merlin/tree/master/egs/fls_blizzard2017
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(a) Duration model training with emotion control.
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(b) Acoustic model training with emotion control.
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(c) Synthesis with the controllable TTS model, using a human-in-the-loop to choose the
categorical emotions. The UI in Figure 4.4 is operated by the human-in-the-loop to control
the TTS model. Alternatively, the emotion can be copied from a reference waveform using
the emotion predictor (not illustrated).

Figure 4.3: Controllable TTS model training and human-in-the-loop synthesis.
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Figure 4.4: UI used by human-in-the-loop to choose control values.

emotion inputs to frame-level by repetition. At synthesis time (Figure 4.3c),
durations predicted by the duration model are used to upsample the linguistic
features and emotion inputs.

As per the fls_blizzard2017 Merlin recipe, linguistic features are min-max
normalised, and durations and vocoder features are mean-variance normalised.
The acoustic model predicts vocoder features: F0, smoothed spectrogram, and
aperiodic energy, along with all delta and delta-delta features. MLPG is used to
find the most probable trajectory from these dynamic acoustic feature predictions
(Tokuda et al., 2000). The trajectory from MLPG is used by STRAIGHT to
synthesise the waveform (Kawahara, 2006).

4.3.3 Human-in-the-loop control

As discussed there are two methods for selecting control inputs: using a reference
audio signal, and using human-in-the-loop control. For the human-controlled use-
case I designed a simple graphical interface, shown in Figure 4.4. The interface
is designed for 1 or more contiguous utterances in an extract (e.g. a paragraph).
The emotion of each utterance can be modified and the extract can be played in
sequence. With this interface, lexical and prosodic content of previous and future
utterances can be used as context by the human-in-the-loop when choosing the
rendition for a given utterance. I evaluate the perception of stimuli created by a
human-in-the-loop in Section 4.4.4.2. To create the stimuli for this listening test,
I operated the control interface in Figure 4.4.
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4.4 Experiments

In this chapter, I aim to demonstrate that TTS with interpretable, human-defined
control is possible without expensive annotation of TTS data. In Section 4.4.4
I evaluate the interpretability of the proposed controllable TTS system. After
verifying the efficacy of my approach, I evaluate the appropriateness of long-
form speech created by a human-in-the-loop. But first, I introduce the data
used (Section 4.4.1), and discuss objective results for both emotion recognition
(Section 4.4.2) and TTS (Section 4.4.3).

4.4.1 Datasets

As discussed, two datasets are used: a primary TTS dataset, and a secondary
dataset with human-defined labels used for training the emotion predictor. Both
of these must exhibit the variation to be controlled, that is, the variation described
by the emotion labels.

4.4.1.1 Emotion recognition database

The Interactive Emotional Dyadic Motion Capture dataset (IEMOCAP) is an
acted dialogue dataset (Busso et al., 2008). IEMOCAP contains 12.5 hours of
data from both scripted and improvised sessions between two actors. There are 5
male and 5 female actors. Mixed-gender dyads were recorded for two sessions of
roughly 1 hour. Each session contains an average of 15 conversations. Scripted
dialogues were designed to produce one of 5 pure emotions—anger, sadness, hap-
piness, frustration, and “neutral”. Improvised conversations used hypothetical
scenarios designed to elicit these 5 emotions.

Each utterance is an average of 4.5 seconds, and includes labels from 3 an-
notators for both categorical and dimensional emotion—arousal, valence, and
dominance. The use of multiple annotators allows for soft emotion labels to be
considered in place of pure emotions. Soft labels correspond to the average of all
annotators’ responses. This mitigates some issues with pure emotions, since it
defines a probability distribution over multiple pure emotions. Additionally, the
probability densities should correlate with emotion intensity: the more annota-
tors that agree on one emotion the more salient that emotion must be, and vice
versa.
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Figure 4.5: Frequency of top-1 (i.e. argmax) emotion labels for IEMOCAP data.

IEMOCAP’s categorical emotion annotations include the 5 categorical emo-
tions the script was designed to elicit, as well as: disgust, fear, excitement, sur-
prise, and “other”, for a total of 10 categories. By adding new categories after
data collection, the curators of IEMOCAP reduced the constraints on actors’ per-
formances and mitigated the need for improvised scenarios to accurately elicit the
intended emotion. This should make the labelling schema more representative of
the data collected.

Emotion classification is a noisy task, for humans and machine learning mod-
els alike (Douglas-Cowie et al., 2003). Human judgements are noisy, in part, due
to the varying implicit definitions held in annotators’ minds. One approach to
mitigate this is using a subset of emotions. I use a subset of IEMOCAP consisting
of happy, sad, angry, and neutral utterances only. This is common for research
using IEMOCAP due to the class imbalance between the 10 categories, seen in
Figure 4.5.3

3While frustration is the most common emotion in Figure 4.5, it is commonly omitted in
the literature, as illustrated by the examples in Table 4.1. This is likely due to the tradition of
considering a common set of four “basic” emotions: happy, sad, angry, and neutral. I chose to
use the same basic four emotions, to enable comparison with results from related work.
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4.4.1.2 TTS database

The primary TTS dataset is the Usborne children’s audiobook dataset, described
in Section 2.4.3. This found data includes interesting prosodic variation and
expressive speech. Five stories were held out for the listening tests: Hamlet,
Pirate Adventures, The Secret Garden, The Story of Cars, and The Story of
Chocolate—following the training-validation-test split in Watts et al. (2015).

4.4.2 Emotion recognition

The emotion predictor was trained using modNN (Hodari, 2017b), a wrapper
around Tensorflow (Abadi et al., 2016).4 The model maps from utterance-level
eGeMAPS features to utterance-level labels: 4 “soft” categorical emotions, happy,
sad, angry and neutral; and 3 dimensional emotions, arousal, valence, and domi-
nance.

The recognition data was split into 5 cross-validation folds, using 4 dyads for
the training set in each fold. The evaluation set, containing 1 dyad per fold, is
split in half for validation and testing. Similar to Lee and Tashev (2015), I use 1
evaluation set speaker for hyperparameter tuning during validation, and the other
is held-out as the unseen test set and used only when reporting recognition results.
To avoid the held-out test set consisting of a single gender when aggregated across
cross-validation folds, the held-out speaker’s gender was alternated in each fold.
Early stopping was used based on the validation set. All results presented use
the held-out test speakers.

4.4.2.1 Recognition results

The emotion predictor (Figure 4.2, pp. 93) achieved an emotion classification
accuracy of 62.9%. Multiple architectures were tested, but performance ceilinged
at around 62% with the feed-forward architecture. Convolutional and recurrent
architectures, based on the LLD features, were attempted but with less success.
Early stopping was helpful for achieving better accuracy on the validation set.
Overfitting was observed without early stopping.

To put the performance of 62.9% in context, Table 4.1 reports comparable
results from the literature. All listed works use IEMOCAP and predict the same
4 emotions.

4Code and models are available at github.com/ZackHodari/IS18_control_space.

https://github.com/ZackHodari/IS18_control_space
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Table 4.1: Overview of comparable IEMOCAP recognition results, classifying the
same emotions: angry, happy, sad, and neutral.

Method Input features Accuracy

Feed-back long short-term memory Predicts using 60.8%

(LSTM), attention (Zhang et al., 2017) previous emotion

Ensemble support vector machine 12 MFCCs, 60.9%

(Rozgic et al., 2012) jitter, shimmer

Convolutional neural network, multiple ComParE 2016 61.3%

kernel learning (Poria et al., 2016) (Schuller et al., 2016)

Deep belief network, support vector ComParE 2010 62.5%

machine (Xia and Liu, 2015) (Schuller et al., 2010)

Feed-forward neural network eGeMAPS 62.9%

(Hodari, 2017a) (proposed model) (Eyben et al., 2016)

Recurrent neural network, MFCCs, F0, 63.9%

extreme learning machine voice probability,

(Lee and Tashev, 2015) zero-crossing rate

Progressive deep neural eGeMAPS 65.7%

networks (Gideon et al., 2017) (Eyben et al., 2016)

Convolutional neural network, Spectrogram (cropped 68.8%

LSTM (Satt et al., 2017) to 3 seconds)

4.4.2.2 Labelling the TTS data

The Usborne TTS dataset lacks emotion labels. The emotion predictor is used to
label this data with pseudo labels. This corresponds to domain transfer from the
multi-speaker IEMOCAP dialogue data to the single-speaker Usborne audiobook
data.

The distribution of predictions on the Usborne data is shown in Figure 4.6.
Neutral is predicted as the most probable emotion most often, with happy being
predicted as most probable the least often. Figure 4.7 shows the top-1 emotions,
both for labels in IEMOCAP (a subset of the data in Figure 4.5) and predictions
on Usborne (representing the same data as in Figure 4.6). The bias towards
neutral, and against happy in the IEMOCAP data is mirrored in the predictions
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Figure 4.6: Histograms of predictions of each emotion’s probability on the Usborne
data for categorical emotions.
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(b) Top-1 predictions for Usborne data.

Figure 4.7: Histogram of top-1 (i.e. argmax) emotion categories for IEMOCAP (an-
notated labels) and Usborne (predicted pseudo-labels).
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on Usborne. The distribution of predictions on the Usborne data could be the
true distribution, it could be caused by the bias in the IEMOCAP data, or it
could be related to domain transfer issues caused by style mismatch between the
two datasets.

4.4.3 Controllable SPSS

The speech synthesis systems were trained using the open-source Merlin toolkit
(Wu et al., 2016b). Two systems are evaluated here:

DNN-B — Baseline SPSS voice, with no control.

DNN-C — Proposed emotion controllable SPSS voice (Figure 4.3, pp. 94).

A second version of DNN-C controlled by dimensional, as opposed to cat-
egorical, emotion labels was trained. However, designing subjective evaluations
for dimensional emotion control is more challenging. As such, this second version
of DNN-C was not evaluated. Without proper evaluation it would be misleading
to comment on the interpretability of the control inputs. Though the voice did
train successfully, and the control inputs did impact the resulting speech.

4.4.3.1 Objective results

While objective metrics do not always correlate with subjective measures, they
can be useful for validating training, or flagging issues. In Table 4.2, I report 4
metrics commonly used for objective evaluation of SPSS when predicting vocoder
parameters. The metrics are defined as follows, where yt and ŷt represent the
target and predicted vocoder parameter at frame t, respectively:

• Mel-cepstral distortion (MCD): The average of each frame’s Frobenius
norm for mel-spectrograms. The first dimension, yt,1, is excluded as this is
C0 and represents loudness.

MCD = 10
√

2
ln 10

1
T

T∑
t=1

√√√√ D∑
d=2

(yt,d − ŷt,d)2

• Band aperiodicity distortion (BAP): The average of each frame’s
Frobenius norm for aperiodic energy bands.

BAP = 1
10

1
T

T∑
t=1

√√√√ D∑
d=1

(yt,d − ŷt,d)2
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Table 4.2: Objective performance of SPSS with and without control vectors.

Objective metric

MCD BAP F0
(RMSE) VUV

(dB) (dB) (Hz) (error %)

DNN-B (baseline) 5.650 0.075 51.209 7.451

DNN-C (with reference control) 5.719 0.076 50.624 7.551

• log F0 error: Root mean squared error (RMSE) for voiced frames that
were correctly predicted as voiced (i.e. true positives). y(vuv)

t and ŷ(vuv)
t are

the target and predicted voiced/unvoiced status of the tth frame.

F0
(RMSE) =

√√√√ 1
|Tvoiced|

∑
t∈Tvoiced

(yt − ŷt)2

where Tvoiced = {t ∈ {1, . . . , T} | y(vuv)
t ∧ ŷ(vuv)

t }

• Voiced/unvoiced error (VUV): Percentage of frames with incorrect
voicing decision (i.e. 1− accuracy).

VUV = 1
T

T∑
t=1

1(y(vuv)
t 6= ŷ

(vuv)
t )

The objective results in Table 4.2 show that, when using the reference emo-
tion (i.e. predicting using eGeMAPS features from the reference audio), DNN-C
is worse for cepstral features and voiced-unvoiced prediction, this suggests quality
might be slightly reduced. Interestingly, DNN-C performs better for F0 predic-
tion, this is likely because the eGeMAPS features used to predict the reference
emotion label are derived from the waveform. Specifically, eGeMAPS features
include sentence-level F0 information (cf. Table A.2, pp. 169).

We cannot measure objective quality for other control inputs as there are no
additional reference renditions for individual sentences. In Figure 4.8, I illustrate
the qualitative variation between various manually-specified control inputs. The
plots show duration and F0 outputs for 4 control input settings, each representing
one of the 4 categorical emotions. The spectral feature predictions also vary, but
are not included as they are less visually interpretable. While the duration and
F0 variation looks subtle, Figure 4.8 demonstrates that the model does respond
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to changes in the control values. The listening tests evaluate this formally, finding
that listeners do perceive this variation as conveying different emotions.

4.4.4 Subjective evaluation

Two main questions are investigated using human listeners: (1) is the learnt
control mechanism interpretable, and (2) can a human control the voice to pro-
duce more appropriate prosody. I conduct two listening tests to answer these
questions. I test interpretability with respect to human-defined categorical emo-
tions in Section 4.4.4.1. I explore listener preference in long-form reading for
intentional or “irregular” human control in Section 4.4.4.2. 31 native English-
speaking university students (26 female, 5 male) were paid to carry out these two
tests in sound-proof booths using using Beyerdynamic DT770 headphones. The
tests were implemented using BeaqleJS (Kraft and Zölzer, 2014).5 Together, the
two tests took roughly 1 hour, for which participants were paid £10.6

4.4.4.1 Interpretability

The emotion labels used to train DNN-C are predictions (as opposed to hu-
man annotations), therefore they will be noisy and may be subject to biases in
the IEMOCAP data and the emotion predictor. We must verify that DNN-C
accurately produces the intended emotions. Participants were asked to label syn-
thesised sentences according to the 4 categorical emotions: happy, sad, angry, and
neutral. By presenting stimuli that aim to convey a certain emotion, a positive
result will demonstrate if the control mechanism is interpretable.

The test material consists of 50 audiobook sentences, each performed with 4
different styles. The 50 sentences are a random subset of the Blizzard Challenge
2017 test set (King et al., 2017). The 4 renditions of each sentence correspond
to the 4 categorical emotions—the renditions in Figure 4.8 were prepared in the
same way. These 50 sentences were not controlled for linguistic content, which
may bias listeners towards certain responses. However, it should be possible to
overcome this bias if the model’s control of emotion is strong enough, since the
sentences are presented as isolated utterances to listeners.

5Code is available online, github.com/zackhodari/beaqlejs. My fork includes additional
features and bug fixes.

6Speech samples are available at zackhodari.github.io/IS18_control_space.html

https://github.com/zackhodari/beaqlejs
https://zackhodari.github.io/IS18_control_space.html
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Table 4.3: Confusion matrix for the forced-choice emotion classification task. Stimuli
are generated by DNN-C with control inputs set to one of four one-hot vectors, each
representing a different categorical emotion. The accuracy for each intended emotion
is in bold face.

Correct Predicted class

class Angry Happy Neutral Sad

Angry 30% 51% 13% 7%

Happy 36% 13% 29% 22%

Neutral 10% 15% 66% 10%

Sad 10% 4% 30% 56%

Mean accuracy 41%

Participants performed a forced-choice labelling task, selecting the closest
emotion from the 4 categorical emotions for each of the 200 utterances. Allowing
users to provide free-form responses instead may lead to more accurate results,
but this would make analysis more challenging—something explored in Chapter 5.

Table 4.3 presents a confusion matrix of participant responses. Average clas-
sification accuracy is 41% (chance level is 25%). To place the result of 41%
accuracy in context, the inter-annotator accuracy in IEMOCAP is 48% for the
4 emotions used in this chapter. Annotator agreement in IEMOCAP is likely
to be higher as listeners were labelling natural speech, whereas in this listening
test the stimuli are synthetic speech. Similarly, for natural speech, Banse and
Scherer (1996) conclude that human performance for emotion labelling is around
50%—this was not linked to a particular number of emotion categories. They
also cite two studies evaluating human performance for a 5-class emotion classifi-
cation task of natural speech, reporting accuracies of 64% (Bezooijen, 1984), and
56% (Scherer et al., 1991). With this context—that human agreement is low for
emotion annotation—the performance of 41% for DNN-C is satisfactory. Thus,
the controllable voice, DNN-C, is able to modify perceived emotion according to
human-interpretable categories.

Looking at the confusion matrix (Table 4.3) in more detail, happy is only
recognised correctly 13% of the time, and 36% of happy renditions are incorrectly
perceived as angry. Similarly, 51% of angry renditions are incorrectly perceived
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as happy. This poor performance is likely a symptom of imperfect labelling from
the emotion predictor, which is related to the class imbalance in the IEMOCAP
labels (Figure 4.7a, pp. 100). The emotion predictor is biased against predicting
happy (Figure 4.7b, pp. 100), which may lead to compounding errors such as
this. In addition, it is known that happy and angry are difficult to distinguish
between using acoustic features (Klabbers et al., 2007). Since the system is able
to perform emotion control with 41% accuracy, I did not investigate this further.
While there is a mismatch in style between the Usborne and IEMOCAP datasets,
these interpretability results demonstrate that there is sufficient overlap.

4.4.4.2 Human-in-the-loop control

Prosody control has two clear use-cases: human-in-the-loop control, and context-
based (i.e. automated) control. Here, I look at listener perception of human-
controlled speech, comparing it to the default style and to irregular variation (i.e.
inappropriate variation). Evaluation is performed using paragraphs of more than
one sentence, this allows listeners to account for context when determining their
preferences. Comparing DNN-C to the default style, created using conventional
uncontrolled SPSS, will determine if a human-in-the-loop can add appropriate
prosody using an interpretable control mechanism. On the other hand, comparing
DNN-C to irregular variation will provide information on the role of the human-
in-the-loop, and on listener preference relating to appropriate prosody. Irregular
variation is achieved using random sampling, meaning it is not determined by the
context.

Three systems are compared in this test:

DNN-B — Baseline SPSS voice, with no control.

DNN-C — Proposed emotion controllable SPSS voice (Figure 4.3, pp. 94). Here a
human-in-the-loop controls the sentence-by-sentence variation through
the control interface in Figure 4.4 (pp. 95).

DNN-R — Random control of DNN-C. This system controls DNN-C with ran-
domly chosen emotion values, instead of using a human-in-the-loop
to choose the control inputs intentionally. This irregular behaviour
will mostly produce inappropriate prosody.
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Figure 4.9: Evaluation results of human-in-the-loop control for paragraphs, including
95% confidence intervals. This evaluation compares the human-controlled DNN-
C system to a non-controllable baseline DNN-B and a system with inappropriate
variation DNN-R.

Two pairwise preference tests are conducted: DNN-C vs. DNN-B, and DNN-
C vs. DNN-R. The former comparison will provide similar conclusions to a com-
parative MOS test, demonstrating if listeners prefer default or human-controlled
prosody, i.e. can a human-in-the-loop add more appropriate prosody. The latter
comparison uses the same model for both systems, differing only in the prosodic
choices. A significant results for this test would demonstrate that listeners can
perceive prosodic choices as more or less appropriate, ideally any significant result
would favour DNN-C as it uses human-controlled prosody.

System pair DNN-B and DNN-R was excluded due to the length of the
test—this listening test was done jointly with the interpretability test from the
previous section. This pairwise comparison may have provided information about
average prosody vs. inappropriate prosody. However, in this chapter I focus on
controllability and interpretability, not average prosody, hence these conclusions
are less relevant.

The test material consisted of 17 short audiobook paragraphs, from the Bliz-
zard Challenge 2017 test set. The paragraphs had an average duration of 24
seconds when synthesised. For DNN-C, the human-in-the-loop process of find-
ing satisfactory renditions for each sentence took between 2 and 3 minutes per
paragraph using the UI and was conducted by me. Listeners were presented with
two versions of the same paragraph (from two different systems) and asked to
“choose the paragraph you would prefer if you were listening to an audiobook for
pleasure”. By linking the task to the audiobook domain of the TTS data, this
should provide ratings of a paragraph’s appropriateness. As usual, this is likely
to be entangled with assessment of acoustic quality.
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Preference ratios and 95% binomial proportion confidence intervals for the
two pairwise tests are presented in Figure 4.9. A binomial significance test found
no significant difference between the first pair: DNN-C and DNN-B. This sug-
gests the proposed system with a human director does not degrade the quality,
but also that it has not improved the prosody. While improving the prosody’s
appropriateness would be ideal, this is still a positive result as we have enabled
control of the speech without sacrificing quality. It is possible that due to the
relatively short nature of the paragraphs used, there was not enough time for lis-
teners to perceive and assess the sentence-to-sentence variation. For the second
pair: DNN-C and DNN-R, the proposed system with appropriate control, DNN-
C, is significantly preferred. This demonstrates that listeners prefer variation that
fits the text and context, i.e. appropriate prosody.

4.5 Conclusion
I have demonstrated that interpretable control can be added to a TTS system
without expensive annotation of the training data. This was achieved using a
secondary external speech dataset containing human annotations of the variation
to be controlled, in this case: emotion. The proposed system is interpretable with
respect to the labels used in the external dataset (Theme 2), this makes control
operated by a human-in-the-loop more time efficient.

This method can be used to control other types of variation in speaking style.
Given existing labelled speech data, labels can be transferred to the primary TTS
dataset through pseudo-labelling. This does require the TTS dataset to exhibit
the variation labelled in the external dataset. The external labelled speech data
does not need to be transcribed, and it does not need to be recorded to the
same quality standards as the primary TTS dataset. My approach uses transfer
learning and must contend with domain mismatch between training and pseudo-
labelling. Cai et al. (2020) extended the work presented here using maximum
mean discrepancy to adapt the emotion predictor in an unsupervised fashion,
thus mitigating domain mismatch through fine-tuning.

In long-form reading, i.e. for paragraphs, listeners significantly preferred
prosody chosen based on the context, over prosody chosen randomly. While
this preference may be intuitive, it explicitly motivates the pursuit of producing
appropriate prosody, either through human control or automated prediction.
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In the following chapter, I look at another method to achieve interpretable
control of prosody (Theme 2). Instead of relying on human-defined schemas
during training, interpretable control is pursued using inductive biases in an un-
supervised approach.





Chapter 5

Perception of discrete
representations for prosodic control

This chapter covers the work in “Perception of prosodic variation for speech syn-
thesis using an unsupervised discrete representation of F0” (Hodari et al., 2020)
presented at Speech Prosody 2020, Tokyo, Japan.

In this chapter, I further investigate Theme 2, looking at the interpretability
of learnt representations for prosody control (Theme 1). Specifically, I explore
the perceived effects of unsupervised representations, since there is no clear un-
derstanding of what they control—in part because this is difficult and expensive to
evaluate. The perceptual study I propose provides a means to explore unlabelled
representations. Understanding what prosodic behaviour is controlled by a repre-
sentation is also useful for Theme 3, as this knowledge can inform what context
information is most relevant to the prosodic behaviour being controlled.

An unsupervised representation of intonation is learnt using a variational au-
toencoder extended from Chapter 3. I choose to learn discrete representations as
these are more human-usable and easier to evaluate in terms of interpretability.
Additionally, the representation is learnt at the prosodic phrase domain. Com-
pared to typical utterance-domain representations, the phrase domain is more
suited for prosody modelling.

111
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5.1 Introduction

Natural speech contains prosodic variation caused by many different contextual
factors. Enabling control of this variation is important to avoid average prosody
and to support selection or prediction of more appropriate prosody. Using learnt
representations, we can produce varied prosodic renditions, as seen in Chapter 3.
However, it is difficult to predict control parameters due to the lack of context.
Unfortunately, increasing the available context is non-trivial; relevant context can
be very broad, and expensive or impractical to obtain.

Understanding what categories of prosodic variation a learnt representation
exposes would inform which context would be most impactful if available. If
collected, such context can be used to better predict prosodically appropriate
representations. Previous work has identified consistent variation in prosody
with respect to: discourse structure (Farrús et al., 2016; Cole and Reichel, 2016;
Kleinhans et al., 2017; Aubin et al., 2019), information structure (Calhoun, 2010;
Lai, 2012a), speaker attitude (Armstrong and Prieto, 2015; Gravano et al., 2008a;
Lai, 2010; Betz et al., 2019), speaker stance (Hübscher et al., 2018; Freeman,
2019; Ward et al., 2018), and personality traits (Bawden et al., 2016). Clearly,
the context required for each of these categories can be very different.

Recent phonetic studies support the idea that both categorical and contin-
uous features are integral to prosodic variation (Grice et al., 2017; Cole et al.,
2017). In line with these observations, I learn representations with multi-modal
structure. This structure should capture both: categorical differences, such as
those associated with phrasing and prominence; and fine-grained phonetic dif-
ferences which can vary the perception of expressivity, emphasis, and speaker
affect.

In order to understand what prosodic behaviour the learnt representation
captures, I conduct a qualitative perceptual study. This evaluation investigates
listener perception of the types of variation captured by my learnt representation
of F0. I categorise what the perceived prosody relates to, such as: affect, informa-
tion structure, or discourse structure. This knowledge can help determine what
contextual information is needed when predicting appropriate prosody for each
category of variation.

I present two approaches to learning structured representations of F0, both of
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which aim to capture both the categorical and continuous aspects of intonation.
The proposed approach uses a variational autoencoder with a multi-modal prior.
The second approach relies on more traditional clustering techniques and is used
as a baseline. The baseline should indicate if the multi-modal prior learns a more
interpretable or human-usable structure. In a discriminative subjective test I
explore if different renditions from each system are perceived as distinct. And in
the qualitative perceptual study I explore what information or intents the distinct
renditions convey.

There is a gap between TTS research and prosody research. TTS research
on controllability focuses on producing variation without deeper knowledge of
how it is perceived. In contrast, more fundamental prosody research focuses on
how acoustic-phonetic features map to linguistic categories and how this conveys
meaning (e.g. via information structure) or relates to paralinguistic aspects of
speech (e.g. speaker stance or emotion). This chapter helps bridge this gap by
improving both controllability and our knowledge of what listeners perceive.

5.2 Related work

Controllable TTS has been approached from both supervised and unsupervised
perspectives. Henter et al. (2018b) demonstrated that both can achieve the same
quality for affect-related prosody. Unsupervised representation learning in TTS
often uses continuous n-dimensional representations (Watts et al., 2015; Wan
et al., 2019). However, continuous representations become increasingly difficult
to interpret for n ≥ 3. Poor interpretability limits the range of use cases. For
example, Wang et al. (2018a) and Wan et al. (2019) are limited to transferring
style from another natural utterance; human-in-the-loop control would be tedious.

Interpretability can be improved by keeping the number of dimensions small.
Sun et al. (2020) use scheduled training to learn a 3-dimensional unsupervised
representation that captures F0, energy, and duration. An et al. (2021) demon-
strate disentangled control of F0, energy, and duration by minimising the mutual
information of three independent 1-dimensional latents. These approaches pro-
duce representations not so different to existing acoustic correlates of prosody,
which can be used to directly control a voice (Ribeiro and Clark, 2015; Wang,
2018; Klimkov et al., 2019; Mohan et al., 2021). Incorporating acoustic correlates
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into representation learning models can lead to improved disentanglement and
thus more interpretable representations.

Discrete prosody representations are another approach that can make con-
trol more usable. Ronanki et al. (2016a) propose using discrete intonation tem-
plates to control TTS voices. Each template is visually interpretable, making
control user friendly for a human-in-the-loop. Tyagi et al. (2020) use the train-
ing data as prosodic templates and ranks them using a similarity metric; this
provides a discrete form of control. Discrete representations are not necessarily
interpretable; they may be abstract embeddings. If a representation is not inter-
pretable, understanding what it captures requires an analysis of human percep-
tion. Unfortunately, when research shifts towards automated prosody prediction,
interpretability is often not considered (Stanton et al., 2018; Karlapati et al.,
2021).

Prosody should be modelled at the correct domain. While most approaches
operate on sentences (Watts et al., 2015; Wang et al., 2018a; Henter et al.,
2018b; Wan et al., 2019), the sentence domain may not be the most appro-
priate for a fixed-sized prosodic representation. Sentences contain a variable
number of prosodic phrases. A sentence-domain representation will need to av-
erage over multiple prosodic constructions. Much less work has been conducted
with prosodically-appropriate domains. Wang et al. (2019b) compare a discrete
representation of F0 at the phrase domain to shorter and longer domains. Recon-
struction performance clearly shows that these fixed-sized representations are less
accurate for longer domains, supporting the claim that longer domains contain
more information on average.

Although claims of expressivity or prosody control are often made, variability
or controllability are often not evaluated. Wan et al. (2019) use prosody recon-
struction to measure the model’s top-line performance, and prosody transfer is
demonstrated qualitatively, but interpreting the latent space or choosing the best
rendition were not tackled.

5.3 Discrete prosodic representation learning

To learn a discrete form of control in an unsupervised fashion it’s necessary to
enforce structure on the learnt representation. The approach taken here uses
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variational inference with a prior that reflects the desired structure. I use a vari-
ational autoencoder (VAE) with a multi-modal prior. The learnt latent space
of the VAE will be biased towards the prior’s structure; it should be clustered
across multiple components. Each component can be treated as a discrete into-
nation representation, these are referred to as ‘intonation codes’. To benchmark
the proposed model against a more well studied clustering method, I introduce a
baseline using an autoencoder and k-means clustering.

Before introducing the proposed VAE approach and the autoencoder base-
line, we must consider the domain at which the representations are learnt.

5.3.1 Prosodic phrasing

In representation learning, temporal bottlenecks can be a powerful form of in-
ductive bias that help guide what a representation captures. Wang et al. (2019b)
demonstrated that changing the domain of a learnt representation—the temporal
bottleneck—directly affects reconstruction performance. This is clear evidence
that domain is an important design choice when using fixed-dimension represen-
tations. Learning a representation at a more prosodically-relevant domain may
lead to improved interpretability.

In contrast to the previous chapters that use the utterance domain, this chap-
ter uses the prosodic phrase domain. Unfortunately, accurately locating prosodic
phrase boundaries (i.e. phrase breaks) requires manual annotation (Cole et al.,
2017). While there is a correlation between syntactic and prosodic structure
(Köhn et al., 2018), mismatches between syntactic and prosodic phrase bound-
aries are common (Ladd, 2008, Chapter 8). I use chinks ’n chunks, an heuristic
parser designed for prosodic phrasing (Liberman and Church, 1992). This parser
aims to identify contiguous units of text that map more closely to phrases for
TTS than syntactic parsers do.

Chinks ’n chunks takes advantage of the right-branching nature of English:
content words tend to occur towards the end of phrases and function words to-
wards the beginning. However, since certain word types can behave like either,
Liberman and Church (1992) define two categories:

chink = function words + tensed verbs
chunk = content words + objective pronouns
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Tensed verbs can behave like auxiliaries, thus starting a phrase. Objective pro-
nouns can behave like nouns, thus acting as content words. The parsing algorithm
is a simple greedy match: {chink* chunk*}. While this heuristic approach is
not perfect, it provides a segmentation of utterances that is useful for imposing
an inductive bias towards prosodic variation. Examples of utterances segmented
into phrases are provided in Table 5.1.1

5.3.2 Probabilistic multi-modal latent space

To learn a prosodic representation, I extend the VAE model introduced in Chap-
ter 3 by using a different prior distribution. A VAE’s prior reflects our assump-
tions about the underlying latent factors that describe the data. The prior en-
forces structure on the latent space, making position, distance, and scale mean-
ingful. Kingma and Welling (2013) use a uni-modal Gaussian prior, which makes
the latent space smooth and allows for interpolation in that space (Berthelot
et al., 2019).

The aim in this chapter is to uncover distinct prosodic behaviours in the
data. This was inspired both by intonational phonology (Ladd, 2008; Ward,
2019) and the clustered intonation structure observed in Chapter 3 (Figure 3.8,
pp. 84). Hence, I use a multi-modal prior to encourage a clustered structure: the
variational mixture of posteriors (VAMP) prior (Tomczak and Welling, 2018).
This is illustrated in Figure 5.1a in purple for 4 components. This prior makes
the assumption that the data has multi-modal structure.

The VAMP prior is a Gaussian mixture model (GMM) whose parameters
are learnt jointly with the rest of the model. It was derived as an approximation
of the optimal prior: the aggregate posterior, which is a mixture of the training
data’s probabilistic embeddings. For the purposes of this study, the multi-modal
structure is the necessary trait of the VAMP prior.

The name variational mixture of posteriors alludes to each component of the
resulting GMM being defined by an approximate posterior, qφ(z(U)

k | uk). We do
not directly learn GMM parameters, instead, to define the prior, we learn: the
encoder q, parameterised by φ; and K pseudo-inputs U = {uk}Kk=1, where K is

1To select the examples in Table 5.1, utterances were placed into three categories: utterances
with 1 phrase, 2 phrases, and 3 or more phrases. For each test set book, 2 examples were
randomly selected for each category.
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Table 5.1: Utterances segmented into phrases using the chinks ’n chunks parser.
Vertical bars represent phrase boundaries.

Utterances with a single phrase

But Goldilocks wasn’t good.

“I wonder who lives here?”

“What’s the matter?”

“You think you’re so clever?”

They tugged and tugged and tugged some more.

She hugged the farmer.

Utterances with 2 phrases

Goldilocks | and the Three Bears.

Next, | she tried the middle-sized chair.

“Nobody ever | comes up here,” moaned Sam.

Some people didn’t | believe him.

The farmer | was very happy.

“I’ll help!” | he called.

Utterances with 3 or more phrases

There was a great, big father bear, | a middle-sized mother bear, | and a cuddly
little baby bear.

“I don’t believe | you!” said Goldilocks, | and put salt | in the sugar pot.

“A wolf | has come | out of the forest!”

Puffing | and panting, | they reached the meadow.

This story | has a farmer, | his wife, | their son Jack, | a dog, | a cat, | a bird |
and an enormous turnip.

Slowly, slowly, very, very slowly, | the turnip | began to move.
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VAEVAMP training: F0 is autoencoded through a variable length latent. The multi-
modal prior is enforced using a KL-divergence with each phrase’s approximate posterior.
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VAEVAMP synthesis: a pseudo-input must be chosen for each phrase. The mean of a
GMM component is an intonation code.

(a) VAEVAMP: probabilistic model with a learnt multi-modal prior.
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AEK–MEANS training: F0 is autoencoded through a variable length embedding. After
training, clusters are computed using k-means.

AE
Decoder

phones
Predicted F0

AEK–MEANS synthesis: a cluster must be chosen for each phrase. A cluster centroid
is an intonation code.

(b) AEK–MEANS: baseline which first learns an embedding space and then extracts clusters.

Figure 5.1: Two systems used to learn intonation codes. Training and synthesis is
illustrated for an utterance with 3 phrases, and a prior with 4 components.
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a hyperparameter. The parameters λ = φ ∪ U are learnt jointly with the VAE’s
decoder using the loss introduced in Equation 5.2. Importantly, the number of
pseudo-inputs, K, is unrelated to the number of phrases in an utterance, P .

The pseudo-inputs, uk, are not real F0 inputs, they are parameters learnt
through backpropagation. However, because they are used as input to the en-
coder, they exist in the same vector space as the encoder’s F0 inputs. The pseudo-
inputs are encoded, giving the variational parameters of the approximate poste-
rior: µ

(U)
k ,σ

(U)
k . Each component of the GMM prior is defined using these means

and variances. The mixture weights are fixed and uniform: πk = 1
K
. Thus the

VAMP prior is a mixture of the approximate posteriors of the learnt pseudo-
inputs,

pλ(z) = 1
K

K∑
k=1

qφ(z(U)
k | uk) = 1

K

K∑
k=1
N (z(U)

k ; µ
(U)
k ,σ

(U)
k ) (5.1)

Tomczak and Welling (2018) demonstrated this new prior for fixed-size im-
ages. I present the first application of VAMP to variable sized sequence data: F0

contours. This introduces a new challenge: learning a sequence of parameters for
each pseudo-input. While it may be possible to model the sequence lengths as a
random variable, I fix the number of frames in each pseudo-input at initialisation.
In Section 5.4.1, I discuss pseudo-input sequence lengths and the challenges they
pose in greater detail.

In this model, an utterance is represented using a sequence of latent vari-
ables,

{
N (z(x)

p ; µ(x)
p ,σ(x)

p )
}P
p=1

, one for each phrase in the utterance, where phrases
are determined using the chinks ’n chunks parser. The variational parameters,
µ(x)
p ,σ(x)

p , are the encoder outputs at the final time-step (i.e. frame) of a phrase.
Unlike the approximate posterior parameters used in the prior, these parameters
are derived from the F0 contour, x, hence the superscript: µ(x)

p . The encoder
models the latent variables for all phrases jointly: qφ({z(x)

p }Pp=1 | x). The decoder
reconstructs the F0 contour, x̂, of an utterance using each phrase’s latent vari-
able jointly: log pθ

(
x | {z̃(x)

p }Pp=1, c
)
, where z̃(x)

p ∼ N (z(x)
p ; µ(x)

p ,σ(x)
p ), and c is the

phonetic conditioning features.

During training, each latent, z(x)
p , is indirectly compared with all K psuedo-

inputs through a direct comparison with the GMM components, i.e. the psuedo-
input’s approximate posterior, qφ(z(U)

k | uk). This direct comparison is the KL-
divergence with the prior, DKL(N (z(x)

p ; µ(x)
p ,σ(x)

p ) || pλ(z)), performed within the
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evidence lower bound,

log pθ(x) ≥ E{z̃(x)
p ∼N (z(x)

p ;µ(x)
p ,σ

(x)
p )}Pp=1

[
log pθ

(
x | {z̃(x)

p }Pp=1, c
)]

− 1
P

P∑
p=1

DKL(N (z(x)
p ; µ(x)

p ,σ(x)
p ) || pλ(z)) (5.2)

This model is VAEVAMP, and it has an autoencoder structure. VAEVAMP

encodes and reconstructs mean-variance normalised log F0, delta, and delta-delta
features. Without a prosody predictor, some method of picking renditions, z̃p,
from the prior must be devised. In Chapter 3, a sampling strategy was used
to explore low probability renditions. However, the questions investigated in
this chapter relate to discrete prosodic structure. Therefore, I treat each GMM
component of the prior, N (z(U)

k ; µ
(U)
k ,σ

(U)
k ), as representing a discrete prosodic

behaviour. Sampling from a component, z̃(U)
k ∼ N (z(U)

k ; µ
(U)
k ,σ

(U)
k ), may produce

variation within that rendition’s style. However, to simplify evaluation, I do not
evaluate renditions using random samples from a component. I only consider
renditions using the component peaks: z̃(U)

k = µ
(U)
k .

The intonation codes for VAEVAMP are defined using the GMM component
means: {µ(U)

k }Kk=1.

5.3.3 Baseline: two-stage clustering

Since the application of the VAMP prior is novel for both sequence and speech
data, I propose AEK–MEANS, a more traditional model that will serve as a base-
line. AEK–MEANS uses an architecture made up of well studied components: an
autoencoder and k-means clustering. The baseline has a similar model structure
to VAEVAMP, since the more details the models share, the more confident we
can be that any performance differences are a result of the clustering approach.2

AEK–MEANS has two training stages, connected by dashed arrows in Figure 5.1b.

2It is important to explain a significant difference between the two models: VAEVAMP uses
variational inference, i.e. a probabilistic latent space, whereas AEK–MEANS does not. If a prior
was added to AEK–MEANS it would impose structural assumptions and could effect the resulting
clusters found by k-means. For VAEVAMP, the prior directly enforces clusters. However, a prior
can also obscure clusters, for example: a standard normal prior, N (0, 1), assumes there is only
one cluster; and a uniform prior, U(0, 1), assumes everything is equally likely. Therefore, to
ensure clustering is performed only by k-means, AEK–MEANS does not use a prior; AEK–MEANS
uses an autoencoder, not a VAE.
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1. An autoencoder learns to represent each utterance with a sequence of em-
beddings: {z(x)

p }Pp=1, one embedding for each phrase in the utterance. Sim-
ilar to VAEVAMP, a phrase embedding, z(x)

p ∈ Rn, is the encoder output at
the phrase’s final time-step (i.e. frame). Additionally, like VAEVAMP, an
utterance’s pitch contour, x, is reconstructed using each phrase’s embed-
ding jointly: x̂ = decoder({z(x)

p }Pp=1, c), where c is the phonetic conditioning
features.

2. k-means clustering is used to cluster all phrase embeddings in the train-
ing data into K clusters (Lloyd, 1982). This provides K cluster centroids
{zq}Kq=1.

The intonation codes forAEK–MEANS are defined using the cluster centres, {zq}Kq=1.

5.4 Experiments

Before introducing the evaluations in Section 5.4.2, I first discuss the technical
details of the two systems, including challenges faced during model training.

5.4.1 System details

Models were implemented using Morgana (Hodari, 2020a) and the data was pre-
pared using tts-data-tools (Hodari, 2020b).3 Models are trained using the Us-
borne children’s audiobook dataset. Details about the data can be found in
Section 2.4.3.

VAEVAMP’s architecture is show Figure 5.1a. Its encoder takes mean-variance
normalised log F0, delta, and delta-delta features as input. The encoder isn’t con-
ditioned on linguistic information as this would mean learning pseudo-inputs in
linguistic input space as well as F0 space. The encoder architecture uses a feedfor-
ward layer with 256 units, followed by three recurrent layers using gated recurrent
cells with 64 units. These layers are clocked at the frame-level. To get the se-
quence of phrase-level approximate posteriors for an utterance, the embeddings at
the last frame of each phrase are used (the remaining embeddings are decimated).
Each embedding is projected to 32 dimensions, representing two 16-dimensional
vectors: the mean and log variance of a 16-dimensional approximate posterior.

3Code and models are available at github.com/ZackHodari/discrete_intonation

https://github.com/ZackHodari/discrete_intonation


122 Chapter 5. Perception of discrete representations for prosodic control

The pseudo-inputs are defined in F0 space and are passed through the same
encoder described above, this provides the means and variances that make up the
GMM prior. However, the encoder expects the pseudo-inputs to be sequences.
Since pseudo-inputs are parameters learnt through backpropagation, we must
define their shape when initialising the model. This means we must define a
fixed sequence length for each pseudo-input. For each of the 20 pseudo-inputs,
{uk}20

k=1, the sequence length, nk = |uk|, is defined as follows,

nk =


50k if 1 ≤ k ≤ 10

50(k − 10) if 11 ≤ k ≤ 20
(5.3)

That is, the first 10 pseudo-inputs in VAEVAMP have sequence lengths ranging
from 50 to 500 frames, inclusive, with a step size of 50. The second 10 pseudo-
inputs have the same sequence lengths as the first 10. Each sequence length was
used twice to allow for multiple modes at each length. Determining the sequence
lengths was a key challenge in training VAEVAMP.

VAEVAMP’s decoder takes two inputs: a latent sample from each approxi-
mate posterior (one for each phrase), and phone identity. Each phrase’s latent
sample is upsampled to phone domain. The phone-level latent sample and the
phone identity are concatenated and upsampled to frame-level using ground-truth
durations from forced alignment. I found that using a full linguistic specification
(Table A.1, pp. 168) limited the range of F0 variation captured by the discrete
categories, hence the use of phone identity instead of linguistic feature vectors.
The decoder architecture uses a feedforward layer with 256 units, followed by
three recurrent layers using gated recurrent cells with 64 units, finally this is pro-
jected to 3 dimensions. The output represents mean-variance normalised log F0,
delta, and delta-delta predictions.

AEK–MEANS shares many architectural details withVAEVAMP. AEK–MEANS’s
encoder and decoder in Figure 5.1b use the same architecture as VAEVAMP’s en-
coder and decoder. The encoder outputs a 16-dimensional embedding (compared
to 32 dimensions for VAEVAMP) as it does not model uncertainty in the embed-
ding space. The encoder’s inputs are mean-variance normalised log F0, delta,
and delta-delta features, and the decoder reconstructs these three features. For
consistency with VAEVAMP, the encoder in AEK–MEANS does not use phonetic
conditioning and the decoder is conditioned on phone identity. Conditioning the
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decoder on a full linguistic specification limited the range of F0 variation captured,
as observed with VAEVAMP.

I experimented with a variety of values for the number of pseudo-inputs in
VAEVAMP and number of clusters in AEK–MEANS. To make evaluation fair, I use
the same number for each. I chose 20 pseudo-inputs and 20 clusters based on
two factors: reconstruction performance, and range of variation visible in plots
similar to Figure 5.2 (pp. 127).

The 20 intonation codes for VAEVAMP are the means of the pseudo-inputs’
approximate posteriors: {µ(U)

k }20
k=1. The 20 intonation codes for AEK–MEANS are

the cluster centroids: {zq}20
q=1.

Both models are trained using F0 features extracted from the waveforms
with a 5 ms frame-shift using REAPER (Talkin, 2015). They were trained for
100 epochs using the Adam optimiser (Kingma and Ba, 2014) with a learning rate
increasing linearly from 0.0 to 0.005 over the first 8 epochs and then decaying
proportional to the inverse square of the number of batches (Vaswani et al., 2017,
Sec 5.3). The batch size was 32. The KL-divergence term in VAEVAMP was
weighted by zero during the first 5 epochs and increased linearly to 0.001 over 20
epochs. VAEVAMP converged to a KL-divergence of 5.32.

To perform synthesis, MLPG is used to generate an F0 contour using the
global standard deviation (Tokuda et al., 2000). This F0 contour is synthesised
into a waveform using natural durations and spectral features with the WORLD
vocoder (Morise et al., 2016). At inference time, intonation codes must be se-
lected, this can either be based on the reference F0 contour, or through human-
defined control.

To evaluate the the information captured by the intonation codes, I mea-
sured reconstruction performance on the validation set using the “oracle” intona-
tion codes. The oracle intonation codes are derived using a reference F0 contour
by encoding the F0 and assign each phrase’s representation to the closest intona-
tion code. The closest code is defined differently for VAEVAMP and AEK–MEANS.
For VAEVAMP, we can compute the likelihood of a phrase’s approximate pos-
terior coming from each component of the prior. The oracle intonation code
for VAEVAMP is the mean of the component with the highest likelihood. For
AEK–MEANS, the 1-nearest neighbour classifier can be used to assign each phrase
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to the closest cluster. When reconstructing the validation set with oracle into-
nation codes, VAEVAMP and AEK–MEANS achieved an F0 RMSE of 37.1 Hz and
33.0 Hz, respectively. Together, these objective results suggests that VAEVAMP

successfully learns to reconstruct the inputs like AEK–MEANS, but its performance
is slightly reduced due to the structure enforced by the prior.

5.4.1.1 Challenges training VAEVAMP

The VAMP prior within the VAEVAMP model proved difficult to train. This
is likely for two reasons. First, enforcing more structure on a latent variable
increases the difficultly of encoding useful information, making posterior collapse
more likely than in a standard VAE. Second, the VAMP prior has a new failure
mode: the pseudo-inputs can collapse onto each other. With the VAMP prior,
posterior collapse occurs in two stages: the pseudo-inputs converge towards each
other, resulting in their approximate posteriors having the same means; and then
typical posterior collapse occurs with a prior that is now effectively uni-modal.

To explore the behaviour of a model using the VAMP prior and to understand
how to train a stable model, I assembled a toy dataset from LibriTTS (Zen
et al., 2019). LibriTTS is an audiobook dataset derived from the LibriVox public
domain audiobook library.4 The toy dataset consisted of 481 utterances from 2
speakers, one male and one female, with distinct mean F0.

The first test used a modified prior, called VAMP-data (Tomczak andWelling,
2018). This simply replaces pseudo-inputs with real inputs, meaning they are
fixed and no longer learnable parameters—this reduces the difficulty of train-
ing. The data used can be prototypical examples of categories of interest, I
used two pseudo-input data points: a random utterance from the male speaker,
and a random utterance from the female speaker. In this simple scenario, other
model hyperparameters could be tuned more easily and a model that did not
suffer posterior collapse was successfully trained. The KL-divergence annealing
schedule was particularly important in avoiding collapse. I developed the stable
schedule using this toy data and the VAMP-data prior using fixed prototypical
pseudo-inputs.

Following this, an initial model using learnable pseudo-inputs with a sequence
length of 1 was investigated, i.e. using the VAMP prior, not the VAMP-data prior

4LibriVox data is accessible at librivox.org

https://librivox.org
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with prototypical examples. However, this consistently resulted in posterior col-
lapse despite much tuning. Visualising the latent space with principal component
analysis (Pearson, 1901) clearly showed the pseudo-input’s means converging to-
gether. Increasing the sequence length of the pseudo-inputs resulted in models
that could train successfully. After moving back to the Usborne dataset, I was
able to train a stable VAEVAMP model. I experimented with different pseudo
input sequence lengths and found the more reliable VAEVAMP models used a
sequence length that was similar to the phrase durations observed in the data.
The duration of phrases in the data was between ~50 and ~500 frames.

Through more experimentation, I discovered that using different sequence
lengths for some pseudo-inputs resulted in a larger amount of variation being cap-
tured. I observed this visually by creating plots similar to Figure 5.2. This finding
led to the proposed VAEVAMP’s sequence lengths, detailed in Equation 5.3.

5.4.1.2 Joint duration modelling

The experiments that follow are performed using the F0 model already described.
However, versions of VAEVAMP and AEK–MEANS that jointly model F0 and du-
ration were also trained. Joint modelling means a single model predicted both
F0 and duration, and the parameters of this model were optimised according to
the F0 and duration losses jointly.

To account for the skewed distribution of phone durations, median durations
were modelled using a transition distribution, following Henter et al. (2017b). The
transition distribution describes the probability at each frame that a new phone
begins at the next frame (i.e. do we transition to the next phone). Thus, the
transition distribution models binary sequence data. At training time, natural
durations were used to upsample phonetic inputs used by the decoder. F0 and
durations (specifically transition probabilities) are predicted using the same de-
coder and the reconstruction losses are optimised jointly. This model is similar
to an S2S model, but replacing attention with an explicit duration model.

This model was trained successfully, and it was of an equivalent quality to the
models presented in the previous section. However, this work was conducted after
the evaluations described below. While evaluating the joint F0 and duration mod-
els would surely produce interesting findings, designing and running evaluations
involved a substantial amount of additional work. As such, it was not possible



126 Chapter 5. Perception of discrete representations for prosodic control

to validate the joint F0 and duration models. The experiments that follow use
VAEVAMP and AEK–MEANS systems that only model F0, and not duration.

5.4.2 Evaluation

The aim in this chapter is to capture distinct behaviours using intonation codes
and to understand what these correspond to perceptually, such as: expressivity,
dialogue structure, or information structure. To evaluate interpretability, the first
step is to determine whether the codes produce perceivably distinct variation.
Following this, we can explore what is captured by the codes that do produce
distinct behaviours.

To synthesise using these models, intonation codes must be selected—one
per prosodic phrase (chink ’n chunk-based). We can use the oracle intonation
codes if a reference F0 contour is available, or we could use human-in-the-loop
control. However, the aim in this study is to systematically explore all renditions,
not evaluate the most appropriate ones.

Unfortunately, for more than one phrase it is difficult to evaluate all se-
quences of codes as the number of combinations is exponential. In addition,
we cannot pick sequences of codes randomly, as consecutive phrases could have
conflicting prosodic behaviour. This issue does not stem from a limitation in
the models—both of which are trained using multi-phrase utterances. Instead,
the issue is the unknown grammar over a model’s codes. A “language model”
over the codes would be necessary to sample random code sequences without
obvious conflicts between phrases. To simplify this systematic exploration of all
codes, I restrict the evaluation stimuli to utterances with one phrase. This avoids
any risk of choosing renditions that have conflicting prosodic behaviours across
consecutive phrases.

The test set consists of 12 single-phrase utterances, chosen randomly from the
3 test set books (4 utterances from each): Goldilocks and the Three Bears, The
Boy who Cried Wolf, The Enormous Turnip. The test utterances are presented
in Figure 5.5 (pp. 131).

5.4.2.1 Distinctiveness evaluation

To evaluate if the learnt representations capture different prosodic behaviour, lis-
teners were presented with a pair of renditions of the same utterance from the
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Figure 5.2: 20 intonation codes for AEK–MEANS (top) and VAEVAMP (bottom) for
the utterance: “What’s the matter now?”. Unvoiced regions are shown by a slight
shading along the x-axis. The black line shows natural F0, for unvoiced regions the
F0 is interpolated linearly.

same system, and asked a forced choice question: “Decide if the two renditions
have different intonation.” For each of the 12 test utterances, 40 different rendi-
tions were synthesised using all intonation codes: 20 for VAEVAMP, and 20 for
AEK–MEANS. Examples of the variation captured by these renditions can be seen
qualitatively for one test set utterance in Figure 5.2. Evaluating distinctiveness
for all 380 pairs of codes for each system is not feasible. Instead, 38 pairs of
renditions were evaluation for each system: 38 pairs were selected randomly for
VAEVAMP, and a different 38 pairs were selected randomly for AEK–MEANS.
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0 25 50 75 100
Perceptually different (%)

VAEVAMP 60.0%

AEK–MEANS 53.2%

Figure 5.3: Same/different distinctiveness results for the two discrete prosody control
systems. Listeners were presented with two renditions of the same single-phrase
utterance for the same system and asked to “Decide if the two renditions have different
intonation.” Error bars show binomial confidence intervals.

A single screen for the listening test shows two renditions of an utterance
from the same system. These the two renditions correspond to the two intonation
codes from one of the 76 code pairs. A 2x2 Latin Square between-subjects design
was used so that each listener heard all utterances, half the code pairs from
VAEVAMP, and half the code pairs from AEK–MEANS. Across two listeners, all
pairs were presented once. 22 native English-speaking participants each took
around 45 minutes to complete the test, for which they were paid £8. This
results in 11 “virtual listeners” that completed the full test according to the
Latin Square design.

The distinctiveness results are presented in Figure 5.3. The error bars sig-
nify the confidence interval of a binomial significance test for each system. The
rate of perceptual difference for VAEVAMP (60.0%) is significantly more than for
AEK–MEANS (53.2%). To test individual intonation code pairs, I perform bino-
mial significance tests for all 38 VAEVAMP code pairs and all 38 AEK–MEANS

code pairs. This is followed by Holm-Bonferroni correction over all 76 p-values.
After the correction, 16 pairs for VAEVAMP and 10 pairs for AEK–MEANS show
significant perceptual difference (corrected p < 0.005). The full results of all 76
pairs can be found in Appendix B.

These results demonstrate that VAEVAMP learns more distinct represen-
tations, supporting the increased variation observed qualitatively in Figure 5.2.
Given this, the interpretability experiment that follows exclusively exploresVAEVAMP.
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5.4.2.2 Interpretability evaluation

My aim is to understand what types of prosodic variation are captured byVAEVAMP’s
intonation codes. SinceVAEVAMP learns representations in an unsupervised fash-
ion there are no labels to compare against—an evaluation methodology exploited
with emotion labels in Chapter 4. It may be possible to use taxonomies of prosodic
forms, such as Goodhue et al.’s (2016) intonational bestiary, or prosodic construc-
tions more generally (Ward, 2019). However, limiting evaluation to previously
identified categories or constructions risks missing other important types of vari-
ation captured by the model. Similarly, a narrow focus on specific linguistic or
affective phenomena increases difficulty for non-expert listeners, and potentially
introduces bias.

Therefore, to explore the question of interpretability, I carried out a qual-
itative study. The experiment focused on unprompted free-form responses to
the stimuli in one-to-one interviews. Following my analysis of the results, three
discussion points were identified: (i) whether the prosodic differences captured
discourse structural, information structural, or affective differences in meaning;
(ii) whether intonation codes were interpreted in a consistent way across ut-
terances; and (iii) what types of variation in prosodic meaning are salient to
non-expert listeners.

One-on-one interviews discussing the renditions for various intonation code
pairs were conducted with each participant. I led the interviews. An interview
consisted of 6 screens, each presenting one intonation code pair for VAEVAMP

on all 12 test sentences. That is, participants were presented with 24 stimuli
on a single screen: the 12 test sentences when performed using one of the into-
nation codes were shown on the left, and the 12 test sentences when performed
using the other intonation code were shown on the right. Participants were told
that the first rendition of each sentence corresponds to one “condition”, and the
second rendition corresponds to another “condition”. 5 native English-speaking
participants took part in the 45 minute interviews, for which they were paid £8.

The 6 code pairs chosen for the 6 screens were the 6 pairs with the largest
percentage of “different intonation” judgements from the distinctiveness test, i.e.
the top 6 rows in Figure B.2 (pp. 173). The average rate of perceptual difference
across listeners in the distinctiveness test for these 6 code pairs are summarised
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0 25 50 75 100
Perceptually different (%)

code 6 – code 8 76.5%

code 10 – code 18 78.0%

code 16 – code 17 80.3%

code 1 – code 11 80.3%

code 9 – code 16 81.1%

code 3 – code 15 82.6%

Figure 5.4: Distinctiveness results for top 6 intonation code pairs in VAEVAMP. Error
bars shows binomial confidence intervals.

in Figure 5.4. On average, each code pair is perceptually distinct in at least 9
out of the 12 test utterances.

During the first interview—a pilot test—it became clear that prompting the
participant or answering their questions is highly likely to bias their responses.
For example, if a participant asked “Should I comment on emotion?” answering
“Yes.” may lead to them focusing exclusively on emotion. The results presented
only include content from the remaining 4 interviews. My instructions for these
4 interviews emphasised that the participant should comment on anything they
wanted to about a stimuli. I also made it clear that they may choose to comment
on how two renditions of an utterance differ, or simply on individual renditions
in isolation. Participants were explicitly told they aren’t required to comment on
every rendition, only those for which they had something to say.

In the interviews, I took notes of the participants’ comments. If a comment
wasn’t clearly understood, or if there was possible ambiguity, I would ask for a
clarification, e.g. “Can you expand on that?” Alternatively, if comments were
made on acoustic information—such as pitch changes—I would ask what, if any,
effect this had or what meaning it added. Equally, if a participant commented
on meaningful perceptual differences between renditions, I would ask if they are
able to identify what they thought caused this difference.
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13 There was no answer. — statement, upset, surprised, anticipatory

11 “I’m so hungry.” — upset, statement, continuation rise

15 “Too hard!” — question, statement

10 They climbed the stairs. — upset, continuation rise, anticipatory, sad, narrative

20 “What’s the matter now?” — statement, question, rhetorical, annoyed, friendly, urgent

11 “We’d better make sure.” — upset, question, “standard” style, uncertain

12 “Do you think we’re so stupid?” — insulted, upset, rhetorical, sad

19 “I’m sorry.” — fake apology, passive aggressive, question, apology, “standard” style, upset

9 He wanted a turnip. — statement, narrative, continuation rise, sad, bored

7 They both tugged and tugged. — narrative, upset, child storytelling, “standard” style

11 But the turnip didn’t move. — upset, statement, narrative, surprised

14 “It’s enormous!” cried Jack. — surprised, exclamation, childlike

Figure 5.5: Descriptive terms used by participants for each test utterance. The terms
listed include only those that were used multiple times for a given utterance. The
column on the left indicates the total number of unique terms that were used to
describe that utterance.

(i) Prosodic behaviour captured

The interview transcriptions were summarised into descriptive terms based on
keywords used by participants. 68 descriptive terms were found, with 26 terms
being used to describe more than one utterance. The number of unique de-
scriptive terms for each utterance and a list of more common terms used can be
found in Figure 5.5. The full results are presented in Appendix B. The terms
used to describe 4 or more utterances, in descending order of frequency, were:
upset, statement, narrative, question, surprised, “standard” style, continuation
rise,5 emotional, anticipatory, sad, child storytelling, monotonous, and confused.
The broad range of terms used demonstrates the variety of prosodic behaviour
captured by VAEVAMP’s intonation codes.

Most of the terms relate to more affect-related changes, this is not so sur-
prising when considering the style of the Usborne data: children’s audiobooks.
Changes in interpretation relating to discourse structure and information struc-
ture were reported, most commonly, continuation rise. Stance and interaction

5The term “continuation rise” was not used directly. Participants described the effect typi-
cally as “holding the floor” in combination with a comment on pitch.
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related effects were also present, e.g. back-channelling, insincere apology, feigning
being impressed, feigning surprise, humorous sarcasm, and typical sarcasm.

(ii) Intonation code consistency

Certain intonation codes were consistently reported to produce styles such as:
questioning, upset, and narrative. However, these were likely the most common
styles in the data, meaning that codes were not wholly consistent; a code’s in-
terpretation often changed depending on the utterance. From Figure 5.5, we
can infer that the codes are not entirely consistent, since certain utterances elicit
terms that others do not.

The least descriptive utterances, such as “What’s the matter now?” and “I’m
sorry”, elicited the most comments from participants. This correlation between
number of unique terms and semantic ambiguity suggests that, unsurprisingly,
semantics has a large impact on the perceived effect of the codes. This is either
because the intonation codes are able to produce variation more freely, or because
participants can imagine more contexts for ambiguous utterances.

To determine if individual codes behave consistently, a larger number of par-
ticipants and utterances would be needed. Ideally, utterances should be specifi-
cally designed for the test to control for other potential perceptual effects.

(iii) Listener behaviour

In general, participants’ interpretations appeared to be dependent on what con-
texts they thought were appropriate for a specific rendition. Some participants
even provided rich descriptions of contexts a rendition might make sense in. This
could be a useful direction for analysing what effects a representation captures.
Instead of comparing distinct renditions, participants could be asked to describe
a context or situation that a rendition might make sense in—selecting “unsure” or
“invalid” when necessary. From this descriptive task we could categorise interpre-
tations of different renditions and determine if renditions consistently correspond
to plausible, and potentially uncommon, contexts.

Interestingly, participants perceived some timing and loudness changes, de-
spite F0 being the only feature that was modified. This is possible as timing and
loudness are perceptual phenomena and a perceived change in these can occur
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even if their acoustic correlates—duration and intensity—are not modified. This
provides evidence that F0 leads to perceptual changes in prosody that are broader
than just intonation, empirically supporting the difference between acoustic cor-
relates and perceptual correlates of prosody.

In some cases, participants described a behaviour, but noted it as inappropri-
ate, most commonly for questions and continuation rises. This is to be expected
since the codes were chosen arbitrarily, i.e. the utterance’s content was not consid-
ered. For continuation rises, participants sometimes felt it was jarring to hear the
voice hold the floor but to hear no additional speech following the continuation
rise.

5.5 Conclusion

In this chapter, I introduced a new method for learning discrete representations
of F0 contours. I demonstrated my approach is more effective at learning distinct
prosodic behaviours than traditional methods. The proposed system is a novel
application of a multi-modal prior in a VAE, being the first use of this prior on
sequence data. In addition, the model learns representations at a prosodically-
relevant domain, this inductive bias should encourage the representations to cap-
ture more interpretable prosodic variation.

In a set of qualitative interviews, I investigated the interpretability of the
learnt representations (Theme 2). The interpretation of different renditions var-
ied based on semantics, where ambiguity led to users describing potential contexts
based on what they perceived. A broad range of affective, and some information
structural, variation was observed. Having understood what kinds of prosodic
behaviours are captured by the representation, specific context information could
be collected for use in prosody prediction. For example: expressive behaviours
may be influenced by the connotation or meaning of a word; affective prosody
may relate to interpersonal information; prosody related to information struc-
ture may benefit from parse tree information; and dialogue structure effects may
require context information about turns, personality traits, and setting.

The qualitative interview structure used to investigate listener perception
and interpretability of learnt representations is a useful direction for further re-
search. By expanding this evaluation paradigm in a number of ways, it could be



134 Chapter 5. Perception of discrete representations for prosodic control

used to validate unsupervised representations as an interpretable form of human-
in-the-loop control. As discussed, using more participants would improve the
ability to make statistical inferences, carefully designing the stimuli would al-
low for control of confounding linguistic variation, and verifying that the rep-
resentations are consistent across stimuli would ensure they can be controlled
efficiently by a human-in-the-loop. Nonetheless, the findings in the evaluations
presented here are useful for determining the most relevant context information
when considering how to automatically predict prosody. In the following chapter,
I introduce additional context information to automatically predict appropriate
prosodic representations (Theme 3).



Chapter 6

Prosody modelling using
suprasegmental context

This chapter covers the work in “CAMP: A two-stage approach to modelling
prosody in context” (Hodari et al., 2021) presented at ICASSP 2021, Toronto,
Canada.

The work in this chapter was performed during an internship at Amazon
TTS Research, Cambridge, UK. The work presented here was completed entirely
by me, with advice and discussion from all co-authors. I relied upon existing code,
but contributed a significant amount of implementation to complete this work.
Notable exceptions that were contributed by colleagues are: the compound noun
processing, the idea for BiLSTM smoothing after upsampling, and the percentile
bootstrap implementation.

Following the previous investigations of how to avoid current prosody mod-
elling issues through controllability (Theme 1), I now explore the use of these
methods in a TTS system without the use of human-in-the-loop control. This
chapter works towards Theme 3: producing prosody that is appropriate to the
context. I use syntactic and semantic context features to drive prosody predic-
tion. The proposed framework is designed to make it easy to incorporate more
context through parallel context encoders in a prosody predictor. Subjective re-
sults demonstrate that context can improve prosody quality very significantly, but
that more context should be introduced to further improve prosody in TTS.

135
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As part of this work, I learn a disentangled representation of prosody from
the mel-spectrogram at the word domain. This is the first work in the litera-
ture to learn a representation from the spectrogram at a prosodically-relevant
domain. I also investigated duration modelling in sequence-to-sequence (S2S)
models. A preference test provided the first statistically signifiant result in the
literature showing that duration modelling produces better prosody than attention.

6.1 Introduction

In this thesis, I approach prosody modelling as two separate tasks: controllabil-
ity and appropriateness. Compared to typical TTS systems, where prosody is
modelled jointly with other acoustic information, the challenges of prosody mod-
elling are more addressable within this framework. Prosody control is challenging
because prosody is embedded in the acoustic signal alongside other information,
such as segmental and channel information (Ladd, 2008). Predicting appropriate
prosody is challenging because the model lacks prosodic context. When addi-
tional context is introduced, it is typically used inefficiently, such as to predict
frame-level acoustic detail, instead of suprasegmental prosodic variation. To ad-
dress the challenges of both tasks, I propose a context-aware model of prosody
(CAMP). CAMP is trained in two stages; stage-1 focuses on the entanglement
of prosody, and stage-2 focuses on the lack of context.

Suprasegmental prosody operates over different domains than other informa-
tion in the acoustic signal. In particular, prosody varies more slowly than frame-
level and segmental information, i.e. prosody operates over longer domains (Ward,
2019). To account for this, I learn a representation from the mel-spectrogram us-
ing a temporal bottleneck in stage-1. A prosodically-motivated domain for the
temporal bottleneck leads to disentanglement of prosody from other information
in the mel-spectrogram. The disentangled representation is used to drive a con-
trollable TTS model, which can therefore produce multiple prosodic renditions,
thus satisfying a condition established in the thesis: prosody must be controlled
or it will be ignored.

Without sufficient context, predicting appropriate prosody is an ill-posed
problem (Clark et al., 2019), as any number of prosodic renditions could be
deemed appropriate for the sentence. Under the SPSS paradigm, models used lin-
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guistic features consisting mostly of segmental information, but also some limited
structural information at the syllable, word, and phrase domains (cf. Table A.1,
pp. 168). While these linguistic features provide some context, it is insufficient for
modelling prosody in expressive speech. Recent models have even less context,
using only phone identity (Ren et al., 2020; Elias et al., 2021). As explored in
Chapter 5, understanding what types of variation exists in the data could inform
which specific context features are most relevant.

Suprasegmental prosody is influenced by a broad range of context informa-
tion, from syntax and semantics to affect, pragmatics, and setting (Goodhue et al.,
2016; Köhn et al., 2018). To improve appropriateness, we need suprasegmental
context: information from domains that are above the phone domain, and ideally
from surrounding phrases or utterances. Therefore, in stage-2, I propose a model
that can incorporate arbitrary context information. This model, the “prosody
predictor”, uses a prosodically-relevant loss to ensure the context information is
used to directly improve prosody prediction.

Many attempts to incorporate context use the additional context as input to
an acoustic model with a frame-level spectrogram loss (Hayashi et al., 2019; Fang
et al., 2019). This leads to inefficient use of the context compared to my proposed
prosody predictor. Since current acoustic models do not perfectly minimise the
spectrogram loss, during training the model will continue to focus on improving
prediction of detailed acoustic content in each frame. Suprasegmental prosody
varies over longer domains, meaning it has a weaker impact on the spectrogram
loss. Therefore, prosody will be deprioritised and the additional context will
be underutilised. Instead, the loss must be designed to add inductive bias that
guides the model to what is most important: in this case, prosody. This could be
achieved by: predicting acoustic correlates of prosody like F0 (Wang et al., 2019b)
(as explored in Chapters 3, 4, and 5), selecting prosodic templates (Tyagi et al.,
2020), predicting a disentangled prosody representation (as explored here), or
using self-supervised learning or contrastive learning losses that directly impose
inductive biases towards longer-term variation (Baevski et al., 2020).

The representation learnt in stage-1 was the first prosody representation in
the literature to be learnt from the spectrogram at a prosodically-motivated do-
main. That is, my representation is not limited to a set of acoustic correlates of
prosody, and it is not learnt at the phone or utterance domains—which would lead
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to information content/capacity issues discussed below. In addition, the prosody
predictor trained in stage-2 was the first to use additional context to directly
predict a prosody representation learnt from the spectrogram. I also present two
sequence-to-sequence (S2S) baselines, using either attention or explicit durations
in Section 6.4. I published the first results demonstrating a significant improve-
ment attributable to the use of a duration model, compared to attention; this
was later corroborated by Shen et al. (2020).

6.2 Related Work

Unsupervised representations of speech can be learnt from the spectrogram or
waveform (van den Oord et al., 2017; Schneider et al., 2019; Dunbar et al., 2019).
While there are many methods that use or define prosodic correlates (Suni et al.,
2015; Klimkov et al., 2019; Ribeiro and Clark, 2015), unfortunately, there is less
work on unsupervised representation learning specifically for prosody.

Prosody representations are typically learnt at the sentence domain (Wang
et al., 2018a; Tyagi et al., 2020; Karlapati et al., 2021). Representations at the
sentence domain are too coarse and cannot perfectly reconstruct prosody. To
accurately capture prosody we need a sequence of representations, e.g. at the
syllable domain (Wang et al., 2019b) or phrase domain (Chapter 5).

The linguistic linker introduced by Wang et al. (2019b) also performs the
same prosody prediction task explored in this chapter, but with context limited
to traditional linguistic features. Wang et al. (2019b) experiment with differ-
ent domains when modelling F0, clearly showing the importance of domain in
representation learning. However, they do not consider other acoustic correlates
of prosody, such as duration and intensity. Representations extracted from a
spectrogram, as explored in this chapter, can capture these aspects of prosody.

Other works propose the use of a spectrogram-based representation, but
at the sentence domain. Stanton et al.’s (2018) text-predicted global style to-
kens (TP-GST) uses an autoencoder structure to learn a representation from the
mel-spectrogram. At inference time TP-GST predicts the representation using
context. However, this context is limited to segmental information. Tyagi et al.
(2020) learn representations in a similar way, using a reference encoder, and at
inference time they use the training data as prosody templates and select tem-
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plates using syntactic and acoustic context. Tyagi et al.’s (2020) is the first work
with S2S models to use additional context information directly for prosody mod-
elling. Learning to predict representations, like in TP-GST, may lead to better
generalisation compared to selecting templates. However, it is important that any
prosody modelling uses additional context, like in Tyagi et al.’s (2020) approach.

6.3 Two-stage prosody modelling

My proposed context-aware model of prosody, camp, shown in Figure 6.1c, uses
context features to predict prosody representations. These predicted prosody
representations drive a “TTS model”, detailed in Figure 6.1a. The TTS model is
learnt during stage-1 of training as part of an autoencoder. This audoencoder
model, shown in Figure 6.1b, is the top-line system: ora. ora uses the oracle
prosody representations, extracted using a word-level reference encoder, to drive
the TTS model. In stage-2 of training, the prosody predictor, used by camp,
is learnt. The prosody predictor is trained to predict the oracle prosody rep-
resentations using suprasegmental text-derived context features for the current
sentence.

The core idea behind camp is that context information must be used to pre-
dict prosody—which exists over suprasegmental domains—as opposed to predict-
ing lower-level acoustic information, such as the mel-spectrogram. Any prosody
predictor must be designed with some inductive bias that focuses the model on the
prosodic domain. In this chapter, I use a loss that explicitly focuses on prosody
by predicting a word-level prosody representation. Training the model in two
separate stages means that a disentangled representation of prosody is learnt
and ensures that context information is used to predict prosody, not frame-level
acoustic detail.

6.3.1 Stage-1 : Word-level prosodic representation learning

The prosody representation is learnt by ora (Figure 6.1b), which has an autoen-
coder architecture made up of two components: the reference encoder, and the
TTS model. The reference encoder architecture is shown in Figure 6.2a. The TTS
model (Figure 6.1a) consists of multiple modules: a phone encoder (Figure 6.2c),
duration predictor (Figure 6.2d), and acoustic decoder (Figure 6.2b).
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(a) The TTS model synthesises speech according to the word-level prosody representations
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(b) ora is an autoencoder, using oracle prosody extracted from the reference mel-
spectrogram. The encoder outputs a disentangled word-level representation of prosody.
The decoder is a controllable TTS model. The dashed box illustrates stage-1 of training:
an autoencoding task with an information bottleneck. To make the diagram more readable,
the phone embeddings are shown as an input to the reference encoder, in reality these are
derived from the phone identity, as shown above in Figure 6.1a.
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(c) camp uses prosody predicted by suprasegmental context. The dashed box illustrates
stage-2 of training: the learnt prosody representations are predicted using prosodic context.

Figure 6.1: Three speech synthesis systems. (a) TTS model driven by a prosody
specification: the learnt word-level prosody representations. (b) ora: top-line system
using reference speech. (c) camp: the proposed system using context to predict the
word-level prosody representations. Each subfigure shows the model’s configuration
for synthesis. The bashed boxes in (b) and (c) represent the two stages of training
introduced in Section 6.3, the contents of these boxes illustrate which modules are
trained in that stage.
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Figure 6.2: Details of modules used in Figure 6.1. The inputs and outputs for each
module, along with differences in sequence lengths are illustrated. The connections
between modules are shown for phone embeddings and durations. Modules are also
connected by the word-level prosody representations, but this is not illustrated since
the connection changes between ora and camp. (a) The reference encoder learns
a disentangled representation of prosody at the word level. (b) The acoustic decoder
predicts the mel-spectrogram using either the oracle of predicted prosody represen-
tations. (c) The phone encoder learns a shared phonetic representation used by all
other modules. (d) The duration predictor predicts phone and silence durations using
either the oracle or predicted prosody representations.
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During stage-1, ora is trained. This involves autoencoding mel-spectrograms
while disentangling prosody in the reference encoder’s word-level output. ora
attempts to copy the oracle prosody using this reference encoder. Two design
choices are made in ora’s reference encoder (Figure 6.2a) to encourage disentan-
glement: a temporal bottleneck, and phonetic conditioning. Note that after
stage-1 of training, the TTS model is frozen and used in the proposed system:
camp.

A temporal bottleneck in the reference encoder is achieved by decimating
the frame-level output, i.e. by taking the final embedding at the given domain.
Determining the domain for the bottleneck involves a trade-off. Too short and
segmental and background information will remain entangled. This is evident in
van den Oord et al.’s (2017) experiments with unsupervised phonetic discovery
where a high bit rate representation captures segmental information very effec-
tively. Conversely, too long a domain will sacrifice descriptive power. This can
be observed with Wang et al.’s (2018a) and Wan et al.’s (2019) reconstruction
experiments where prosody is not faithfully reproduced for the sentence domain.
Wang et al. (2019b) demonstrate clearly that the bottleneck’s domain directly
impacts reconstruction accuracy. As discussed in Chapter 5, sentences contain
an arbitrary amount of information and are not a suitable domain for prosody.
Ideally, the syllable or prosodic phrase would be used. However, for simplicity
I use words as the temporal bottleneck’s domain. Specifically, each word and
each pause is represented with one fixed-length vector. In English the average
speaker has a maximum speaking rate of 1.46 syllables per word (Flipsen Jr,
2006), thus using the word domain should provide a close approximation of a
prosodic domain.

Phonetic conditioning simply means providing the reference encoder with
phonetic information to aid disentanglement. The phonetic information is the
same information provided to the acoustic decoder. Conditioning is complimen-
tary to the temporal bottleneck, as it allows the reference encoder to avoid rep-
resenting the now redundant phonetic information. For conditioning to benefit
disentanglement the representation must have an information bottleneck. The
prosody representation in the reference encoder is constrained in number of di-
mensions, as well as having a temporal bottleneck.

The TTS model uses the same phone encoder (Figure 6.2c) as Tacotron-2
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(Shen et al., 2018). Instead of attention, I use an explicit duration model, similar
to DurIAN (Yu et al., 2019) or FastSpeech-2 (Ren et al., 2020). Not only did using
explicit durations remove disfluencies and other attention-related error modes, it
also led to improved prosody.

The duration predictor (Figure 6.2d) takes both phone embeddings and the
word-level prosody representations as input. This allows the duration predictor
to generate durations according to the prosody specification. Considering the
duration predictor is trained jointly with the reference encoder in stage-1, this
design choice will ensure the reference encoder captures duration-related aspects
of prosody in the learnt representation. At training time, durations are predicted,
but they are only used to calculate the loss and gradients. Natural durations are
used to upsample the word-level prosody representations to frame-level for the
acoustic decoder; this is necessary in order to compute the acoustic loss. At
synthesis time, predicted duration are always used to upsample the word-level
representations. The upsampled prosody representations provided to the acoustic
decoder contain repetitions, it was found that adding a BiLSTM (Schuster and
Paliwal, 1997) to smooth this upsampled sequence improved performance.

The acoustic decoder (Figure 6.2b) follows a similar architecture to Copy-
Cat’s decoder (Karlapati et al., 2020). This doesn’t use any autoregressive feed-
back of predictions, typically present in most S2S models, as the conditioning
on a sequence of prosody representations was found to provide enough local con-
text. Similar to the duration predictor, it was found that adding a BiLSTM to
smooth the upsampled inputs improved performance. Thus, my acoustic decoder
adds two BiLSTMs, one after the upsampled phone embeddings and one after
the upsampled prosody representations.

6.3.2 Stage-2 : Context-aware prosody prediction

In order to use the TTS model for synthesis, the oracle prosody representations
cannot be used as these are derived from the reference audio. In stage-2 of
training, a prosody predictor is learnt in order to replace the reference encoder.
The prosody predictor uses text-derived context features as input. The proposed
system drives the TTS model using prosody predicted with context features: it
is a context-aware model of prosody (camp).
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This task of mimicking reference embeddings has been referred to as “lin-
guistic linking” (Wang et al., 2019b), or “text-prediction” (Stanton et al., 2018).
I build upon this idea, emphasising the need for suprasegmental features to see
improvement on this task.

6.3.2.1 Prosody predictor

The prosody predictor (Figure 6.3a) autoregressively predicts word-level prosody
representations using information extracted from context features. By predicting
a prosody representation the context should be used to improve prosody predic-
tion, not to improve detail in the predicted spectrogram. Autoregression allows
the prosody predictor to model how prosody transitions from one word to the
next, like a language model over prosodic patterns. I focus on adding more fea-
tures, as opposed to increasing context width by training on longer extracts. The
prosody predictor uses one or more context encoders to incorporate different fea-
ture streams. I propose five context streams: four syntactic context features, and
a semantic context encoder based on a pre-trained language model.

This work was in part inspired by van den Oord et al.’s (2017) experiments
using a learnt prior with VQ-VAE. By using a high bit rate representation, their
autoencoder learns low-level acoustic information and the learnt prior is able to
capture phone classes in an unsupervised fashion. My prosody predictor can be
interpreted as a learnt conditional prior, where the latent space—the prosody
representation—has unknown variance. By using coarser-grained (i.e. word do-
main) representations my autoencoder, ora, captures prosodic information, and
the learnt prior, the prosody predictor, may capture prosodic patterns.

6.3.2.2 Syntactic information

There is a correlation between syntax and prosody (Köhn et al., 2018). For
example, from a perceptual point of view, prosody can disambiguate syntactic
ambiguities (Allbritton et al., 1996). To take advantage of this relationship, I
experiment with four syntax-related context features: part of speech, word class,
compound noun structure, and punctuation structure. Each of these features
were input to a separate context encoder. The architecture of a single syntactic
context encoder is illustrated in Figure 6.3b.
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Figure 6.3: Autoregressive prosody predictor and two context encoders. (a) The
prosody predictor uses any number of context encoders to autoregressively predict
the word-level prosody representations. All context embeddings must be at the word
domain in this architecture. (b) Syntax context encoder with 2 CNN layers and a
BiLSTM. The 4 syntax features each use a separate context encoder with this archi-
tecture. (c) Semantic context encoder using a pre-trained language model, BERT, to
create the context embeddings. BERT uses WordPiece tokenisation, so the subword-
level outputs are averaged to the word domain.
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Part of speech (POS) represents the syntactic role of a word. While this
does not capture all syntactic relationships present in a parse tree, it is easier to
incorporate into a model than graph-structured inputs.1 POS tags were extracted
using the LAPOS tagger (Tsuruoka et al., 2011) for the Penn-Treebank tagset
(Marcus et al., 1993). An additional tag for punctuation or silence was included
to ensure the length of the tag sequence matched the number of words.

Word class is a coarser classification of POS: open class words (content words)
and closed class words (function words). Compound noun structure was repre-
sented using a binary flag indicating if a word is part of a compound noun. Both
word class and compound noun structure were extracted from the POS sequence,
meaning they are redundant. Finally, punctuation structure simply represents
if a word-level token is a punctuation mark. These binary features may prove
useful for determining prosodic effects such as: emphasis, which is often placed
on content words; stress, which changes in compound nouns; and pausing, which
is often determined by punctuation.

6.3.2.3 Semantic information

Semantics can also influence prosody. Depending on what is appropriate for the
semantic context, prosody may be used to signal focus or givenness (Krifka, 2008),
resolve ambiguities surrounding relative salience (Lewis, 1979), or convey conno-
tations or attitudes relating to the theme and rheme of an utterance (Halliday
and Matthiessen, 1999). Instead of relying on manually extracted features like
the syntax features above, I utilise contextualised word embeddings from BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019),
as these correlate with semantic information (Rogers et al., 2020). BERT is part
of a class of self-supervised language models. These models use self-supervised
losses, such as masked prediction, to learn “contextualised embeddings” from the
data without a specific task in mind. These embeddings are typically applied to
downstream tasks, as explored here for prosody modelling.

BERT takes WordPiece tokens as input and uses self-attention layers to

1A collaboration conducted with Karlapati et al. (2021), in parallel to the research in this
chapter, focused on the use of constituency parse trees as input to a graph neural network con-
text encoder—we (Karlapati et al., 2021) used a similar prosody prediction framework. Similar
to my results in Section 6.5.3.2, we found that syntactic information added no information to
a BERT-based context encoder.
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predict tokens that have been masked out, a task known as masked language
modelling (Devlin et al., 2019). WordPieces are segments of words (Wu et al.,
2016a), i.e. subword units. The more common a word or sequence of characters,
the more likely it will be part of the WordPiece vocabulary. In this way, Word-
Pieces can accommodate any number of words, including unknown words, using
a fixed sized vocabulary. They can also handle certain morphological variation.
Importantly, WordPieces mitigate the increased difficulty of language modelling
on character-based vocabularies.

I use a pre-trained BERTBASE model as a context encoder (Figure 6.3c).
The prosody predictor’s autoregressive LSTM expects the sequence of semantic
context embeddings to be at the word domain. However, BERTBASE outputs one
embedding per WordPiece. To align this output with the word domain, I perform
average pooling of the output WordPiece embeddings for each word. Thus, the
output of the semantic context encoder is this sequence of word-domain semantic
embeddings. The BERTBASE model was pre-trained using long-form text data
and is fine-tuned during stage-2 of training as part of the prosody predictor. The
prosody predictor performed better with a fine-tuned BERTBASE model compared
to a frozen model.

6.4 Baselines

In order to evaluate the proposed method alongside other models in the literature,
I introduce two sequence-to-sequence models to act as baselines. The first is
Tacotron-2 (Shen et al., 2018), s2s for brevity. s2s is an attention-based model
and is well known in the literature. However, the proposed method, camp, uses
an explicit duration model. In order to separate the benefit of duration modelling
and the core contribution of this chapter (i.e. using context to directly predict
prosody), I use a second baseline: DurIAN+. DurIAN+ is very similar to s2s, but
uses an explicit duration model, like it’s progenitor, DurIAN (Yu et al., 2019).
This allows the effects of duration modelling to be controlled for when evaluating
camp.
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6.4.1 S2S: Attention-based model

The current state-of-the-art TTS models consist of a phone encoder, attended
over by an autoregressive acoustic decoder. Tacotron-2 (Shen et al., 2018) has
been adopted as the prototypical S2S model in the literature, and is used as a
baseline system in many recent studies.

s2s (i.e. Tacotron-2) is illustrated in Figure 6.4a. s2s uses the same phone
encoder architecture as the TTS model’s phone encoder (Figure 6.2c, pp 141).
s2s’s acoustic decoder is autoregressive and uses 4 LSTM layers followed by a
post-net of 5 CNN layers (Shen et al., 2018). The decoder attends over the
phone embeddings using location-sensitive attention (Chorowski et al., 2015).
The model has two losses using the reference mel-spectrogram, one with the
LSTM output and one with the CNN post-net output.

6.4.2 DURIAN+: Explicit duration model

The mapping between an utterance’s phones and its speech is monotonic. How-
ever, attention was developed for machine translation and its key design char-
acteristic is the ability to align sequences non-monotonically (Bahdanau et al.,
2014). There has been increasing interest in the literature in sequence-to-sequence
models that only allow for monotonic alignments. For example, step-wise hard
monotonic attention restricts the attention mechanism to be monotonic and at-
tend to one phone at a time (Yasuda et al., 2019; He et al., 2019).

Attention serves two purposes in TTS: prediction of timing (i.e. alignment)
and summarisation of relevant phonetic context. FastSpeech-2 (Ren et al., 2020)
and DurIAN (Yu et al., 2019) demonstrated that: a duration prediction model can
handle timing; and convolutions, self-attention, or bi-directional recurrent layers
in the decoder can summarise local context. Since attention is not a requirement
for state-of-the-art TTS, the approach taken here uses an explicit duration model,
predicting durations used for upsampling.

Explicit duration S2S models (duration-based S2S) provide a bridge between
attention-based models and SPSS models, but with the quality of current gener-
ation TTS. Duration-based S2S is equivalent to step-wise hard monotonic atten-
tion, except with explicit supervision of duration prediction. Some duration-based
S2S models, such as DurIAN (Yu et al., 2019), use a duration predictor that is
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trained separately from the phone encoder and acoustic decoder, this results in
a model very similar to SPSS, but with different linguistic features, more layers,
and a neural vocoder. Others, like FastSpeech-2 (Ren et al., 2020), jointly train
the duration predictor’s loss with the acoustic loss, making them more similar to
attention: jointly learning to align and synthesise (Bahdanau et al., 2014).

The second baseline, DurIAN+, is illustrated in Figure 6.4b. DurIAN+ brings
together architectural choices from DurIAN, Tacotron-2, and FastSpeech-2. Like
DurIAN, it uses a duration predictor instead of attention for alignment and up-
sampling. Like FastSpeech-2, the duration predictor is trained jointly with the
phone encoder and acoustic decoder, and, unlike DurIAN, the duration predictor
and acoustic decoder share a single phone encoder. Thus, the phone encoder is
influenced by both the acoustic and duration losses. This means the phone em-
beddings used by the duration predictor are more informative in DurIAN+ than
in DurIAN. DurIAN+’s phone encoder and acoustic decoder follow Tacotron-2’s
architecture. At the time of this work no other research had demonstrated a sig-
nificant improvement making duration-based S2S state-of-the-art, hence my use
of two baselines.

6.5 Experiments

Here I introduce three evaluations, with the aim to demonstrate that camp is
a state-of-the-art model, to understand the contribution of the proposed context
features, and to determine the representational capacity of the controllable TTS
model.

6.5.1 Data

Models are trained on prosodically rich data: an expressive single-speaker pro-
prietary Amazon dataset. The data contains about 25,000 utterances of profes-
sionally recorded long-form speech of a native US English female speaker. The
utterances are an average of 16 words. The training, validation, and test sets are
approximately 30 hours, 2 hours, and 6 hours, respectively. Phone features are
one-hot encodings of phone identity, silences, word boundaries, and start or end
of sentence tokens. Acoustic features are 80-band mel-spectrograms with a 12.5
ms frame-shift. Durations were extracted using forced alignment with Kaldi.
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Figure 6.4: Architectures of evaluated systems.
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6.5.2 Systems

Across the listening tests, I use 4 TTS systems, illustrated in Figure 6.4: s2s,
DurIAN+, ora, and camp. The differences between these systems are compared
in Table 6.1. s2s is the attention baseline and DurIAN+ is the explicit duration
baseline. ora, uses oracle prosody extracted from reference human speech and
represents the top-line performance that can be expected from my proposed two-
stage approach. The proposed system, camp, uses context features to predict
word-level prosody representations that to drive the TTS model. All models use
the same autoregressive WaveNet vocoder that models each sample’s conditional
distribution with a mixture of logistics distribution (van den Oord et al., 2018).
The vocoder synthesises waveforms with a sampling rate of 24 kHz and is trained
on natural speech. nat is natural 24 kHz speech without vocoding.

All models are trained using the Adam optimiser (Kingma and Ba, 2014).
The acoustic and duration losses both use an L1 loss. ora (i.e. Stage-1 ), s2s,
and DurIAN+ are trained for 300,000 steps, with a learning rate of 0.001 and a
decay factor of 0.98. Stage-2 uses a Huber loss with ρ = 1 to train the prosody
predictors. The Huber loss is a combination of the L1 and L2 losses. It is
quadratic below ρ and linear above ρ, making it less sensitive to outliers than

Table 6.1: Comparison of differences between evaluated systems. s2s is an attention-
based baseline. DurIAN+ is an improved baseline using explicit duration modelling.
ora represents my approaches’ best-case performance. camp is my proposed model
using context information to predict prosody.

s2s DurIAN+ ora camp

Phone encoder Tacotron-2 encoder (Fig. 6.2c)

Prosody
— —

Reference Prosody

representation
encoder predictor

(Fig. 6.2a) (Fig. 6.3a)

Duration
—

Phone Phone embeddings and

predictor inputs embeddings prosody representation

Acoustic
Tacotron-2 decoder

Non-autoregressive

Decoder decoder (Fig. 6.2b)
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squared error losses. This produced marginally better prosody than an L1 or L2
loss during informal listening. Prosody predictors are trained for 100,000 steps,
with a learning rate of 0.0001 and a decay factor of 0.98.

The hyperparameters in stage-1 of training needed tuning to ensure the
representation learnt was suitably disentangled from phonetic content, speaker
identity, and background noise. The number of dimensions for the word-level
representation was tuned, and different conditioning features were tried for the
reference encoder, such as phone identity features and phone embeddings. To
judge linguistic disentanglement of the representations, I synthesised speech us-
ing a sequence of words assembled from two utterances with the oracle prosody
from the first utterance. This demonstrated how robust the representations are
to different linguistic content. To judge what prosodic information the repre-
sentations captured, I synthesised speech using a sequence of word-level prosody
representations assembled from two utterances with the words from the first utter-
ance. This demonstrated how much the representations can control the prosody
for fixed linguistic content. Through informal listening with the output from
these two modes of synthesis, I was able to tune stage-1 before developing and
training stage-2.

6.5.3 Subjective evaluation

To evaluate camp, first we need to determine which is the stronger baseline, s2s
or DurIAN+, and what context features are most impactful for camp. Thus,
three listening tests were performed. The first investigates the contribution of
duration modelling, and is used to select the stronger baseline. The second is
an ablation study to determine the contribution of the proposed syntactic and
semantic context features. Finally, the main evaluation measures listener prefer-
ence of the proposed camp system by comparing it with: a baseline, ora, and
nat.

The listening tests all use the same 96 sentences. These were chosen ran-
domly from the 6 hour test set. Listeners are all native US English speakers, were
vetted (as opposed to being crowd-sourced), were paid for participation, and used
headphones. Other demographic information of listeners is not available.
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(a) Full pairwise preference results on all 96 test sentences.
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(b) Pairwise preference results for the 76 sentences that exhibited no attention-related
instabilities. This demonstrates that duration modelling improves the quality, not just
robustness.

Figure 6.5: Preference test demonstrating that a jointly-trained duration predictor
improves significantly over Tacotron-2. Question asked: “Choose which version you
prefer”. (a) and (b) show results from the same listening test, with (b) reporting only
sentences without attention-related instabilities.

6.5.3.1 Benchmark model

During informal listening, it was found that DurIAN+ produced more natural
speech, with fewer artefacts, and improved prosody. Both for this reason, and
to control for the contribution of explicit duration modelling in camp, DurIAN+

should be used as the baseline when evaluating camp. To formally verify the ap-
parent improvement over s2s, I present a listening test that benchmarks DurIAN+

against s2s.

I perform a preference test to directly compare s2s and DurIAN+. The test
includes a “no preference” option as the similarity of the two system’s design may
result in stimuli that are difficult to tell apart. The preference test was completed
by 15 listeners. Participants were asked to “Choose which version you prefer”.

The results, shown in Figure 6.5a, were tested using a binomial significance
test. This test confirmed that DurIAN+ is significantly preferred over s2s, with
very high confidence: p < 10−15. In particular, DurIAN+ is overwhelmingly
preferred for some sentences. These were sentences where s2s produced artefacts
related to known issues with attention. There were no sentences where DurIAN+

had stability issues. By design, S2S models using an explicit duration model
will not suffer from attention-related instability and are overall more robust to
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synthesis failure modes and articulation mistakes.

To evaluate if DurIAN+ improves on aspects other than robustness, the re-
sults are filtered to only include sentences that do not suffer from signal artefacts.
There are 20 sentences with such issues for s2s. The filtered results are presented
in Figure 6.5b. A binomial significance test finds DurIAN+ to be significantly
preferred with p < 10−15. This demonstrates that DurIAN+ greatly improves
listener preference, i.e. naturalness or prosody quality, not just the system’s ro-
bustness.

While other studies have shown that duration modelling does not degrade
performance (Yu et al., 2019; Ren et al., 2020), this result was the first result in
the literature to demonstrate a significant improvement attributable to duration
modelling. An ablation was not performed to determine exactly what led to this
improvement compared to other approaches using explicit durations. However, I
hypothesise it is due to the use of a shared phone encoder and joint training of
duration and acoustic losses. These are design choices not consistently used in
prior works.

Tacotron-2 has been widely compared with other approaches in the literature.
These results transitively link the final evaluation of camp (Section 6.5.3.3) with
such results in the literature.

6.5.3.2 Context feature ablation

In Section 6.3.2, I introduced 5 context features: fine-tuned word-level BERT em-
beddings; and, 4 syntactic context features—part of speech, word class, compound
noun structure, and punctuation structure. Here, I evaluate the contribution of
these context features to the prosody predictor. Three versions of camp were
trained, each uses a different set of context features for the prosody predictor:

campSyntax — Prosody predictor trained with 4 syntax context encoders.

campBERT — Prosody predictor trained with the BERT context encoder.

campBERT+Syntax — Prosody predictor trained with all 5 context encoders.

These three models each use a separately trained prosody predictor, but all models
use the same frozen TTS model and are trained to predict the same word-level
prosody representations.
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Figure 6.6: MUSHRA listening test results for ablation of context features in camp.
Question asked: “Rate the systems based on your preference”. Mean rating and 95%
confidence intervals are reported below system names. The middle line of each box
represents the median rating, the notch represents the confidence interval around the
median.

To determine the contribution of each to user preference, I conduct an abla-
tion test using a MUSHRA-like format (BS Series, 2014). The stimuli are isolated
utterances, meaning there is no concrete concept of a correct prosodic rendition
(Clark et al., 2019). Thus, in this evaluation, no systems are used as a reference
or anchor in the MUSHRA design. Listeners were not required to rate any sys-
tems as 0 or 100, but were free to do so. The listening test was completed by 20
listeners. Listeners were asked to “Rate the systems based on your preference”
on a scale from 0 to 100.

The results in Figure 6.6 show that campSyntax has a lower mean rating
than the two systems using BERT. I perform two-sided Wilcoxon signed-rank
tests on all 3 pairs of systems, and correct with Holm-Bonferroni. These tests
find that campSyntax is indeed significantly worse than the other two models
(p < 0.001). No statistically significant difference is found between campBERT

and campBERT+Syntax (p = 0.83).2 Confidence intervals, reported in Figure 6.6,
are computed using percentile bootstrap (Davison and Hinkley, 1997).3

2The ratings were also converting into rankings and analysed using non-parametric tests,
this provided the same statistical conclusions.

3Percentile bootstrap is a non-parametric technique that uses sampling with replacement to
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It is clear that using BERT leads to a significant improvement in preference.
The results also suggest that the syntactic features provide no additional infor-
mation compared to BERT’s contextualised representations. This is in agreement
with findings that BERT can capture both semantic and syntactic information
(Rogers et al., 2020). As such, I use campBERT as the proposed TTS system.

6.5.3.3 Prosody modelling evaluation

Finally, we turn to the proposed system. Here I compare campBERT with three
systems: DurIAN+, ora, and nat. DurIAN+ serves as a baseline, as it does not
include any improvements to prosody modelling. ora is the top-line for my pro-
posed approach, i.e. using the best-case prediction of the prosody representation.
And, nat is the reference: human speech. Choosing not to use vocoded speech
as the reference means this evaluation will also assess the quality of the vocoder.
This removes the need for an additional listening test demonstrating the quality
of the vocoder. This decision was made as the vocoder was very high quality.

By using DurIAN+ as the baseline, any improvement observed in campBERT

over this baseline can be attributed to the two-stage design. While it may seem
inconsistent to compare two systems that use different inputs—DurIAN+ does not
use additional context features—I did experiment with adding additional context
to DurIAN+ (and s2s) and observed no clear improvement. Specifically, I added
a pre-trained BERTBASE model with word-level average pooling as an additional
encoder, parallel to the phone encoder. The word-level semantic embeddings
were upsampled to phone-level and concatenated with the phone embeddings.
However, in informal listening tests, this yielded no noticeable improvement in
prosody, similar to previous findings (Hayashi et al., 2019; Fang et al., 2019). This
is likely due to DurIAN+ predicting the frame-level mel-spectrogram, as opposed
to directly predicting prosody representations. This means that the BERTBASE

model is fine-tuned for an acoustic modelling task, making it less likely to improve
the prosody. Due to this, the version of DurIAN+ without additional input was
used for simplicity, and to allow easier comparison with s2s and other work in
the literature as discussed.

The four systems, shown together in Figure 6.4 (pp. 150), are evaluated using

simulate many virtual experiments from which confidence intervals can be approximated. For
a more detailed overview and tutorial see Rousselet et al. (2021).
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Figure 6.7: MUSHRA listening test results with campBERT. Question asked: “Rate
the systems based on your preference”. Mean rating and 95% confidence intervals
are reported below system names. Diamonds represent outliers.

a MUSHRA-like test (BS Series, 2014). Like in the previous test, the stimuli are
isolated utterances, so there is no concept of a correct prosodic rendition (Clark
et al., 2019). Thus, no systems are used as a hidden reference or anchor. Listeners
were not required to rate any systems as 0 or 100, but were free to do so. 25
listeners completed this test. The listeners were asked to “Rate the systems based
on your preference” on a scale from 0 to 100.

A box plot of the MUSHRA results is presented in Figure 6.7, this includes
95% confidence intervals, computed using percentile bootstrap. I perform two-
sided Wilcoxon signed-rank tests for all 6 pairs of systems, and correct with
Holm-Bonferroni. All systems are significantly different from each other with a
very high level of confidence: p � 10−10.4 The results show that campBERT

is significantly better than the baseline, DurIAN+, but significantly worse than
the top-line, ora, and natural speech. Overall, nat was significantly preferred
compared to all other systems. However, nat was rated relatively low in some
cases, as illustrated by the outliers in Figure 6.7. This was due to the high quality
of the synthetic speech produced by the other systems. Additional analysis of this
is presented in Appendix C.

4I also converted the ratings to rankings and performed non-parametric statistical tests, this
provided the same statistical conclusions. See Figure C.1 (pp. 178) for the rank-based results.
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Table 6.2: Three gap reduction comparisons made using the MUSHRA results. Values
in parentheses are the mean ratings from the MUSHRA results reported in Figure 6.7.
Gap reduction is defined as the relative position (as a percentage) of the system of
interest compared to the lower-bound and upper-bound systems. Confidence intervals
are computed using percentile bootstrap.

System Lower-bound Upper-bound Gap reduction

#1 campBERT (62.3) DurIAN+ (58.5) nat (73.1) 26%± 7%

#2 ora (68.6) DurIAN+ (58.5) nat (73.1) 69%± 6%

#3 campBERT (62.3) DurIAN+ (58.5) ora (68.6) 38%± 10%

The high degree of confidence confirms that the large differences of mean
ratings in Figure 6.7 are meaningful, i.e. it isn’t due to high variance. However,
this doesn’t illustrate size of the improvement found. Compared to a lower-bound
system, we can look at how close a system comes to reaching an upper-bound sys-
tem. I refer to this as the gap reduction, i.e. how much does a system of interest
reduce the gap from a lower-bound to an upper-bound. This is a relative mea-
sure of the distance between the lower-bound and upper-bound. Three such gap
reduction comparisons are presented in Table 6.2, along with confidence intervals
on the gaps, computed with percentile bootstrap. Comparison #1 reveals how
close the proposed approach comes to reaching natural speech, while comparisons
#2 and #3 illustrate the performance of stage 1 and stage 2, respectively.

The most important result is comparison #1: campBERT is able to get 26%
of the way to parity with natural speech. This is with respect to a strong baseline,
DurIAN+, which was shown to be an improvement over Tacotron-2. Improving
the learnt prosody representation or adding more context information could move
campBERT closer to nat. The two other comparisons probe the efficacy of the
reference encoder and the prosody predictor.

Comparison #2 provides insight on the best-case performance of campBERT,
i.e. if the prosody predictor performed perfectly. This shows that the learnt
representation is capable of closing the gap to natural speech by 69%. This means
the representation is lossy, likely due to the trade-off between disentanglement and
descriptive power, controlled through the temporal and dimensional bottlenecks.
While ora can be improved through architecture changes, it is likely to never
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reach 100% as complete disentanglement of prosody and phonetics may not be
possible.

Finally, comparison #3 sheds light on the use of context features for predict-
ing prosody. This shows that a fine-tuned BERT model provides enough context
to capture 38% of the prosodic behaviour, for this model and data. Intuitively, we
should expect to see diminishing returns when pushing this gap reduction closer
to 100%.

6.5.4 Discussion

As discussed above, the use of additional context information alone may not
improve prosody modelling. The single-stage models, s2s and DurIAN+, did not
improve noticeably when adding BERT as an additional encoder. I attribute the
performance of campBERT to its use of a prosodically-relevant loss, combined
with the introduction of more context information. The prosody predictor’s loss
must focus directly on prosody, not frame-level spectrogram targets. In this work,
I achieve this by predicting a disentangled prosodic representation. However, the
same effect could be achieved by predicting explicit prosody features, such as F0,
as explored by Ren et al. (2020). Any inductive bias that encourages the model
to utilise context information for slower-varying aspects of speech (e.g. prosody),
should be able to achieve a similar effect as seen here. This could mean using a
self-supervised loss, such as contrastive learning (Baevski et al., 2020), designed
specifically to focus on prosody.

While my results show a large improvement in prosody quality, there is
clearly room for more progress within this two stage paradigm. Improved repre-
sentation learning models and disentanglement could raise the best-case perfor-
mance seen with ora in comparison #2 (Table 6.2). As for the prosody predictor,
there are two avenues to improve prosody prediction: using more context features,
especially by considering what prosodic variation occurs in the data (explored in
Chapter 5); and using wider context either by providing the prosody predictor
with surrounding utterances or by training the prosody predictor on longer ex-
tracts of text, such as turns or paragraphs.

I experimented briefly with training the prosody predictor on paragraphs.
While this improved the prosody at utterance boundaries, the paragraph-level
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model only made significant prosodic changes for short utterances within a para-
graph. This is likely due to the use of LSTMs in the prosody predictor, which
have a limited receptive field. This limitation was of less concern when modelling
sentences, but for longer sequences replacing recurrent layers in the prosody pre-
dictor with self-attention may allow the model to better exploit more distant
context information. A model with the capability of bidirectional generation
would be another interesting direction to explore (Lawrence et al., 2019).

These experiments used single-speaker data. This makes the task much more
manageable, as different speakers exhibit different prosodic behaviours. However,
moving to a multi-speaker prosody representation might lead to better disen-
tanglement. More interestingly, investigating a multi-speaker prosody predictor
might provide insights into the relationship between different speakers’ prosodic
patterns.

6.6 Conclusion

I introduced camp, a two-stage approach for prosody modelling. In stage-1, a
prosody representation is learnt from the mel-spectrogram using a novel word-
domain reference encoder. In stage-2, a prosody predictor is trained that uses
context features to predict the disentangled word-domain representations learnt
in stage-1. This approach is able to close the gap between a strong state-of-the-art
baseline and natural speech by 26%.

There are two main contributions of my approach: incorporating additional
context, and directly modelling prosody. By adding new context information
the model will be more able to make meaningful prosodic decisions (Theme
3), instead of producing average prosody. I also stress the importance of the
latter contribution; adding inductive bias that focuses the system on prosody
modelling is imperative. Without this inductive bias, the additional context
features will be used to predict frame-level detail in the spectrogram, as opposed
to suprasegmental prosody. Such an inductive bias was achieved in camp using
a prosodically-relevant loss.

Additionally, I presented an intermediate result demonstrating that replacing
attention with a duration model led to significantly better performance. Based
on design choices included and omitted in different prior work, I hypothesise
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that joint training of the duration model and the use of a shared phone encoder
contribute to this improvement. Work conducted at the same time by Shen et al.
(2020) corroborates these results. Shen et al. (2020) go further and propose novel
changes to explicit duration modelling, most notably Gaussian upsampling, which
can be seen as a parallel to attention’s weighted summarisation.





Chapter 7

Conclusion

This thesis developed approaches to synthesise multiple prosodic renditions from
a fixed input: random sampling, human control, and learnt representations. As
outlined by this thesis’s claim, either the context should determine which prosodic
rendition is appropriate, or when there is insufficient context, prosody must be
controlled or randomly sampled.

Appropriate prosody can be synthesised with insufficient context, but
prosodic variation not determined by the available context must be
controlled by a human or modelled probabilistically.

Chapter 3 demonstrated that in TTS, prosody is one-to-many and that if this
is not taken into account, the synthesised prosody will be monotonous. Chap-
ters 4 and 5 provided methods that make human-in-the-loop control faster and
more intuitive. Finally, in Chapter 6, I proposed a state-of-the-art model that
incorporates additional context to predict appropriate prosody.

While state-of-the-art S2S models and neural vocoders can produce synthetic
speech with excellent acoustic quality, it is clear from experiments in this thesis,
and in the literature, that prosody in synthetic speech is still lacking in appro-
priateness. Through the three themes outlined in Chapter 1, I explored several
core challenges facing prosody synthesis: prosody is embedded in speech along-
side segmental content and speaker identity, we have no clear orthography for
prosody, and we lack sufficient context information to predict prosody.

Theme 1, controllability, provides a solution to prosody’s entanglement in
speech, either through explicit features, like F0 and duration, used in Chapters 3
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and 5, through labelled control explored in Chapter 4, or through learnt, disen-
tangled representations developed in Chapter 6.

Prosody models that can produce multiple renditions can be controlled by
human operators, however it’s important that the control interface is usable.
Since there is no clear orthography for prosody, other options must be explored to
make control usable. I investigated this through interpretability (Theme 2). In
Chapter 4, I exploited found data to augment the TTS dataset with interpretable
labels. While in Chapter 5, I used unsupervised learning with inductive biases
constructed to learn discrete categories. These were found to produce distinct
prosodic behaviours that were interpretable, although not consistent.

Finally, in Theme 3, I considered the use of context for predicting appro-
priate prosody. In Chapter 6, I utilised pre-trained foundation models to extract
useful semantic and syntactic information. My proposed approach can extend
to include more types of context as it becomes available, both new context fea-
tures and surrounding context. Importantly, I observed that additional context
should be used for prosody prediction, to ensure that the causal information is
used efficiently—compared to using it for spectrogram prediction, as seen in other
recent research.

7.1 Future work

Evaluation of prosody is challenging. While unrealistic prosody can be identified
with current methods, measuring appropriateness is more difficult due to the need
for context. Clark et al. (2019) suggested that using neighbouring utterances
leads to higher ratings, but O’Mahony et al. (2021) showed the wording of the
test was a confound: when evaluating naturalness, the context does not impact
ratings. However, listeners do interpret appropriateness as a different concept
than naturalness (O’Mahony et al., 2021). Wallbridge et al. (2021) demonstrated
that context is important for evaluating appropriateness.

Fortunately, the field is beginning to focus on developing evaluations of
prosody for TTS. For example, prosody is normally evaluated at the utterance
level, but Gutierrez et al. (2021) demonstrated that evaluating prosody in the
word domain can provide more information than sentence-level MOS ratings,
finding that most prosodic errors preceded punctuation. Since prosody is so in-
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tertwined with context, perhaps we should categorise our models’ error modes
using a fine-grained evaluation such as this, and determine what design choices
or context features would address each failure mode.

I explored different methods for prosody control independently in this thesis:
prosodic sampling, human control, and context-based prediction. A promising
direction for future work would be to combine these. A conditional prosodic
distribution—defining the set of appropriate choices—could be predicted using
context. This conditional distribution could be further conditioned using human-
driven control inputs. Finally, a single prosodic rendition could be sampled.
This approach brings together the different solutions required to handle prosody
depending on the available context, as illustrated in Figure 1.1 (pp. 4).

The limited use of context in existing models is related to the constraints
of current machine learning techniques. With advances in representation learn-
ing (Le-Khac et al., 2020; Schölkopf et al., 2021) and graph neural networks
(Battaglia et al., 2018; Wu et al., 2020b), more types of context can be exper-
imented with and incorporated. While data collection of context information
remains a bottleneck, training with wider context using state-of-the-art tech-
niques, like self-attention (Vaswani et al., 2017) or memory networks (Santoro
et al., 2016; Borgeaud et al., 2021), might allow context to be accessed directly
from speech data, instead of needing explicit context features. Recent work has
demonstrated the use of such advances: Karlapati et al. (2021) used graph neural
networks to utilise constituency parse trees, and Oplustil-Gallegos et al. (2021)
used representation learning to incorporate context from surrounding text and
acoustics.

With recent developments in machine learning, it may be possible to gener-
ate appropriate prosody implicitly—without explicit context features—by using
surrounding context. In computer vision, content and style can be disentangled
using inductive bias in the model design with no content or style labels (Huang
et al., 2018), but control is limited to the styles observed in the data. To control
prosody, the equivalent data requirement is to use longer extracts of speech, i.e.
the surrounding context. Powerful natural language generative models can pro-
duce output with coherent topics (Brown et al., 2020), but training such models
requires even longer extracts of text, e.g. entire documents. To generate coher-
ent prosody without explicit context features, a single training data point may
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need to be vastly longer than a single utterance, such as a full conversation, book
chapter, or news article. In natural language processing, high-level structure such
as grammar can be learnt implicitly (Rogers et al., 2020) by leveraging very large
data. To make use of the surrounding context and learn interesting prosodic
structure, we may require a similarly large quantity of data. Fortunately, there
exist datasets with over 50,000 hours of speech (Abu-El-Haija et al., 2016; Clifton
et al., 2020; Kahn et al., 2020). Working with longer extracts and larger data
would require new training methods, such as new self-supervised losses (Yam-
aguchi et al., 2021) and better inductive biases (Baevski et al., 2020) from the
emerging topic of foundation models (Bommasani et al., 2021). Generating ap-
propriate prosody based on surrounding context is a rich research direction, but
a very challenging one.

I investigated prosody for single speakers in a single language. Understanding
how prosody varies across speakers will make new techniques useful in more TTS
applications. Additionally, synthesising appropriate prosody for languages other
than English would make speech technology available to more users.

This work was supported in part by the EPSRC Centre for Doctoral Training
in Data Science, funded by the UK Engineering and Physical Sciences Research
Council (grant EP/L016427/1) and the University of Edinburgh.



Appendix A

Features

A.1 SPSS linguistic features

Linguistic features used for SPSS models in Chapters 3 and 4 are detailed in
Table A.1.

A.2 eGeMAPS emotion features

The eGeMAPS features used to predict emotion labels in Chapter 4 are detailed
in Table A.2.

167



168 Appendix A. Features

Table A.1: Linguistic features used in Chapters 3 and 4.

Quin-phone
Phone identity before the previous phone
Previous/current/next phone identity
phone identity after the next phone

ToBI prediction
ToBI endtone of the current phrase

Syllable structure
Name of the vowel of the current syllable
Whether the previous/current/next syllable stressed or not
Whether the previous/current/next syllable accented or not
Number of stressed syllables before/after the current syllable in the current phrase
Number of accented syllables before/after the current syllable in the current phrase
Position of the current syllable between the previous and next stressed syllables
(forward/backward)
Position of the current syllable between the previous and next accented syllables
(forward/backward)

POS structure
Guessed part of speech (gpos) of the previous/current/next word
Number of content words before/after the current word in the current phrase
Position of the current word between the previous and next content words (for-
ward/backward)

Utterance structure
Position of the current phone in the current syllable (forward/backward)
Position of the current syllable in the current word/phrase (forward/backward)
Position of the current word in the current phrase (forward/backward)
Position of the current phrase in utterence (forward/backward)
Number of phones in the previous/current/next syllable
Number of syllables in the previous/current/next word/phrase
Number of words in the previous/current/next phrase
Number of syllables/words/phrases in this utterence
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Table A.2: eGeMAPS low-level descriptor features.

1 energy related LLD Group

Loudness (signal intensity) Prosodic

25 spectral LLD Group

α ratio - 50-1000 Hz & 1000-1500 Hz Spectral

Spectral slope - 0-500 Hz & 500-1500 Hz Spectral

Hammarberg index Spectral

MFCC 1-4 Cepstral

Spectral flux Spectral

16 voicing related LLD Group

Log F0 on a semi-tone scale Prosodic

Formant 1-3 frequency Voice quality

Formant 1-3 bandwidth Voice quality

Formant 1-3 amplitude Voice quality

Harmonic difference - H1-H2 & H1-A3 Voice quality

Harmonics-to-noise ratio Voice quality

Jitter of consecutive F0 periods Voice quality

Shimmer of consecutive F0 periods Voice quality





Appendix B

Full results for Chapter 5

B.1 Pairwise preference results

The full pairwise result are reported for AEK–MEANS in Figure B.1, and for
VAEVAMP in Figure B.2.

B.2 Descriptive terms

The list of 12 sentences used for the qualitative evaluation can be found in Ta-
ble B.1. Descriptive terms used more than once for these sentences are given in
Table B.2, and descriptive terms used only once are given in Table B.3.
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Figure B.1: Same/different results for all 36 intonation code pairs in AEK–MEANS.
Error bars shows binomial confidence intervals.
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Figure B.2: Same/different results for all 36 intonation code pairs in VAEVAMP.
Error bars shows binomial confidence intervals.
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Table B.1: Abbreviations used in Tables B.2 and B.3 for the 12 test sentences from
the qualitative evaluation in Chapter 5.

Abbreviation Sentence

S1 There was no answer.

S2 “I’m so hungry.”

S3 “Too hard!”

S4 They climbed the stairs.

S5 “What’s the matter now?”

S6 “We’d better make sure.”

S7 “Do you think we’re so stupid?”

S8 “I’m sorry.”

S9 He wanted a turnip.

S10 They both tugged and tugged.

S11 But the turnip didn’t move.

S12 “It’s enormous!” cried Jack.
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Table B.2: Counts of descriptive terms that were used more than once. For abbrevi-
ations and full sentences, see Table B.1.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total

Upset 3 4 1 2 2 4 2 3 4 25
Statement 4 2 2 1 2 1 6 4 22
Narrative 1 2 6 6 2 1 18
Question 1 1 3 2 2 1 5 1 16
Surprised 2 1 1 1 1 2 6 14
Standard 1 1 2 1 3 1 2 1 12

Continuation rise 1 2 2 1 1 2 1 10
Emotional 1 1 1 1 1 1 1 1 8

Fake apology 8 8
Anticipatory 2 1 2 1 1 7

Sad 1 2 2 2 7
Child storytelling 1 3 1 1 6

Insulted 5 1 6
Monotonous 1 1 1 1 1 5
Rhetorical 2 3 5

Exclamation 1 4 5
Passive aggressive 5 5

Confused 1 1 1 1 4
Bored 1 2 1 4

Uncertain 1 2 1 4
Apology 4 4
Empathy 1 1 1 3
Childlike 1 2 3
Annoyed 2 1 3
Friendly 1 2 3
Resigned 1 1 2
Grumpy 1 1 2

Disappointed 1 1 2
Urgent 2 2

#Terms 12 8 11 9 12 8 8 14 9 6 10 7
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Table B.3: Additional descriptive terms that were only used once. For abbreviations
and full sentences, see Table B.1.

Abbreviation Descriptive terms

S1 Distracted

S2 Expressive, angry, animated

S3 Dejected, stubborn, uninterested, determined

S4 Assertive

S5 Back-channelling, motherly, direct speech, concern, fed up,
agitated, frustrated, moody

S6 Cautious, hesitant, certain

S7 Patronised, mature, self-assured, threatened

S8 Humorous sarcasm, rant, sarcastic, unfriendly, disbelief

S9

S10 Overdone

S11 Overwrought

S12 Scared, fake impressed, worry, unsurprised, excited, pleased,
happy



Appendix C

Additional analysis for Chapter 6

C.1 Analysis of MUSHRA results

When evaluating the proposed campBERT system, the MUSHRA results in Fig-
ure 6.7 (pp. 157) had a number of outliers for some systems. To further under-
stand these results I conducted two further analyses of the same results.

Some listeners may use lower or higher average ratings for the same system,
or may use relative position in different ways. To control for these differences, I
converted the ratings, on a scale of 0 to 100, to rankings. The rank-based results,
from rank 1 to 4, are plotted in Figure C.1. This illustrates that all systems
were rated as most and least preferred in some stimuli. This means the synthetic
speech systems are preferred to nat in some cases. A non-parametric statistical
test found the same statistical inferences as in Chapter 6: all system pairs are
significantly different from each other.

Some listeners did not use the full range when rating systems, while oth-
ers did. Listeners were not required to use the full scale. To control for this
difference in behaviour, in Figure C.2 I plot normalised ratings. Normalisation
was performed per-screen: the 4 ratings provided for a single screen are scaled
linearly such that the lowest rating is 0 and the highest rating is 100. This form
of normalisation crudely mimics a test where listeners were required to use the
full range of the scale. For the same statistical tests as in Chapter 6, the same
statistical inferences were found with the normalised ratings. This demonstrates
that this difference in listener behaviour did not impact the results.

177



178 Appendix C. Additional analysis for Chapter 6

S2S CAMP ORA NAT

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ra
nk

BERT

Figure C.1: MUSHRA listening test results by ranking with campBERT.
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Figure C.2: Normalised MUSHRA listening test results with campBERT.
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