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Abstract

A variety of informational factors are contained within the speech signal and a single short
recording of speech reveals much more than the spoken words. The best method to extract and
represent informational factors from the speech signal ultimately depends on which informational
factors are desired and how they will be used. In addition, sometimes methods will capture
more than one informational factor at the same time such as speaker identity, spoken content,
and speaker prosody.

The goal of this dissertation is to explore different ways to deconstruct the speech signal
into abstract representations that can be learned and later reused in various speech technology
tasks. This task of deconstructing, also known as disentanglement, is a form of distributed
representation learning. As a general approach to disentanglement, there are some guiding
principles that elaborate what a learned representation should contain as well as how it should
function. In particular, learned representations should contain all of the requisite information in
a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be
useful in downstream tasks, and independent of the task at hand. The learned representations
should also be able to answer counter-factual questions.

In some cases, learned speech representations can be re-assembled in different ways according
to the requirements of downstream applications. For example, in a voice conversion task, the
speech content is retained while the speaker identity is changed. And in a content-privacy task,
some targeted content may be concealed without affecting how surrounding words sound. While
there is no single-best method to disentangle all types of factors, some end-to-end approaches
demonstrate a promising degree of generalization to diverse speech tasks.

This thesis explores a variety of use-cases for disentangled representations including phone
recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based
privacy masking. Speech representations can also be utilised for automatically assessing the
quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The
meaning of the term ‘disentanglement’ is not well defined in previous work, and it has acquired
several meanings depending on the domain (e.g. image vs. speech). Sometimes the term
‘disentanglement’ is used interchangeably with the term ‘factorization’. This thesis proposes
that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can
be considered both theoretically and practically.
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Chapter 1

Introduction

1.1 Motivation

The human speech signal is a very rich and dynamic source of different types of informational
factors. A single short recording of speech reveals much more than spoken words. It also
provides information about a speaker’s vocal organs, native accent, and prosody, as well as
features that correlate with age, gender, and emotional affect, to name a few. In fact, the speech
signal also contains information about the recording environment such as the microphone and
room characteristics. Speech science seeks to model and utilize the different types of information
for different purposes. Some information can be extracted directly from the speech signal as
low-level acoustic properties, such as signal energy or power. Other information can be revealed
by applying a series of mathematical transforms to extract features which are based on local
context, such as the phones or content. There are some features, such as speaker identity, that
must be modeled using a context that is more global by nature and consistent across time
because the speaker identity remains invariant for the duration of an utterance no matter how
short or long.

The best method to extract and represent informational factors from the speech signal
ultimately depends on which informational factors are desired and how they will be used. In
addition, sometimes methods will capture more than one factor at the same time such as speaker
identity, spoken content, and speaker prosody. In speech science it is not yet fully understood
exactly which informational factors in the speech signal can be fully separated “by definition”
(e.g., can speaker accent be completely separated from speaker identity?). When it comes to
separating informational factors for speech technology that require them (such as speaker and
content for voice conversion), it has been an open question as to the best method. This thesis
addresses the core of that problem by learning how to disentangle informational factors through
representation learning and then utilizing the disentangled representations in downstream speech
technologies.

Recent advances in machine learning have opened up new ways of thinking about speech
technology. For example, it is possible to develop deep learning methods that model speech
signal content but require little or no supervision [van den Oord et al., 2017; Baevski et al.,
2020; Shor et al., 2020]. It is also possible to generate synthetic speech with high enough quality
that it is difficult to distinguish from natural speech. Some neural network architectures have
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characteristics that allow specific information to be represented in various key places in the
network and this is an advantage for representation learning. Architectures that learn distributed
representations are attractive candidates for disentanglement. This thesis will explore techniques
for disentanglement in later chapters. To begin, this introductory chapter discusses three main
viewpoints of disentanglement (transformational, factorizational, and functional) and adopts
some principles of disentanglement that will be used in later chapters to assess the proposed
techniques. Deep learning in the image domain is significantly mature and techniques are often
borrowed from the image domain to be applied to speech processing problems. A comparison
and contrast between definitions from the image domain will be presented in the next section in
order to establish the approach to speech disentanglement that is used in this thesis.

1.2 Approaches to Disentanglement

One of the challenges for developing disentangled speech representations is that the concept of
disentanglement is not well-defined across domains such as the image domain and the speech
domain. While it is reasonable to draw analogies between image and speech disentanglement, the
inconsistent definitions are problematic. This section aims to first explore several definitions and
then adopt one in particular for speech processing. Intuitively speaking, if information has been
disentangled then this should mean that information of one type is found in one representation
A and information of a different type is found in a separate representation B. For speech it is
not known how many distinct types of information are contained in the speech signal and it is
not clear if there are limits regarding which types of information can be completely disentangled.
For example, speaker accent is related to both the speaker’s identity as well as how phones are
pronounced. In order to disentangle speaker identity and accent, an assumption would have
to be made that the speaker identity involves only the voice (due to the vocal tract and nasal
cavities) but does not involve any nuances about how sounds are articulated or realized as
phones. The problem of finding a theoretical limit to speech disentanglement is a very large
research problem that cannot be answered in this thesis. However, this section explores some
ideas of what it means in principle to achieve disentangled representations.

1.2.1 Transformational Disentanglement

Disentanglement could be thought of in terms of which values can and cannot be transformed
in a data representation. Transformational disentanglement is based on the idea that some
information can be changed (variant) while other information cannot (invariant). Conceptually,
this is similar to painting a house: a blue house could be painted red but it would still remain
the same house. The house represents information that is invariant while the colour represents
information that is variant. In another analogy, it might be difficult to identify variant and
invariant information between a 1-storey house and a 3-storey house - both are houses but
perhaps they have differing immutable qualities. This analogy with houses captures some of
the difficulty of using a transformational definition of disentanglement, and more examples are
provided below and discussed in the contexts of image and speech processing.
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1.2.1.1 Image Style Transfer

A widely-circulated example of transformational disentanglement comes from the image pro-
cessing domain wherein an image has been stylized to reflect the artwork of a famous painter,
as in Figure 1.1. In this example, the invariant properties are considered to be the canal and
buildings (content) and the variant properties are considered to be the colours and artistic
rendering of those colours and patterns (style) [Gatys et al., 2016]. By combining the style of a
famous painter from one image with the content of a different image, the result is a new image
that appears as if it had been painted by a famous painter. To accomplish image style transfer,
neural networks learned how to extract a “style representation” and a “content representation”
as well as how to re-combine them.

Figure 1.1: Image from Gatys et al. [2016] demonstrating transformational disentanglement.
Neural networks can be used to combine factors of variation (style) with invariant factors
(content) to achieve a transformed or stylized image.

1.2.1.2 Speech Style Transfer

The example image displayed in Figure 1.1 requires some aspect of disentanglement between
content and style, but according to the authors the problem of disentanglement is not well-
defined [Gatys et al., 2016]. The process of learning to transform an image requires defining style
from one image and content from another image but the process does not address how to recover
those representations from a single stylized image. Likewise, the style transfer analogy from
image processing is not straightforward when applied to speech. This is due to poor definitions
of speech style as well as the fact that speech is a dynamic sequence whereas images are static.
Speaking style will be explored later in this thesis, especially in Chapter 4. However in this
thesis the definition of speaking style is taken to be how a speaker adapts their speaking manner
according to the context and it is a pragmatic definition meant to account for differences between
the manner of conversational and read speech. Other forms of speech style could involve patterns
of expressivity or predictable prosodic changes. However since speech is a dynamic sequence it
is not necessarily meaningful to transform an utterance into multiple prosodic styles using style
transfer (with the image analogy) because the meaning of an utterance changes at the same
time that the prosody changes as well.

1.2.1.3 Intelligent Agent Interaction

Consider the work of Higgins et al. [2018] and their proposed view that the physical world has
certain properties that can be changed while other properties remain invariant. For example, a
vehicle can move but a road cannot move, therefore a vehicle and a road can be disentangled.
The authors build upon the analogy to the physical world to develop a set of principles of
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transformational disentanglement. The principles seek to find underlying structure in the world
that can be used to exploit transformational properties of data. Overall the principles they
present are focused on mathematical definitions to define the achievement of disentanglement
using group theory rather than processes that accomplish disentanglement. All of the analogies
they provide are related to a scenario wherein an intelligent agent is interacting with the world.
Disentanglement is based on whether the intelligent agent can perform an action (specifically
a transformational action) that changes the world. The authors offer three characteristics of
disentangled representations: compactness, modularity, and explicitness. Compactness measures
whether a single informational factor is encoded as a single latent dimension, rather than
multi-dimensional. Modularity involves whether or not a single factor of variation corresponds
to a single dimension of the latent representation. Explicitness means that if a representation
has been disentangled then all of the informational factors are modeled generatively and this
information is also linearly decodable.

While the definitions proposed by Higgins et al. [2018] may have proven useful for intelligent
agents interacting in a physical world, it is not clear how these principles could be adapted for
disentangled speech representations. First, it is not known how many informational factors are
contained within the speech signal and this alone makes it difficult to follow all three principles
of modularity, compactness, and explicitness. It is also possible that information in speech-based
representations is distributed across multiple dimensions. The number of informational factors
may be dependent on the speech processing task or richness of the speech dataset. For example
if a speech dataset has been labeled with metadata for speaker characteristics (age, gender,
accent, etc) as well as utterance characteristics (emotion, expressivity, emphasis, etc) then the
number of informational factors that can be modeled may depend on the dataset annotations.
In that case, speech disentanglement may end up reflecting the limits of data labels rather than
fundamental principles of speech itself.

1.2.2 Factorizational Disentanglement

A term commonly used in the image domain is factorization and this describes the act of
separating information within a single representation using the indices of the representation.
It is related to the transformational principles described earlier (compactness and modularity)
but factorization is more general and allows for information to be encoded across multiple
dimensions of a latent representation. Often in the image domain the term factorization is used
interchangeably with the term disentanglement. This approach to disentanglement is based on
how the information in a representation can be separated into distinct regions. As in Figure 1.2,
the distinct regions of the latent representation (red values in z) correspond to distinct regions
of the image (red object in image). Some of the assumptions that may be made for factorization
could be the quantity or type of colours (e.g., black and white or coloured), the shapes of edges
(e.g., round or sharp), or the number of target factors (e.g., two red circles). These assumptions
contribute to a type of bias called the inductive bias. The example shown in Figure 1.2 comes
from Locatello et al. [2020b] who insist that disentanglement is only achieved if inductive bias is
used, otherwise disentanglement would be theoretically impossible. Their argument regarding
the necessity for inductive bias is also maintained in their additional work on the topic (see:
Locatello et al. [2019] and Locatello et al. [2020a]).
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Figure 1.2: Image from Locatello et al. [2020b] demonstrating factorizational disentanglement.
Neural networks can be used to identify specific factors of a representation (indices in z shown
in red) that correspond to parts of an image (red object).

1.2.2.1 Image Segmentation

Factorization is widely used to perform image segmentation. An example of this comes from
Chartsias et al. [2019] who used disentanglement to identify specific components of cardiac
images for diagnostic purposes. The image segmentation is exact enough that the segmented
image can be further processed for diagnosis such as measuring the narrowing of an artery or
heart valve. Using disentanglement for image segmentation is based on an important assumption
about how separable the components of the image are. In this case, the components of the
image are 100% separable both in theory and in practice.

A common method to evaluate factorizational disentanglement is to attempt to decode from
a latent representation while traversing the latent representation one dimension at a time. This
evaluation technique is referred to as latent traversal [Higgins et al., 2016]. A limitation of this
approach is that it relies heavily on the assumption that a single dimension corresponds to one
factor of variation. If information is distributed across multiple dimensions in a representation,
and the goal is to evaluate disentanglement between two representations A vs B, then latent
traversal would not be relevant.

Figure 1.3: Image from Chartsias et al. [2019] demonstrating factorizational disentanglement for
image segmentation. In this example an image of a heart is segmented into three anatomical
structures: left ventricular cavity, myocardium, and right ventricular cavity. Using the segmented
image, the sizes of the anatomical structures can be measured for the purpose of diagnosing a
health condition.
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1.2.2.2 Factorization in Speech

The work of Luo et al. [2019] provides a definition of disentanglement for pitch and timbre
in music as: “a disentangled feature representation is defined as having disjoint subsets of
feature dimensions that are only sensitive to changes in corresponding factors of variation from
observed data”. This definition is based on the notion that the data in a dataset is comprised of
informational factors. Some factors will vary while other factors will be invariant. Once the
varying factors are identified it would be possible to disentangle information [Bengio, 2013] using
supervised or unsupervised techniques [Ridgeway, 2016]. In speech, factorization has served the
purpose of removing irrelevant information from a representation such as a speaker embedding
and then discarding what had been deemed irrelevant [Dehak et al., 2011]. Factorization has
been used in speaker recognition to remove nuisance factors such as the variability caused by
using different microphones in different recordings. After information has been removed, it could
be argued that a representation is in some way more “pure”. This type of factorization necessarily
removes information since the technique is entirely based on applying linear transforms to a
representation until factors of variation have been removed. Factorization in speech for speaker
recognition resembles the principle of explicitness mentioned earlier from transformational
disentanglement. The disentanglement sought after in this thesis aims to retain the information
once it has been separated and this includes information that is variant as well as invariant.

1.2.3 Functional Disentanglement

According to Locatello et al. [2019], disentangled representations are defined by how they
function. After disentanglement, the representations should separate distinct informational
factors that have been identified in the data. Furthermore, the authors provide six principles of
disentanglement. Disentangled representations should:

1. contain all of the information in a more compact manner

2. be interpretable

3. be independent from task at-hand

4. be useful for downstream tasks (including zero-shot learning)

5. integrate out nuisance factors

6. answer counter-factual questions

These six principles establish disentanglement in terms of functionality rather than by
mathematical properties of the representations. The principles offer a more complete notion
of disentanglement compared to other work. Functional disentanglement describes features
of the representations as well as how to evaluate the representations. The principles are
generalizeable and are not specific to image processing. Therefore a functional approach to
defining disentanglement is adopted in this thesis and new principles are proposed in the next
section.

Currently there are no single-best techniques to measure the intrinsic goodness of disentangled
representations for speech apart from probing how well they perform in extrinsic tasks [Raj et al.,
2019; Williams and King, 2019; Peri et al., 2020a; Chung et al., 2020]. Principles 3 and 4 are
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important because the disentangled representations can be evaluated as to how much information
they contain for prediction tasks that are separate from the disentanglement technique itself.
Other forms of disentanglement evaluation in speech involve contrastive prediction tasks such as
phone recognition and speaker recognition by observing that one disentangled representation
“gains” information while another “loses” information [Ebbers et al., 2021]. Principle 6 is important
because the speech representations can be used to answer counter-factual questions. For example,
a disentangled phone representation should not perform well in a speaker recognition task.

1.3 Proposed Principles of Disentanglement

The following principles are proposed for the purpose investigating disentanglement of speech in
this thesis:

1. The learned representations are sufficiently rich to model targeted speech features.

2. Representations that model targeted speech features do not also model non-target speech
features (e.g., a representation of speaker identity does not also model speech content).

3. Representations have utility outside of the system that disentangles information.

1.4 Thesis Scope

The goal of this dissertation is to provide a machine learning technique that disentangles
information in the speech signal into separate representations that can be re-used in various
speech technology tasks. The learned representations can then be re-assembled in different ways
depending on the downstream application. For example, in a voice conversion (VC) task, it is
necessary to retain speech content and style but change only the speaker identity. Another goal
of this thesis is to provide a set of intrinsic evaluation techniques to evaluate disentanglement
completely independent of extrinsic tasks. There has been some recent work to separately
factorize information from the speech signal. However, at the time of this writing, it remains
an open research problem for how to best create multiple reusable representations of speech
features using a single disentanglement technique.

1.4.1 Problem Statement

What is the best technique for disentangling multiple informational factors simultaneously
from the speech signal and how can these disentangled representations be evaluated?
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1.4.2 Approach

The approach to solve this problem involves exploring the utility of autoencoders and a rich
latent space that can be learned in a self-supervised or semi-supervised manner. During the
development of the disentanglement technique, different variations of the technique require
different datasets due to the need to exploit metadata labels or data quality. Disentanglement
will be considered in terms of three proposed principles that were inspired from work in the
image domain. The adopted principles will serve to evaluate disentanglement in terms of the
functional capabilities of representations.

1.4.3 Contributions

This dissertation contributes a novel and innovative lens to re-imagine speech processing through
disentanglement of speech signal features using machine learning. The following contributions
are made:

1. Learn to separate and retain informational factors from speech

2. Introduce three principles of disentanglement that are tailored to speech processing

3. Explore the strengths and weaknesses of several disentanglement techniques

4. Explore the concept of disentanglement versus the implementation of it

5. Consider the trade-offs between co-training representations versus learning them separately

6. Introduce a technique to probe speaker representations and disentangle style/emotion
from speaker identity

7. Introduce and compare multiple variations of self-supervised speech re-synthesis with
stacked encoders

8. Examine learned representations through intrinsic and extrinsic evaluation

9. Introduce a technique that allows for weighted voice mixing during a voice conversion task

10. Introduce a new method for speaker diarization

11. Introduce a new privacy task based on concealment of speech content

12. Introduce a novel analysis approach for disentanglement based on principles of natural
language processing

13. Explore the limits of disentanglement between speaker identity and content

14. Compare and contrast evidence for and against disentanglement
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1.5 Thesis Outline

Chapter 1: Introduction. This chapter introduces a plurality of disentanglement approaches
from the image and speech domains. It presents open issues that are related to disentanglement
for speech representations including definitions, assumptions, and evaluation. The problem
statement and contributions of the thesis are discussed.
Chapter 2: Background. Relevant related work is presented and summarized.
Chapter 3: Methods to Estimate Speech Authenticity and Naturalness. Speech
representations are introduced in the context of determining speech authenticity (i.e., spoofing
detection). Building upon the representations for authenticity, new methods are presented for
estimating synthetic speech quality and a new tool is developed for later use in Chapter 5.
Chapter 4: Methods to Disentangle Representations of Speaker Identity. Methods
to disentangle information from existing speaker representations are introduced. It is shown
that traditional speaker representations contain much more information than speaker identity.
An autoencoder approach is used as a disentanglement technique. Several architectures are
compared for disentangling style and emotion from speaker identity. The limitations of this
approach are discussed.
Chapter 5: Methods for End-to-End Disentanglement. Following from the limitations
that were uncovered from the experiments in Chapter 4, an end-to-end disentanglement technique
is introduced. The underlying architecture is an autoencoder with vector quantization. Several
versions of the architecture are compared for disentangling speaker identity, content, and F0
representations. Multilingual disentanglement is also explored.
Chapter 6: Intrinsic Analysis of Disentangled Representations The representations
learned in Chapter 5 are evaluated using techniques from language modeling such as perplexity.
The representations are visualized. The representations are probed for their informational
content.
Chapter 7: Extrinsic Analysis of Disentangled Representations. The representations
learned in Chapter 5 are evaluated using a variety of tasks from speech processing including
speaker diarization, phone recognition, voice conversion, linguistic code-switching, and content
privacy masking. Counter-factual tasks are presented to identify which representations perform
well on tasks and which do not.
Chapter 8: Conclusion. Final thoughts and considerations are discussed.
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Chapter 2

Background

2.1 Introduction

The experiments in this thesis require background knowledge in several key areas: speaker voice
recognition, embeddings in speech synthesis, and speech re-synthesis. This chapter provides
such a background for the reader and introduces important concepts that will be referenced in
later chapters. The background is not meant to be exhaustive and the reader is encouraged to
read each of the cited papers for a more thorough tutorial.

2.2 Speaker Recognition

Speaker recognition is the ability to determine the identity of a person based on the sound of
their voice. Speakers can be recognized by other humans or automatically by a machine and
this thesis is concerned primarily with the latter. In general, speaker recognition is a form
of biometric authentication that uses features of the human voice as markers of uniqueness.
Recognizing a speaker can be done using techniques that depend on the spoken content of an
utterance and that is called text-dependent recognition [Heigold et al., 2016]. Text-dependent
recognition requires the speaker to be identified correctly but the speaker must also be saying
the correct content, as with a passphrase or password. Another form of recognition is completely
independent of content and likewise called text-independent recognition [Kinnunen and Li,
2010]. In addition, speaker recognition can involve identifying a person out of a population
(identification) or it can involve verifying that a person is who they claim to be (verification)
[Reynolds, 1995].

Both types of content and both types of speaker recognition are relevant to the work that
is presented throughout this thesis. For example the quality and authenticity experiments in
Chapter 3 deal with text-independent speaker verification, and the disentanglement experiments
in Chapter 5 explore the separation of speaker identity from content. This section will provide
background about the types of variability that must be modeled in order to perform speaker
recognition, how speaker recognition is evaluated, and an overview of anti-spoofing techniques
that prevent speaker recognition failure or intrusion. While this thesis is not about Gaussian
mixture models (GMMs) or factor analysis, those two topics introduce ideas and terminology
that led to the creation of speaker representations from deep neural networks as well as the
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techniques for generally scoring or evaluating the speaker representations that are used in
this thesis. As Lee et al. [2020] describes, speaker recognition is an evaluation-driven research
area and methods are traditionally developed with performance in mind. In general, speaker
recognition systems are usually evaluated on standardized datasets from the U.S.-based National
Institute for Standards and Technology (NIST)1 through annual challenges and campaigns which
commenced in the year 2000 [Doddington et al., 2000]. For an additional historical viewpoint of
speaker recognition, the reader is encouraged to explore Campbell [1997].

2.2.1 Sources of Variability

As Hansen and Hasan [2015] explain, there are two main types of variability that must be
considered when it comes to modeling individual speakers using voice as a biometric identifier.
First, intra-speaker variability describes how speech from a single speaker may appear different
depending on environmental factors or speaker affect. When dealing with intra-speaker variability,
the goal is to reduce it as much as possible so that only the speaker is modeled and not the
environment or affect. On the other hand, inter -speaker variability leads to the objective of
maximizing differences among individuals as much as possible in order to observe individuals as
unique speakers. Both types of variability are considered to be informational factors.

The human voice can exhibit a lot of variability for any given speaker. In some cases the
variability is based on how a person sounds at different times of the day, the emotions that they
are feeling, or health issues such as illness. Variability can also be related to the environment
or technology that is used to capture and record the voice such as the microphone position
and quality, and room acoustics. Intra-speaker variability can also be considered in terms of
mismatch between model and test conditions, which are referred to as enrolment and test. An
example is if a particular microphone is used when enrolling a speaker for model training, but
then a different microphone is used when the speaker presents for recognition at test [Hansen
and Hasan, 2015].

For speaker recognition, it is important to minimize or reduce all forms of intra-speaker
variability as much as possible in order to achieve good recognition performance. This is a
challenging task and it requires mathematical or machine learning techniques to achieve good
results. The basis of minimizing intra-speaker variability is that sometimes speakers will have
been recorded in different recording sessions and with varied conditions but the underlying
speaker identity remains the same. In order to model a given speaker’s identity, it is necessary
to model information in a voice recording that remains unchanging from one session to the
next. This is also challenging when the words being spoken also change from one session to the
next. Dealing with variability between recording sessions is considered to be one of the most
challenging issues in speaker recognition applications [Kenny, 2005; Vogt and Sridharan, 2008].
Intra-speaker variability is often referred to as session or channel variability. In this thesis the
intra-speaker variability will be referred to as channel information. Methods for dealing with
channel information will be described in 2.2.2.

1https://sre.nist.gov/
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2.2.2 Representations for Modeling Variability

2.2.2.1 GMM Supervectors

The work of Reynolds and Rose [1995] and Reynolds [1995] established that Gaussian mixture
models (GMMs) can effectively model speaker and session variability using low-level descriptors
of the speech signal. The low-level descriptors include features such as cepstrum or mel-cepstrum
features as well as the delta or delta-delta features that describe how the low-level descriptors
change over time [Campbell, 1997]. GMMs are based on distributions of features represented
by the means and variances of model parameters that are estimated from data for chosen
low-level descriptors. GMMs explain observations from data. GMMs can be trained using the
expectation-maximization algorithm [Reynolds and Rose, 1995] which provides an iterative way
of efficiently calculating model parameters.

It is possible to formulate the problem of speaker recognition in a way that uses known
data from known speakers in order to establish appropriate thresholds for deciding speaker
identity. A single model can be created and used for all speakers in a task, and that model is
referred to as the universal background model (UBM). In speaker recognition research, there is
also an assumption that each utterance is spoken by only one speaker. Multiple speakers and
multiple sessions per speaker are modeled by Gaussian distributions in the UBM. From the
UBM, a GMM model can be trained that maximizes the likelihoods for speakers given the model
parameters. A GMM for speaker recognition can therefore be trained from a very large UBM.

The utility and application of GMMs for speaker recognition depends on how many speakers
were in the initial data as well as how similar or different those speakers are to each other.
For example, a UBM with more variety of speakers and more intra-speaker variability may
generalize better in unseen conditions. GMM supervectors can be created such that the values
stored in a vector represent the GMM model parameters [Wan and Renals, 2003; Dehak and
Chollet, 2006; Dehak et al., 2007; Dong et al., 2008]. GMMs can also be used to create eigenvoice
representations which effectively reduces the number of parameters that must be estimated
[Kuhn et al., 2000].

The GMM supervectors and resulting eigenvoice representations can be used for calculating
a difference between two audio sources (e.g., two audio files containing speech), based on the
features being modeled. The difference between two audio sources is used for confirming a
hypothesis that the two audio sources come from the same or different speaker. Making a
decision for the hypothesis requires a log-likelihood ratio. It is difficult to know or guess an
appropriate log likelihood ratio threshold for confirming the hypothesis [Reynolds, 1995] so the
thresholds are often determined experimentally.

2.2.2.2 Factor Analysis

One of the main techniques for dealing with variability is based on joint factor analysis (JFA)
theory that was developed by Kenny [2005]. Factor analysis deals with the ability to model
speakers and channel information that is found in a GMM. Factor analysis treats the GMM
supervector s for an utterance as a linear combination of components as in Equation 2.1:

s = m+ Vy + Ux +Dz (2.1)
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where the variable m represents a UBM that has been calculated from a database of speakers.
The variable Vy is an eigenvoice matrix for the speaker factors y of a given speaker. The
variable Ux is the eigenchannel matrix for channel factors x in a given utterance. The variable
Dz is a residual matrix with residual factors z such that it contains any factors that are not
speaker or channel factors. The term m is a speaker-independent representation (of all speakers
in the UBM) while the term Vy is speaker-dependent for a given utterance. The term Ux is
considered to represent channel information. As for the Dz term, although it is a residual, it is
a speaker-dependent residual. All of these terms together define a GMM supervector according
to factors of information that vary within a speaker as well as across speakers, for a given
utterance. By formulating the variability in this manner, using eigenvoice and eigenchannel
matrix representations, it is possible to use linear algebra to decompose sets of GMM supervectors
into these factors and further reduce information related to intra-speaker variability via the
channel factors while maximizing the inter-speaker variability via the speaker factors. A GMM
supervector with high utility has minimized intra-speaker variability and maximized inter-speaker
variability using the factor analysis techniques. For a derivation of the GMM supervector model
and techniques for estimating the model parameters, see Section 1 and Section 2 of Kenny et al.
[2008].

2.2.2.3 i-Vectors

One of the persisting challenges from GMM supervector modeling and factor analysis was that
information about speaker was sometimes found in the speaker factor as well as the channel
factor, as these two factors were difficult to separate completely. To address that problem,
the original JFA technique [Kenny, 2005; Kenny et al., 2008] was further expanded by Dehak
et al. [2009] such that the speaker factors and channel factors were treated as a single matrix
representation. The single matrix was termed a total variability matrix and it was of lower rank
than the original speaker and channel factor matrices from JFA. The expanded factor analysis
from Dehak et al. [2009] is shown in Equation 2.2 defining M as a speaker- and channel-dependent
GMM supervector:

M = m+ Tw (2.2)

where m represents the means of a UBM, the matrix T is a low-rank rectangular matrix
representing variability, and w is a random vector of values following a standard normal
distribution. The term w represents factors of total variability. Unlike the variability described
by GMM supervector decomposition earlier in Equation 2.1, the total variability matrix M

in Equation 2.2 assumes that all of the utterances from a given speaker (including multiple
recording sessions) are from different speakers. The effect of treating the intra-speaker variability
in this way is that factor analysis would behave as a method for feature extraction such that
the term w contains a representation of a given speaker. For the full specification of the total
variability model as well as the techniques for normalization please see Section 2 and Section 3
of Dehak et al. [2009]. The w representation was termed the i -vector as it represents the identity
of a speaker as a vector [Dehak et al., 2011].

The i -vector model has been widely adopted for a variety of tasks. For example, it has been
shown that i-vectors can be applied to language identification [Martinez et al., 2011; Li and
Narayanan, 2014]. The i -vector has also been successfully adapted to model and predict channel
factor characteristics such as microphone type or noise classes based on signal-to-noise ratio
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(SNR) [Ferrer et al., 2012]. Later, Van Segbroeck et al. [2014] showed that i -vectors also encode
useful intra-speaker characteristics such as changes in cognitive load that result from reading
easy versus difficult sentences out loud. A summary of the variety of applications of i -vectors
can be found in Verma and Das [2015]. i-vector representations are utilized in this thesis in
Chapter 4.

2.2.2.4 x -Vectors

Neural speaker embeddings were introduced by Heigold et al. [2016] and Variani et al. [2014]
to overcome issues of computational efficiency and model footprint that were problematic in
the i -vector modeling approach. The benefits of developing speaker representations from neural
network embeddings are that the neural embeddings scale well to larger datasets and they do
not require as much heuristic parameter tuning compared to i-vectors. Heigold et al. [2016]
showed that neural embeddings significantly outperformed i -vectors for speaker verification. The
approach used a deep neural network that was trained to predict whether pairs of utterances
were from the same or different speaker.

The original neural speaker embeddings from Heigold et al. [2016] were referred to as d -vectors
but these were quickly superseded by x -vectors. The approach for d -vectors was text-dependent
and therefore limiting for generalization to other phrases [Heigold et al., 2016]. The d -vectors
were created in collaboration with Google for the purpose of performing speaker verification when
the user interacts with their devices by saying: “Okay Google.” To overcome the restrictions
of text-dependent speaker representations, a text-independent approach was developed and
presented in Snyder et al. [2016, 2018] and they called this text-independent approach x -vectors.
The x -vector technique divided the speaker modeling task into two separate but related steps:
creating neural embeddings and evaluation. This thesis deals with x -vectors in Chapter 3 and
Chapter 4, and to a lesser extent they are used in Chapter 5 for evaluating similarity among
speakers for synthetic speech.

In Snyder et al. [2017], a neural network architecture is shown that is used to create x -vector
embeddings (re-created in this chapter as Figure 2.1). The input is a series of frames belonging
to an utterance of length T frames (x1, x2, ..xT ). The network is a time-delay neural network
(TDNN) architecture because the frame-level layers utilize temporal context of t− 8 to t+ 8

frames. The first five layers operate on the frames using a temporal context. The statistics
pooling layer calculates the mean and standard deviation of activations for the final layer
operating at the frame-level. After the statistics pooling, there are two fully-connected layers
which operate at the segment level. The final layer of the network (during training) is the
softmax layer and it is applied to estimate the probability of a speaker given the utterance
frames. At inference, the softmax layer is discarded and the x -vector is represented by the
activations in the network for one of the fully-connected layers. The actual x -vector embedding
can be either embedding a or b. This thesis uses embedding b as it is shown in Figure 2.1. In
this thesis, the same architecture that is described in Figure 2.1 is used for creating x -vectors
that model environmental factors (rather than speakers) for evaluating speech synthesis quality
and detecting speech spoofing attacks in Chapter 3.
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P(spkri | x1, x2, x3... xT)

x1, x2, x3... xT

Figure 2.1: The time-delay neural network (TDNN) architecture from Snyder et al. [2017] for
creating an x -vector embedding (either embedding a or b). The input is a series of frames
belonging to an utterance of length T frames (x1, x2, ..xT ). The output of the network (during
training) is the softmax that estimates the probability of a speaker given the utterance. At
inference, the softmax layer is discarded and the x -vector is represented by the activations of
embedding a or b.
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2.2.2.5 Encoded Information

It was previously mentioned in Section 2.2.2.3 that i -vectors can encode a variety of information
from the speech signal such as cognitive load [Van Segbroeck et al., 2014]. Further studies
have shown that both i -vectors and x -vectors are encoding a variety of information that is not
specifically relevant to speaker recognition [Raj et al., 2019; Peri et al., 2020a; Moro-Velazquez
et al., 2020]. The information encoded in speaker representations is further demonstrated by
the recently organized VoicePrivacy Initiative which seeks to develop methods that remove
identifying attributes of speaker identity from speech for privacy reasons [Tomashenko et al.,
2020]. The basis for the work presented in this thesis is that multiple types of information can be
encoded in i -vectors and x -vectors. The extra information is unwanted because it interferes with
speaker recognition. However in this thesis, the experiments presented in Chapter 4 explore an
alternative viewpoint that the information encoded in i -vectors and x -vectors could be separated
or disentangled from other informational factors such as speaker factors, and then retained as
an altogether new representation.

Work from Raj et al. [2019] showed that i -vectors and x -vectors also encode speaker gender,
speaking rate, words, phonemes, length of utterance, and the type of noise used for data
augmentation. In order to establish that the i -vectors and x -vectors contain such information,
Raj et al. [2019] formulated a probing task. The i -vectors and x -vectors were treated as inputs
to a machine learning classification task using a multi-layer perceptron (MLP). They report
classification accuracy for each type of probing task as well as how the accuracy varies based on
the size of the i -vector and x -vector dimensionality (128, 256, 512, 768). Their primary objective
was to understand if data augmentation during the process of i-vector and x -vector training
and extraction could improve speaker recognition performance. They conclude that using noise
augmentation during the training and extraction process influences the i -vectors and x -vectors
to encode more information relevant to speaker recognition and less of the irrelevant information.
Another major finding from Raj et al. [2019] was that i -vectors encode more information about
recording session, speaker gender, and words compared to x -vectors. In addition, the x -vectors
performed better on their text-dependent speaker recognition task. Taken together, this evidence
suggests that x -vectors are a better representation of speaker identity.

Shortly after the disentanglement experiments in Chapter 4 of this thesis commenced, Peri
et al. [2020a] and Peri et al. [2020b], attempted to disentangle information encoded in x -vectors
to arrive at better representations of speaker identity so that speaker recognition performance
could be improved. The disentanglement method is described in Peri et al. [2020b] as an
encoder-decoder system with two auxiliary prediction tasks that attempt to predict information
from the learned latent space. The technique was evaluated using a probing classification task
similar to the one described in Raj et al. [2019]. Disentanglement was evaluated based on a
loss or gain of classification accuracy over channel factors (room size, microphone type, noise
type), content factors (emotion, sentiment, lexical, and language), and speaker factors (identity
label, gender). Their disentanglement method showed a small loss of accuracy for non-speaker
factors and a small gain of accuracy for speaker factors. The work did not provide a definition
of disentanglement and the probing classification task, and gains or losses of accuracy, were
the only evaluation of the disentanglement claims. This thesis contributes new principles of
disentanglement and assesses disentanglement through both intrinsic and extrinsic tasks in
Chapter 6 and Chapter 7 respectively.
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2.2.3 Speaker Verification Anti-Spoofing

Alongside the development of speaker recognition technology and improvements from GMM
supervectors to i -vectors, there were some security vulnerabilities for speaker recognition that
were presented in the work of Faundez-Zanuy [2004]. In their work, eight different types of
biometric verification attacks (including those on voice) were outlined. The types of attack
ranged from sensor-level where an attacker could record and replay the voice of an authorized
user to the decision-level where the final authentication system can be overridden. All of the
attack types were categorized into two main groups: communication channels and system
modules. The attacks involving communication channels exploit the fact that data is in transit
or being transmitted in physical space from one module to another. The attacks involving
system modules involve manipulating components of the module and therefore require some
insider knowledge of the system module configurations.

More recently, speaker verification anti-spoofing has become a very active research area [Wu
et al., 2015b; Todisco et al., 2016; Sahidullah et al., 2015; Wu et al., 2017; Todisco et al., 2019]
with biennial international challenges starting in 2015 and continuing to the present [Wu et al.,
2015a]. The international challenge is called Automatic Speaker Verification Spoofing Challenge
(ASVspoof)2. This challenge has been held in 2015, 2017, 2019, and 20213. Only the 2019
challenge tasks and data are used in this thesis, but references for the other years challenges are
provided here.

The first challenge in 2015 offered a dataset of spoofed and bonafide speech samples where
the spoofed were generated using text-to-speech synthesis or voice conversion [Wu et al., 2015b].
The 2017 challenge [Delgado et al., 2018] introduced an additional type of attack called “replay”
as well as a baseline system using a new feature called constant-Q cepstral coefficient (CQCC)
with Gaussian mixture model [Todisco et al., 2016, 2017]. The 2019 challenge [Todisco et al.,
2019] introduced a second baseline [Sahidullah et al., 2015], a new evaluation metric (discussed
below in 2.2.3.3) [Kinnunen et al., 2018] and improved datasets [Wang et al., 2020b]. The 2021
challenge introduced a third task involving deepfakes [Nautsch et al., 2021].

This thesis explores representation learning for speaker verification anti-spoofing in Chap-
ter 3.2 and utilizes similar representations for speech synthesis naturalness estimation in Chap-
ter 3.3. The experiments in Chapter 3.2 deals with detecting physical access spoofing attacks in
the 2019 challenge. The experiments in Chapter 3.3 utilize the dataset from 2019 logical access
spoofing attacks.

The datasets for the 2019 physical access and logical access are described below, along with
two of the evaluation metrics from the 2019 challenge. Two main types of attacks were considered
in the challenge: Logical Access (LA) and Physical Access (PA). In both tasks, the datasets
are derived from VCTK corpus4, comprising 107 speakers (46 males, 61 females). The speakers
were partitioned into three sets: training, development, and evaluation with non-overlapping
speakers. Each partition contained 20, 10, and 48 unique speakers, respectively.

2https://www.asvspoof.org/
3At the time of this writing, the 2021 challenge and related workshop are underway but the evaluation

datasets have not been publicly released.
4https://datashare.is.ed.ac.uk/handle/10283/2651
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2.2.3.1 Physical Access Attacks

The physical access (PA) spoofing attacks that are part of the ASVspoof challenges correspond
to attacks involving communication channels first described by Faundez-Zanuy [2004]. The
nature of this attack is based on the idea that speech from a valid authentic speaker has been
recorded and then replayed (perhaps out of context) to a speaker recognition system. The 2019
PA dataset is described in detail in [Wang et al., 2020b].

The speech samples in the 2019 PA dataset have simulated conditions to ensure precisely con-
trolled experimental variables. Different environments (determined by room size, reverberation
time, talker-to-ASV distance) and different attacks (determined by attacker-to-talker distance,
replay device quality) are the variables that are considered in the simulation. The environment
is defined using a triplet S,R,Ds where S is the room size, R is the reverberation time (T60),
and Ds is the distance between the talker and the ASV system. Each information type in
this triplet can take on one of three categorical values as shown in Table 2.1. The attack is
characterized using a duple Da, Q where Da is the distance between the attacker and talker,
and Q is the replay device quality. The variables for attack type are described in Table 2.2.
Each datum in the PA challenge dataset consists of a sound file as well as these triple and duple
labels indicating if the speech file represents an attack (spoofed) or not (bonafide).

labels
Environment Variable a b c

S: Room size (m2) 2-5 5-10 10-20

R: T60 Reverberation (ms) 50-200 200-600 600-1000

Ds: Talker-to-ASV distance (cm) 10-50 50-100 100-150

Table 2.1: Environment variable types and values in the ASVspoof 2019 Physical Access (PA)
challenge dataset. The environment variables are represented by a triple (S,R,Ds) where each
variable can take a categorical value a, b, c

labels
Attack Variable A B C

Da: Attacker-to-talker distance (cm) 10-50 50-100 >100

Q: Replay device quality Perfect High Low

Table 2.2: Attack variable types and values in the ASVspoof 2019 Physical Access (PA) challenge
dataset. The attack variables are represented by a duple (Da, Q) where each variable can take a
categorical value A,B,C

2.2.3.2 Logical Access Attacks

The logical access (LA) spoofing attacks are considered to be a type of impersonation attack
because this type of attack involves text-to-speech (TTS) synthesis and voice conversion (VC)
[ISO/IEC JTC1 SC37 Biometrics, 2017]. In this thesis, the 2019 LA dataset is used for evaluating
speech synthesis naturalness rather than for anti-spoofing. The LA dataset is described in detail
in [Wang et al., 2020b]. One of the benefits of this dataset is that it contains a mixture of
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Table 2.3: Overview of TTS/VC systems and their identifiers in the ASVspoof 2019 Logical
Access (LA) dataset. Each system is identified with relevant citation and the training or
validation set where it was used.

System ID TTS/VC Partition Reference(s)

A01 TTS Train/Valid Zen et al. [2013]; van den Oord et al. [2016]

A02 TTS Train/Valid Zen et al. [2013]; Morise et al. [2016]

A03 TTS Train/Valid Wu et al. [2016]; Morise et al. [2016]

A04 TTS Train/Valid Schröder et al. [2011]; Steiner and Le Maguer [2018]

A05 VC Train/Valid Hsu et al. [2016]; Huang et al. [2018]; Morise et al. [2016]

A06 VC Train/Valid Matrouf et al. [2006]

A07 TTS Eval Wu et al. [2016]; Tanaka et al. [2019]

A08 TTS Eval Wang et al. [2019a]

A09 TTS Eval Zen et al. [2016]

A10 TTS Eval Shen et al. [2018]; Jia et al. [2018]

Wan et al. [2018]; Kalchbrenner et al. [2018]

A11 TTS Eval Shen et al. [2018]; Jia et al. [2018]

Wan et al. [2018]; Griffin and Lim [1984]

A12 TTS Eval van den Oord et al. [2016]

A13 TTS+VC Eval Li et al. [2015]; Kobayashi et al. [2018]

A14 TTS+VC Eval Liu et al. [2018]; Kawahara et al. [1999]

A15 TTS+VC Eval Liu et al. [2018]

A16 TTS Eval Schröder et al. [2011]; Steiner and Le Maguer [2018]

A17 VC Eval Hsu et al. [2016]; Huang et al. [2018]

Kobayashi et al. [2018]

A18 VC Eval Kinnunen et al. [2017]

different types of speech synthesis systems. The LA dataset is divided into 3 partitions consisting
of training, validation, and held-out evaluation data. In the training and validation set, the
same 4 TTS and 2 VC systems are used in these two partitions. In the held-out evaluation
set, a different set of 7 TTS and 5 VC systems are used and these systems are unique to the
evaluation set. Table 2.3 shows each of the system IDs for the entire LA dataset as well as
which partition each system belongs to and the relevant citation for the system design including
separate vocoder where appropriate.

2.2.3.3 Anti-Spoofing Evaluation

There are two metrics that are relevant to speaker recognition anti-spoofing in this thesis: equal
error rate (EER) [Wu et al., 2015b] and tandem detection cost function (tDCF) [Kinnunen
et al., 2018]. Both of these metrics are used in Chapter 3.2 to evaluate representation learning
for speech replay spoofing detection. The EER metric provides a single value that describes the
error rate at which the false alarm rate (FAR) and false reject rate (FRR) are both equal. The

26



CHAPTER 2. BACKGROUND

FAR is a monotonically decreasing function and the FRR is a monotonically increasing function,
both based on θ where θ is the threshold setting for deciding that an item is spoofed or bonafide.
The threshold setting can be set to any value, as it provides a customized setting for real-world
systems that may desire a higher FAR or higher FRR based on the specific application [Wu
et al., 2015b]. The FAR is shown in Equation 2.3 and the FRR is shown in Equation 2.4. When
using the EER to judge the quality of a spoofing countermeasure, lower EER values are better
because this indicates that the countermeasure achieves the lowest possible number of misses
and false alarms when the FAR and FRR are equal.

FAR(θ) =
#spoofed trials with score > θ

#total spoofed trials
(2.3)

FRR(θ) =
#genuine trials with score ≤ θ

#total genuine trials
(2.4)

While the EER of an anti-spoofing countermeasure system can assess the countermeasure in
a standalone fashion, it does not reflect the real-world use case which depends on an ASV system.
The tDCF metric is an extension of the detection cost function (DCF) that was originally used
for evaluating speaker recognition systems [Doddington et al., 2000]. The DCF provides a single
value that evaluates the performance of automatic speaker verification without spoofing. By
extending the DCF to tDCF, then it is possible to obtain a single value that evaluates the
performance of spoofing countermeasures that operate in tandem with an automatic speaker
verification system. The tandem performance of both the spoofing countermeasure and the
speaker verification system reflect the real-world use case.

tDCF (s, t) =Casv
miss · πtar · Pa(s, t)

+ Casv
fa · πnon · Pb(s, t)

+ Ccm
fa · πspoof · Pc(s, t)

+ Ccm
miss · πtar · Pd(s) (2.5)

The tDCF metric is based on four main types of trials:

• a: target trial miss, CM system accepts, ASV system rejects

• b: non-target trial false accept, CM system accepts, ASV system accepts

• c: spoof trial false accept, CM system accepts, ASV system accepts

• d: target trial miss, CM system rejects, ASV system pass

The term trials is used here to describe positive and negative exemplars that are passed to the
tandem ASV+CM system to explore how it handles various errors. Target and non-target trials
refer to the expected decision by the ASV system whereas a spoof trial refers to the expected
decision by the CM system. A target trial means that the speaker presented for verification in
the ASV system is the correct speaker (and should be accepted) whereas a non-target speaker
presented to the ASV system is an incorrect speaker (and should be rejected). Likewise a spoof
trial should be rejected by the CM system. Some spoofing attacks, such as replay attacks, imply
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that it is possible to present a spoofed trial of a target speaker but in this case the trial should
be rejected by the CM system even though it is a target speaker (type d).

Equation 2.5 shows the tandem detection cost function considering an automatic speaker
verification system (ASV) as well as a spoofing countermeasure system (CM). The details of
this function can be found in Kinnunen et al. [2018]. The tDCF calculation that is shown in
Equation 2.5 reflects a single value for the system s and a decision threshold t (previously referred
to as θ in this thesis when describing EER). The terms Casv

miss, Casv
fa , Ccm

fa , Ccm
miss respectively

represent the cost of an ASV system rejecting a target trial, the cost of an ASV system accepting
a non-target trial, the cost of a CM system rejecting a bonafide trial, and the cost of a CM
system accepting a spoofed trial. The term π represents the priors. For example, πtar, πnon and
πspoof each represent the priors for trials that are target, non-target, and spoof. The terms for
P represent each of the four types of trials (a, b, c, d). As with the EER, a lower tDCF score is
preferred since a lower tDCF score indicates fewer errors between the ASV and CM systems.

2.3 Embeddings in Speech Synthesis

This section discusses some of the recent advances related to representation learning for speech
synthesis, including voice conversion (VC) and text-to-speech (TTS) synthesis. When neural
TTS synthesis was first introduced by Zen et al. [2013] and Lu et al. [2013], it was difficult to
harness the power of multi-speaker datasets or to create speech output sounding like a specific
speaker. In order to create speech for multiple speaker voices, it was necessary to train a TTS
system on speaker-specific data (if available) or train an “average” voice on multiple speakers
and then apply a separate post-processing step, such as voice conversion or speaker-adaptation
[Yamagishi and Kobayashi, 2007]. Another technique was developed thereafter that involved
using a speaker “code” during training to assist TTS training to learn that some of the training
data belonged to different speakers such as in the work of Luong et al. [2017]. In their work, they
experimented with one-hot, numeric and discriminant condition codes from the field of speaker
recognition [Xue et al., 2014] for both multi-speaker TTS and speaker-adaptation. Luong et al.
[2017] found that one-hot speaker encodings resulted in better naturalness but the discriminant
condition codes resulted in higher speaker similarity. The discriminant condition codes were
modeling speaker characteristics in a way that was not possible with one-hot vectors because
the representations were richer and accounted for more nuanced variation.

Embeddings in speech synthesis are relevant to this thesis because they involve learning and
using representations that model information such as speaker, gender, age [Luong et al., 2016]
emotion [Akuzawa et al., 2018] or speaking style [Wu et al., 2018]. There are generally two ways
that learned representations are treated in speech synthesis:

• representations are learned internally to a speech synthesis system and trained concurrently

• representations are learned externally and then incorporated into a speech synthesis system
and used for training speech synthesis

The following sections (2.3.1 and 2.3.2) provide several specific examples of how representation
learning has been used in speech synthesis. In this thesis, representations that are learned in
Chapter 5 are later used in downstream speech synthesis tasks such as voice conversion and
multilingual speech synthesis in Chapter 7.
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2.3.1 Voice Conversion

Voice conversion is an area of research that involves converting speech from a source speaker
into the voice of a target speaker, without modifying the content information. A full and recent
survey on voice conversion can be found in Sisman et al. [2020]. The research area of voice
conversion has recently been accelerated by the introduction of international challenges, starting
in 2016 [Wester et al., 2016; Toda et al., 2016] and continuing every two years with challenges in
2018 [Lorenzo-Trueba et al., 2018] and 2020 [Zhao et al., 2020a]. These challenges provide an
opportunity for researchers to build competing systems and contribute new techniques to the
field. The effort is growing as the 2016 challenge had 17 participants, the 2018 challenge had 23
participants, and the 2020 challenge had 30 participants. Each participant can be a company
or academic team or individual. Most of the system entries in the 2020 Voice Conversion
Challenge were based on neural networks and four systems used an encoder-decoder model
[Tomashenko et al., 2021]. The encoder-decoder models learn latent space representations and
these representations can be passed to the decoders in order to control the speaker identity.

Separate from the biennial voice conversion challenges, there has been recent work on using
speaker representations in neural vocoders for synthesising speech from either very few training
examples (few-shot) [Liu et al., 2018], one training example (one-shot) [Wu and Lee, 2020] or no
training examples (voice cloning) [Arık et al., 2018]. In all of these cases, representations that
model speaker identity are shown to be helpful for speech synthesis and result in quality voice
conversion with less training data requirements to generalize to unseen speakers.

Huang et al. [2020] suggests that voice conversion success comes from disentanglement
between speaker identity and spoken content and that more disentanglement results in better
voice conversion. They describe that it is problematic if there is residual speaker information
from the source speaker being propagated through their system since it has the effect of mixing
speaker information between the source and target speakers. They propose a VC system that is
based on a variational autoencoder (VAE) where the VAE learns to generate speech parameters,
such as those obtained or derived from features using the WORLD vocoder analysis (spectral
envelope, mel-cepstrum coefficients, fundamental frequency and aperodicity) [Morise et al., 2016].
There is one adversarial discriminator for each type of speech parameter. A speaker classifier is
applied to the latent space of the VAE and is used to encourage disentanglement of phonetic
information and speaker information.

The work of Huang et al. [2020] uses a measure of disentanglement that was first introduced
in Huang et al. [2019]. The disentanglement evaluation involves measuring a distance, such as
cosine distance, between latent speaker codes from the trained VAE. A pair of parallel sentences
is taken from the source and target speaker such that the phonetic content is the same. Then
the distance between latent speaker codes for source and target speaker is calculated. If the
disentanglement is very good then the source and target speaker codes will have a high similarity
(or low distance). A similar approach to evaluating disentanglement is provided in this thesis
in Chapter 6 using data probing techniques to assess if speakers saying the same content are
similar or different. A cosine similarity measure is also used in Chapter 5 to assess whether a
given speaker code is consistent for a given set of utterances.
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2.3.2 Text-to-Speech Synthesis

This section discusses representation learning for two main issues in text-to-speech (TTS)
synthesis: multi-speaker synthesis and expressive synthesis. Both of these areas of TTS research
have extensive histories spanning several decades [Pitrelli et al., 2006; Yamagishi et al., 2008,
2010; Schröder, 2009; Govind and Prasanna, 2013; Liu and Mak, 2020]. This section highlights
several examples of how representations can be used in TTS when those representations are
either internally or externally trained.

2.3.2.1 Multi-Speaker Speech Synthesis

A well known multi-speaker TTS synthesis system is Deep Voice 2 [Gibiansky et al., 2017]
which is built on top of the original Tacotron TTS system [Wang et al., 2017a] but includes an
additional speaker modeling component. The speaker modeling is based on very low dimensional
representations (16-dim or 32-dim) that model individual speakers in the training data. The
representations are located in each module throughout the deep neural network (segmentation,
duration, frequency, vocal and character-to-spectrogram modules). The representations are
learned during system training simultaneously as with the TTS synthesis components. The
Deep Voice 2 system was evaluated on two different multi-speaker datasets consisting of 108
speakers and 477 speakers each. In both sets of experiments, the speech output quality was
shown to be comparable to a natural audio baseline and importantly the voices learned by the
system were distinct and distinguishable in a separate held-out classification task.

The work of Jia et al. [2018] further expanded the idea of using speaker embeddings in
TTS. They introduced a TTS system based on three separately trained modules: a speaker
encoder network, a synthesis network, and a vocoder network. The purpose of the speaker
encoder is to learn to encode speaker identity from waveform input into an embedding that
can be used in the synthesis network (specifically the speaker embedding is concatenated to
the synthesizer encoder output at each time step). The type of speaker embedding is based
on d -vectors [Heigold et al., 2016; Variani et al., 2014] (mentioned earlier in Section 2.2.2.4 of
this chapter). The TTS synthesis was evaluated on multi-speaker data from VCTK [Yamagishi
et al., 2019] as well as LibriTTS [Zen et al., 2019]. Their experiments show that the speaker
embeddings helped achieve high quality naturalness and speaker similarity on both datasets.
In addition, they performed a cross-domain experiment by training on one dataset (such as
VCTK) and testing on the other dataset (such as LibriTTS). The listening test results showed
significant robustness for naturalness and speaker similarity for unseen speakers when trained
and tested across mismatching datasets.

Another example of using externally-trained speaker embeddings for TTS synthesis comes
from the work of Cooper et al. [2020]. They compared i-vectors, x -vectors and learnable
dictionary encodings (LDE) [Cai et al., 2018] in a Tacotron TTS architecture [Wang et al.,
2017a] with WaveNet vocoder [van den Oord et al., 2016]. From their experiments of generating
speech for multiple speakers, they found that LDE speaker representations resulted in the best
naturalness and speaker similarity judgements from human listeners. Furthermore, the LDE
representations allowed for zero-shot speaker adaptation where the target speaker voice was not
seen during training by components of the TTS system (in this case Tacotron and WaveNet).

The advances in multi-speaker TTS that have been described in this section highlight an
interesting shift for TTS research. In particular, speaker representations allow for training a TTS
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system on more data with more speakers, such as with the LibriTTS corpus [Zen et al., 2019] of
more than 2,400 speakers. Rather than achieving TTS synthesis of an “average” voice [Yamagishi
and Kobayashi, 2007], the TTS synthesis output can be made to sound like a specific speaker. As
the work from Cooper et al. [2020] and Wang et al. [2020a] has shown, speaker representations
can also enable a TTS synthesis system to generate speech in a speaker that was unseen during
training or only seen few times. The LibriTTS corpus is used in this thesis for training a
multi-speaker TTS system and evaluating synthetic speech naturalness in Chapter 3.

2.3.2.2 Expressive Speech Synthesis

Another area of speech synthesis where representation learning has been very helpful is expressive
speech. In Wang et al. [2018], a type of representation was introduced called global style tokens
(GSTs). The GSTs are embeddings that are learned jointly during training of a TTS system
such as Tacotron. The GSTs do not require any labels of speaking style yet they learn to
represent latent factors that correspond to speaking style. They can also be used for learning to
represent speaker identity or noise depending on the characteristics of the training data. An
expansion of GSTs was proposed by Kwon et al. [2019] using emotional speech. Other work,
such as that in Stanton et al. [2018] showed that GSTs can be controlled in a manner that
disentangles information such as style, content, speaker identity and noise - however they are
not claiming to disentangle all of these factors at the same time concurrently. In each case,
the speech synthesis quality and disentanglement was demonstrated as an improvement over
a baseline such as Tacotron (without GSTs) and they did not propose an evaluation scheme
for assessing disentanglement. Instead the term disentanglement is used in a way that could
be approximated by saying “informational factors distinguished in a way that listeners could
notice”. In this thesis, experiments in Chapter 4 explore the separation of speaking style and
emotion from representations of speaker identity.

2.4 Speech Re-Synthesis

In order to perform experiments about disentangled speech representations in this thesis, there
must first be a method or paradigm for learning representations of speech. This section introduces
the main speech re-synthesis architecture that will be used in this thesis: vector quantized
variational autoencoder (VQ-VAE) [van den Oord et al., 2017]. Vector quantization (VQ) had
its origins in the domain of signal compression as a technique to reduce the amount of bits
required to represent information such as when transmitting a signal that contains voice data
[Gersho and Gray, 1991]. VQ was also used in speaker recognition as precursory technique to
GMMs [Burton, 1987; Soong et al., 1987]. In fact, a dual encoder VQ-VAE has been proposed
recently for speech compression to overcome issues of intelligibility after speech has undergone
high levels of compression and reconstruction [Gârbacea et al., 2019].

The original VQ-VAE system architecture from van den Oord et al. [2017] is shown at
a high-level in Figure 2.2. It consists of three main components: an encoder module, a VQ
dictionary (referred to as codebook in this thesis), and a decoder. The encoder will be discussed
in this chapter in 2.4.1, the VQ codebook will be discussed in 2.4.2, and the decoder will be
discussed in 2.4.3. The decoder takes global and/or local conditions. In van den Oord et al.
[2017], the decoder was WaveRNN and the global conditions were a one-hot vector of speaker
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Figure 2.2: Original VQ-VAE system from van den Oord et al. [2017]: single phone encoder/VQ,
and one-hot speaker vector for global conditioning with WaveRNN as the decoder. This system
is used for experiments and analysis in Chapter 5, Chapter 6, and Chapter 7 where it is
referred to as VQ-VAE and distinguished from variants that were developed in this thesis for
experimentation.

labels (when multi-speaker training data was used). In the work of Zhao et al. [2020b], the
decoder was also WaveRNN and global conditions were either one-hot vectors (for speaker labels,
emotion, and gender) or LDE vectors (for speaker labels). Apart from any labels being passed
to the decoder as global conditions, the VQ-VAE training procedure is fully self-supervised.
The input is a waveform that is passed to the encoder and the output is a waveform that is
generated by the decoder.

VQ-VAE was chosen for this thesis for several reasons. At the time that experimentation
began for this thesis, the VQ-VAE paradigm was a promising but under-explored architecture
for speech representation learning. It had been used by van den Oord et al. [2017] and Zhao
et al. [2020b] and shown to produce high-quality re-synthesized speech using a neural vocoder for
English, Chinese, and Japanese for both single-speaker as well as multi-speaker data. The original
system from van den Oord et al. [2017] as well as the modifications from Zhao et al. [2020b] were
fully self-supervised and did not require any labeled training data. Those characteristics made
the VQ-VAE architecture interesting for this thesis because unsupervised and self-supervised
learning was just starting to gain traction in the speech research community around the same
time that experiments in this thesis commenced [Dhariwal et al., 2020; Locatello et al., 2019]. VQ
was becoming popular for voice conversion [Wu et al., 2020; Wu and Lee, 2020] and WaveRNN
was also being applied to voice conversion [Zhou et al., 2018]. In terms of speech representation
learning, there was some work originating at the start of this thesis that explored various forms
of “disentanglement” [Qian et al., 2020; Dhariwal et al., 2020; Hu et al., 2020; Jati and Georgiou,
2019; Luo et al., 2019] even if each of those works did not fully explore the meaning of the term
disentanglement.

There was a robust and reliable code base freely available and conveniently implemented
in PyTorch5,6 along with the WaveRNN neural vocoder as the decoder. The implementation
facilitated experiments that involved modifying the architecture for new capabilities, such as
modeling speaker characteristics in Chapter 5 of this thesis. The existing implementations also
provided system baselines for comparison and the ability to freeze particular parameters such as
the size of the learned representations and features of the learned codebook dictionaries that
will be described later in this section.

The work of Zhao et al. [2020b] showed that it was possible to extend the original model

5https://github.com/mkotha/WaveRNN
6https://github.com/nii-yamagishilab/Extended_VQVAE
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from van den Oord et al. [2017] so that two types of representations are learned at the same time
but in separate VQ codebooks. Those findings from previous work inspired the experimental
approach in this thesis except the modifications to the architecture that will be described in
Chapter 5 additionally explore global conditioning for WaveRNN based on learned utterance-
level representations. The experiments that will be presented in Chapter 5 will identify the
“best-performing” system variants for speech re-synthesis, and the learned representations from
the system variants will later be analyzed and utilized in Chapter 6 and Chapter 7 respectively.

The learning process for VQ-VAE is governed by three terms in the loss function which
balance the encoder, decoder, and VQ codebook (Equation 2.6).

L = LR + αLV Q + βLC (2.6)

First, the LR term is the reconstruction loss for the decoder, defined as − log p(x|zq(x)) which
is the negative log-likelihood of decoder output x given the decoder input zq(x). The decoder
input zq(x) consists of the encoder output ze(x) after quantization q. The second term LV Q

is the loss function for the VQ codebook, defined as ∥sg[ze(x)]− e∥22 and it is an l2 loss which
guides VQ embedding vectors e (i.e., centroids) towards the encoder output ze(x). The sg term
is a stop-gradient operator which effectively creates a non-updated constant. The purpose of the
LV Q term is to ensure that embeddings are also guided by reconstruction loss. Finally, the LC

term is a commitment loss defined as ∥ze(x)− sg[e]∥22 to ensure that the encoder commits to a
VQ embedding vector e and constrains how the VQ space is trained. Without any constraints
on the VQ space during training, an arbitrarily large number of VQ embeddings may be active
during training if the VQ embedding vectors e do not train as fast as the encoder. Therefore the
commitment loss LC term serves the purpose of encouraging meaningful VQ embeddings to be
learned during training. The weights α and β can be tuned in order to balance the values of the
loss function to ensure that no single component over-trains relative to the other components.
The first term (LR) is optimized by the decoder, the second and third terms (LV Q and LC)
are optimized by the encoder, and the third term (LV Q) optimizes the VQ embedding vectors
[van den Oord et al., 2018].

2.4.1 Encoder Architecture

For the encoder architecture in VQ-VAE, convolutional layers are used to downsample the
waveform input and compress it. There are 10 downsampling blocks where each block is a
1D convolution layer followed by another 1D convolution layer and a gated activation layer
using tanh and sigmoid functions. The outputs of gated activation are further filtered using
1D convolution. The number of channels is set to 256 for the first convolution layer, and 128
for the second convolution layer. The final 1D convolution is also set to 128 channels. An
additional residual connection is used for the block input and output. The compression ratio
of the encoder is determined by the stride of the convolution layers and the number of layers.
So if the stride is s = 2 and this stride is used in 6 of the 10 convolutional layers, then the
compression ratio is comp = 64. This value for compression ratio refers to how the informational
representation changes from being the quantity of audio samples for a file (e.g., 44800 samples
at 16 kHz) to the quantity of VQ codes in a sequence that represent the same information (e.g.,
700 VQ codes). Therefore an audio file that is 2.8 seconds of duration may be represented as
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Figure 2.3: Embeddings inside of a VQ codebook correspond to the centroids of clusters that
are learned during training. Each of the codebook entries is a centroid. The use of centroids in
VQ-VAE adds additional structure to the latent space

44800 samples (uncompressed) or 700 VQ codes (compressed) from the downsampling rate of
N/T = 250 codes/second.

2.4.2 Learnable Vector Quantized (VQ) Codebooks

This section describes the representations that are learned in the VQ codebook. Figure 2.3 shows
how the vector lookup table corresponds to cluster centroids that were learned in training. The
cluster centroids represent groupings of the VQ codebook atoms. In the VQ-VAE architecture
used in this thesis, the VQ codebook atom sizes were fixed to 128-dim vectors for all VQ-VAE
system variants and all codebooks. The atom size was set and kept constant to minimize the
variable space and focus on exploring disentanglement effects.

During training, the LC term from Equation 2.6 influences how the codebook space it utilized
because it forces the output of the encoder to map to a VQ embedding vector. By adjusting this
commitment loss, such as setting a low weight so that this loss is less influential during training,
the amount of VQ embeddings utilized by the VQ-VAE system can be controlled. The analysis
in Chapter 6 will discuss how codebooks were utilized in practice, given that they were set to
a fixed size where the codebook size corresponds to the number of potential VQ embeddings
that the encoder could commit to. If the VQ codebooks are not being fully utilized7 then it
is likely because the weighting of the LC commitment loss is too high. Further details of the
group latent embeddings can be found in Ding and Gutierrez-Osuna [2019]. They first proposed
the idea of using groupings in VQ codebooks to add additional (unsupervised) structure to the
latent space which is important especially for self-supervised learning.

Figure 2.4 shows the concept of the VQ codebook as a lookup table. Each VQ codebook
corresponds to a lookup table where the key is an integer and the value is a vector of size
128-dim. Earlier, Figure 2.3 showed a codebook of size N , where each code in the index [1, 2..N ]

has a corresponding vector. A single utterance of speech is represented by a sequence of phone
codes (and by extension a sequence of vectors), as demonstrated in Figure 2.4. The length of the
sequence of phone codes corresponds to the downsampling factor from the encoder as well as the

7For example, 256 VQ embeddings are allocated at the start of training but only 10% of them are ever active
during training.

34



CHAPTER 2. BACKGROUND

VQ
Codebook

6, 1, 10, 13, 7, 9, 18 ........... 10, 2, 1

Sequence of VQ Codebook Vectors

Sequence of VQ Codebook Indices

(time)

Encoderutterance

Figure 2.4: Concept of obtaining a sequence of codebook indices (codes) versus a sequence of
codebook vectors (vectors) that can be passed further to the decoder as global or local conditions,
or used for analysis in this chapter.

length of the original utterance. In this thesis, the codebook index keys are called codes and the
codebook vectors are called vectors. The vectors are found using VQ clustering during system
training, and the vectors are also provided to the decoder as either global or local conditions.

2.4.3 WaveRNN Decoder Architecture

The decoder that is used in the VQ-VAE architecture in this thesis is based on WaveRNN
[Kalchbrenner et al., 2018]. WaveRNN is an auto-regressive (AR) model which means that it is
a feed-forward generative sequence model that requires supervision to train. At each time step,
WaveRNN utilizes input from the previous timestep as a history and it is used as input directly
to the current timestep (rather than as a hidden state in RNNs). The supervision aspect of
WaveRNN in VQ-VAE comes from a multi-class cross-entropy loss using a dual softmax layer
that predicts a fine and coarse waveform representation. In the context of VQ-VAE, the fine
and course waveform representations from WaveRNN are compared to the input speech and
a negative log-likelihood (NLL) loss is calculated. The NLL loss corresponds to the term LR

in Equation 2.6. WaveRNN consists of three components: upsampling blocks, downsampling
blocks, and the WaveRNN module [Kalchbrenner et al., 2018].
Upsampling Block: Time scales for the code vectors and waveform are different from each
other because the encoder downsamples the code vectors. Therefore upsampling blocks are used
in the decoder so that code vectors (local conditions) are at the same operating rate as the
waveform points. Each upsampling block is a gated recurrent unit (GRU) layer followed by a
transposed convolution network.
Downsampling Block: The downsampling block of WaveRNN uses the coarse output waveform
(i.e., lower sampling rate) as an additional condition for predicting the next waveform point. To
do this, the past coarse components are downsampled and combined with the next code vectors
in a sequence. There are three downsampling blocks. The output of each one is connected to the
corresponding upsampling block like a U-net [Ronneberger et al., 2015]. For the AR feedback, a
teacher-forcing strategy is used for training, and waveforms are generated.
WaveRNN Module: This module uses dual softmax layers to separately predict coarse
waveform samples and then uses the coarse waveform to predict a fine waveform. It consists of
one shared GRU layer and two separated feed-forward layers (one for coarse and one for fine).
The global conditions are provided as an input to all layers in the decoder via concatenation.
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As described in 2.4.2, the VQ codebooks function as lookup tables so while an utterance can
be represented as a sequence of VQ codes (integers) as in Figure 2.4, each VQ code corresponds
to a vector in the codebook. The sequence of vectors can be utilized as input to WaveRNN. There
are two types of inputs to WaveRNN: local conditions and global conditions. Local conditions
are a sequence of features provided as input. For example, the input could consist of upsampled
mel filterbank features, or in the case of VQ-VAE, the input may be upsampled sequences of
VQ phone vectors. Global conditions are optional in WaveRNN. When global conditions are
specified (such as a one-hot vector or other embedding) then the vector is provided as input to
every layer in every module of the decoder.

The output of WaveRNN is a waveform at 16-bit depth. WaveRNN is considerably faster to
train than other neural vocoders such as the convolutional WaveNet [van den Oord et al., 2016]
particularly because WaveRNN has fewer parameters. While other systems like WaveNet may
achieve higher-quality speech output, WaveRNN is more suitable for experiments in this thesis
due to constrained resources. In principle, the VQ-VAE system may be trained with any neural
decoder that can accept local and global conditions. While the choice of decoder may have
some small impact on speech re-synthesis quality, the work in this thesis is centered around the
technique for achieving and assessing disentanglement rather than finding the optimal neural
network architecture and the ideal hyper-parameters.

2.4.4 Speech Analysis-Synthesis

One way to think about the utility of VQ-VAE and the learned representations is through
analysis-synthesis. Figure 2.5 shows a workflow for analysis-synthesis after a VQ-VAE system has
been fully trained. In one case, the system could be used as “analysis” to obtain VQ embeddings
from input speech. Those embeddings could then be used in some external application such
as a separate speaker recognition system. In another case, embeddings could be generated or
modified and then passed to the decoder to generate synthetic speech output. An example of this
comes from Hayashi and Watanabe [2020] using VQ-VAE representations to perform TTS. A
mapping of text to VQ codes was learned using neural machine translation and then the resulting
sequence of VQ codes was passed to the decoder as local conditions to generate speech. They
found that the compression ratio of the encoder had some impact on the performance of TTS.
If the compression ratio is too low then it is more difficult to learn the mapping between text
and VQ codes because the VQ code sequences are significantly longer than grapheme/phoneme
sequences. If the compression ratio is too high then the re-synthesized speech quality suffers
because the compressed representation is too lossy. A similar approach for TTS synthesis using
self-supervised discrete codes was also proposed by Tu et al. [2020], however their work did not
use VQ-VAE for learning discrete symbols that map to graphemes/phonemes.

2.5 Conclusion

This background chapter has summarized relevant work that forms the foundation of knowledge
required for the experiments that will be presented in subsequent chapters. While this chapter is
intended to provide the reader with important related work, each later chapter in this thesis will
contain a smaller and more focused related work section. This chapter has shown the reader how
speech representations for speaker recognition have evolved into a larger context of representations
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Figure 2.5: A workflow showing analysis-synthesis using trained VQ embeddings as local and/or
global conditions for the decoder. The embeddings could be obtained by running analysis on the
input, and then the embeddings could be used in an external application. Likewise, embeddings
could be generated, modified or manipulated and then used for the decoder to generate speech
output.

of other informational factors including emotion and style. Some representations can be learned
separately from the intended use-case and then applied to a speech technology (such as TTS) to
achieve better generalization or more expressivity of speech. A speech re-synthesis architecture
was introduced and it will form the basis for experiments with disentanglement in Chapter 5.
In addition, there was discussion of speaker spoofing in terms of the ability to detect replayed
speech or synthetic speech in different types of speaker verification attacks. Next, Chapter 3
will further explore speech naturalness and authenticity using representation learning.
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Chapter 3

Methods to Estimate Speech
Authenticity and Quality

3.1 Introduction

Representation learning has many roles in speech processing, especially for building tools that
automatically assess speech characteristics such as naturalness or authenticity. One of the
reasons why representation learning is valuable for these tasks is because it is necessary to
represent information in the speech signal abstractly at high levels, such as at the utterance
level. While certain signal-level features have been shown to correlate with naturalness or speech
authenticity, the signal-level features themselves can be used as input features into a deep neural
network (DNN) which then learns abstract representations and makes decisions about speech
naturalness.

As discussed in Chapter 2, there are two types of speech spoofing attacks: logical access
(synthetic speech and voice conversion), and physical access (replayed speech). When an auto-
matic speaker verification (ASV) system is presented with fake speech intending to impersonate
a live human talker then this type of “spoofing” is commonly referred to as a replay attack or a
presentation attack and the solution is sometimes referred to as liveness detection [Wu et al.,
2015b; Todisco et al., 2016; Sahidullah et al., 2015; Wu et al., 2017; Todisco et al., 2019].

Physical access spoofing is particularly problematic for speaker verification because technically
the speaker identity is correct, but it is an attack because a pre-recorded statement from a
talker has been taken out of context. The aim of the experiments in this chapter are to detect
whether or not a bonafide speech recording had been intercepted and subsequently replayed for
speaker verification. There are numerous variables to be modeled including elements of how
the attack was conducted as well as the type of ASV system being attacked. The approach
presented in this chapter utilizes representation learning of the environment and attack type
combined with signal-level features. The ability to automatically judge whether speech has
been recorded and re-played out of context is an active research area gaining more attention
lately due to predictive power of neural networks as well as advances in speech synthesis quality
which can be used for various types of speaker identity attacks. An adversary might obtain a
recorded snippet of authentic speech wherein the human target has used their voice to say a
keyword or passphrase. It may be easy to record and replay speech to an ASV system. However,
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automatically detecting replayed speech is a notoriously difficult task [Sahidullah et al., 2015].
A closely related problem is naturalness assessment which uses speech representations

to predict or estimate the naturalness of synthetic speech in a way that aligns with human
judgements. Automatic speech naturalness assessment can be used in a variety of speech tasks,
from speech enhancement (SE) to voice conversion (VC) and text-to-speech (TTS) synthesis.
Tools that can automatically assess synthetic speech would result in large gains in the field of
speech processing such as faster and more efficient evaluation as well as savings from expensive
listening tests. If there was an automatic speech naturalness prediction tool, it could be used
for rapid assessment and comparison of models and it would facilitate design decisions such as
the stopping criterion for TTS training. In addition, it may be possible to develop a tool that
can someday be incorporated directly into the training process or used as part of a DNN loss
function.

The purpose of this chapter is to present two related approaches to estimate speech authen-
ticity and naturalness using representation learning. Section 3.2 will address the question: how
should speech be represented in order to predict automatically whether the speech has been
recorded once or re-recorded as a physical access spoofing attack when the speech is presented
to an ASV system for speaker verification? An experimental technique will be proposed that
combines signal-level features with learned representations. The performance of the system will
also be described based on entry into the ASVspoof 2019 physical access (PA) challenge. Section
3.3 will address the question: how can synthetic speech be represented in order to automati-
cally estimate human judgements of naturalness? The experiments will include utilizing the
ASVspoof 2019 logical access (LA) challenge dataset consisting of a variety of speech synthesis
and voice conversion systems with human naturalness ratings. A variety of different types of
speech representations will be examined for how well they represent speech naturalness in a
neural network prediction task. Finally, the most promising representation will be evaluated for
generalization to a held-out text-to-speech system trained on different data (to simulate how a
speech naturalness tool may be used in a real-world laboratory scenario).

3.2 Determining Speech Authenticity

This section describes joint work with Joanna Rownicka. Joanna’s contribution was to
create and analyze the environment and attack x -vector embeddings in Section 3.2.2.2 and
Section 3.2.2.3. Joanna also was the primary author of those two sections though I helped
edit the sections. Joanna created Figure 3.1 and Figure 3.2. The remaining portions of
the work are my own including deciding which signal-level features to use, extracting the
signal-level features, experimenting with combinations of the signal features and x -vector
embeddings, implementing the CNN, training the CNN, and evaluating and submitting
the system in the official competition. In the published paper at Interspeech 2019, all
sections were co-written by both authors with myself taking the lead for approximately
85% of the writing and I was the corresponding author.

A fast-growing research area is to use automatic tools that determine speech authenticity
[Wu et al., 2015b; Delgado et al., 2018; Todisco et al., 2019; Nautsch et al., 2021]. This is an
important area of research that benefits society and consumers because speech is used more and
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more in everyday devices. Voice biometrics are becoming more prominent as an alternative to
fingerprint or face recognition because of the ease of use since voice is a natural human interface.
While voice biometric systems become more prominent, one issue that continually arises is
whether or not this type of biometric is secure enough for high-stakes access such as financial
transactions. One of the security concerns involves the ability to spoof or fake speech in order
to trick a biometric system such as automatic speaker verification (ASV). To mitigate this risk,
researchers have been working on countermeasures that detect spoofing attacks. During recent
years, there have been several international challenges where teams can compete for the best
system configuration to produce the best countermeasure. While there are many different kinds
of speech spoofing attack, including voice conversion and text-to-speech [Janicki et al., 2016;
Shiota et al., 2016; Blue et al., 2018], this chapter focuses on replay attacks.

Recent work suggests that replayed speech contains artifacts that provide clues indicating
that the speech has been recorded once, then replayed and recorded again. These clues may be
found in either the time or frequency domains [Lai et al., 2019]. Other work has explored energy-
based features [Kamble et al., 2018; Kamble and Patil, 2019], attention-based adaptive filters
[Liu et al., 2019], and convolutional neural networks (CNNs) [Chettri et al., 2018a; Himawan
et al., 2019]. It is particularly challenging to model different types of acoustic environments,
playback devices, and recording devices [Chettri et al., 2018b]. Recent work has also shown
that high-frequency sub-bands in the acoustic signal contain evidence of replay. For example,
inverted mel frequency cepstral Coefficients (IMFCCs) consistently discriminate speech replay
across several frequency sub-bands [Witkowski et al., 2017]. IMFCCs are derived by inverting
the mel-scale filterbank in the frequency domain at approximately f = 2kHz to capture more
detail from higher frequencies that would be missed by MFCCs [Chakroborty and Saha, 2009].
Other recent work has shown that Sub-band spectral centroid magnitude coefficients (SCMCs)
are the best and most consistent signal feature [Font and Cano, 2017], while the constant-Q
cepstral coefficient (CQCC) features are also promising [Nagarsheth et al., 2017]. SCMCs come
from the spectral centroid magnitudes of the filter bank energy after a Fourier transform has
been performed (i.e., in the frequency domain). After spectral centroid magnitudes are extracted
from filter banks in an audio frame, a centroid is calculated for each sub-band in that frame.
The logarithm of the centroids is taken and a discrete cosine transform is performed, resulting
in SCMC features. The SCMCs are similar to MFCCs except that the SCMCs represent energy
in a frequency sub-band more finely than MFCCs [Paseddula and Gangashetty, 2018].

The experiments that will be described in this section are related to the development of
a spoofing countermeasure system that was submitted to the ASVspoof 2019 physical access
challenge [Williams and Rownicka, 2019]. First, the specific signal-level features that were used
for anti-spoofing experiments will be presented in 3.2.2.1. Second, a novel type of x -vector
embedding will be introduced in 3.2.2.2 and these embeddings capture the recording conditions
of an utterance using the labels that were provided by the PA dataset (attack and environment
variables). Third, the x -vector embeddings will be analyzed in 3.2.2.3 to observe how they model
factors of variation from different recording conditions. Finally, a trained countermeasure system
will be presented in 3.2.3 to demonstrate that the combination of signal features and x -vector
embeddings out-performs all baselines for both metrics on the ASVspoof 2019 development and
evaluation datasets.
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3.2.1 Dataset Description

The data used for experiments in this section came from the ASVspoof 2019 Physical Access
(PA) challenge and is described in detail in [Wang et al., 2020b]. The PA track of the challenge
addresses the development of countermeasures for replay spoofing attacks. This dataset was
previously described in Section 2.2.3.1 and the reader is encouraged to review it before proceeding
further to the experiments and system descriptions of this chapter.

3.2.2 Feature Development

3.2.2.1 Speech Signal Features

Following from the features analysis for replay attack detection that was presented in [Font and
Cano, 2017] for the ASVspoof 2017 challenge, the following signal-level features were extracted:
mel frequency cepstral coefficients (MFCCs), inverted mel frequency cepstral coefficients (IM-
FCCs), rectangular filter cepstral coefficients (RFCCs), linear frequency cepstral coefficients
(LFCCs), sub-band spectral centroid magnitude coefficients (SCMCs), and constant-Q cepstral
coefficients (CQCCs) [Todisco et al., 2017]. A description of the features is provided in Table 3.1.
Static features were used because preliminary experiments indicated that the dynamic features
were not as useful in the spoofing task, especially the second-order dynamic features.

Features Coeff. num. (N) fmin − fmax (Hz)

MFCC 70 300-8000
IMFCC 60 200-8000
RFCC 30 200-8000
LFCC 70 100-7800
SCMC 40 100-8000
CQCC 50 15.62-8000

Table 3.1: Description of signal features extracted from the raw speech audio. Note CQCC used
a specific fmin from Todisco et al. [2017]

The IDIAP Python Bob.ap signal processing library was used to extract this set of signal
processing features from speech audio files [Anjos et al., 2012, 2017]. In the case of CQCCs, the
code to extract this feature was provided by the challenge organizers and is further described
in [Todisco et al., 2017]. For each audio file, the feature extractor output was an NxM -dim
matrix with N as the number of coefficients and M as the duration of the file in frames.

Each audio file in the ASVspoof 2019 dataset was of a different length. To account for the
variable length audio utterances, a further pre-processing step was performed which resulted
in a set of same-sized feature vectors that could be used as input to a classifier later on. This
pre-processing step consisted of a down-sampling technique in the feature space. This means
that for a given coefficient in a given audio file, the number of frames was down-sampled to
a constant value. The technique preserved the original per-coefficient distributions in a file
while also setting the number of frames to a constant and also preserved more information than
averaging across frames. To perform this re-sampling, the Fast Fourier Transform (FFT) was
applied in such as way that the spacing between the original frames, s = δx, then became:
s = δx ∗M/M ′. This allowed to set a constant for the number of down-sampled frames M ′
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to M ′ = 10. Effectively this procedure shortened the audio file duration to 10 frames while
preserving the mean and standard deviation of each coefficient1.

After that pre-processing step, the signal processing features were therefore represented as a
Nx10 dimensional matrix. This paragraph describes how that matrix was created. First, the
number of frames selected was M ′ = 10 based on two motivations: 1) to reduce the overall
size and overhead of the dataset for later processing, and 2) to allow the countermeasures to
operate on very short audio examples. The coefficients were then stacked on a per-frame basis,
creating a matrix, and this was done in an effort to preserve some temporal nature of the original
signal. Finally, each of the signal feature values were re-scaled to be between −1 and +1 using
per-feature max values from the training set, applied later to development and evaluation sets.
The values were re-scaled in order to align with the selection of activation function for the
regression task described in Section 3.2.3, which outputs a value between −1 (spoofed) and +1

(authentic) which was required for the ASVspoof 2019 Challenge submission.

3.2.2.2 x -vector Embedding Creation

In addition to the signal features, x -vectors [Snyder et al., 2018] were also used as auxiliary
features for the CNN model described in Section 3.2.3. The goal of using x -vectors was to
extract meaningful fixed-size utterance-level vectors representing the factors of variation, namely
environment and attack conditions, in the spoofing task. The extracted representations were
used to account for these factors in the final spoofing detection task. This effort was to improve
the system robustness to unseen conditions by leveraging information about the environment
and attack classes from the labels provided for each training example.

The Kaldi Toolkit [Povey et al., 2011] was used to extract x -vectors representing a joint
environment+attack class (which is now referred to as env+attack). The input features for
the x -vector extractor were 40-dim MFCCs, with 80 filters in a filter bank. The x -vector
extractor was a time-delay neural network (TDNN) with the same architecture as in [Snyder
et al., 2018] (i.e., 5 convolutional layers, 1 statistics pooling layer, 2 feed-forward layers for
embeddings a and b and a final softmax layer). Batch normalisation was used as well as ReLU
activations for the convolutional and feed-forward layers. This is the same TDNN architecture
that was introduced in Chapter 2.2.2.4. The x -vectors were extracted from the seventh layer of
the network (embedding a). Differently to the model in [Snyder et al., 2018] though, the one
developed here was not trained to classify speakers. The extractor was trained to differentiate
between classes jointly representing types of acoustic environments and types of attacks.

The joint env+attack classes were created by combining each category label of variation
for the simulated acoustic environments and attack types (e.g., room size, T60 reverberation
time, talker-to-ASV distance, attacker-to-talker distance, and replay device quality). From 10
attack type configurations, and 27 acoustic environment configurations (9 attacks plus authentic
speech), 270 env+attack classes were created. Training an x -vector extractor to differentiate
between env+attack classes provided the ability to learn fixed-size representations, capturing
both the type of attack and the type of acoustic environment. The classification accuracy from
the TDNN for the joint env+attack x -vectors was around 85% for 270 unique classes on a
held-out validation set (10% of training), hence these representations were meaningful.

After the x -vector extraction, the dimensionality of the x -vectors was reduced from 512-dim

1https://scipy.org/
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to 10-dim using Linear Discriminant Analysis (LDA). The LDA model also used env+attack
classes for training. The idea for reducing dimensionality to 10-dim was based on assessing the
equal error rate (EER) of the x -vectors on the development set. Multiple values of dimensionality
reduction were tried (such as 400, 300, 200, 100, 50, and 10) and the EER was examined for each
dimension size. The smallest dimension was selected (10-dim) because it gave the best EER.
Finally the performance of the learned x -vectors with dimensionality reduction was examined
on an evaluation set. For 59,400 evaluation trials with non-target proportion of 50%, the EER
in the env+attack verification task was 23.96% with the LDA dimensionality reduction.

The LDA-reduced x -vectors (10-dim) were scaled with c = 0.1 constant. Empirically the
scaling was found to have a good effect on the final system performance. Scaling x -vectors before
concatenation is conceptually similar to applying a fixed LDA-like transform in Kaldi (usually
used when i -vectors are concatenated to the input features for normalisation in ASR), which
is scaling down the dimensions that are “non-informative”. This has the effect of encouraging
stochastic gradient descent (SGD) to ignore non-informative values. Altogether, six types of
x -vectors were used for experimentation in Section 3.2.3: x -vectors that model only the attack
classes (xA), x -vectors that model only the environment classes (xE), x -vectors that jointly
model the environment and attack classes (xEA), and a version of each of these were also scaled
(xAs, xEs, xEAs). The next section will describe some of the analysis of the x -vectors.

3.2.2.3 x -vector Embedding Analysis

In this section an analysis is provided to demonstrate how the x -vector embeddings could
differentiate between different types of attacks and different types of environments. There were
27 environment classes and 10 attack classes. It is easier to show the analysis for environments
and attacks separately, compared to modeling all 270 classes for the jointly trained env+attack
embeddings (xEAs), which are the ones ultimately used in the challenge system submission.

Environment classification was an easier task (accuracy 86% on the validation set) than
attack type classification (accuracy 60% on the validation set), even though the number of
classes for classifying attacks was smaller than for classifying environment. It is possible that
this may be caused partly by data imbalance in the case of attack recognition, compared to the
evenly distributed examples for the environment classes.

To further investigate what the extracted x -vectors were capturing, the accuracy scores were
analyzed from predicting attack and environment. Figure 3.1 shows a matrix of the classification
accuracy scores for mean x -vectors per attack. First of all, it can be observed that the replay
device quality is well captured by the x -vectors. Attack classes using poor replay device quality
(indicated by the letter ‘C’ as the second letter in AC, BC, and CC) had a high classification
accuracy. However, the attack-to-talker distance does not seem to be modeled well with the
attack x -vectors. For example, scores for classes AC, BC, and CC are very close to each other,
but different than for any other classes. The most evenly distributed scores can be observed
for the medium-quality replay device classes (AB, BB, CB). In summary, the attack x -vector
embeddings can detect when the replay device is very poor. However, if the replay device
quality is near perfect, it is much more difficult to develop the spoofing countermeasures with
the proposed x -vector embeddings.
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Figure 3.1: Matrix showing the classification accuracy for each attack class using the scaled
attack+environment embeddings (xEAs). The scoring is based on the per-attack mean develop-
ment x -vectors against per-attack mean training x -vectors. Class 00 is the bonafide class. For
other labels, letters in the first position corresponds to the attack-to-talker distance (A - lowest,
C - highest), letters in the second position corresponds to the replay device quality (A - the
best, C - the worst).

Figure 3.2: Matrix showing the classification accuracy for each environment using the scaled
attack+environment embeddings (xEAs). The scoring is based on the per-environment mean
development x -vectors against per-environment mean training x -vectors. Letters in the first
position of the label ID correspond to the room size (a - smallest, c - biggest). Letters in the
second position correspond to T60 reverberation time (a - shortest, c - longest). Letters in the
third position correspond to the talker-to-ASV distance (a - shortest, c - longest).
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Figure 3.2 shows a matrix of the classification accuracy where the scores represent how well
the mean x -vectors discriminate environment classes. Recall that the environment variables are
represented as a triple of discrete categories using letters: a, b, and c. Again, the talker-to-ASV
distance and the room size do not seem to be very well captured (first and third letter position
in labels). However, the reverberation time (especially short and long) discriminates classes well.

Both spoofed and bonafide recordings were simulated in a variety of environments. So the idea
was to extract an embedding that would help to normalize out the effects of recording in different
environmental conditions, to be able to generalize well to unseen conditions at test time. Even
though the x -vectors do not differentiate very well between every attack and every environment
class, they do differentiate between some of them. Furthermore, x -vector embeddings for similar
acoustic conditions are close to each other in the x -vector space. Therefore, these can be
useful representations complementing the other signal processing features that are used for the
experiments in this chapter.

3.2.3 Experiment Design

The approach taken in this chapter for designing a spoofing countermeasure was to treat it as
a regression problem using a convolutional neural network (CNN). Categorical target labels
were converted to numerical values as follows: “spoof” became −1 and “bonafide” became +1.
The activation function was set to the hyperbolic tangent function so the output of the system
was a value between −1 and +1. The challenge evaluation plan called for negative values to
correspond to the “spoof” class and positive values to correspond to the “bonafide” class. The
system output values could therefore be interpreted to represent the degree of authenticity of
the audio. Our system was later evaluated in tandem with an ASV system known only to the
challenge organizers.

3.2.3.1 Feature Combination

Several combinations of features were explored while evaluating on the development set. For the
first case, each signal processing feature was evaluated individually as the input feature for the
CNN model. Next, each type of x -vector embedding was evaluated individually. Finally, the
signal processing features were combined with x -vector embeddings. They were concatenated
to the signal processing features at the input of the CNN model. This technique was intended
to normalize out some of the factors of variation, and to enable the system to learn a spoofing
countermeasure robustly.

The final system submission to the ASVspoof 2019 Challenge was based on two features:
SCMC signal features concatenated with the xEAs vectors (scaled and transformed as described
above). For the submission, the dataset consisted of 54,000 training instances and 29,700
development instances. The training data was therefore of size (54000, 410). These dimensions
were based on 40 SCMC coefficients by 10 frames per coefficient, plus the additional 10-dim
x -vectors. The two features were combined via concatenation. In each of the training and
development sets, there were 5,400 instances labeled as bonafide while the remaining had been
labeled as spoof, thus the dataset was extremely imbalanced for the two targets. This imbalance
was manufactured by the challenge organizers.
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Figure 3.3: Overview of the CNN system architecture submitted to the ASVspoof 2019 physical
access challenge. The system submission was based on scaled LDA x -vectors (xEAs) combined
with SCMC signal features. The system consisted of a Gaussian noise layer, and 3 1D convo-
lutional layers with max pooling. The final layers were one fully-connected layer followed by
another layer with a single output using the hyperbolic tangent activation function (to obtain
values between -1 and 1).

3.2.3.2 Convolutional Neural Network (CNN)

The system2 that was developed for the challenge was implemented with the Keras library 3

with TensorFlow backend [Abadi et al., 2016]. It was designed to perform regression and
output a continuous value to adhere to the expectations of the challenge. Figure 3.3 shows
an overview of the system architecture. The first layer of the CNN was an additive Gaussian
noise layer [Bishop, 1995; An, 1996; Dutta et al., 2018]. This noise layer was used to help the
model generalize to unseen conditions, especially considering the strong imbalance of bonafide
and spoofed targets. The placement of the Gaussian noise layer was determined experimentally
and different values for the standard deviation of the noise distribution were also tried, finally
deciding on nstd = 0.001. The next layer was a batch normalization layer. The CNN consisted
of 3 conv1D layers. The kernel size was set to 3 with 32 convolutional filters. Each conv1D layer
included an L2 regularizer [Ng, 2004]. Each conv1D layer was followed by a max pooling layer
with pool size and stride set to 2. Finally, a fully connected layer followed with a single output
using the hyperbolic tangent activation function (tanh) [LeCun et al., 2015]. The activation
function had the effect of restricting the output between −1 and 1.

3.2.3.3 System Training

The CNN model was trained using the official challenge training set with 10% held out of
the training set as a validation set. During training several different parameters were swept.
First, the values for standard deviation in the Gaussian additive noise layer were explored in
the range of: [0.000001, 0.00001, 0.00005, 0.0001, 0.001]. Experiments that omit the Gaussian
noise layer altogether are indicated by -N for results reporting, meaning without noise. For
L2 regularization the values were explored between [0.00001, 0.001]. For training, the loss was
measured using mean-squared-error (MSE). Early-stopping [Prechelt, 1998] was used and the
validation loss was monitored with delta = 0 and patience p = 5 epochs. The optimizer was
Adam [Kingma and Ba, 2014] with learning rate lr = 0.001 and all other remaining parameters
were default from the library.

2https://github.com/rhoposit/ASVchallenge2019.git
3https://keras.io
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3.2.4 Results

The system was evaluated using two related metrics: equal-error rate and tandem detection cost
function (described earlier in Chapter 2.2.3.3). The primary ASVspoof 2019 challenge metric
was the tandem detection cost function (tDCF) computed in conjunction with an ASV system
that was kept hidden from participants [Kinnunen et al., 2018] but provided by the challenge
organizers. This allowed the organizers to vary the ASV system to evaluate robustness of all
challenge submissions. The secondary metric was equal-error rate (EER) based on the quality of
the countermeasure alone to predict bonafide versus spoofed. Our challenge system submission
was selected using the best feature combination (SCMC+xEAs) based on performance with the
tDCF metric on the development set.

Table 3.2 shows the system performance on the official challenge development set using
the signal features, the x -vector features, and the best-preforming feature combination. Also
reported are the official results for the challenge submission on the evaluation set. For reference,
the evaluation performance for both baselines is also reported; it used a Gaussian Mixture Model
(GMM) and two signal features: LFCC-GMM [Sahidullah et al., 2015] and CQCC-GMM [Todisco
et al., 2017]. Our system submission performed better than both baselines for both metrics on
development and evaluation sets (to 3-significant digits).

Development Evaluation

t-DCF EER (%) t-DCF EER (%)

Si
gn

al
Fe

at
ur

es MFCC 0.204 8.35 - -
IMFCC 0.199 7.98 - -
RFCC 0.210 8.58 - -
SCMC 0.209 8.47 - -
LFCC 0.229 8.90 - -
CQCC 0.275 10.9 - -

x-
ve

ct
or

s

xA 0.814 31.5 - -
xE 0.971 41.5 - -

xEA 0.820 31.6 - -
xAs 0.815 31.4 - -
xEs 0.970 41.7 - -

xEAs 0.820 31.9 - -

SCMC+xEAs 0.194 7.74 0.235 9.15

C
om

bo SCMC+xEAs-N 0.225 9.16 - -
IMFCC+xEs 0.197 7.47 - -

MFCC+IMFCC 0.206 7.96 - -

LFCC-GMM 0.255 11.9 0.301 13.5
CQCC-GMM 0.195 9.87 0.245 11.0

Table 3.2: Results for the architecture using different features. It was evaluated on the official
development set and the official evaluation set (for the challenge submission). Two baselines
from the organizers are included last, for reference.
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3.2.5 Discussion

While the x -vectors alone did not distinguish well between spoofed and bonafide speech, there were
performance improvements when the x -vectors were combined with signal features. Specifically,
the best feature combination was found to be SCMC features with the scaled LDA x -vectors
(xEAs) that jointly modeled environment and attack variations. The SCMC features capture the
magnitude of energy in sub-bands, which can effectively distinguish two signals even if they share
the same average energy. The SCMC feature was also one of the best-performing features from
the analysis in [Font and Cano, 2017] for the ASVspoof 2017 challenge, though that challenge
was based on different data. It has been recognized as a stable feature across experimental
conditions. Experiments with the Gaussian noise layer indicated that using the noise layer
always performed better than without it (reported as SCMC+xEAs-N in Table 3.2).

In earlier analysis (Section 3.2.2.3), it was found that differences in the replay device quality
were captured well by the x -vectors if the device quality is poor. However, when the replay
device quality is very good, or perfect, then it is much more difficult to detect spoofing. The
official detailed performance results from the ASVspoof 2019 challenge organizers also indicate
that certain attack types are much more difficult [Todisco et al., 2019], specifically with the
high-quality replay device. That is an important finding for ASV research and is also supported
by the experiments for our challenge submission described in this thesis.

In summary, a new type of x -vector has been introduced that models environment and attack
characteristics as categorical values from the 2019 ASVspoof PA Challenge dataset. In the next
section, experiments will be presented that build upon the idea of using representation learning
to detect artifacts in speech for the purpose of evaluating synthetic speech quality. The special
x -vectors will again be used but instead of detecting speech authenticity they will be used to
predict the quality of speech produced by a text-to-speech (TTS) synthesis system.

3.3 Assessing Naturalness of TTS Output

This section describes joint work with Pilar Oplustil-Gallegos and Joanna Rownicka.
Joanna’s contribution was to create and analyze the CNN acoustic embeddings from the
AMI corpus in Section 3.3.3.2 as well as create and analyze the x -vector embeddings
presented in Section 3.3.3.3. Pilar’s contribution was to provide the trained text-to-speech
(TTS) synthesis system that was used as a held-out system for analysis in Section 3.3.7.1.
The remaining portions of the work were my own. All sections were co-written and
proofread between all authors, with myself taking the lead for 90% of the writing.
Joanna contributed significantly to the writing of Section 3.3.3.2 and Pilar contributed
significantly to the writing of Section 3.3.7.1.

It is widely accepted that data from certain speakers results in higher quality synthetic
speech when building a text-to-speech (TTS) system and this is true across different types of
TTS systems, from HMM-based [Cooper et al., 2016; Hinterleitner et al., 2014] and DNN-based
statistical parametric speech synthesis (SPSS) [Cooper and Hirschberg, 2018], to encoder-decoder
models [Oplustil-Gallegos et al., 2020; Lorincz et al., 2021]. It is becoming more commonplace
to use large multi-speaker corpora for TTS training [Gibiansky et al., 2017]. Often these large
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corpora of natural speech are of variable recording quality, such as LibriTTS [Zen et al., 2019].
While it was once preferable to train TTS systems on speech from studio-quality professional
voice actors, there has been an increasing effort to incorporate more data that is ‘found’ on
the internet and that consists of speakers ‘in the wild’. This found data is often multi-speaker
and could be very useful for multi-speaker TTS and deep learning if the data is well-managed.
Multi-speaker TTS systems, such as [Gibiansky et al., 2017], learn simultaneously a common
sound-to-phoneme mapping as well as the nuances of each speaker’s individual voice.

Tools that can predict the quality or naturalness of synthetic speech could be very useful
for research and development purposes. Such tools could speed up the development cycle or
save costs from doing many listening tests. In fact, it can be difficult to compare across speech
synthesis systems due to inconsistencies in how listening tests are conducted over the years.
While authors report system performance at the time of publication, there is no guarantee
that a listening test protocol is consistent from one year to the next or from one laboratory to
another [Cooper and Yamagishi, 2021]. A standardized tool could help with making comparisons
and allow researchers to better characterize gains in system performance.

One recent advancement in automatic speech naturalness assessment was MOSNet [Lo et al.,
2019], which extended similar work from Quality-Net [Fu et al., 2018]. The MOSNet system was
trained to predict mean opinion scores (MOS) as a measure of naturalness for voice conversion
(VC), based on human judgments of MOS as the ground truth. The MOSNet system is free
and open-source, and provides three different pre-trained models that were trained on MOS
scores for voice conversion data. Although VC and TTS tasks are somewhat related, preliminary
experiments in this chapter showed that the pre-trained VC models did not generalize well for
synthetic speech from TTS.

Automatic naturalness assessment is inherently very difficult. It requires a large dataset that
has multiple speakers, and multiple systems, and must be consistently labeled with naturalness
scores. As a machine learning task, previous work has shown that regression models will tend
to learn an average score and that it is more difficult for the model to predict high and low
outliers [Lo et al., 2019]. A related problem comes from human judgments of naturalness. If
human listeners are not exposed to a wide variety of poor and high naturalness speech during the
listening test, there is a risk that many utterances will be marked “average” [Clark et al., 2005].
It is also widely accepted that MOS scores do not reflect the complex nature of a naturalness
spectrum since the relationship between values and quality is not necessarily linear [Mayo et al.,
2005] (i.e., the difference between MOS scores of 1 and 2 ̸= difference between 3 and 4).

There is no guarantee that a speech naturalness model trained for one TTS system would
generalize to another TTS system. The approach described in this chapter is motivated by the
desire to build a MOS estimation tool that could generalize to new systems. With that in mind,
13 different systems will be used to develop a new MOS naturalness estimation model (7 TTS, 3
TTS+VC, and 3 VC) that range in quality but that use the same speakers. The experiments
that will be discussed in this chapter explore a variety of different types of speech representations
(Section 3.3.3) including those presented in Section 3.2 for detecting speech authenticity. The
speech representations will be used to make comparisons across multiple TTS and VC systems
as well as multiple speakers. After identifying the best-performing speech representation and
training a model, the model will be applied to a held-out multi-speaker TTS system trained
on a different dataset (Section 3.3.7.1). The approach to speech naturalness estimation in this
chapter has been inspired by previous work by Lo et al. [2019]. In this chapter, the following
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contributions will be made:

1. Re-train the original MOSNet framework using a multi-system dataset (13 different TTS
and VC systems) and explore frame-based weighting in the loss function

2. Train a new low-capacity CNN architecture on a multi-system dataset and compare 8
different utterance-level speech representation

3. Characterize model prediction performance based on speaker-level rankings

4. Assess how well the trained model generalizes to speech from an unseen TTS system

A multi-system database will be used for training with the expectation that training on
multiple TTS and VC systems will result in better model generalization for unseen TTS systems.
Another aim of the experiments is to try to identify speakers whose data results in the highest
and lowest quality synthetic speech. A ranking-based evaluation will be used to assess the
models and representations at the system-level as well as the speaker-level. The final output will
be a publicly available tool based on the best-performing model configuration and representation
that predicts MOS scores with the highest correlation to human judgments.

3.3.1 Related Work

Speech quality estimation is an important area of research, especially for synthetic speech,
and has garnered an incredible amount of attention recently [Hinterleitner et al., 2013a, 2014;
Hinterleitner, 2017; Leng et al., 2021; Huang et al., 2021; Cooper et al., 2021]. While automatic
methods are well-motivated, this problem is inherently difficult due to variability in ground
truth human judgments. MOS ratings are one of many de-contextualized TTS metrics. Wagner
et al. [2019] calls for developing a set of best practices for TTS evaluation. Those best practices
could include a critical analysis the effectiveness of automatic tools, such as AutoMOS [Patton
et al., 2016], QualityNet [Fu et al., 2018], and MOSNet [Lo et al., 2019].

While there have been many previous works regarding the perception of synthetic speech
[Hinterleitner et al., 2014, 2013a, 2011, 2013b], at the time that the experiments in this chapter
were conceived there were no studies that explored MOS prediction using externally-trained
speech representations. The result is a gap in understanding exactly which kinds of abstract
speech representations are most useful for MOS naturalness prediction for TTS synthesis and
the experiments in this chapter attempt to address that gap.

In the AutoMOS framework proposed by Patton et al. [2016], the speech representations that
were experimented with were log-mel spectrograms and single-layer time-pooled convolution
on the waveform (sampled at 16kHz). They trained a neural network with those two inputs
and tried to predict MOS naturalness ratings using human judgements as ground truth targets.
The TTS data came from a Google TTS engine that was compiled over multiple years for US
English. Annotators rated the speech on a Likert scale of 1-5 (5 is natural). While AutoMOS
experiments showed some correlation between predicted and ground truth MOS scores, the
authors note that very low and very high scores were difficult to model. In QualityNet [Fu
et al., 2018], the input was magnitude spectrogram and the prediction targets were PESQ scores
[Rix et al., 2001]. One advantage of QualityNet is that it predicted a score frame-by-frame and
that provided some interpretability of the model. Final utterance-level scores were based on
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aggregated frame-level predictions. The PESQ scores are not intended for synthetic speech but
rather for assessing quality of speech enhancement, codecs and telephony, so it is not directly
applicable to the work of TTS naturalness estimation in this chapter. The MOSNet framework
from Lo et al. [2019] is the previous work most relevant to the experiments that will be presented
in this chapter (Section 3.3.4). MOSNet uses frame-level features from a magnitude spectrogram
and predicts MOS naturalness at each frame, then aggregates the frame-level scores to create a
final utterance-level score. Since the MOSNet system will be used for comparison experiments
in this chapter, the architecture will be described in more details in Section 3.3.4.1.

CNN-based speech embeddings were proposed in [Rownicka et al., 2018] for the purpose
of acoustic model adaptation. That work showed that a deep CNN model trained on filter-
bank features could learn information about speaker, gender, and channel noise. While they
demonstrated CNN representations worked well for the original case of acoustic modeling, they
also show that these embeddings could be applied to differentiate between acoustic conditions.
Similar acoustic representations will be used in this chapter for learning to estimate speech
naturalness in Section 3.3.3.

In terms of image-based representations, the Deep Spectrum (DS) features are also generated
from a deep CNN [Cummins et al., 2017]. For DS features, a pre-trained model (VGG16, VGG19,
AlexNet, SqueezeNet, or GoogleNet) is used. The pre-trained models are based on image data
(but not speech or spectrograms). To use the pre-trained model and extract DS features, a
spectrogram is provided as input and an inference step is performed. Then the activations for
a specific layer in the network (usually a fully-connected layer such as fc2 ) are output and
saved. These activations from the network are the DS features and the dimensionality of the
feature vector depends on the size of the layer, which is set to 4096-dim in this chapter. The DS
features were shown to be useful for speech emotion recognition as well as the detection and
analysis of snoring noises during sleep [Cummins et al., 2017; Amiriparian et al., 2017; Zhao
et al., 2019]. DS features will be used in this chapter for speech naturalness estimation alongside
other representations in Section 3.3.3.

3.3.2 Dataset Description

Two datasets will be used for system training in the experiments for this chapter. The ASVspoof
2019 Logical Access dataset will be used for training a MOS prediction network in Section 3.3.4.
The LibriTTS Dataset will be used to train a held-out TTS system, and that system will be
described in more details later in Section 3.3.7.1.

3.3.2.1 ASVspoof 2019 Logical Access (LA) Dataset

The ASVspoof 2019 LA dataset4 was introduced in Chapter 2 and is also described in detail in
Wang et al. [2020b]. When the dataset was created by the ASVspoof 2019 challenge organizers,
the original intended use was to develop systems that learn to discriminate between genuine
and spoofed speech samples. The work in this chapter uses a version of the LA dataset that
had also been annotated with MOS scores by Wang et al. [2020b]. The MOS scores reflect
human judgments of naturalness for synthetic speech. The reader is encouraged to consult the
description of TTS and VC systems referenced in Table 2.3 that was presented in Chapter 2.

4https://datashare.is.ed.ac.uk/handle/10283/3336
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The evaluation subset of the LA dataset was annotated with MOS naturalness scores and
provided freely by Wang et al. [2020b]. Each utterance was labeled with a MOS naturalness
score on a scale of 1 (definitely machine) to 10 (definitely human). The MOS scores were
obtained through a human listening test conducted by Wang et al. [2020b]. Listeners were
instructed with: “imagine you are working at a call center and must determine if speech from
an incoming call is human or machine”. Each utterance was rated with one MOS score, as
the effort was to balance ratings between human and spoofed examples rather than achieving
high inter-annotator agreement. For the experiments that will be described in this chapter, the
annotated dataset was divided into training, validation, and test splits using similar proportions
as the previous work of Lo et al. [2019]. Each split contained the same TTS/VC systems, but
had different speakers. The test set had a total of 9 speakers with approximately 320 utterances
per speaker evenly balanced across the 13 TTS/VC systems.

3.3.2.2 LibriTTS Dataset

The LibriTTS dataset is a large speech dataset of 2,456 speakers [Zen et al., 2019]. LibriTTS
was designed and released by Google, aiming to be used for TTS applications, removing noisy
data and normalizing text, among other improvements. It contains a wide range of speakers
reading aloud books. As each speaker was able to recorded themselves anywhere and with any
equipment and that resulted in diversity of recording quality, channel effects and room noise
throughout the data. Despite Google’s cleaning process, the level of quality throughout the
“clean” version of the corpus varies but it is still used for TTS synthesis [Kim et al., 2020]. The
LibriTTS data will be used in this chapter for training a held-out TTS system in Section 3.3.7.1
to observe how well the proposed MOS estimation tool can generalize to an unseen TTS system
trained on an unseen dataset. Since all of the TTS/VC systems in the LA dataset were trained
on multi-speaker data from VCTK, it will be helpful to train a held-out TTS system on LibriTTS
in order to simulate how a MOS estimation tool would generalize in a real-world use case.

3.3.3 Speech Representations

The experiments in this chapter will utilize and compare speech representations alongside the
frame-based features that were used to re-train the original MOSNet. The speech representations
that will be used for experimentation are: Deep Spectrum features, x -vector embeddings, and
acoustic model embeddings.

3.3.3.1 Deep Spectrum (DS) Features

Deep Spectrum (DS) features5 will be used for the speech synthesis naturalness estimation
experiments in Section 3.3.4. The motivation for exploring DS features is that they are a
general-purpose image-based representation and they have been shown to be useful for detecting
sleep apneas and snoring [Amiriparian et al., 2017], essentially modeling very fine-grained
types of vibrations at a high resolution. The representations are based on modeling image
features at a very high level of abstraction. Since they are image-based they will operate on
the speech spectrogram rather than the waveform. DS features are created by a forward pass
on a very deep pre-trained CNN model using an utterance-level magnitude spectrograms as

5https://github.com/DeepSpectrum/DeepSpectrum
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input. The particular CNN that was used in this section was a pre-trained VGG19 network
[Simonyan and Zisserman, 2015] that was originally trained for general image-recognition tasks.
The activations from a particular layer of the deep CNN model for a given input are what
constitute a DS representation. The VGG19 model and output layer fc2 was used for all DS
representations in this chapter. This particular layer was the default setting, and represents the
second fully-connected layer (near the output layer) which comes after the deep convolutional
layers. DS speech representations are 4096-dim.

3.3.3.2 Acoustic Model (AM) Embeddings

Another general-purpose embedding will be used for experiments in Section 3.3.4, however unlike
the DS features, this general-purpose embedding is directly related to speech. An acoustic model
(AM) is a model of speech that learns a mapping between acoustic features in the speech signal
and phones, or more specifically sub-phone units such as senones [Hwang and Huang, 1992].
AM models are prominently used in automatic speech recognition (ASR). Recently Rownicka
et al. [2018] and Rownicka et al. [2019] proposed to add utterance-level embeddings to neural
network acoustic models, including DNNs and CNNs, for the purpose of learning abstract
speaker-invariant representations to help AM models generalize better to unseen speakers for
improved ASR. After training an AM, the embeddings can later be extracted from five selected
layers i = {3, 6, 9, 12, 15}. For the experiments in this chapter, embeddings from a pre-trained
deep CNN acoustic model from Rownicka et al. [2019] were used. The CNN acoustic model
had been trained on MFCCs as input with cross-entropy loss for triphone states to perform
speech recognition on the AMI multiparty meetings corpus [Renals et al., 2007]. As a first step
for extracting AM embeddings, the pre-trained model parameters were fixed and a forward
pass was performed for each utterance. To create utterance-level AM embeddings for use in
the experiments of Section 3.3.4, the representations at different layers i were concatenated and
reduced to 512-dim with a PCA transform. In this chapter, each utterance-level AM embedding
will be 512-dim. The embeddings are interesting for speech naturalness estimation because they
are extracted from a deep CNN model that is trained for speech (rather than images like the
DS features). The AM embeddings could serve as potentially good generic utterance summaries,
without imposing any specific characteristics or constraints.

3.3.3.3 x -vector Embeddings

So far, two generic types of embeddings have been proposed: DS features (image-based) and
AM embedding (speech-based). In this section a less generic embedding is proposed that
tries to model specific features of speech using categorical labels. In previous experiments
from Section 3.2.3, new x -vector embeddings showed that it is possible to model a variety of
variables from the ASVspoof 2019 PA dataset. In the previous experiments of Section 3.2.3,
environment variables were modeled jointly with attack variables. However for the speech
synthesis naturalness experiments that will be presented in Section 3.3.4, the embeddings will be
created separately such that there will be one embedding for each variable. Since the PA dataset
contained six different types of labeled variables, six different types of x -vector embeddings were
created. To create the embeddings, the same TDNN architecture was used as in Section 3.2.3
(also from Snyder et al. [2018]). The six different types of embeddings can be distinguished as:

• speakers (xvec1)
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• room size (xvec2)

• T60 reverberation time (xvec3)

• talker-to-ASV distance (xvec4)

• attacker-to-talker distance (xvec5)

• replay device quality (xvec6)

The purpose of training different x -vector embeddings is to try to capture the representations
that encapsulate the defining categorical features. Since it is not known if speech representations
should be specific or very general, these x -vector embeddings offer an attempt to model specific
characteristics of speech. By comparing these different x -vector types as the utterance embeddings
for the task of automatic naturalness estimation, this could lead to a better understanding of
the desired aspects of the optimal embeddings for this task. Each utterance-level x -vector is
512-dim.

3.3.4 Experiment Design

This section presents two different architectures and features: one based on frame-level features
and the MOSNet architecture of Lo et al. [2019], and the other based on abstract speech
representations that were described in Section 3.3.3 and a CNN. Both systems will be described
as part of the experimental design.

3.3.4.1 Original MOSNet

Architectures: The original MOSNet neural network architecture is described in detail in
[Lo et al., 2019]. Three different architectures were used in their work and are available from
Github6: BLSTM, CNN, and a CNN-BLSTM combination.
Pre-Trained Voice Conversion Model: The MOSNet architectures from Lo et al. [2019]
were originally designed and evaluated for voice conversion speech. The Github repository
from the authors includes three pre-trained models, one each for the architectures. Each of the
pre-trained models had been developed for estimating MOS naturalness on a Likert scale of 1 to
5 (5 is natural) using data from the 2018 Voice Conversion Challenge [Lorenzo-Trueba et al.,
2018]. For the experiments in this chapter, each of the pre-trained VC models will be applied to
and evaluated on the LA dataset of synthetic speech for TTS/VC systems.
Re-Trained MOSNet: The re-trained MOSNet experiments will use each of the three
architectures as-is, but they will be trained from scratch on the TTS/VC LA dataset. During
this re-training, the frame weight parameter will also be explored. In the original MOSNet
pre-trained models, the α value for frame weighting was set to α = 1.0. This parameter is a
weighting of the loss at the frame-level compared to the loss at the utterance level. A value of
1.0 suggests that all frames in an utterance are equal. For the experiments that will re-train the
MOSNet on the LA dataset, several values for α will be explored in the range of: [0.0, 0.5, 1.0].

6https://github.com/lochenchou/MOSNet
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3.3.4.2 Convolutional Neural Network (CNN)

All of the other experiments will use a CNN as shown in Figure 3.4. Eight different CNNs
will be trained corresponding to each of the 8 different speech representations described in
Section 3.3.3. The CNN architecture was implemented with the Keras library 7 with TensorFlow
backend [Abadi et al., 2016]. There are four conv1D layers with max-pooling and global average
pooling. Each conv1D layer used a kernel size of 10, with L2 regularization [Ng, 2004] and
ReLU activation [Hahnloser et al., 2000]. The Adam optimizer [Kingma and Ba, 2014] was
used with learning rate lr = 0.0001, and early-stopping was governed by validation loss (mean
square error). The parameters that were swept include: batch normalization (on/off), L2 value
[0.0001, 0.001, 0.01, 0.1], dropout rate [0.1, 0.2, 0.3], number of filters [16, 32, 64, 128], and batch
size [16, 64, 128].

Conv1D
Conv1D

Max Pooling
Conv1D
Conv1D

Global Avg. Pooling
Dropout

Dense Layer

MOS estimate

input speech representation

Figure 3.4: Overview of the CNN architecture that was used for experiments comparing 8
different types of utterance-level speech representations for MOS naturalness estimation.

3.3.5 Results

3.3.5.1 Evaluation

Four values were computed for evaluation and these are described in this section, below. Kendall
tau correlation was included to assess the ordinal ranking of individual TTS/VC systems and
individual speakers. All of the values except for Kendall tau correlation were also reported in
the original MOSNet paper [Lo et al., 2019], so this will allow for a meaningful comparison
especially because some of the experiments involved the MOSNet architecture.
Linear Correlation Coefficient (LCC) Also known as the Pearson correlation (r), this
metric assumes that there is a linear relationship between variables, which may or may not be
accurate. The values range between −1 and +1, where a score of +1 would indicate a perfect
correlation. However, this metric alone can sometimes give a high score even if there is not
actually a strong correlation because it is sensitive to outliers.

7https://keras.io
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Spearman Rank Correlation Coefficient (SRCC) The Spearman rank correlation (ρ)
metric can define correlation but does not restrict this to be at a constant rate between two
variables, making Spearman potentially more useful than LCC because Spearman can capture
non-linear relationships. Similar to LCC, the values range between −1 and +1, where a score
of +1 would indicate a perfect correlation. It does not have a precise interpretation but it is
non-parametric so could model different kinds of relationships. For example, if the distribution
of MOS scores in poor-quality TTS is concentrated around particular values, but there is more
diversity in high-quality TTS systems.
Mean Square Error (MSE) This metric simply measures the error between the mean predicted
MOS score and the mean true MOS score. As a standalone metric, the MSE is not ideal for this
task because it fails to capture information about the distribution of scores. For example, if
true and predicted scores tend toward a central distribution, a good (low) MSE score may miss
characterizing high and low outliers.
Kendall Tau Rank Correlation (KTAU) The Kendall tau (τ) was included for the purpose
of evaluating rankings. Specifically, the tau-b was used [Knight, 1966]. The Kendall tau score
tends to be more robust than Spearman ρ in terms of error sensitivity [Croux and Dehon, 2010].
It is known to be useful for ordinal rankings. To calculate the Kendall tau values, first the mean
predicted score and mean true MOS score are calculated for each speaker or system (both are
reported). The speaker or system is then sorted to obtain true rankings and predicted rankings.
The Kendall tau is then computed based on these ordinal rankings.

3.3.5.2 Best Model Selection

Given that there are several metrics reported as well as different ways to aggregate results, some
decisions were made about how to select the best performing model for each representation
in the experiments. Of the metrics that were reported in previous work [Lo et al., 2019; Fu
et al., 2018; Patton et al., 2016] the SRCC does best at capturing information about rank and
distribution although it should be noted that no metric alone is perfect. When selecting the
best model configuration for each representation in the experiments, this decision was based
on SRCC aggregated at the speaker-level because the end goal is to understand how different
speakers contribute to the overall quality of the multi-speaker TTS system, rather than compare
systems. At the same time, metrics aggregated at the system-level are reported even though
these did not influence the model selection. This allowed for a comparison to previous work,
which only reported results using system-level aggregation.

3.3.5.3 System-Level vs. Speaker-Level Aggregation

One of the reasons for aggregating predictions at the system-level is to characterize an entire
system, and compare systems with one another. By aggregating scores at this level, the low-
quality systems (such as A08 HMM-based TTS) will stand out from the high-quality TTS
systems (such as A10 WaveRNN TTS). Thus the correlation metrics are measuring if the
trained model can characterize the average quality of a given system. A high correlation value
at the system-level can be interpreted to mean that the trained model effectively separates
low-quality and high-quality systems. High correlation scores also suggest that the CNN model
may generalize well to new systems.

When the scores are aggregated at the speaker-level, this shows how particular speakers
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perform in a particular system, or more generally across multiple systems. Some speakers
always generate higher quality speech. Given this fact, some inferences can be made about
how a particular speaker might contribute in a new TTS system. Similarly, some speakers may
consistently produce low-quality speech in any TTS system. Knowing which speakers contribute
low-quality speech could mean that these speakers are avoided in future TTS development.

3.3.5.4 Discussion

The results from the experiments are shown in Table 3.3. There is one pre-trained model from
MOSNet that was trained on VC data and provided by the authors of that paper [Lo et al.,
2019]. There is a second model from the MOSNet architecture that was re-trained in this chapter
using the ASVspoof LA dataset. Then there are 8 different types of feature representations that
were utilized in the low-capacity CNN architecture. For each feature representation, the best
trained model and parameters were selected based on highest speaker-Level SRCC score (yellow).
Also highlighted are the system-level SRCC scores (pink). The overall best representation
was identified as xvec6 (blue) because of the high SRCC scores at both system-level and
speaker-level, as well as the very high Kendall tau score for ranking speakers.

MOSNet CNN and Representations
Metric Pre-trained Re-trained

(VC-CNN) (LA-CNN) xvec1 xvec2 xvec3 xvec4 xvec5 xvec6 DS AM

LCC 0.122 0.717 0.537 0.751 0.495 0.532 0.820 0.776 0.918 0.788
SRCC -0.027 0.868 0.659 0.725 0.368 0.412 0.868 0.709 0.885 0.808
MSE 1.513 1.277 1.437 1.003 1.208 1.453 0.968 0.859 0.388 0.799System

KTAU -0.052 -0.026 -0.182 -0.026 0.130 0.000 0.000 -0.156 0.091 -0.208
LCC 0.006 0.815 0.465 0.011 0.426 0.267 0.474 0.694 0.395 0.398
SRCC -0.033 0.883 0.433 0.017 0.383 0.367 0.717 0.800 0.500 0.583
MSE 0.126 0.053 0.111 0.194 0.074 0.095 0.185 0.091 0.126 0.104Speaker

KTAU -0.057 0.114 -0.400 0.514 0.057 0.114 0.343 0.771 -0.057 -0.114

Table 3.3: System-level and speaker-level prediction results on the LA dataset, comparing
original pre-trained MOSNet VC-CNN model, re-trained MOSNet LA-CNN model, and 8 new
representations from best parameters on the CNN architecture. For each, the best model and
parameters were selected based on highest speaker-level SRCC score (yellow).

Overall, many of the representations demonstrate similar performance for the chosen metrics.
For example, at first glance there appears to be only minor differences between re-trained
MOSNet LA-CNN and the DS representation. As a regression task, the DS representation yields
a lower MSE which may suggest that the predicted MOS values are closer to target. The DS
representation appears to perform well at the system-level, however it is not good at the speaker-
level. Several representations stand out that are clearly not suited for distinguishing naturalness
for either systems or speakers: pre-trained MOSNet VC-CNN, CNN+xvec1, CNN+xvec3 and
CNN+xvec4.

The CNN+xvec6 representation (highlighted blue in Table 3.3) provided the highest Kendall
tau score for speakers. Further examination was done on the ranking distributions for individual
speakers per-system. From the ground-truth MOS scores, the following two systems were

58



CHAPTER 3. ESTIMATE SPEECH AUTHENTICITY AND QUALITY

1 2 3 4 5 6 7
True MOS

1

2

3

4

5

6

7

P
re

di
ct

ed
 M

O
S

0040

0048
0040

0048

        A10
WaveRNN TTS

    A08
HMM TTS

CNN and xvec6 representation for Best/Worst Systems

Figure 3.5: Comparison of true and predicted MOS scores using the CNN+xvec6 representation
and CNN model. The two systems shown are the best and worst systems in the LA dataset
(based on ground truth MOS scores). The system A10 (WaveRNN TTS) was rated by humans
as the best system in the LA dataset, while A08 (HMM-based TTS) was rated as the worst.
The human MOS ratings were on a scale of 1-10, however this figure shows a scale of 1-7 because
it reflects the maximum average scores (i.e., the best system was not rated above 7 on average).

explored because they were ranked by human judgements to be the best and worst in the
ASVspoof 2019 LA dataset:

• A08: poorest quality system, HMM-based TTS (MOSmean = 1.79)

• A10: highest quality system, WaveRNN TTS (MOSmean = 5.58)

From Figure 3.5 the individual speakers can be seen for each of the best and worst LA
systems. Speaker 0048 has the highest overall MOS ratings across all systems in the LA dataset,
while speaker 0040 has the lowest. Figure 3.5 shows that the relative relationship between
speaker qualities is preserved in both systems. Speaker 0048 is always predicted to perform
better than speaker 0040 on average. Of course the absolute difference varies from system to
system. The worst speakers in A10 are as good as, or better than, the best speakers in A08.
Since these relationships between speakers are relative to a given TTS system, it would not
be possible to generalize across all speakers and all systems in the LA dataset. That explains
the negative Kendall tau score of −0.156 for the system-level CNN+xvec6 representation.
The speech representation with the highest correlation to ground truth was xvec6 and the
low-capacity CNN used a batch size of 1, with 16 filters, dropout rate of 0.2 and L2 value of
0.0001. Likewise for the reported re-trained MOSNet LA-CNN model, the best-performing
configuration used a CNN and α = 1.0 for equal frame weighting (as reported from the original
MOSNet paper).

The average MOS scores for speakers within a given system are not particularly spread out.
Consider that the range of true MOS scores for A10 is similar to the range of true MOS scores
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Figure 3.6: Comparison of true and predicted MOS scores using the CNN+xvec6 representation
and CNN model. The two speakers shown are the best and worst speakers in the LA dataset
(based on ground truth MOS scores). The best speaker was 0048 and the worst speaker 0040
was. Note each speaker’s performance on the best (A10) and worst (A08) TTS systems. The
human MOS ratings were on a scale of 1-10, however this figure shows a scale of 1-7 because it
reflects the maximum average scores (i.e., the best speaker was not rated above 7 on average).

for A08. While this is very helpful for characterizing systems, it does little for characterizing
particular speakers. Therefore one recommendation is that comparison among speakers is done
in the context of a particular TTS system. In the LA dataset, the average performing system
based on median MOS score was A11 with MOSmean = 2.41 and it was an encoder-decoder
sequence modeling TTS system with attention. The average performing system based on mean
MOS score was A07 with MOSmean = 3.65 and it was the Merlin DNN statistical parametric
speech synthesis (SPSS) with speaker codes and WORLD vocoder.

3.3.6 Speaker Analysis

The experiments with different representations have so far shown that a neural network can
be used to predict MOS scores and can differentiate between TTS/VC system quality. In this
section the analysis is further expanded to characterize speakers. The CNN using the xvec6
representation correctly predicts that speakers 0046, 0047, and 0048 will tend to have higher
MOS scores than other speakers, especially for neural TTS systems (A12, A15, A10). The
MOS prediction system also correctly predicts that speakers 0040, 0042, and 0044 will tend to
have lower MOS scores compared to the other speakers. This is consistently observed when the
CNN is trained with the xvec6 representation. The plot in Figure 3.6 shows that speaker 0040
true and predicted MOS scores are generally lower than those same scores for speaker 0048.
This finding could suggest that speaker 0048 is contributing to a performance increase for most
systems since it is demonstrated with ground-truth MOS as well as predicted MOS.
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MOSNet CNN and Representations
Metric Pre-trained Re-trained

(VC-CNN) (LA-CNN) xvec1 xvec2 xvec3 xvec4 xvec5 xvec6 DS AM

LCC 0.570 0.104 0.525 0.439 0.155 -0.021 -0.322 0.096 0.319 0.603

SRCC 0.534 0.102 0.630 0.371 -0.042 -0.060 -0.392 0.074 0.347 0.632

MSE 4.144 3.343 3.503 3.435 4.879 3.937 3.425 4.320 6.354 6.240Speaker

KTAU -0.138 -0.032 0.190 -0.063 -0.138 -0.106 -0.106 0.296 -0.159 0.032

Table 3.4: Speaker-level prediction results on Ophelia/LibriTTS synthetic speech. The perfor-
mance shown here is based on models that were originally trained on the LA dataset (as reported
in Table 3.3) before being used to evaluate the multi-speaker TTS from Ophelia/LibriTTS.

3.3.7 Model Generalization

3.3.7.1 Multi-Speaker Ophelia/DCTTS

A held-out TTS system was trained using the Deep Convolutional TTS (DCTTS) architecture
[Tachibana et al., 2018], implemented in Ophelia8. This is a sequence-to-sequence model with
attention. It was trained as a multi-speaker system on a subset of 37,000 utterances across 145
unique speakers from the LibriTTS corpus [Zen et al., 2019]. Ophelia/DCTTS corresponds to
a state-of-the-art, fast trainable TTS system, and therefore was a good choice among current
architectures at the time that experiments in this thesis were performed [Watts et al., 2019].
As mentioned in section 3.3.2.2, the diversity present in the LibriTTS dataset made this multi-
speaker dataset a good candidate to test the automatic evaluation system. Recall that one of
the goals of this chapter is to understand how a MOS estimation system may generalize to an
unseen or held-out TTS system. The Ophelia/DCTTS system can generate synthetic speech
for multiple speakers. However, it could become costly to evaluate many samples from many
speakers in a listening test. An automatic MOS estimation tool can identify the best and worst
speakers for the system.

3.3.7.2 MOS Naturalness Listening Test

One more listening test was conducted to generate ground truth MOS naturalness scores for
the held-out system Ophelia/DCTTS that was trained on LibriTTS. It is worth noting that an
alternative to using Ophelia/DCTTS and conducting an additional listening test would have
been to use a held-out system from the LA dataset that was already annotated with MOS
naturalness scores. However, the purpose of using a completely held-out system and conducting
a listening test is to explore how a MOS estimation tool would perform if it was passed to
another research lab, for example.

The listening test was designed to replicate aspects of the MOS tests that had been reported
for the ASVspoof 2019 LA dataset. For example, the same Likert scale of 1-10 for naturalness
was used. Listeners were advised that some speech samples could be from a machine or a human,
however the listeners were only presented with TTS speech and no natural samples because
the sentences that were synthesized were the Harvard Sentences [Rothauser et al., 1969] which
did not have a natural audio reference. The instructions were given as: “Rate the following

8https://github.com/oliverwatts/ophelia
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speech samples based on whether or not they sound more like a human (10) or a machine (1).
Consider that some samples may sound like a human but have a poor quality of recording or
other noise”. These instructions were slightly different than the instructions that Wang et al.
[2020b] used for rating the LA dataset, which used a “call center” scenario. The sentence content
was, for example: “Rice is often served in round bowls.”. The meaning of the sentences did not
appropriately fit into a “call center” type of scenario.

To generate the synthetic speech utterances, first 20 TTS speakers were selected randomly
from the 145 speakers that were used for training. For each speaker, the first 100 Harvard
Sentences were synthesized. A total of 20 human listeners were recruited, aged 18 or over, from
the University of Edinburgh community. All of the human listeners self-identified as a native
speaker, or near-native speaker of English. Each human subject provided a MOS score (on a
scale of 1-10), for each of 100 utterances. These were balanced across the 20 synthetic speakers,
and randomized. Therefore, in line with the LA dataset ratings, each utterance was heard and
marked by one listener but each listener heard utterances from all 20 of the TTS speakers. To
elicit MOS scores from the human listeners, a simple web-based interface from Schoeffler et al.
[2018] was utilized.
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Figure 3.7: Predicted and ground truth MOS scores for 20 speakers from Ophelia/DCTTS. The
speakers are marked on the plot for those MOS scores of best (speaker 4957 ), worst (speaker
2971 ), and mean (speaker 78 ).

3.3.7.3 Speaker Analysis

Similar to the earlier analysis of speakers in Section 3.3.6, the predicted and ground truth
MOS scores are visualized in Figure 3.7. In this figure, the best (4957 ), worst (2971) and
average/mean (78 ) speakers are highlighted as determined from the human MOS judgments.
From this figure, it can be seen that while the human judgments reflect a spread over a range of
MOS scores, the best CNN model still only predicted MOS scores within a central distribution.
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Figure 3.8: WaveNet and Ophelia/DCTTS side-by-side. The Ophelia/DCTTS system can
produce some speakers with high quality comparable to WaveNet TTS. In both cases it is
difficult to automatically rate the quality given this very small positive correlation. Selectively
synthesizing particular speakers could artificially raise or lower the overall MOS score for either
system.

This indicates that the approach for predicting MOS does not generalize well to a new TTS
system. However the model seems to capture some aspects of the relative speaker quality (e.g.,
speaker 4957 is predicted to be higher quality than 2971 ). But overall there is little correlation
between predicted MOS scores and the ground truth MOS scores. The correlation that was
reported for SRCC in Table 3.4 for the xvec6 representation was very low (SRCC = 0.074).

Another finding from Table 3.4 is that the pre-trained MOSNet VC-CNN MOSNet model
appears to perform better on the Ophelia TTS system, than the re-trained MOSNet LA-CNN
based on the LCC and SRCC metrics. There were two TTS systems from the LA dataset for
which the pre-trained MOSNet VC-CNN model performed best, and not surprisingly one of
them is a similar architecture to the Ophelia/DCTTS (A11: encoder-decoder using sequence-
to-sequence modeling with attention). System A12 from the LA dataset had the most similar
performance to the Ophelia/LibriTTS. With both of these TTS systems the CNN could rank
best/worst speakers, though the ability to rank could be greatly improved with continuing
research. This relationship is visualized in Figure 3.8. Of course, these two systems underwent
different MOS tests at different times. The mismatch between MOS tests and TTS system
types highlights the complexity of the problem for developing a single standalone tool for MOS
ratings.

3.3.8 Discussion

The experiments in this section have laid the groundwork for developing a tool that assesses
MOS naturalness at a large scale for a variety of VC and TTS systems using multi-speaker data.
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Having such a capability would save resources, such as time and costs, and would otherwise
facilitate rapid analysis and evaluation. It is important to note that, based on the analysis of
re-training the MOSNet architecture on the LA dataset, this approach and technique overall is
sound even though the models have some difficulty generalizing to held-out TTS/VC systems.
From this outcome, it is suggested that multiple automatic MOS tools are utilized until more
work can be done in this area to standardize the tool. One recommendation re-train a MOSNet
system when switching from one dataset to the next or one TTS system to the next.

Further, the research direction of relative quality rankings could be useful. Speaker analysis
has provided a window to the automatic MOS prediction task from a new angle. The ability to
rank speakers is potentially very useful for numerous development and evaluation tasks. Instead
of predicting a MOS score during a regression task, one could instead predict relative rankings
akin to A/B testing. This would potentially require a different set of metrics and a different loss
function as well. Another related problem that this could be used for is to pre-select speakers for
TTS training based on the quality of their recordings. While the LibriTTS dataset underwent
some cleaning [Zen et al., 2019], it is widely accepted that some speakers in the dataset are
better-suited for TTS than others [Oplustil-Gallegos et al., 2020].

Finally, from the experiments on the LA dataset, it can be seen that some speech repre-
sentations are better at characterizing speech naturalness very well for TTS/VC systems (DS)
whereas others tend to perform better at characterizing speakers (xvec6). The results in this
chapter have revealed some of the desired properties of such embeddings. For example, x -vectors
that model replay device quality (xvec6) were superior to all types of other x -vectors tested.

3.4 Further Considerations

3.4.1 Speech Authenticity

There are several aspects of the work presented in this chapter that warrant further discussion.
First, the design of signal-level features that were extracted for replay detection in Section 3.2
were adjusted in a manner to normalize for audio file length. The normalization was performed
using a re-sampling method that shortened the length of the audio file to a set number of frames,
and then the signal feature coefficient vectors were stacked. While this effectively made each
audio file 10 frames long, there are some other ways to consider achieving a similar standard
length in frames. It is possible that the re-sampling technique skewed information in the audio
file inadvertently.

It may be possible to sample N frames from the audio file at random. The benefit of sampling
randomly throughout a file is that a representative sample could be taken and the sample would
reflect actual audio frames. A downside to using random samples of audio is that for spoofing,
there may be audio artifacts correlated to the spoofing attack and these artifacts may occur at
only one frame, multiple frames, randomly, or not at all. Randomly sampling the audio frames
could miss the necessary frames that contain artifacts. Another technique to normalize for
length is to average across all frames so that the feature vector is represented by M coefficients.
For example, if an audio file has 100 frames and 80 MFCCs, then the resulting feature vector
would have dimensionality of 1x80 after averaging over all of the audio frames. The potential
downside to this method of averaging is that temporal information could be lost, or if there are
particular audio artifacts these may be averaged out. A time-delay neural network (TDNN)
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could overcome the issue of variable audio file length, however in the case of the ASVspoof 2019
challenge one objective was to explore novelty and the TDNN has been heavily explored in
previous work.

3.4.2 Speech Naturalness

At the time of this writing, there is active and ongoing work on developing automatic tools
for speech naturalness prediction [Cooper and Yamagishi, 2021]. The tool developed in this
chapter has only addressed one aspect of synthetic speech evaluation (e.g., subjective naturalness
ratings). There are other open problems related to naturalness, including simulating a MUSHRA
test or estimating speaker similarity. Speaker similarity is another very important aspect and
it is often overlooked as a research area. One reason why speaker similarity is important is
because it relates to consistency for synthetic speech. This applies to TTS as well as VC. Speaker
similarity was not investigated in Section 3.3 because the focus was to develop a naturalness
tool and characterize which speakers contributed most to high or low MOS naturalness. Speech
synthesis continues to mature as a research field so more additional tools will be needed such as
a way to characterize prosodic variation or emotion expression.

3.5 Conclusion

This chapter has explored speech representations for automatically assessing the authenticity
and naturalness of speech in different scenarios. In the case of speech authenticity detection, the
special x -vectors performed better at detecting replayed speech than signal-level features alone.
In the case of estimating MOS naturalness for synthetic speech, another type of special x -vector
performed better at MOS prediction than frame-based features. Abstract representations of
speech model general characteristics at a specified segment level, in this chapter that has been
the utterance-level. These representations allow information to be distributed across multiple
dimensions of a feature vector. Even when speech representations are rather high dimensional,
as with the Deep Spectrum vectors which were 4096-dim, this dimensionality is still lower than
speech in the time or frequency domain. When researching in new areas such as authenticity
detection, it is not always possible to know which signal-level features are best-suited for a task.
It may be possible to uncover new signal features which are specific to a task. It is not easy
to discover new signal features for every possible research and development problem in speech
processing. Machine learning affords an opportunity to exploit the nature of information in the
speech signal using representation learning. As the experiments in this chapter have shown, there
are many different types of information contained in an abstract representation. For example,
a single x -vector can be trained to model device quality in the MOS estimation experiments,
yet also be used to characterize the synthetic speech of individual speakers. In Chapter 4, this
idea will be explored further through experiments that seek to separate types of information
contained within a single abstract representations using disentanglement techniques. In Chapter
5, the MOS estimation tool developed here will be exploited to speed up the development process.
The estimated MOS prediction scores will be examined in the context of another listening test.
In later chapters, the idea of using speech representations for a variety of speech processing
tasks will be examined and evaluated.
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Chapter 4

Methods to Disentangle
Representations of Speaker Identity

4.1 Introduction

Advances in neural machine learning have made their way from other data domains (such
as the image domain) into speech processing. One thing that makes deep neural networks
(DNNs) attractive for speech processing is that they can be trained to perform well for complex
classification even when the input features are very high-dimensional or vary over time. Speaker
recognition is one such task in speech processing. The field of speaker recognition has benefited
greatly from DNNs [Snyder et al., 2016, 2018, 2017; Heigold et al., 2016]. In addition to the
ability to learn to classify speakers, the internal layers of trained DNNs are also very important
for speaker recognition. In fact, the activation values for certain layers of trained networks
such as time-delay neural networks (TDNNs) or bottleneck features, can function as learned
representations of speaker identity. The representations learned from TDNNs are often referred
to as x -vectors [Snyder et al., 2018], whereas the ones learned from bottleneck features are
termed i -vectors [Dehak et al., 2011]. These representations of speaker identity that are learned
from DNNs can also be utilized for other speech tasks including (but not limited to) speaker
diarization [Sell et al., 2018], speaker age classification [Grzybowska and Kacprzak, 2016], and
assessing Alzheimer’s disease [López et al., 2019].

Traditional speaker embeddings, such as i -vectors and x -vectors (introduced in Chapter 2.2.2)
are optimized to model speaker identity for tasks such as speaker recognition, speaker verification,
and speaker diarization. While they have been designed for performance in speaker recognition
tasks they also contain extra information that is unrelated to speaker identity such as style,
content, speaking rate, and gender [Peri et al., 2020a; Raj et al., 2019]. These representations
aim to maximize the variance between speakers, while minimizing within-speaker differences
(recording device, mood, age, etc) [Kinnunen and Li, 2010]. Experiments in this chapter will
demonstrate that style and emotion information can be found within utterance-level speaker
embeddings. The objective of these experiments is to develop a framework that can separate style
and speaker information. Successful factorization of speaker embeddings in this way could later
be exploited for various speech applications from controlling the speaker voice in text-to-speech
synthesis (TTS) to converting speech into a target speaker in voice conversion (VC).
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In the process of training high-quality speaker embeddings for speaker recognition, one neces-
sary step is to separate speaker-invariant characteristics from residual channel information [Chen
and Lin, 2020]. The channel information contains factors related to the recording device and
session noise. Historically, large datasets for speaker recognition were developed with mixed
recording session variables or mismatched recording conditions to the actual application. For
example, data for a given speaker may have been recorded with a variety of different quality
microphones. Sometimes the quality of speech that was used for training algorithms did not
match the quality of speech used in an application (e.g., telephony speech). From this mismatch
came the need to neutralize characteristics that vary across a given speaker’s recordings. This
means removing factors of variation for a given speaker, such as mixed microphones or mixed
quality recordings. Speaker-variant characteristics have been semantically grouped together and
referred to simply as the “channel”. When speaker embeddings are created, the final embeddings
for a given speaker discard channel information, leaving only speaker-invariant characteristics.
In both i-vectors and x -vectors, the channel factorization is performed using Probabilistic
Linear Discriminant Analysis (PLDA). Therefore the experiments in this chapter utilize the
utterance-level representations obtained before PLDA.

The experiments presented in this chapter investigate four categories of speaking style:
spontaneous conversation, goal-directed interaction, retold speech, and read speech. As the term
speaking style does not have a single definition, a working definition is adopted to be: how speakers
adapt their speaking manner according to the speaking context. Alongside the experiments which
explore speaking style, this chapter presents another separate set of experiments that explore
emotion. The experiments involving emotion explore four basic categories: angry, happy, sad,
and neutral. The datasets used for speaking style and emotion experiments are different datasets,
and will be described in Section 4.3.

There is some evidence that utterance-level i -vector representations (before applying PLDA)
can discriminate different emotions in speech [Jauk, 2017] when utilized as feature vectors for
training a classifier. This is despite the fact that i -vectors are designed for speaker recognition.
It is hypothesized that the emotion information can be found within the “channel factor”, as
it is traditionally referred to in the field of speaker recognition. If information about speaker
emotion does reside within the channel factor, then both i -vectors and x -vectors will also contain
this information in utterance-level representations. In that case, the channel factor would more
appropriately be referred to as a style factor or emotion factor. With this in mind, the methods
developed in this chapter take an alternative approach that is based on deep autoencoders.
Autoencoders offer an attractive solution because, if the reconstruction is very good, then it
becomes possible to learn very rich latent representations. This chapter explores whether or not
autoencoders can learn to separate different kinds of information (such as speaking style and
speaker identity) into separate representations. This chapter makes three main contributions as
follows:

1. Show that utterance-level i -vectors and x -vectors contain information about speaking style
and emotion

2. Compare several disentanglement methods

3. Evaluate disentanglement using accuracy for classification tasks
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4.2 Related Work

4.2.1 Speaking Style and Emotion

There are systematic and measurable differences when a speaker expresses a particular emotion
or speaks in a particular context. Two well-studied contexts are read and spontaneous speech.
For example, differences were found between news broadcast speech and freestyle conversations
and these differences include intonation patterns (F0) and speaking rate [Hirschberg, 2000].
Previous work has shown that content words are more likely to carry marked pitch accents in
spontaneous speech than in read speech [Yuan et al., 2005]. On the other hand, there are fewer
pitch accents overall in spontaneous speech does not seem to influence variation as much as the
speaking style [Mixdorff et al., 2005].

Speaking style has been investigated in the context of utterance-level speaker vectors, before
DNNs were part of the process of creating speaker representations. Work from Asami et al.
[2014] showed that GMM supervectors [Reynolds, 1995] can be used to distinguish between
spontaneous or read speech at the utterance level with > 95% accuracy, independently of any
knowledge about speaker identity. Their use of GMM supervectors aligns to the experiments in
this chapter since GMM supervectors form the basis for i -vectors (described earlier in Chapter 2).
All of this prior work suggests that it is possible to arrive at a representation of speaking style
and emotion.

4.2.2 Expressive Speech Synthesis

Expressive speech synthesis is one application that benefits from robust representations of style
and emotion. Recently Wang et al. [2018] introduced a method to construct and apply style
tokens in an effort to model style and speaking rate. These tokens, which are essentially learned
embeddings, represent a set of discovered latent representations of style in speech data rather
than human-labeled categories. The final style embeddings are not convincingly categorical
to listeners. Further, as in Wang et al. [2017b], there is an underlying assumption that style
tokens can be learned directly from features that have been extracted from the speech signal,
such as F0, and this is somewhat contradictory to other work that calls for higher-level abstract
representations.

Others have explored abstract representations for expressive speech synthesis, including Jauk
[2017], who showed that i-vectors can form unsupervised clusters corresponding to emotion
categories. They showed that i-vectors can be utilized for expressive synthesis. However,
this approach did not remove speaker-invariant characteristics, making it difficult to control
speaker identity and emotion independently. Recent work has explored variational autoencoders
(VAEs) for expressive speech synthesis with VoiceLoop, but they were unable to model global
characteristics of style, possibly because the approach was fully unsupervised [Akuzawa et al.,
2018].

4.3 Dataset Description

Two different datasets are used in this chapter: one that is labeled for speaking styles and
another that is labeled for speech emotion. The primary reason for exploring both emotion
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and style was due to a lack of existing baselines for classifying a variety of speaking styles from
speech in this manner. Recall that earlier work had explored read versus spontaneous speech.
The dataset used in this chapter includes more than these two speaking styles. At the same
time, there is existing work on classifying emotional categories in speech using the same emotion
dataset that is used in this chapter. By evaluating the same disentanglement methodology
applied to both style and emotion, it is possible to understand the overall performance of the
method.

4.3.1 The IViE Corpus for Speaking Style

The Intonational Variations in English (IViE) corpus1 was originally collected for the purpose
of exploring 9 regional/dialect variations throughout the United Kingdom. The creators of this
dataset had elicited four different speaking styles from participants: spontaneous conversational
speech (Conv.), goal-directed interaction (Directed), retold spoken passages (Retold), and
read spoken passages (Read). The spontaneous speech conversation category used same-gender
pairs who discussed the topic of cigarette smoking. The goal-directed interaction involved a
version of the conventional map-task (i.e., providing directions while reading a map). The retold
and read passages involved an excerpt from the story Cinderella2. The main difference between
retold and read speech is that for retold speech, the participant had read the passage and then
was recorded reciting it from memory. The read speech was recorded as the participant read the
text of the speech aloud.

Each of the speakers is approximately 16 years old, and the collection was split evenly
between males and females. For the purposes of experiments in this chapter, gender and dialect
labels were disregarded such that the experiments focus only on these four style categories.
For the spontaneous conversation and goal-directed interaction categories the audio had not
been diarized by the dataset creators, and was not diarized for the experiments in this chapter.
However, the experiments in this chapter required a speaker label for each utterance so the
speaker labels were combined together and the speaker label of an utterance was set to be the
label of the first (primary) speaker. A description of the data split, number of unique speakers,
and average utterance duration (in seconds) is provided in Table 4.1.

4.3.2 The IEMOCAP Corpus for Speech Emotion

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) [Busso et al., 2008] dataset was
used because it contains labeled emotion categories and this was helpful for making a comparison
to previous work for the experiments that were conducted in this chapter. Ten professional
actors were prompted to enact hypothetical situations or to read directly from a script while
performing emotions. Although this dataset is multimodal (speech, video, head movements,
transcription, etc), only the audio was used for experiments in this chapter. When the dataset
was created, the curators had employed human annotators to label utterances with categories of
emotion. Their annotation procedure allowed utterances to have multiple labels. To overcome
this issue, for the experiments in this chapter a subset of four emotions was selected wherein
each of the utterances had only one emotion label (Angry, Sad, Happy, Neutral). More

1http://www.phon.ox.ac.uk/ivie
2http://www.phon.ox.ac.uk/files/apps/IViE/stimuli.php
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Train Valid Test S dur(s)

IE
M

O
C

A
P Angry 318 56 125 10 4.8

Sad 269 48 106 10 5.6
Happy 60 10 23 10 5.0

Neutral 247 44 97 10 4.4
Totals 894 158 351 10 4.9

IV
iE

Conv. 210 37 82 108 50
Directed 426 75 168 112 31
Retold 558 99 219 110 27
Read 431 76 169 110 44
Totals 1625 287 638 112 38

Table 4.1: Number of utterances for IEMOCAP and IViE datasets, where S is the number of
unique speakers in the category, and dur is the average duration of audio segments in seconds.

detail about the data split is provided in Table 4.1. While this significantly reduced the overall
size of the data, it circumvented issues of label reliability from the annotators.

4.4 Methodology

The experiments in this chapter explore several configurations of a DNN autoencoder architecture
to separate different types of information contained within x -vectors and i-vectors. The
autoencoder will attempt to move style/emotion information into one latent space, and move
speaker information into another latent space. This is similar to the role that PLDA serves,
except that information is moved into another representation rather than removed and discarded.
Another difference between the proposed architectures and PLDA is that PLDA mathematically
distinguishes between factors that vary for a given speaker from factors that are consistent for a
given speaker. In the experiments for this chapter, the style/emotion labels would be treated
like factors that vary, and therefore are taking the functional role of “channel”.

Utterance-level embeddings are projected into lower dimensions using a vanilla autoencoder
(AEV) or principle components analysis (PCA). The reason for using lower dimensions is to
observe any effects of compression and to understand if there are any limits to compression
which render the embeddings meaningless, as measured by classification accuracy described
below. Additionally, the embeddings are projected into lower dimensions as well as into a pair
of latent spaces using a several different techniques that involve autoencoders. One latent space
is intended to contain only style (or emotion) information, and the other to contain no style
(or emotion) information. To quantify how disentangled the latent spaces were, each of the
latent spaces were utilized to train a separate classifier. This was done to probe whether or not
the learned latent spaces contained any information related to style (or emotion) by examining
whether or not the resulting classification accuracy was high or low. The act of probing speaker
representations using classification is an established technique [Raj et al., 2019]. Another
way to demonstrate that learned latent spaces of the autoencoder contained complementary
information was to degrade one of the latent representations and examine the autoencoder
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ability to reconstruct the input. This degradation was performed on the learned latent space
that was meant to contain no style (or emotion) information. It was reasoned that if one latent
space has been degraded and the autoencoder is unable to reconstruct the input, then both
of the learned latent spaces contain complementary information. Explained differently, if the
autoencoder cannot reconstruct the input when one latent space is degraded this indicates that
both latent spaces are necessary. On the other hand, if the autoencoder can reconstruct the
input when one latent space is degraded this indicates that the decoder has learned to ignore
one latent space, effectively rendering that latent representation meaningless. The latter case is
often referred to as posterior collapse and is a problem that can sometimes arise when working
with autoencoders.

4.4.1 Utterance-Level Embeddings

The Kaldi Toolkit [Povey et al., 2011] was used to extract utterance-level i -vectors and x -vectors.
As described in Chapter 2, the creation of i-vectors and x -vectors includes training a DNN
model along with several additional components. The pre-trained models3 described in [Snyder
et al., 2018] were used as they also provided PLDA, mean vectors, and transform vectors which
had been trained and evaluated on the VoxCeleb corpus. That corpus contains approximately
2,000 unique celebrity speakers [Nagrani et al., 2017; Chung et al., 2018] and was augmented
with noise during training. The VoxCeleb data is considered spontaneous and ‘in the wild’ and it
is also known to exhibit natural emotion [Albanie et al., 2018]. The front-end configuration was
provided fully-specified with the following settings. The audio signal sampling rate was 16 kHz
and the frame length was 25 ms. For feature-level vocal-tract length normalization (VTLN), the
low-frequency cutoff was 20 Hz and the high-frequency cutoff was 7600 Hz. The features were
24 MFCCs for i -vectors and 30 MFCCs for x -vectors. The number of mel-cepstrum filterbank
bins was 30. The features were mean-normalized over a sliding window up to 3 seconds.

Utterance-level embeddings in this chapter come from deep neural networks. For x -vectors
the neural network is a TDNN (Chapter 2.2.2.4) and the embedding is the first fully-connected
layer after frame-level statistics pooling. Each embedding is 512-dim. The i -vectors come from
phonetic bottleneck features of a DNN-based universal background model (UBM) where each
utterance-level embedding is 400-dim [Snyder et al., 2017].

4.4.2 Dimensionality Reduction

One aspect of the experiments was to find out to what extent the i -vector and x -vector utterance
embeddings could be compressed while retaining style (or emotion) information. The embeddings
were projected into lower-dimensional latent spaces using either PCA or the vanilla autoencoder
of Figure 4.1, with varied dimensions in the range of dims = [512, 400, 300, 200, 100, 50, 20, 10]

(omitting 512-dim when using i -vectors). All such autoencoders consisted of 13 fully-connected
dense layers for the encoder and 13 fully-connected dense layers for the decoder with the
same training parameters as our DNN classifier: ReLU activation [Hahnloser et al., 2000], L2
regularization [Ng, 2004], Adam optimizer [Kingma and Ba, 2014] with learning rate lr = 0.0002,
and early-stopping monitored by validation loss. The input embeddings were mean normalized4.

3http://kaldi-asr.org/models/m7
4This process is often referred to as z-score normalization. It scales the features by subtracting the mean and

dividing by the standard deviation. The mean and standard deviation were calculated over the training data.
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Figure 4.1: Vanilla autoencoder (AEV) showing a single latent space z. The input is compressed
into a latent representation. The decoder learns to reconstruct the input from the latent
representation.

i*i

Z

Encoder Decoder

Figure 4.2: Vanilla autoencoder showing a split latent space z1 and z2. While there are two
latent spaces, the architecture does not have incentive to learn which type of information belongs
in z1 versus z2.

4.4.3 Disentanglement Solutions

The reasoning behind splitting the latent space from one single latent z (shown in Figure 4.1)
into two latent spaces (shown in Figure 4.2), was to move information of one type into one
latent space, and information of another type into another latent space. If successful, this would
approximate a solution for disentanglement. While the architecture in Figure 4.2 does contain
two separated latent spaces, z1 and z2, there is no incentive for the architecture to learn how to
perform this kind of information separation. To overcome this challenge, auxiliary classifiers
were attached to the latent spaces z1 and z2, in a multitask paradigm. This was first attempted
with a single encoder and later with two encoders. It was found that the single encoder approach
did not perform well and became unstable during training. The single-encoder approach was
therefore abandoned for a dual-encoder approach.

The proposed autoencoder for disentanglement has two encoders and two auxiliary classifiers,
shown in Figure 4.3. The z1 and z2 latent spaces each have a separate auxiliary classifier. To
cause z1 to encode style, its auxiliary style classifier is trained to minimize a cross-entropy loss.
To cause z2 to encode anything except style, various approaches were explored.

First the baseline autoencoder (AE1) was established using two latent spaces and two
auxiliary classifiers, and is shown in Figure 4.3. However, the AE1 architecture did not
sufficiently separate information between the latent spaces. To cause the residual latent space
z2 to contain as little style information as possible, the AE2 architecture variant was tried
where the z2 space was reset to the batch mean before being passed to the decoder. In another
variant called AE3, the auxiliary classifier was set to maximize cross-entropy loss rather than
minimize it. Another variant called AEC degraded the z2 space using noise (described below)
while training the decoder, and the auxiliary classifier was also configured to maximize the
cross-entropy loss. The degradation of z2 means that the values in the z2 representation were
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Figure 4.3: Autoencoder with dual-encoders and single decoder. Each latent variable is provided
as input to an auxiliary component that attempts to classify speaker or style/emotion.

made less reliable due to the addition of noise.

The Gaussian noise layer in AEC was only active during training. The noise layer is an
effective tool for forcing corruption as it is used here, however this layer is most often used as
a tool to avoid over-fitting during training. This noise is “additive” in the sense that it is in
addition to any existing noise inherent in the z-representation. The noise is “white” because it
has a uniform power across frequencies. The noise is also Gaussian because it follows a normal
distribution and has zero mean. The tunable setting for this noise was the standard deviation.
In these experiments it was set to std = 0.5. This standard deviation was chosen arbitrarily.
Generally speaking, a high value results in more noise and a low value results in less noise.
When the Gaussian noise is used in machine learning to avoid over-fitting, a reasonable value is
often std = 0.1 or some magnitude smaller std = 0.01.

The loss function for these multi-task autoencoders (AE1, AE2, AE3, AEC) is described
by Equation 5.1. The loss of the multitask system LAE is represented by three terms. Here, the
LR term is the autoencoder reconstruction loss as the mean square error (MSE), and was used
in all versions of the autoencoders that were experimented with. The LAux1 is the loss of the
auxiliary classifier on the z1 space, and it measured categorical cross-entropy. Finally LAux2 is
the loss of the auxiliary classifier on the z2 space, and it also measured categorical cross-entropy.
When the maximized cross-entropy loss was used on the residual z2 auxiliary classifier, a weight
(γ) was introduced to balance the losses between the autoencoder reconstruction and the auxiliary
classifier.

LAE = LR + LAux1 + γLAux2 (4.1)

The loss weight for the auxiliary classifier on z2 (LAux2) was set to γ = 0.05 to help balance
the magnitude of the losses. If the weights are not balanced, at least in the same orders of
magnitude, then the algorithm may disproportionately over-train one portion of the architecture
while leaving other portions under-trained. This value was chosen arbitrarily and was based
on the order of magnitude of the losses as they were observed in trial runs. Setting optimal
loss weights is itself an open problem in multi-task learning and was not fully explored in these
experiments. A description of the set of autoencoder configurations is presented in Table 4.2
showing which ones maximize cross-entropy loss, or corrupt the z2 representation.
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Num z2 Max
Technique Encoders Corruption Loss

PCA – – no
AEV 1 – no
AE1 2 – no
AE2 2 µ batch no

AE3 2 – yes

AEC 2 full yes

Table 4.2: Description of disentanglement methods. PCA and AEV do not attempt disentangle-
ment and are used for examining compression before any disentanglement.

4.4.4 Style / Emotion Classification Experiments

After each variation of the autoencoders were trained, z1 and z2 representations were obtained
on a held-out test set. These z1 and z2 representations were then used to train a completely
separate classifier for style or emotion. These classification tasks were designed to probe how
much style or emotion information was contained within each type of representation, from
each autoencoder configuration. These classification tasks were completely separate from the
auxiliary classifiers that were used for multi-task autoencoder training. Here, new DNN classifiers
were trained using the learned latent representations as feature vectors for input. The style
classification was done separately from emotion classification. The same train/test split was
used as described in Table 4.1. Each DNN consisted of three fully-connected dense layers with
ReLU activation (alpha = 0.2) and L2 regularization (L2 = 0.0001). The optimizer was Adam
with learning rate set to lr = 0.0002 and the remaining parameters were kept as default. The
loss function was cross-entropy and early stopping was also used while monitoring validation
loss. The input was mean normalized. The first classifier was trained on raw i-vectors or
x -vectors which had not undergone any disentanglement. Subsequent classifiers were trained on
the compressed representations from either PCA or the vanilla autoencoder. Finally, classifiers
was trained using the disentangled latent spaces of z1 or z2 from trained autoencoders AE1,
AE2, AE3 and AEC.

4.5 Results

4.5.1 Autoencoder Reconstruction

One demonstration of disentanglement is to examine the ability to reconstruct the original input
i-vector or x -vector from the latent space. As a reconstruction baseline, an average i-vector
or x -vector was calculated over the training data and compared to each training example to
calculate the upper bound mean absolute error (MAE). Any MAE values above this bound
would indicate that the autoencoder reconstruction was very poor. The upper-bound baseline
MAE for i-vectors was 0.75 for both IEMOCAP and IViE datasets. For x -vectors it was
0.62 for IEMOCAP and 0.63 for IViE. The MAE upper bound was exceeded with x -vectors
when using the AEC model on the IViE data (MAE > 0.64). The MAE upper bound was
approached and exceeded for the AEC model on IEMOCAP data for both types of input vectors.

75



CHAPTER 4. DISENTANGLE REPRESENTATIONS OF SPEAKER IDENTITY

High reconstruction error from the AEC model (when z2 is corrupted) indicates that both z1

and z2 components are needed for reconstruction. That is, they contain complementary – or
disentangled – information. In other models, the MAE upper bound was not exceeded and this
suggests that the decoder for those models was utilizing both z1 and z2 latent spaces.

4.5.2 Style / Emotion Classification Results

Another demonstration of disentanglement was to use each of z1 and z2 in turn as the input to
style (or emotion) classifiers described in Section 4.4.4. The classification results are reported
on held-out data in Figure 4.4 and Figure 4.5. The plots (a, b) in Figure 4.4 show classification
accuracy for methods that do not uniquely disentangle style in the z1 and z2 latent spaces
(PCA, AEV, AE1, AE2). The set of plots (c, d) Figure 4.4 show classification accuracy for
methods that were successful in isolating factors of style in z1 from residual in z2 (AE3, AEC).
Since the z2 latent space in AEC was corrupted artificially using Gaussian noise, it is expected
that the z2 space would lose information, as reflected in plots c and d of Figure 4.4. Therefore
the autoencoder configuration which has been successful at disentanglement (as defined in this
chapter) is the AE3 system. At the same time, notice in Figure 4.4 that there is a non-zero
accuracy for the z2 space which makes it difficult to show an absence of information. Therefore
the loss of accuracy should be interpreted as a relative loss of accuracy. This same reasoning
also applies to the upper and lower plots in Figure 4.5 which are for the emotion dataset.

Figure 4.4: Style classification accuracy results before disentanglement (top) and after (bottom),
with benchmarks constant for comparison. The benchmarks use raw i-vectors or x -vectors
respectively as input and are shown in the plots as a constant horizontal line indicating
classification accuracy without any compression or disentanglement. On IViE: 79% and 78%.
Z-dimensions reflects the size of z1 and z2 as dimensionality reduction was explored.

Overall, the z2 space has lost information about style and emotion in AE3, AEC. On the
other hand, the z1 space shows that style and emotion information was preserved even with
dimensionality reduction for latent dimensions. In Figure 4.4 (plots c/d) and Figure 4.5 (plots
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Figure 4.5: Emotion classification accuracy results before disentanglement (top) and after
(bottom), with benchmarks constant for comparison. The benchmarks use raw i-vectors or
x -vectors respectively as input and are shown in the plots as a constant horizontal line indicating
classification accuracy without any compression or disentanglement. On IEMOCAP: 76% and
82%. Z-dimensions reflects the size of z1 and z2 as dimensionality reduction was explored.

g/h), the accuracy with dimensionality reduction for z1 performed close to benchmark, even
when the dimensions were reduced by more than half. This suggests that the style/emotion
information in the z1 latent was robust. The overall best classification accuracy for style and
emotion came from AE3. Recent work from [Satt et al., 2017] on 4-class emotion classification
on IEMOCAP achieved 68.8% overall accuracy. The classification done in [Satt et al., 2017] was
based on features that were taken directly from the speech spectrograms. The exact train/test
splits from their work were not available, so a direct comparison cannot be made between their
results and the results reported in Figure 4.5. However, their work does provide a sense of
how easy or difficult the task is. Variation between their reported accuracy and the accuracy
reported in Figure 4.5 could be due to the method as well as differences from the training sets
and labels. For example, Figure 4.5 plot g indicates that the z1 latent for AE3 had 4-class
accuracy of approximately 80% across various reduced dimensionality, but that accuracy fell
slightly to approximately 70% when the dimensions approached 10-dim.

Figure 4.6 and Figure 4.7 show the classification accuracy for style and emotion classes, for
each dataset. These results are for the best-performing disentangled z1 encodings, which came
from AE3 for both style and emotion. The best dimensionality for IViE i -vectors was 50-dim,
and for x -vectors was 100-dim. In the IViE style prediction tasks, spontaneous conversation was
often mistaken as retold speech. This may be a consequence of using non-diarized conversational
speech although it did not seem to affect the goal-directed speech style which was also not
diarized. The best dimensionality for IEMOCAP i-vectors was 300-dim, and x -vectors was
400-dim. The poor performance on ‘happy’ is likely related to class imbalance, similar to previous
work [Hodari et al., 2018] and this class was often misidentified as ‘sad’ or ‘neutral’.
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4.5.3 Speaker Recognition Results

A final evaluation was conducted to compare how well the z1 (style factors) and z2 (residual)
retained speaker identifying information. This was measured using traditional PLDA-based
speaker classification. The original extracted i -vectors and x -vectors for IViE data discriminated
speakers with below 10% equal-error rate (EER)5 while for IEMOCAP the EER was above 30%
EER. For all of the z1 and z2 representations in both datasets, the EER was always greater than
30%. This suggests speaker information was lost. At the same time, the style information was
preserved as demonstrated by the classification results discussed earlier. The IEMOCAP EER
was consistently so poor, which is likely due to mismatches between the IEMOCAP data and
the PLDA model (the PLDA component was pre-trained and provided alongside the x -vector
model).

Figure 4.6: Classification accuracy for style categories in the IViE dataset for x -vectors and
i -vectors.

Figure 4.7: Classification accuracy for emotion categories in the IEMOCAP dataset for x -vectors
and i -vectors.

5Equal-error rate (EER) is a standard metric for speaker recognition (described in Chapter 2.2.3.3). It is
a value wherein the false accept rate is equal to the false reject rate. Lower values are better. In the current
state-of-the-art for speaker recognition, performance is less than 3.0% EER.
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4.6 Further Considerations

Most speech processing technologies are limited by the quality and type of data that is available.
This is especially true when it comes to neural networks and representation learning. In this
chapter, two different datasets were utilized that reflected different speech phenomena: speaking
style and expression of emotions. While both datasets were carefully curated for style and
emotion, they were not designed for speaker recognition. In fact, both datasets are very poorly
suited for speaker recognition tasks. In the IEMOCAP data, there are often two speakers heard
in the recording with one being a primary and the other more distant in the background. There
is no diarization information provided with the IEMOCAP dataset, and in fact the background
speaker is often unintelligible. However, this does present some issues when using IEMOCAP for
any aspect of speaker recognition. The lack of diarized audio was possibly a major contributing
factor to the poor EER described in Section 4.5.3. Likewise the IViE dataset contained audio
that was not properly diarized and which suffered similar issues as the IEMOCAP data in terms
of a primary and background speaker. In both audio datasets, there was high reverberation. It is
possible that the recording conditions have also interfered with speaker recognition performance.
For these reasons, the IEMOCAP and IViE datasets are determined to be unsuitable for further
experimentation. Continuing with these datasets in further experiments in later chapters presents
a risk of modeling noise or non-diarized audio during disentanglement experiments rather than
the intended features of style/emotion and speaker information. A possible solution to the
noise issue would be to use off-the-shelf speech enhancement tools, however such tools may be
unreliable or inadvertently propagate additional noisy artifacts. The development of tailored
speech enhancement strictly for the purpose of disentanglement experiments would draw efforts
away from principled disentanglement research. Instead future experiments (such as those
presented in Chapter 5) would benefit from a studio-quality multi-speaker dataset such as
the voice cloning toolkit (VCTK) [Yamagishi et al., 2019] for the purpose of establishing and
evaluating disentanglement techniques.

4.7 Conclusion

In this chapter, experiments have explored disentanglement using traditional speaker representa-
tions: i-vectors and x -vectors. The disentanglement methods that were proposed operate on
these existing representations as input. While the representations are often used in speaker
recognition, experiments show that both types of representation contain information that is
predictive of style and emotion. Further, an autoencoder is able to simultaneously reduce the
dimensionality of the representations while separating style/emotion factors from other factors.
The ability to separate style factors would be useful in many speech applications including
speech-to-speech translation, speech synthesis, and speaker identification. For example, removing
the style/emotion information from traditional speaker representations could result in more
“pure” speaker representations. If speaker representations were more “pure” then they would
exhibit a lower EER value compared to “less pure” representations. During the evaluation it
was found that neither the z1 or z2 representations improved EER over the original x -vectors
and i-vectors. While the experiments in this chapter did not produce a more “pure” speaker
representations, it is left to future work to explore the idea of purification. Very recent attempts
have been made, but this is an open research area [Peri et al., 2020a; Raj et al., 2019].
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It is difficult to find data that has appropriate style/emotion labels alongside speaker labels,
with an adequate quality that could be used for this type of modeling. While the data forms
a limitation, another main limitation is that the autoencoder method does not result in two
distinct disentangled representations. It creates a representation of ‘style‘ and ‘not style‘. It is
not clear how a representation of ‘not style‘ could be useful for speech applications. Furthermore,
as the method is based on externally-formed i -vectors and x -vectors, the final disentanglement
is always limited to the initial conditions which created these speaker-based representations. If,
for example, the i -vectors and x -vectors were improperly trained or there is a data mismatch,
then any attempts to disentangle the information may be pointless.

Therefore a different approach to disentanglement will be proposed in Chapter 5 that instead
operates on the speech signal directly. Such an approach would be considered end-to-end. This
would overcome the issue of how i -vectors and x -vectors are extracted. It may also allow other
aspects of disentanglement to be explored such as disentangling multiple types of information
at the same time. An end-to-end approach may utilize autoencoders once again, though it is
recommended to use an architecture that provides a much richer latent space, such as feature
clustering, compared to the one proposed in this chapter. Additional motivations for exploring
an end-to-end approach include at the time of experimentation in this thesis, such an approach
has not yet been explored. The speech signal also contains more information than intermediary
embeddings, which may be noisy or have other quality issues. Working directly with the speech
signal may lead to higher quality learned representations.
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Chapter 5

Methods for End-to-End Speech
Disentanglement

5.1 Introduction

Many open questions remain regarding which types of informational factors from the speech
signal should be represented abstractly, as well as how this is best accomplished. For example,
prosody can be represented as a low-level acoustic descriptor called fundamental frequency (F0),
and it can be extracted directly from the speech signal waveform using autocorrelation [Rabiner,
1977]. Prosody can also be represented abstractly in the form of “style tokens” [Wang et al.,
2018] that are embeddings learned from a deep neural network (DNN). Furthermore, prosody
can vary from speaker to speaker and from utterance to utterance. When speaker representations
are created for speaker recognition tasks, the prosody is not accounted for. In fact, prosody is
ignored entirely.

Rich representations of speaker identity, such as x -vectors [Snyder et al., 2018], i -vectors [De-
hak et al., 2011], and learnable dictionary encodings (LDE) [Cai et al., 2018], are commonplace
in many speech technologies ranging from speaker and language recognition, to text-to-speech
(TTS) synthesis [Cooper et al., 2020], and voice conversion (VC) [Ding and Gutierrez-Osuna,
2019]. Representations of speaker identity are also known to contain unwanted information
not necessarily related to speaker identity because they often encode extra information such as
recording environment, speaker emotion, speaking style, and lexical content [Raj et al., 2019].

Machine learning methods can remove these unwanted informational factors. There have
been recent attempts to “purify” speaker representations by removing extra information [Peri
et al., 2020a]. However, the techniques discard unwanted information rather than extracting it
into separate representations. Even recent attempts to explicitly create separate representations
[Williams and King, 2019] have fallen short. This is due to data quality and also the limitations
of using intermediate speaker representations as input rather than the raw speech signal. So
far, disentanglement methods have not been able to demonstrate that any of the learned
representations meet the following criteria:
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1. The learned representations are sufficiently rich to model targeted speech features.

2. Representations that model targeted speech features do not also model non-target speech
features (e.g., a representation of speaker identity does not also model speech content).

3. Representations have utility outside of the system that disentangles information.

Therefore, an end-to-end solution is proposed in this chapter. It aims to simultaneously
disentangle phone content, prosody, and speaker identity. In the proposed approach, traditional
“channel” information is not explicitly modeled. The term channel refers to elements of recording
and session variability. This is an important issue when there is potentially a large mismatch
between training data and real-life application [Vair et al., 2006]. In this chapter, the dataset
that is used in experiments does not exhibit as much channel variability as other types of
datasets traditionally used in speaker recognition [Curelaru, 2018].

To achieve disentanglement between content, prosody and speaker identity, an architecture
is created that builds upon the original vector-quantized variational autoencoder (VQ-VAE)
from voice conversion [van den Oord et al., 2017] that is shown in Figure 5.1. While the original,
unmodified VQ-VAE can learn a type of phone representation, the system does not generalize
well to unseen speakers or unseen content primarily because the speaker representations are
one-hot vectors. Further, it does not learn representations of speaker characteristics or prosodic
information. The method presented here learns three different types of VQ codebook at the
same time (phones, speaker, and F0) while producing synthetic speech that is highly intelligible.
It is also able to generalise to unseen conditions. Learning multiple VQ codebooks at the same
time forms the basis of the proposed solution for achieving disentangled representations.
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Figure 5.1: Original System [van den Oord et al., 2017]: single phone encoder/VQ, and one-hot
speaker vector for global conditioning with a WaveRNN decoder. This system is referred to as
VQ-VAE.

5.2 Related Work

In the VQ-VAE paradigm, learned VQ codebooks result in rich continuous-valued embeddings
as well as their corresponding discrete codes. As embeddings, the learned representations
can be used to condition a decoder, such as WaveRNN, locally or globally. It was previously
shown that a large VQ space can learn to represent phones and sub-phones when trained with
speech [van den Oord et al., 2017]. In the original VQ-VAE model, it was found that the number
of learned VQ codebooks exceeded the unique phones in the corresponding phone set for the
content of the audio. This suggests that the VQ-VAE phone codebook learned a unit smaller
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Figure 5.2: Dual-Encoder system [Zhao et al., 2020b]: phone encoder/VQ, F0 encoder/VQ as
local conditions, with one-hot speaker vector for global conditions and a WaveRNN decoder.
The one-hot speaker vector could be replaced with any other type of speaker vector obtained
externally such as LDE or x -vectors. This system is referred to as +F0.

than a phone, and that is why they used the term “sub-phone”. In this thesis, for clarity the
VQ codebook that models speech content is referred to as a “phone VQ codebook” or “phone
codebook”, however the contents of the learned codebook is modeling a unit smaller than phones.
The exact nature of that unit is beyond the scope of this chapter.

More recently, VQ-VAE has been successfully modified to learn two separate VQ spaces at the
same time, F0 and phones [Zhao et al., 2020b], and can be referred to as a dual-encoder model
since it consists of two separate encoders as shown in Figure 5.2. Incorporating an additional
encoder for F0 greatly improved speech synthesis quality for Japanese and Mandarin. However,
the speaker representation was a one-hot encoded speaker vector or a separately obtained LDE
vector. The experiments presented in this chapter will build on this effort by learning the speaker
VQ space during training and using it for global conditioning in the WaveRNN decoder.

In speech synthesis, a well-known representation is the “global style token” (GST) first
proposed by [Wang et al., 2018]. GSTs are embeddings learned during TTS training and
subsequently applied during inference to control speaking style output. GSTs do not require
prosodic labels, and the style representations are separate from phone (or grapheme) content.
However, the representations may be highly specific to TTS applications. It is not known if
the representations can be useful outside of the TTS system, such as within another different
TTS system or for voice conversion. Some style tokens actually capture different types of noise
rather than speaking style because the method is unsupervised and data-driven.

Recent work from [Ebbers et al., 2020] aims to disentangle content from speaker identity for
the purpose of voice conversion. Their technique might be considered unsupervised (e.g., it does
not rely on explicit speaker labels), except that it does utilize some speaker-specific information.
Rather than speaker labels, it uses speaker-specific vocal tract length perturbation (VTLP) in
order to assist the algorithm with disentanglement. The VTLP functions as a regularization
for the adversarial component. While this approach was demonstrated to be useful specifically
for voice conversion, it was not shown to meet all of the criteria for disentanglement that was
proposed earlier in Section 5.1. Their work only evaluated the disentanglement success in
terms of a post-training classification task. The classification task showed that representations
of content had lost some ability to classify speakers, and representations of speaker had lost
some ability to classify content. The loss of content or speaker information was measured
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by classification accuracy, and compared before and after disentanglement. Furthermore, the
approach did not show that learned representations were re-usable outside of the system they
were trained on.

5.3 Architecture Models

This section will provide an overview of the VQ-VAE models that will be experimented with and
developed in this chapter. A more detailed description of the original VQ-VAE was provided
in Chapter 2 (including descriptions of the encoder and decoder). The following sections will
describe the proposed VQ-VAE variants. The main differences between each proposed system is
the number of stacked encoders (and VQ codebooks) as well as the amount of supervision from
the use of auxiliary classifiers. Variations of VQ-VAE are summarized in the list below, along
with citations (where appropriate, if the system configuration was taken from previous work),
and pointers to diagram figures. For system variants that are fully self-supervised but contain a
global “speaker” component, these are referred to as global conditions because the self-supervised
version does not use explicit speaker labels so there is no guarantee that the global conditions
monitor speaker identities. Once the speaker labels are introduced for auxiliary classifiers, then
the architecture can be referred to as semi-supervised. All versions of all architectures were
implemented in PyTorch and were based upon the original VQ-VAE [van den Oord et al., 2017]
as well as the dual-encoder model by Zhao et al. [2020b]. The bold indicates how each system
variant will be referred to in the remainder of this thesis.

• Original Self-Supervised VQ-VAE, from van den Oord et al. [2017], Figure 5.1

• Self-Supervised VQ-VAE +F0, from Zhao et al. [2020b], Figure 5.2

• Self-Supervised VQ-VAE +Global, Figure 5.3

• Semi-Supervised VQ-VAE +Speaker, Figure 5.4

• Adversarial Semi-Supervised VQ-VAE +Adversarial, Figure 5.5

• Self-Supervised VQ-VAE +Global/F0, Figure 5.6

• Semi-Supervised VQ-VAE +Speaker/F0, Figure 5.7

• Adversarial Semi-Supervised VQ-VAE +Adversarial/F0, Figure 5.8

5.3.1 Original Self-Supervised VQ-VAE

As previously described in Chapter 2, the original VQ-VAE system (Figure 5.1) is fully self-
supervised during training as it does not require any labeled data. The learning process is
governed by three terms in the loss function which balance the encoder, decoder, and VQ
codebook (Equation 5.1).

L = LR + αLV Q + βLC (5.1)

First, the LR term is the reconstruction loss, defined as − log p(x|zq(x)) which is the negative
log likelihood of decoder output x given the output of the encoder z(x) after quantization q. The
second term LV Q is the VQ objective, defined as ∥sg[ze(x)]−e∥22 and it is an l2 loss which guides
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VQ embedding vectors e towards encoder output ze(x). The sg term is a stop-gradient operator
which effectively creates a non-updated constant. The purpose of the VQ term is to ensure that
embeddings are also guided by reconstruction loss. Finally, the LC term is a commitment loss
defined as ∥ze(x)− sg[e]∥22 to ensure that the encoder commits to a VQ embedding vector e and
constrains how the VQ space is utilized.

The size of the phone VQ codebook was set to 512 and each VQ embedding vector was set
to 128-dims. This model is referred to now as VQ-VAE for the purposes of referring to it in
results tables or to discuss comparisons to other variants of the architecture. The WaveRNN
decoder was implemented as described in [Zhao et al., 2020b], and is capable of performing local
conditioning (e.g., phone VQ embeddings) as well as global conditioning (e.g., speaker one-hot
vectors). While the implementation used in this thesis was WaveRNN, other neural decoders
would be sufficient such as WaveNet [van den Oord et al., 2017].

5.3.2 Self-Supervised VQ-VAE + F0 Codebook

The first dual-encoder model was developed by [Zhao et al., 2020b] and is shown in Figure 5.2.
In this fully self-supervised model, an additional encoder for F0 was added to the original
encoder for phones. The purpose of introducing the F0 component to VQ-VAE was because
preliminary experiments showed that the original architecture did not always produce appropriate
prosody in languages such as Chinese or Japanese. It was hypothesized that a successful VQ-VAE
architecture would need to simultaneously extract representations corresponding to the segmental
features (such as phones), as well as representations corresponding to the supra-segmental features
(such as F0).

In this new architecture there were two inputs: waveforms and F0. The input waveform
representation was linear PCM. The output waveform was parameterized for coarse and fine
parts separately using scripts provided by [Zhao et al., 2020b]. The input to the F0 encoder was
the F0 as extracted from the speech signal using the software REAPER1, though any decent
F0 tracking software would be sufficient. The original VQ-VAE models used WaveRNN for the
decoder, subsequent implementations utilized WaveRNN2 [Zhao et al., 2020b], and all of the
implementations in this chapter also utilized WaveRNN for the decoder. The F0 and phone
VQ vectors were utilized as local conditions to the decoder. These two inputs had differing
sample rates. To deal with the different sampling rates, and to align the tensors for local
conditioning, the F0 tensor was upsampled to match the phone tensor. Speaker identity was
controlled with a one-hot speaker vector. The loss function is very similar to that of the original
system, however additional loss components were added which correspond to the F0 encoder
and F0 VQ clustering (Equation 5.2).

L = LR + α(LV Qp + LV Qf ) + β(LCp + LCf ) (5.2)

This model is referred to now as +F0. As with the original VQ-VAE system, the terms of the
loss function are the same except the phone and F0 components are represented by separate
terms, since they are learned separately. Therefore, the LV Qp and LV Qf terms represent two
separate VQ objectives, as previously defined. Likewise, the LCp and LCf terms represent

1https://github.com/google/REAPER
2https://github.com/mkotha/WaveRNN
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separate encoder commitment losses, as previously defined. The additional losses were balanced
using weighting. The components learning phone features (LV Qp, LCp) and the components
learning F0 features (LV Qf , LCf ) were weighted (α and β, respectively), while the reconstruction
loss remained unweighted. While these weights are highly tunable, they were utilized for the
purpose of ensuring that each of the losses were approximately of the same magnitudes [Zhao
et al., 2020b]. This balancing of the weights helped to ensure that no particular component was
over-trained. In this system the additional components was a F0 VQ codebook of size 10, with
each VQ embedding size set to 128-dims.

5.3.3 Self-Supervised VQ-VAE + Global Conditioning

Building upon the open-source implementation provided by [Zhao et al., 2020b], a different
kind of encoder and VQ codebook component was added to the original VQ-VAE architecture
(Figure 5.3). This addition was a speaker-based component to model global conditions, and it
replaced all of the F0 components that were being used for local conditioning. To transform
the encoder output into global conditions, a temporal average pooling layer (TAP) and two
feed-forward layers (FF) were added along with two feed-forward layers between the encoder
and VQ codebook. The dual-encoder VQ-VAE is also self-supervised, and the loss function was
adjusted to account for the additional global terms (Equation 5.3).

L = LR + α(LV Qp + LV Qs) + β(LCp + LCs) (5.3)

This model is referred to now as +Global. The LV Qp and LV Qs terms again represent two
separate VQ objectives as previously defined (one for the phone VQ and another for the speaker
VQ). Likewise, the LCp and LCs terms represent separate encoder commitment losses, as
previously defined. Similar to the dual model defined earlier, this model also used a weighted
linear combination of losses. The local features (LV Qp, LCp) corresponding to the phones and the
global features (LV Qs, LCs) corresponding to the speaker were weighted (α and β, respectively),
while the reconstruction loss remained unweighted. In this system the additional components
were a global VQ codebook of size 256, with each VQ embedding size set to 128-dims.
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Figure 5.3: Self-Supervised dual-encoder system (proposed): speaker encoder with phone encoder.
The global conditions are produced with a temporal average pooling layer (TAP) with two
feed-forward layers (FF). This system is referred to as +Global.
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5.3.4 Semi-Supervised VQ-VAE + Speaker Codebook

The semi-supervised variation described here was created because it was found that the fully
self-supervised version was difficult to train, often became unstable, failed to output intelligible
speech, and was unable to utilize the VQ codebook space in a meaningful way. For the VQ
codebook usage, upon examining changes in the VQ codebook before and after training, it
was found that only one single codebook entry was being used for all of the speakers, instead
of multiple different codebooks. This means that the speaker VQ codebook was not learning
information about speakers for the self-supervised model. Therefore this semi-supervised
architecture was developed (Figure 5.4), with slight differences from the self-supervised one
described in 5.3.3. Here, speaker labels were provided explicitly as additional information in
order to lightly supervise the speaker encoder. There were two semi-supervised variants of the
dual-encoder model. First, an auxiliary speaker classifier was added to the global encoder, using
speaker labels as ground truth. Two different loss functions were explored and compared for the
speaker classifier, referred to now as +Speaker, Softmax for the softmax loss, and +Speaker,
A-Softmax for the angular softmax loss. Previous work has shown that angular softmax
(first proposed for face recognition [Liu et al., 2017]) can achieve significant improvements in
speaker recognition modeling because it places constraints on within-speaker variance for learned
embeddings. This means it can potentially cause learned speaker embeddings to be more robust
to variations, such as recording session. In each case, the classifier loss (Auxs) was added, and
this is expressed in Equation 5.4.

L = LR + α(LV Qp + LV Qs) + β(LCp + LCs) + ηAuxs (5.4)

The LV Qp and LV Qs terms again represent two separate VQ objectives as previously defined
(one for the phone VQ and another for the speaker VQ). Likewise, the LCp and LCs terms
represent separate encoder commitment losses, as previously defined. The Auxs term is the loss
of the speaker classifier, defined as the softmax or angular-softmax for speaker labels.
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Figure 5.4: Semi-Supervised dual-encoder system (proposed): speaker encoder with phone
encoder. The global conditions are produced with a temporal average pooling layer (TAP), two
feed-forward layers (FF), alongside an auxiliary speaker classifier. This system is referred to as
+Speaker.
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Figure 5.5: Adversarial Semi-Supervised dual-encoder system (proposed): speaker encoder with
phone encoder. The global conditions are produced with a temporal average pooling layer
(TAP), two feed-forward layers (FF), alongside an auxiliary speaker classifier. An additional
adversarial classifier is included. This system is referred to as +Adversarial.

An additional version was developed, which included an additional auxiliary adversarial
classifier added to the phone encoder (Figure 5.5). The adversarial component consisted of a
gradient reversal layer [Ganin et al., 2016], feed-forward layers, and a speaker classifier. The
purpose of this adversarial component was to encourage disentanglement of phone and speaker
information by nudging the phone encoder to ignore speaker-related global information. The
adversarial model therefore includes two auxiliary losses (Auxs and Auxadv) as described by
Equation 5.5.

L = LR + α(LV Qp + LV Qs) + β(LCp + LCs) + ηAuxs + θAuxadv (5.5)

The LV Qp and LV Qs terms again represent two separate VQ objectives as previously defined (one
for the phone VQ and another for the speaker VQ). Likewise, the LCp and LCs terms represent
separate encoder commitment losses, as previously defined. The Auxs term is the loss of the
speaker classifier, defined as the softmax or angular-softmax for speaker labels. The Auxadv

term represents the softmax loss for the adversarial classifier. The speaker classifier for the
adversarial component used softmax loss. However, as before two different types of losses were
explored for the non-adversarial speaker classifier: the softmax loss (+Adversarial, Softmax)
and the angular softmax loss (+Adversarial, A-Softmax). The terms of Equation 5.4 and
Equation 5.5 both include weights on the losses (α, β, η, and θ) that balance the magnitudes of
the loss functions to help ensure that no component is over-contributing to the training of the
system as a whole.
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5.3.5 Self-Supervised VQ-VAE + Global Conditions + F0 Codebook

So far, two types of models have been described: the original VQ-VAE that had one single
encoder and VQ codebook, and a set of dual-encoder variations that introduced an additional
encoder and VQ codebook. In this section, the triple-encoder variation is introduced. The idea
behind using a triple-encoder version of VQ-VAE was to exploit the generalization capabilities
that a learnable speaker codebook provides, along with better prosody from using an explicit
F0 representation. Therefore the triple-encoder variation of VQ-VAE simultaneously learns
representations for phones, speaker, and F0 (Figure 5.6). The input to this system variant
remained similar to the other variants. For example, the F0 was extracted using REAPER as
before. In this case, both F0 and phone representations were treated as local conditions for
WaveRNN. For this model, there were only one auxiliary classifier, which sought to classify
the F0. No other auxiliary classifiers were utilized. The overall system loss is expressed in
Equation 5.6.

L = LR + α(LV Qp + LV Qs + LV Qf ) + β(LCp + LCs + LCf ) (5.6)

It incorporates losses for the phone encoder (LCp) and phone VQ (LV Qp), speaker encoder
(LCs) and speaker VQ (LV Qs), and the F0 encoder (LCf ) and F0 VQ (LV Qf ). As with system
variants described earlier, the weights (α, β) were used to balance the order of magnitude of the
losses. This system is known as +Global/F0.
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Figure 5.6: Self-Supervised triple-encoder system (proposed): speaker encoder, phone encoder,
and F0 encoder. The global conditions are produced with a temporal average pooling layer
(TAP) and two feed-forward layers (FF). This system is referred to as +Global/F0.

89



CHAPTER 5. END-TO-END SPEECH DISENTANGLEMENT

5.3.6 Semi-Supervised VQ-VAE + Speaker Codebook + F0 Codebook

The final system variant proposed in this chapter combines semi-supervised learning from
auxiliary classifiers with the triple-encoder approach. It is shown in Figure 5.7. In this
case, the loss function is a linear combination of weighted losses for the phone encoder and VQ
(LV Qp+LCp), the speaker encoder and VQ (LV Qs+LCs), the F0 encoder and VQ (LV Qf +LCf ),
and auxiliary losses. This system is described by Equation 5.7 and Equation 5.8, and is known
as +Speaker/F0.

L = LR + α(LV Qp + LV Qs + LV Qf ) + β(LCp + LCs + LCf ) +Auxw (5.7)

Auxw = ηAuxs + µAuxf (5.8)

The auxiliary loss for the speaker (Auxs) is the same as previously described in other systems.
A new auxiliary F0 classifier (Auxf ) was added. This classifier is based on quantized F0, where
the range of the F0 has been pre-processed into one of 10 quantized frequency regions, as a form
of stylization, similar to work that utilized F0 in a VQ-VAE context [Wang et al., 2019b]. This
allowed for the creation of an F0 classifier which aimed to classify the F0 encoder output into
one of the 10 quantized regions. As before, the weights (α, β, η, µ) were used to balance the
order of magnitude of the losses.
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Figure 5.7: Semi-Supervised triple-encoder system (proposed): speaker encoder, phone encoder,
and F0 encoder. The global conditions are produced with a temporal average pooling layer
(TAP). An auxiliary speaker classifier and auxiliary F0 classifier are included. This system is
referred to as +Speaker/F0.
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Figure 5.8: Adversarial semi-Supervised triple-encoder system (proposed): speaker encoder,
phone encoder, and F0 encoder. The global conditions are produced with a temporal average
pooling layer (TAP). An auxiliary speaker classifier and auxiliary F0 classifier are included. Two
additional adversarial classifiers are included. This system is referred to as +Adversarial/F0.

Another variant of this system (Figure 5.8) included two additional adversarial losses: one
monitoring output from the phone encoder (AuxadvP ) and the other monitoring output from
the F0 encoder (AuxadvF ). These two adversarial classifiers are included to assist the two
encoders to ignore speaker-related information and to attempt to de-correlate encoder output
and speaker labels. This system is known as +Adversarial/F0. It is described by Equation 5.9
and Equation 5.10

L = LR + α(LV Qp + LV Qs + LV Qf ) + β(LCp + LCs + LCf ) +Auxw +Auxadv (5.9)

Auxadv = θAuxadvP + λAuxadvF (5.10)

As before, the speaker classifier could use either softmax or angular-softmax, and these were
again compared as additional variants. Similar to the earlier descriptions, the weights on the
losses for this system (α, β, η, µ, θ, λ) were used to balance the magnitudes of the losses.

91



CHAPTER 5. END-TO-END SPEECH DISENTANGLEMENT

5.4 Dataset Description

The dataset consisted of English audio of 110 unique speakers from the Voice Cloning Toolkit
(VCTK) corpus [Yamagishi et al., 2019]. The data was prepared following the steps from scripts
provided by [Zhao et al., 2020b], including quantization and normalization. All of the audio
was downsampled to 16 kHz and normalized using ITU-T Rec. G.191 sv563. The leading and
trailing silence was trimmed using voice activity detection (VAD) scripts from the DIHARD II
2019 challenge4. F0 was extracted using REAPER with a frame-shift of 5ms.

The training set consisted of 100 speakers, and a held-out test set consisted of 10 speakers.
Further, four testing conditions were compiled, each with 10 speakers and 8 utterances per
speaker:

• C1 seen speakers / seen content

• C2 seen speakers / unseen content

• C3 unseen speakers / seen content

• C4 unseen speakers / unseen content

These four testing conditions vary in whether or not the content or the speaker has been seen
during training. The C1 condition should result in the best quality of speech because it was
seen during training. The remaining conditions help to gauge how well the models generalize
to unseen conditions. The C4 condition should be more challenging because it represents full
held-out conditions in terms of the content as well as the speaker.

5.5 Training Strategy

All of the VQ-VAE variant systems were trained using the initialization and configuration
from [Zhao et al., 2020b]. However, for the dual-encoder and triple-encoder systems, a warm-up
model was used to reduce overall training time and to avoid over-training certain components
while inadvertently leaving other components under-trained. The warm-up model for dual-
encoder systems consisted of a fully-trained original VQ-VAE model trained to 800k steps.
This provided a trained phone encoder and phone VQ, and allowed the subsequent training to
focus on learning F0 or global speaker representations. For triple-encoder systems, the warm-up
model consisted of a fully trained version of +Adversarial, softmax that was trained to
550k steps. That particular warm-up model was selected as the best-performing dual-encoder
model. Layers and weights that were not part of a triple-encoder design (such as adversarial
auxiliary classifiers) were discarded. Therefore it can be seen that development of each variation
of the VQ-VAE models was somewhat dependent on training simpler models, before training
more complex models such as the triple-encoder variations. All dual-encoder and triple-encoder
systems were trained for an additional 800k steps, and the best model was selected based on
lowest overall validation loss.

3https://github.com/foss-for-synopsys-dwc-arc-processors/G722
4https://github.com/iiscleap/DIHARD-2019-baseline
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5.6 Estimated Quality of Synthetic Speech

This section reports a suite of automatic methods that were used to estimate the quality of
the synthetic speech that was generated by each of the system variants. The purpose of using
automatic methods to assess synthetic speech is because to speed up the development process
for scientists and well as help to save costs from listening tests. Automatic methods to assess
synthetic speech are rapidly growing in popularity [Williams et al., 2020; Cooper and Yamagishi,
2021]. While it is true there is no replacement for subjective naturalness, as judged by humans,
certain automatic evaluation methods can estimate synthetic speech quality. This is especially
true for identifying larger trends during the development process. None of these metrics alone is
perfect and none of them should be used to replace human judgements. This section presents and
defines 6 such metrics, which can help provide a general sense of the model performance especially
when all of the metrics are considered together. Results from these metrics presented in Table 5.1
and further described in this section. The values in Table 5.1 are averaged across all four testing
conditions to gauge larger-scale trends such as best-performing models overall. However, it is
also important to evaluate how well these models can generalize to unseen conditions. For finer
granularity of results across seen and unseen conditions, bar plots are provided alongside the
detailed description of each metric in 5.6.1 – 5.6.5.

Table 5.1: Speech synthesis quality estimation for four testing conditions on VCTK data. (S:
softmax, AS: angular-softmax). Reported values are averaged across all four testing conditions.
Two systems were taken from previous work: original VQ-VAE [van den Oord et al., 2017]
and +F0 [Zhao et al., 2020b]. All other systems were newly proposed in this chapter. MOS1,
MOS2, and P.563 estimate speech naturalness. MOS1 and MOS2 systems were developed earlier
in Chapter 3. Speaker similarity compares synthetic to natural speech on a per-speaker basis.
WER is calculated using ASR. F0 root mean square error (RMSE) measures the difference of
the log(F0) between synthetic and natural speech.

Est. Est. Speaker log(F0)

Method MOS1 MOS2 P.563 Similarity WER (%) RMSE

Natural Speech – 3.6 2.8 2.7 1.0 9.1 0.0

VQ-VAE – 3.3 2.7 2.4 0.7 65.7 0.5

D
ua

l-E
nc

.

+ Global – 2.2 2.9 2.3 0.5 82.1 0.8

+ Speaker S 3.8 2.9 2.5 0.9 31.1 0.3

AS 3.7 2.9 2.6 0.9 33.1 0.2

+ Adversarial S 3.9 3.0 2.4 0.9 27.6 0.2

AS 3.8 2.9 2.5 0.8 33.8 0.3

+ F0 – 3.5 2.9 2.4 0.5 39.3 0.4

T
ri

pl
e-

E
nc

. + Global/F0 – 3.9 3.0 2.4 0.8 38.4 0.3

+ Speaker/F0 S 3.8 2.9 2.6 0.8 33.0 0.3

AS 3.1 2.8 2.6 0.8 45.1 0.4

+ Adversarial/F0 S 3.7 2.8 2.6 0.8 44.6 0.3

AS 3.4 2.9 2.4 0.7 46.2 0.4
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Figure 5.9: MOS1 values for selected system variants. Four testing conditions were examined
based on which content or speakers were seen during training: C1 is seen speaker/seen content,
C2 is seen speakers / unseen content, C3 is unseen speakers / seen content, and C4 is unseen
speaker / unseen content.

5.6.1 Estimated Naturalness (MOS)

Recent efforts to learn to predict mean-opinion scores for speech have resulted in new publicly
available tools5. In this section, the MOS estimation tool developed earlier in Chapter 3.3 was
used. Two different versions of MOS are reported in Table 5.1. Each version is based on a
different MOS estimation model trained on different speech representations. The first is MOS1
uses frame-level representations and was trained on TTS and VC speech from the 2019 Logical
Access (LA) dataset from the ASVspoof Challenge. The second is MOS2 which extracts a special
x -vector embedding that models device quality and was developed with labeled data from the
ASVspoof 2019 Physical Access (PA) challenge. Both of these pre-trained models are described
and compared in Williams et al. [2020].

The MOS results are shown in Table 5.1. One of the shortcomings of this tool is that there
is no way to anchor to natural speech to ensure that natural speech achieves the highest MOS
score. It is therefore possible for synthetic speech to be ranked higher than natural speech. This
can be seen in the results where natural speech is rated as MOS1 = 3.6 and MOS2 = 2.8, while
synthetic speech from the proposed systems “outperforms” natural speech on both metrics. In
addition, this tool has been reported as sometimes having too little variability among scores -
meaning that scores tend to cluster in a narrow middle range. The slightly lower MOS scores
for natural speech highlights a shortcoming of using fully-automated methods for speech quality
evaluation. Natural speech and some proposed methods appear to be very close in quality. The
semi-supervised systems achieved higher estimated MOS scores compared with the original
VQ-VAE. In general, the dual-encoder systems perform comparably to triple-encoder systems
for MOS1 and MOS2. Even with the shortcomings of the MOS1 scoring, this metric seems to
pick out +Global as being particularly lower quality than other systems.

For additional analysis across the four testing conditions, the MOS1 is shown for selected

5https://github.com/rhoposit/MOS_Estimation2
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systems in Figure 5.9, reflecting a 5-point Likert scale. Angular-softmax did not provide
significant gains, so these variants were omitted from the figure. The dual-encoder and triple-
encoder systems are comparable across conditions, however the dual-encoder models tend to
perform better. The fully self-supervised +Global system performs poorly across all conditions.
In general, the unseen conditions are more difficult. There is a slight downward trend.

5.6.2 Estimated Naturalness (P.563)

Another tool used to automatically estimate speech naturalness is based on a publicly available
standard tool called ITU-P.563 6. This tool estimates speech naturalness and it was designed for
narrowband telephony speech. Although narrowband telephony is a mismatch to the synthetic
speech that was generated in these experiments, this metric was reported in related work, so
it is included here in an effort to be complete and make a comparison [Zhao et al., 2020b].
The results in Table 5.1 indicate that the range of scores are so close that this metric does not
distinguish between systems very well. For the purposes of selecting a best-performing system,
this metric could be ignored.

5.6.3 Speaker Similarity

As the model variants are all based on multi-speaker data, it is important that synthetic speech
reflects the true and intended speaker identity. This is important especially because the proposed
models construct a latent representation of speaker. Speaker similarity could be approximated
in human listening tests using an A/B/x paradigm where listeners are asked to select between
samples a and b which match a “reference speaker” x. In this chapter, such a large listening
test may become very costly because there of the quantity of proposed systems to compare.
Therefore automated estimates of speaker similarity were used to get a general sense of which
systems perform poorly for speaker similarity on average.

Speaker similarity was estimated by calculating the cosine distance between x -vectors taken
from natural speech (as a reference) and synthetic speech. First, utterance-level x -vectors were
extracted using a pre-trained x -vector model, which had been trained on VoxCeleb data 7.
Natural and synthetic speech were compared by calculating the cosine similarity on a per-
utterance basis, and averaging across utterances. The cosine similarity is useful in this context
because it is a value in the range of sim = [0, 1] where a value of sim = 1.0 designates that there
is 100% similarity and a value of sim = 0.0 indicates that there is no similarity. This metric
indicates that several systems indicate had poor speaker similarity on average, specifically the
fully unsupervised +Global and +F0.

6https://github.com/qin/p.563
7https://kaldi-asr.org/models/m7
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Figure 5.10: Speaker similarity for selected system variants, showing performance across four
different testing conditions. Higher similarity values indicate better performance. Four testing
conditions were examined based on which content or speakers were seen during training: C1 is
seen speaker/seen content, C2 is seen speakers / unseen content, C3 is unseen speakers / seen
content, and C4 is unseen speaker / unseen content. Note: natural speech was omitted because
the similarity compared speakers between synthetic and natural speech.

Unlike the naturalness estimations in Figure 5.9, the speaker similarity in Figure 5.10 has
more variation across the different seen and unseen testing conditions. First, the original
VQ-VAE does not generalize well to the C3 and C4 unseen conditions, likely due to the
limitations of using a one-hot speaker encoding instead of a more robust embedding. Similarly,
the self-supervised +Global and +F0 systems did not generalize well to unseen conditions.
Generally, the semi-supervised methods for dual-encoders and triple-encoders performed well
across all four conditions. The semi-supervised dual-encoder +Speaker had the most consistent
and highest similarity across conditions. The triple-encoder systems are more complex than
the dual-encoder systems in terms of the number of combined loss functions as well as the
number of VQ spaces being learned simultaneously. Given that the triple-encoder systems are
more complex than the dual-encoder systems, it is interesting to see that the speaker similarity
measures for these two categories of system is very close.
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Figure 5.11: ASR-based word error rate (WER) for selected system variants. Four testing
conditions were examined based on which content or speakers were seen during training: C1 is
seen speaker/seen content, C2 is seen speakers / unseen content, C3 is unseen speakers / seen
content, and C4 is unseen speaker / unseen content.

5.6.4 ASR-Based Word Error Rate (WER)

Intelligibility is a useful metric because it is possible for speech to have features of naturalness
but if the content is not intelligible then the speech is of limited use. Human intelligibility
tests are extremely expensive and can be difficult to implement due to factors such as spelling
variation or typos. Therefore automatic methods to estimate intelligibility are attractive because
they can save time and costs.

In this section, the intelligibility of the synthetic and natural speech was estimated by
measuring word error rate (WER) from transcripts obtained through ASR [Morris et al., 2004].
As the WER is measuring an error rate, lower scores indicate better intelligibility. The Watson
Speech Recognition API8 was used for this purpose. Natural speech achieved the best overall
WER and this is expected because the VCTK natural speech was recorded at studio quality.

The self-supervised system (+Global) was unable to produce intelligible output on average,
despite having been rated similarity to other systems for naturalness and speaker similarity.
The semi-supervised dual-encoder systems maintained the lowest WER. The WER reported for
triple-encoder systems indicated some loss of intelligibility except for +Speaker/F0, Softmax,
which tends to also have good performance across other reported metrics.

The intelligibility across four testing conditions is reported in Figure 5.11. As this is an error-
based metric, lower values indicate better performance. The output of the original VQ-VAE
system becomes very unintelligible for unseen conditions, whereas all of the proposed systems
are more stable. All three of the proposed triple-encoder systems exhibit an improvement for
intelligibility in unseen conditions.

8https://www.ibm.com/cloud/watson-speech-to-text

97

https://www.ibm.com/cloud/watson-speech-to-text


CHAPTER 5. END-TO-END SPEECH DISENTANGLEMENT

C1 C2 C3 C4
0.0

0.2

0.4

0.6

0.8

1.0
RM

SE
log(F0) RMSE

Figure 5.12: log(F0) root mean square error (RMSE) for selected system variants. Four testing
conditions were examined based on which content or speakers were seen during training: C1 is
seen speaker/seen content, C2 is seen speakers / unseen content, C3 is unseen speakers / seen
content, and C4 is unseen speaker / unseen content.

5.6.5 F0 Error

Previous work [Zhao et al., 2020b] had found that the original VQ-VAE system did not always
produce appropriate prosody in Chinese and Japanese speech. In fact, that was the original
motivation for creating an F0 encoder and VQ component. To assess the F0 in synthetic speech,
first the F0 was extracted from the synthetic and natural speech using REAPER, with the
same settings as earlier described in the data preparation. The difference in F0 was calculated
between natural and synthetic speech for on a per-utterance basis. The error was calculated as
root mean square error (RMSE) where lower error indicates better performance. The results
in Table 5.1 reflect that the fully self-supervised dual-encoder system +Global consistently
achieved the worst performance. In the +F0 system, it was found that performance was mostly
comparable to the original VQ-VAE system. While this was unexpected, it could be due to the
fact that English is not a tonal language, so the additional F0 modeling components did not
significantly help the F0 reconstruction for English. However, the triple-encoder models with
softmax were able to improve F0 reconstruction across both metrics, compared to the original
VQ-VAE.

The F0 error is reported across testing conditions in Figure 5.12. Slightly different to the
results for Chinese and Japanese reported in Zhao et al. [2020b], the addition of an F0 encoder
and VQ space did not improve F0 compared to the original VQ-VAE system, except for unseen
conditions (C3 and C4). This finding was not revealed earlier in Table 5.1 because the values in
the table were averaged across all four conditions. While the triple-encoder systems explicitly
model F0 as well as speaker in the learned VQ spaces, the F0 error is better in the dual-encoder
systems, which do not attempt to model F0. This could be due to the fact that triple-encoders
are more challenging to train, and the training strategy used in this chapter was potentially not
optimal.
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5.6.6 Discussion

The purpose of using automatic methods to estimate quality was ultimately to speed up the
development cycle as well as save costs from human listening tests - leaving only the most
interesting or important system variants for further testing and experimentation. While results
from human listening tests would be ideal, the tools that were used to estimate speech quality
in this chapter have saved costs as well as identified some of the best overall systems. Overall,
significant improvements were not found from using angular-softmax. Across most metrics, the
dual-encoder Adversarial system performed best, as well as demonstrated better ability to
generalize to unseen conditions. The overall best-performing triple-encoder system was the
+Speaker/F0, although it did not always perform as well as the Adversarial dual-encoder
system on the reported metrics. One benefit of the triple-encoder +Speaker/F0 system was
that it provided an additional F0 VQ codebook, whereas the dual-encoder +Adversarial
system did not.

5.7 Human Listening Test Evaluation

A MUSHRA test was performed to compare the quality of reconstructed speech across system
variants. The results of the MUSHRA test are shown in Figure 5.13 to Figure 5.16. Each figure
corresponds to one of the four testing conditions which reflect whether speakers or content were
seen or unseen during training. The results for condition1 reflect that system +F0 performs the
best, however this performance drops when unseen conditions are introduced as in condition2,
condition3, and condition4. That is partly because the +F0 system relies on one-hot speaker
encodings so it cannot generalize to unseen speakers. The overall best-performing system was
+Adversarial across all conditions. The performance of +Adversarial on this MUSHRA
test correlates with the findings from using automatic assessment tools earlier in this chapter
(Figures 5.9–5.12). Figure 5.9 shows that +Adversarial has higher quality estimation compared
to other systems. Figure 5.10 shows that +Adversarial generalizes well to unseen speakers
better than other systems. Figure 5.11 shows that +Adversarial has the lowest word error
rate of all system variants across all four testing conditions. And Figure 5.12 shows that
+Adversarial has the lowest F0 reconstruction error across unseen conditions and is similar to
the original VQ-VAE in the seen conditions. While the triple-encoder systems did not perform as
well as the dual-encoder systems in general, there was one triple-encoder system that consistently
performed better than other triple-encoder systems and that was +Speaker/F0. While the
overall naturalness is lower in the +Speaker/F0 system compared to +Adversarial, a third
VQ codebook is gained without losing naturalness especially for unseen conditions. Further
analysis of codebook content in Chapter 6 will explore this gain and whether the information in
the codebooks is meaningful.
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Figure 5.13: MUSHRA listening test results for 12 VQ-VAE system variants and natural speech
for testing condition C1. The boxes reflect the lower and upper quartile values along with a line
at the median, and open circles reflect outliers.
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Figure 5.14: MUSHRA listening test results for 12 VQ-VAE system variants and natural speech
for testing condition C2. The boxes reflect the lower and upper quartile values along with a line
at the median, and open circles reflect outliers.
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Figure 5.15: MUSHRA listening test results for 12 VQ-VAE system variants and natural speech
for testing condition C3. The boxes reflect the lower and upper quartile values along with a line
at the median, and open circles reflect outliers.
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Figure 5.16: MUSHRA listening test results for 12 VQ-VAE system variants and natural speech
for testing condition C4. The boxes reflect the lower and upper quartile values along with a line
at the median, and open circles reflect outliers.
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5.8 Learning Multilingual VQ-VAE

So far this chapter has explored disentanglement using monolingual data from the English
VCTK corpus. Several variants of VQ-VAE were developed that learn multiple types of VQ
codebooks at the same time. The resulting synthetic speech that was generated by the VQ-VAE
variants was also assessed using automatic tools to estimate the quality. Most languages have
similar sounds in common [Blasi et al., 2016] so follow-on experiments were designed in this
section to find out if similar languages could be exploited in order to learn VQ codebooks that
are shared across several languages. The approach taken in this section was to adapt a trained
monolingual model (introduced in Section 5.3.4) to work on multilingual data. The ability to
generate synthetic speech using a single multi-speaker multilingual model could have far-reaching
consequences for advancing speech synthesis. For example, a multilingual model could facilitate
speech synthesis that involves code-switching between languages as it would not require language
detection alongside multiple single-language models. The idea to try adapting a monolingual
model to multi-language data came from observations of the original training strategy (described
in Section 5.5) where warm-up models were used to train more complex models. This section
presents work toward learning a multilingual VQ-VAE using the best-performing model that
was identified from earlier experiments. This model was the dual-encoder model +Adversarial
with softmax loss. The goal is not to learn to disentangle languages, but to learn representations
of content and speaker that are shared across multiple languages. For example, to learn phone
VQ representations from multiple languages in a single VQ codebook. At the same time, the
disentanglement goal remains to be able to separate content from speaker identity. Successful
training of a multilingual model would imply that languages can share the same vector space in
VQ clustering.

5.8.1 Dataset Description

The multilingual Spoken Interaction with Interpretation in Switzerland (SIWIS) dataset [Gold-
man et al., 2016] contains four languages: English, German, French, and Italian. There are 36
unique speakers. Each speaker is bilingual or trilingual and has been recorded in two or three
languages. The dataset languages were imbalanced, so the train/test splits also preserved this
imbalance as shown in Table 5.2. As before with the training data, all audio was downsampled
to 16 kHz and normalized with ITU-T Rec. G.191 sv569. The leading and trailing silence was
trimmed using VAD. The pre-processing steps were followed as before.

Table 5.2: SIWIS data splits across languages and speakers.

Language Training Validation Held-out

Spk Utt Spk Utt Spk Utt

English (EN) 18 2387 18 603 4 16

French (FR) 26 3405 26 841 5 16

German (DE) 13 1719 13 376 4 18

Italian (IT) 13 1689 13 430 3 10

9https://github.com/foss-for-synopsys-dwc-arc-processors/G722
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Figure 5.17: Multilingual VQ-VAE overview +Adversarial-L, including the global one-hot
language vector for global conditioning of the decoder. The base architecture version was
+Adversarial with softmax. This model includes a temporal average pooling layer (TAP) with
two feed-forward layers (FF). There is an auxiliary speaker classifier as well as an adversarial
classifier.

5.8.2 Training

Earlier experiments had indicated that the best performing dual-encoder architecture was
+Adversarial so that model was used as a warm-up for training the multilingual model. It
consists of two encoders and two VQ codebooks which modeled speaker as a global condition,
and phones as a local condition. Training for this model was semi-supervised using speaker
labels and adversarial loss.

To train the multilingual model from the warm-up model, a projection layer from the
WaveRNN decoder was first discarded from the trained warm-up model, but all of the other
weights and parameters were borrowed from the encoder and VQ clustering. The first version
of the multilingual model did not utilize a one-hot language vector for global conditioning,
as it is shown in Figure 5.17. The one-hot language vector was introduced to improve the
model performance in unseen conditions. Without the language vector, some inconsistency was
observed early on in the development process, such as intelligibility issues. When the one-hot
language vector was introduced as a global condition to the decoder, it was simply concatenated
to the global speaker condition vector. This was an obvious solution to try. Other solutions
that were not explored could have been to train four separate language-dependent models, but
that would not have been multilingual. In this chapter, the multilingual model was trained on
all four languages mixed together for 550k steps while monitoring the validation losses. The
input to the system encoders was the same as before. The input to the encoder was a waveform.
After the waveform was downsampled by the encoder, it was transformed into a sequence of VQ
codes and vectors. The VQ vectors were then provided to the WaveRNN decoder. Finally the
output was a reconstructed waveform.
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5.8.3 Estimated Naturalness of Synthetic Speech

The purpose of using estimated quality in this model adaptation case was to first identify the
best-performing model variant, with or without a one-hot language vector. As before, the
following automatic metrics were used to assess the synthetic speech quality (including natural
speech for reference): MOS1, speaker similarity, ASR-based word error rate (WER), and F0
error (RMSE). These results are reported in Table 5.3. For this portion of the evaluation, the
values for each metric were averaged across all four languages. As before in 5.4, the data was
divided into four testing conditions based on seen or unseen content and speakers during training.
The results reported in Table 5.3 are averaged across all four testing conditions in order to gain
general insight about the quality of the synthetic speech. From the table, the two variants (NL
and L) demonstrate similar performance in the average case.

Further investigation of performance across seen and unseen conditions is reported in
Figures 5.18-5.21. The variant utilizing the one-hot language code (+Adversarial-L) tended
to have better estimated MOS1 quality and intelligibility scores for unseen conditions. This
variant also demonstrated better F0 for seen conditions in Figure 5.21. While the performance
of these two variants does appear to be similar, especially for speaker similarity in Figure 5.19,
the one-hot language code provides some minor improvement such as slightly better MOS1 and
WER for unseen conditions. Therefore the +Adversarial-L model was selected for further
evaluation in human listening tests.

Table 5.3: Speech synthesis quality estimation averaged across four testing conditions on SIWIS
data to gain a general insight about the quality of the synthetic speech. The monolingual
+Adversarial model from earlier experiments was used for adaptation to the multilingual
dataset. This table compares estimated performance for model adaptation with a one-hot
language vector L and without NL.

Est. Speaker log(F0)

Method MOS1 Similarity WER RMSE

Natural Speech – 2.5 1.0 19.7 0.0

+ Adversarial NL 2.9 0.8 63.3 0.4

+ Adversarial L 3.0 0.8 59.5 0.4
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Figure 5.18: Estimated quality (MOS1), showing performance across four different testing
conditions. Higher values indicate better performance. Four testing conditions were examined
based on which content or speakers were seen during training: C1 is seen speaker/seen content,
C2 is seen speakers / unseen content, C3 is unseen speakers / seen content, and C4 is unseen
speaker / unseen content.
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Figure 5.19: Speaker similarity, showing performance across four different testing conditions.
(Natural speech has been omitted because the speaker comparison uses natural speech as the
reference, so it is always sim = 1.0). Higher values indicate better performance. Four testing
conditions were examined based on which content or speakers were seen during training: C1 is
seen speaker/seen content, C2 is seen speakers / unseen content, C3 is unseen speakers / seen
content, and C4 is unseen speaker / unseen content.

105



CHAPTER 5. END-TO-END SPEECH DISENTANGLEMENT

C1 C2 C3 C4
0

20

40

60

80

100

W
ER

 (%
)

ASR-Based Word Error Rate

Figure 5.20: ASR-based word error rate (WER), showing performance across four different
testing conditions. Lower values indicate better performance. Four testing conditions were
examined based on which content or speakers were seen during training: C1 is seen speaker/seen
content, C2 is seen speakers / unseen content, C3 is unseen speakers / seen content, and C4 is
unseen speaker / unseen content.
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Figure 5.21: F0 error (RMSE), showing performance across four different testing conditions.
(Natural speech has been omitted because the speaker comparison uses natural speech as the
reference, so it is always rmse = 0.0). Lower values indicate better performance. Four testing
conditions were examined based on which content or speakers were seen during training: C1 is
seen speaker/seen content, C2 is seen speakers / unseen content, C3 is unseen speakers / seen
content, and C4 is unseen speaker / unseen content.
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5.8.4 Human Listening Test Evaluation

The synthetic speech from the multilingual model was also evaluated using human listening
tests. For the listening tests, participants were recruited from the Prolific10 platform and the
listening test materials were hosted by Qualtrics11. All of participants self-identified as fluent in
their respective languages. 20 participants were recruited and they were compensated at the
rate of £ 7.50/hour for their time.

One of the most efficient ways to gauge the quality of the +Adversarial-L system is to per-
form copy-synthesis. If copy-synthesis quality is very good then the internal VQ representations
are more likely to also be good, however this is not guaranteed. Likewise if the copy-synthesis
quality is poor it is unlikely that the learned representations would be good.

The samples were divided into two conditions: seen and unseen. The seen condition means
that a speaker and the utterance content had been observed during model training, and it
corresponds to the C1 condition described earlier. The unseen condition means that the speaker
and content were entirely held-out, and it corresponds to the C4 condition described earlier.

Listeners rated the naturalness on a Likert scale of 1-5 (where 5 is natural). For each
language, 6 synthetic speech examples were evaluated, for a total of 24 samples. The participants
were shown 4 pages of 6 speech samples in randomized order. They were asked to rate the
speech on a scale of 1 to 5 where “5 indicates that it sounds like natural speech” and “1 indicates
that it sounds like a machine”. The average MOS naturalness scores are reported in Table 5.4
for both natural and synthetic speech. The results show similar MOS scores for the monolingual
and multilingual models. In the multilingual model, English and German naturalness was
significantly lower for the unseen condition. German copy-synthesis was particularly good for
the seen condition. The monolingual model had better MOS in the unseen condition, which
could be due to artifacts of selected samples since the natural speech also had increased MOS
scores for the unseen condition.

Table 5.4: MOS naturalness scores for copy-synthesis. C1: speakers and content were observed
during training. C4: held-out speakers and content. The changes in scores between natural and
synthetic is also indicated with ∆.

Natural Synthetic

Data C1 C4 C1 ∆ C4 ∆

SIWIS-EN 4.2 4.1 2.3 ↓ 1.9 1.6 ↓ 2.5

SIWIS-FR 3.6 3.4 2.9 ↓ 0.7 2.9 ↓ 0.5

SIWIS-DE 3.7 3.7 3.5 ↓ 0.2 2.5 ↓ 1.2

10https://www.prolific.co/
11https://www.qualtrics.com/uk/
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5.9 Further Considerations

In this chapter, there were several design considerations that led to using an end-to-end VQ-VAE
architecture. An alternative to the architecture presented in this chapter would be to use speech
spectrograms as input to VQ-VAE rather than waveform audio as was done for the experiments
presented here. Mel-spectrograms are often used in text-to-speech techniques wherein the
objective is to learn a mapping between acoustic units and graphemes (or phones). In speech
synthesis it is not common to operate directly on waveform audio in the time domain because
the data is extremely high dimensional and it is difficult to identify acoustic units in the time
domain. It is therefore reasonable to consider an alternative system that utilizes a pre-trained
neural vocoder which takes mel-spectrograms as input, and re-structure the VQ-VAE to function
as an autoencoder that uses mel-spectrograms as input and output.

In this re-imagined architecture there are several components that would need to be adjusted.
First the encoder and decoder layers would need to be adjusted for the dimensionality of mel-
spectrogram data instead of the audio waveform. Currently the encoder downsamples the audio
waveform by a factor of 64, so this downsampling would need to be adjusted along with the size
of the convolutional filter. Similarly with the decoder, it would need to be adjusted to produce
a mel-spectrogram from some input, such as a VQ vector. In this re-imagined architecture,
the intermediate layers between the encoder and decoder would need to also be characterized
differently. For example, there would no longer be a use for temporal average pooling layers. It
is not clear if disentanglement between speaker and content could be achieved since it may be
difficult to formulate a speaker representation from a mel-spectrogram. The input may need to
change so that the speaker encoder operates on an extracted signal-level feature such as mel
frequency cepstral coefficients (MFCCs). Therefore the input to the speaker encoder and the
input to the phone encoder would be different. Furthermore, the decoder would need to produce
a mel-spectrogram as output using global and local conditions and if that is not possible then
the idea of global and local conditioning would need to be re-imagined.

Essentially the variant of the system described so far would no longer be end-to-end. It
is not clear if having two different information sources would result in disentanglement or
not. Ultimately the learned representations would likely be defined as separately learned
representations but not disentangled representations. The idea behind disentanglement is to
separate two or more types of information from a single source, so even if this re-imagined system
variant performed well as an autoencoder, it may no longer be considered disentanglement. The
next chapter will explore what disentanglement means and provide more insight into how this
can be evaluated intrinsically.
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5.10 Conclusion

The purpose of this chapter was to explore an end-to-end approach to create disentangled
representations of speech features. The features that were focused on here were: speaker identity,
phone content, and F0. The success of this end-to-end approach has been measured by the
quality of the synthetic speech produced by the autoencoder framework. If the quality of the
synthetic speech is very low, then it is unlikely that meaningful representations have been
learned in the intermediary VQ clustering spaces. Therefore the evaluation of the approach
has focused on the quality of the speech output. Three principles were introduced relating to
disentanglement:

1. The learned representations are sufficiently rich to model targeted speech features.

2. Representations that model targeted speech features do not also model non-target speech
features (e.g., a representation of speaker identity does not also model speech content).

3. Representations have utility outside of the system that disentangles information.

The evaluation conducted in this chapter on re-synthesized speech has made an attempt to
address the first principle (#1). The learned representations can model targeted speech features
as global and local conditions when these conditions are passed to a trained decoder such as
WaveRNN. It is perhaps too early to claim that the learned representations are sufficiently rich,
as this will be addressed through further analysis in Chapter 6 and Chapter 7.

The best-performing dual-encoder system (+Adversarial) was identified alongside the best-
performing triple-encoder system (+Speaker/F0). Adding a semi-supervised VQ component
with either speaker labels or adversarial loss improves the speech output quality over fully
self-supervised systems. Automatic estimates of speech synthesis naturalness, intelligibility, and
speaker similarity can be improved over previous work in seen and unseen conditions. Further
experiments involving model adaptation have shown that it is possible to adapt a multi-speaker
monolingual model to a new multi-speaker multi-language dataset with reasonable naturalness
scores for copy-synthesis. The ability to synthesize speech from multiple languages in a single
model is very promising for other multilingual applications such as code-switching. The next
important step is to gain an understanding as to whether or not the learned VQ representations
are robust and meaningful, and whether or not they are disentangled. To better understand
how well the models have performed disentanglement, Chapter 6 will explore the VQ codebooks
of the trained systems in further detail, and assess whether or not the learned representations
have met any of the proposed disentanglement criteria.
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Chapter 6

Intrinsic Analysis of Disentangled
Representations

6.1 Introduction

In the previous chapter, a method was presented to re-synthesize speech while also learning
representations of speech that correspond to speaker identity, phone content, and prosodic style.
Representations were learned using several different variations of a VQ-VAE system wherein
each variation utilized a different number and type of VQ codebook, different loss function
with additional multi-task classifiers or gradient reversal layers. The purpose of simultaneously
learning multiple different types of codebooks (such as speaker and phone) was to encourage
disentanglement of the information. Overall, the previous chapter presented three different
classes of VQ-VAE systems wherein the differences are distinguished based on how many distinct
VQ codebooks were learned simultaneously during the model training process. All of the systems
utilize at least a phone codebook, as with the original VQ-VAE system:

1. single-encoder: VQ-VAE

2. dual-encoder: +F0, +Global, +Speaker, +Adversarial

3. triple-encoder: +Global/F0, +Speaker/F0, +Adversarial/F0

The re-synthesized speech from all systems was evaluated based on naturalness from estimated
mean opinion scores (MOS), naturalness MUSHRA tests, speaker cosine similarity, ASR-based
word error rate, and F0 error.

The original VQ-VAE system (VQ-VAE) utilized one single codebook which is thought
to contain phone information [van den Oord et al., 2017]. Among the dual-encoder system
variants, the best performing model made use of multi-task learning and gradient reversal with
softmax loss (+Adversarial). Among the triple-encoder system variants, the best performing
model made use of an auxiliary speaker classifier and softmax loss (+Speaker/F0). At the
end of Chapter 5, an additional model variant was introduced wherein the monolingual English
+Adversarial model was adapted for multilingual speech synthesis by adding a one-hot language
encoding vector for decoder global conditioning (+Adversarial-L). The multilingual model was
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trained to re-synthesize speech in four languages combined together during training (English,
French, Italian, and German).

While the quality of the re-synthesized speech was evaluated to identify top-performing
models, the previous chapter did not address any aspect of evaluating disentanglement among
the learned representations. This chapter explores the learned codebook content using intrinsic
analysis in an effort to characterize disentanglement. In the previous chapter, three principles of
disentanglement were introduced:

1. The learned representations are sufficiently rich to model targeted speech features.

2. Representations that model targeted speech features do not also model non-target speech
features (e.g., a representation of speaker identity does not also model speech content).

3. Representations have utility outside of the system that disentangles information.

The analysis presented in this chapter seeks to address the first and second principles (#1
and #2) by examining the content and relationships of learned representations. The learned

1

N

2Vector Lookup Table
N is a fixed size

and is set before training


Clustered VQ Vectors


Figure 6.1: Concept of a codebook demonstrated by a lookup table that contains N entries, and a
clustering space that was learned during training. The lookup table allows a one-to-one mapping
from a codebook index [1, 2..N ] (referred to as a code) to a 128-dim vector representation
(referred to as a vector).

representations can be found within the trained VQ codebooks. Each VQ codebook is a lookup
table where the key is an integer and the value is a 128-dim vector. Recall the description of
the VQ codebook from Chapter 2, as shown again here in Figure 6.1. A VQ codebook is of size
N , where the code [1, 2..N ] has a corresponding vector. The result of training is a lookup table
where meaningful vectors can be obtained by looking up a code. For systems that utilize more
than one encoder (e.g., +Adversarial), the phone codebook is learned jointly with the speaker
codebook, yet they are two separate codebooks. Therefore the representations learned by the
+Adversarial system include phone codes and phone vectors, as well as speaker codes and
speaker vectors.

A single utterance of speech is represented by a sequence of phone codes, as demonstrated
in Figure 6.2. The length of the sequence of phone codes depends on the compression ratio in
the encoder as well as the length of the original utterance (described in Section 2.4.1). The
compression ratio in all experiments used in this thesis was ds = 64, and the downsampling rate
was N/T = 250 codes/second. For codebooks that represent F0 information, this same sequence
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VQ
Codebook

6, 1, 10, 13, 7, 9, 18 ........... 10, 2, 1

Sequence of VQ Codebook Vectors

Sequence of VQ Codebook Indices

(time)

Encoderutterance

Figure 6.2: Concept of obtaining a sequence of codebook indices (codes) versus a sequence of
codebook vectors (vectors) that can be passed further to the decoder as global or local conditions,
or used for analysis in this chapter.

and compression ratio are applied, however the F0 codes correspond to a different downsampling
rate due to the frame length of the input F0 used in training the encoder. The input F0 used
in training had a frame length of frame = 5 ms and the resulting F0 downsampling rate was
N/T = 340 codes/second. The mismatch between the quantity of F0 codes and the quantity
of phone codes is handled with a transposed convolutional layer for up-sampling, as described
in Zhao et al. [2020b]. For codebooks that represent speaker information, a single utterance
yields a single speaker code due to the temporal average pooling. Therefore a speaker code
represents one utterance, regardless of the utterance duration. This chapter explores the content
of the sequences of codes from the F0 and phone codebooks, as well as the codes from the
speaker codebooks. Four different VQ-VAE system variants were selected for this analysis by
identifying the best-performing system among the variants that were introduced in Chapter 5.
The best-performing system was determined by the overall highest quality speech synthesis and
ability to generalize to unseen speakers/content:

• single-encoder VQ-VAE

• dual-encoder +Adversarial

• triple-encoder +Speaker/F0

• dual-encoder (multilingual) +Adversarial-L

The objective in selecting four top-performing systems for this analysis is to understand if
any particular system achieves better disentanglement of phone, speaker, and F0 information
compared to the baseline VQ-VAE. It would not be beneficial to further analyze system variants
that resulted in lower-quality speech synthesis as determined in Chapter 5 based on the principle
that lower-quality speech synthesis is likely to be related to lower-quality learned representations.
Another objective of this chapter is to understand if adding additional codebooks or adapting
to multiple languages causes a loss of disentanglement or lower-quality learned representations.
It may be possible, for example, that adding additional codebooks does not result in better
disentanglement but does allow for learning additional representations without sacrificing any
aspect of quality for synthesized speech or for the learned representations. If that is true, in
principle the additional F0 representations may be useful in downstream applications that benefit
from explicit F0 modeling, such as text-to-speech synthesis.

113



CHAPTER 6. INTRINSIC ANALYSIS OF DISENTANGLED REPRESENTATIONS

There is no single analysis that can determine or quantify disentanglement. Therefore this
chapter presents multiple different perspectives of analysis with each one probing or testing
the relationships between speaker, content, and F0 representations. Taken all together, the
analysis presented in this chapter will allow for some conclusions about disentanglement to be
drawn based on quantitative evidence. The analysis presented in this chapter will first examine
the frequency distributions of VQ codes for a set of utterances. In the case of phone and F0
code sequences, the sequence will be examined for consistency and systematicity. Systematicity
in language refers to statistically relevant groupings of words and sounds and the meaningful
application and usage of these categories within language [Dingemanse et al., 2015]. If language
was not systematic then words and sounds would be arbitrary. The analysis will aim to discover
if sequences of VQ codes behave like language or if the sequences appear to be random. In the
case of speaker codes, the analysis will examine the mapping between unique speaker from the
data and unique codebook entry (referred to as speaker code). The interplay between speaker
and phone representations will be examined using language modeling and a data probing task.
Finally, the vectors of each type of codebook (speaker, phone, F0) will be visualized in a 2D
space. In the case of multilingual codebooks from +Adversarial-L, additional analysis will be
performed to assess similarities and differences between +Adversarial and +Adversarial-L.

6.2 Related Work

There has been an increasing amount of work that utilizes the VQ-VAE paradigm to improve
speech synthesis [Zhao et al., 2020b] or to model F0 or prosody [Wang et al., 2019b; Zhao
et al., 2020b; Zhang et al., 2020], and word-level representations [Fong et al., 2021]. In much
(but not all) of this related work, the authors present a form of assessment of the learned VQ
representations. For example in the work of Wang et al. [2019b], their Figure 11 presents original
and estimated F0 contours alongside a trajectory path through the learned F0 codebooks using
multiple different levels of linguistic abstraction (word, syllable/mora and phone levels). The
trajectory visualizations help the reader to understand how VQ code sequences are related to
rising and falling prosody in speech. The visualizations did not, however, inform the reader of
how each F0 code sequence is related to other aspects of speech features because F0 was the
only speech feature being modeled.

Others, such as Zhao et al. [2020b] and Zhang et al. [2020] have explored learning F0
representations. In the work of Zhao et al. [2020b], an F0 codebook was learned using VQ-
VAE and this was applied to Japanese and Chinese, two tonal languages that may benefit
from explicit F0 modeling for speech synthesis. The work of Zhang et al. [2020] found that
VQ-VAE could learn representations that control prosody through duration, word boundaries,
and increasing/decreasing pitch. However, when the self-supervised technique from Zhao et al.
[2020b] was used for English data in Section 5 of this chapter, it was found that the VQ F0
codebook only learned one VQ code repeated over and over and it was the same for all English
utterances. As with much of the other related work, the assessment of learned representations
for VQ-VAE is mostly based on using them to perform tasks. A detailed analysis of intrinsic
properties of representations tends to be missing from the literature.

Another way to analyze learned representations from VQ-VAE comes from Fong et al. [2021]
where they applied time alignments to sequences of VQ phone codes to create word-level units of
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speech using multi-speaker English data. The units were then concatenated together in various
ways to change the words in an utterance. They found that the intelligibility of concatenated
units was degraded when the speaker was mismatched (meaning that different units came from
different speakers). Their analysis is insightful for a variety of speech applications, especially
text-to-speech. However, their work was limited to the original VQ-VAE architecture using only
a phone codebook. They did not explore whether similar words contained similar sequences of
VQ phone codes.

6.3 Codebook Usage and Frequency Distributions

The purpose of analysing codebook usage and frequency distributions is to understand if the
phone and F0 code sequences follow similar patterns as natural speech. It also provides a way
to assess whether the entirety of the codebook was utilized, as the size was set and fixed during
training. The number of entries used in a given codebook depends on training and whether the
VQ loss function created many clusters or fewer. At the time of writing, there are no existing
guiding principles to determine the necessary size of a codebook before training. The size of the
phone codebook was 512, and the size of the F0 codebook was 10, both in line with previous
work [Zhao et al., 2020b; van den Oord et al., 2017]. For the new speaker codebook component
introduced in this thesis, the size of the speaker codebook was set to 256 in order to be smaller
than the phone codebook but large enough for the quantity of unique speakers in the VCTK
training data (110 speakers).

6.3.1 Data Preparation

This section describes how the data was pre-processed for the purpose of analyzing codebook
usage and frequency. First, the codebook sequences were obtained from speech training data by
making a forward pass (inference) through each system and saving the resulting VQ codes and
vectors. This resulted in a sequence of phone codes and a sequence of phone vectors for each
individual utterance. Similar sequences were obtained for F0 in the case of the triple-encoder
system. The speaker information was represented by a single speaker code and vector, except
for the original VQ-VAE system which did not have a speaker codebook component. The audio
and text data were also passed to a forced alignment system to obtain time-aligned speech and
text, with alignments at the phone and word levels. For this step, the Montreal forced aligner
was used [McAuliffe et al., 2017].

Next, a random sample of 1,000 utterances was selected from the training set. (This random
sample corresponds to “condition1” described in the previous chapter, wherein the speaker and
content of the utterance were seen during training). These utterances were selected from among
99 speakers. Approximately 10 utterances per speaker were used in the random sample. The
sequence of phone and F0 codes was further processed to remove unvoiced/silence. To do this,
first the sequence of codes was aligned to the forced alignments from the Montreal forced aligner.
The forced alignments were checked for phone silence tokens (/sil/ and /sp/) or word silence
tokens (“SILENCE”) that correspond to silence padding or pauses within the utterance. The
corresponding phone and F0 codes were removed if they were aligned to the word or phone
silence tokens.
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6.3.2 Phone Codebook

The phone codebook was analyzed in this section using a technique borrowed from corpus
linguistics. This technique examines language usage based on the distribution of high and
low frequency vocabulary types. The goal is to describe how word types or phone types are
distributed within human languages. Further, in this section the same idea will be applied
to VQ phone codes to describe how the codes are distributed and make comparisons between
VQ codes and words/phones. All human languages exhibit systematicity and the frequency
distribution of types will tend to follow a power law called a Zipfian distribution [Zipf, 1970].
This means that some word types (primarily function words such as: to, from, of, in, for, etc)
are significantly more frequent than other word types in the language (such as content words).
Systematicity is observed because language is highly structured [Gries and Ellis, 2015]. While
Zipfian distributions among VQ codes do not directly imply disentanglement, it would suggest
that distributions of VQ codes behave similarly to distributions found in natural language. If
the VQ codes behave similarly to natural language then it may be possible to find an association
between sequences of VQ phone codes and phone content. If VQ phone codes are highly
correlated to phone content, then they are less likely to be correlated with individual speakers,
and this may suggest disentanglement between content and speaker information.

In this section, the systematicity of phone codes is analysed in terms of the rank-ordered
frequency distribution using the sequences of codes that were obtained for all utterances. The
distribution of codes is compared to the distribution of words and phones in terms of unique
vocabulary. Until this analysis, it has not been determined whether VQ phone codes exhibit
systematicity similar to words and phones in natural language. Examining rank-sorted frequency
distributions provides only a rough analysis. It does not fully elaborate the relationships between
codebook vectors or disentanglement. The vocabulary is examined here as a starting point for
further analysis such as predicting which codes correspond to a particular phone, and which
vectors are closer or far apart, described in Sections 6.4 and 6.5.

The words, phones, and phone codes will be examined in terms of vocabulary. In the case of
words, the vocabulary refers to the set of unique word types. The frequency of a vocabulary
item refers to the number of tokens belonging to the same type (for example, the number of
times the word “to” occurs in the data). In the case of phones, the vocabulary refers to the set
of unique phone types. The phoneset used by the Montreal forced alignments was ARPABET
which is provided by default with that tool. In the case of VQ phone codes, the vocabulary
refers to the set of unique phone code types that were active for all of the utterances in an
inference step (not necessarily the size of the codebook if some codes were not used for the
utterances). In addition, three other aspects of vocabulary are explored: bigrams, phone-aligned
codes, and sentencepiece. Bigrams are determined as a pair of consecutively occurring tokens.
The phone-aligned codes are the sequence of codes that are grouped together based on the time
alignments for each instance of each phone. For example, the phone-aligned sequence for the
phone /ah/ turns out to be the code sequence [8, 5, 9, 2] in one utterance and [3, 2, 5, 9, 5, 7, 8] in
another utterance; each code sequence would constitute a separate and unique grouping, and
thus a separate and unique vocabulary entry (referred to as Phone-Groups in Table 6.1). In the
case of sentencepiece, this refers to the application of the tool called sentencepiece1,2 that

1https://pypi.org/project/sentencepiece/
2https://github.com/google/sentencepiece#c-from-source
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determines groupings of phone codes based on statistical co-occurrences. It was trained on the
sequences of phone codes to create a larger vocabulary. The vocabulary was pre-set and two
sizes were compared: 256 and 512 (referred to as SP_256 and SP_512 in Table 6.1).

From Table 6.1 there appears to be a lack of systematicity in the phone codes for all three
systems. This is indicated by the very large vocabulary sizes for bigrams as well as phone aligned
code groupings. For example, if there are 91 possible unigram types in the original VQ-VAE,
then for bigrams the 91 possible types are combining as the maximum possible number of
bigrams: 91 ∗ 91 = 8281, if each unigram combines uniquely with each other unigram. Since
the table indicates a value of 7878 for bigrams, this suggests that every unigram is combining
with almost every other possible unigram. If the phone codes were combining in a way that was
more systematic there would be a smaller vocabulary size, and the values in the table would be
smaller. An example of this is shown for words types and phone types. The unigram vocabulary
size for phones is 58, while the bigram vocabulary size is 693. These values for phone vocabulary
indicate that on average, a phone unigram type combines with approximately 11 different other
unigram types when forming bigrams. Perplexity will be defined and discussed in a separate
analysis in Section 6.4, though it is worthwhile to mention here that the large vocabulary sizes
correspond to a high perplexity relative to the linguistic units of words and phones.

A consequence of having low systematicity is there may be some difficulty with modeling
or predicting the phone code sequences. However as the previous experiments from Chapter
5 have shown, it is possible to re-synthesize high quality speech so the phone code sequences
are probably meaningful even if they do not follow similar systematicity patterns as words and
phones. It is an open question of whether the information is found in the way phone codes are
distributed or the learned weights of the decoder from training. The ability to predict a phone
from a code (and predict a code from a phone) will be further explored in later sections of this
chapter (Section 6.4.3). For the phone-aligned codes, the consistently high vocabulary sizes
across systems suggests that most instances of phones being represented by unique phone code
sequences which also reflect the duration of a phone. For example if an instance of a phone such
as /ah/ is represented by the VQ phone code sequence [101, 23, 76, 92] then another instance
of the same phone /ah/ could (in theory) be represented by the VQ phone code sequence
[5, 13, 21, 76, 92, 64]. These two sequences would then be treated as separate vocabulary types in
this rough analysis of types and tokens. The vocabulary sizes from sentencepiece (SP_256 and
SP_512) did not help alleviate this problem because sentencepiece simply imposed a statistical
grouping method that created the specified vocabulary size (v = 256 and v = 512), but further
analysis may reveal an interesting frequency distribution based on the vocabulary size.

The next step in observing systematicity and codebook usage is to examine rank-sorted
frequency distributions. These are shown in Figures 6.3 to 6.7. To create the plots, first the
frequency of each vocabulary item was calculated. The relative frequency was obtained by
dividing each frequency value by the total number of tokens. The vocabulary items were then
sorted in descending order based on the values for relative frequency. This placed the highest
relative frequency vocabulary item in rank 1 and the lowest relative frequency vocabulary item
last. These rank-sorted distributions were then plotted. The top 40 rank-sorted phones and
words are displayed in Figure 6.3 and Figure 6.4, respectively. Both of these distributions appear
to follow the Zipfian power law, even though the data is based only on 1,000 utterances. The
phone code distributions for VQ-VAE in Figure 6.5 and +Speaker/F0 in Figure 6.7 are not
as clearly Zipfian, but also not as flat as the distribution for +Adversarial in Figure 6.6. Given
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Table 6.1: Comparison of vocabulary sizes based on modeling unique word types, unique phone
types and unique VQ phone code types from 1,000 randomly selected utterances across 99
speakers from the VQ-VAE training set. The vocabulary was modeled using unigrams, bigrams,
and sentencepiece for VQ phone codes as well as the phone-level forced alignments to obtain
groupings of VQ phone codes. Codebooks from three variants of the VQ-VAE systems were
examined: VQ-VAE, +Adversarial, and +Speaker/F0. For sentencepiece, two different
vocabulary sizes are compared (SP_256 and SP_512).

Vocabulary Size
Method Unigrams Bigrams SP_256 SP_512 Phone-Groups
Words 235 386 – – –
Phones 58 693 – – –
Phone Codes VQ-VAE 91 7878 252 508 60552
Phone Codes +Adversarial 170 26280 252 508 60325
Phone Codes +Speaker/F0 108 10505 252 508 60587

that the best-performing system for speech synthesis was +Adversarial, it is possible that the
relatively flat distribution of code sequences provides an advantage or the combinations of VQ
phone codes exhibit redundancy and systematicity in a different manner not reflected here.

Figure 6.3: Top 40 most frequent phones from 1,000 randomly selected VCTK utterances and
using phones from the Montreal forced alignments. Any phones corresponding to silence were
removed. This plot shows the relative frequency for the top 40 rank-sorted phones.
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Figure 6.4: Top 40 most frequent words from 1,000 randomly selected VCTK utterances and
using words. Any words corresponding to silence were removed. This plot shows the relative
frequency for the top 40 rank-sorted words.

Figure 6.5: Top 40 most frequent phone codes from the VQ-VAE model. The distribution
is sorted according to the highest value of relative frequency. The distribution appears to be
similar to a Zipfian distribution, indicating that some of the VQ phone codes may be used
systematically in the VQ phone code sequences for each utterance.
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Figure 6.6: Top 40 most frequent phone codes from the +Adversarial model. The distribution
is sorted according to the highest value of relative frequency. The distribution appears to be
more flat for this system variant compared to other system variants. It may be possible that this
system does model language systematicity or redundancy, but it is not captured in this analysis.

Figure 6.7: Top 40 most frequent phone codes from the +Speaker/F0 model.The distribution
is sorted according to the highest value of relative frequency. The distribution appears to be
similar to a Zipfian distribution, indicating that some of the VQ phone codes may be used
systematically in the VQ phone code sequences for each utterance.
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The rank-frequency distributions are also visualized using a log10-log10 scale and compared
side by side for unigrams (including words and phones) in Figure 6.8, for bigrams in Figure 6.9,
and for sentencepiece SP_256 in Figure 6.10. For the reference of phones and words in Figure 6.8,
it can be seen that the rank-frequency distribution has a clear downward trend though it is
not linear. Words and phones that are lower-ranking are also lower-frequency. The lowest
ranking items are orders of magnitude less frequent than the highest ranking items. On the
other hand, the VQ phone codes for unigrams in Figure 6.8 do not follow a similar pattern.
The VQ phone codes for all three systems have little variation in the frequency despite some
items being lower-ranking. A similar trend for VQ phone codes is also observed for bigrams
in Figure 6.9. The sentencepiece SP_256 vocabulary in Figure 6.10 has a pattern that is
slightly similar to words and phones. Overall there appear to be few differences between the
three system variants for unigrams, bigram, or sentencepiece. From Figures 6.8–6.10, it can
be seen that most VQ phone codes have similar frequency regardless of unigram, bigram, or
sentencepiece and regardless of the VQ system. This shows a lack of systematicity and indicates
that the VQ phone codes are statistically distributed in an arbitrary manner. This lack of
systematicity is not necessarily evidence against disentanglement, but it does not provide any
evidence for disentanglement and shows that VQ phone codes do not behave like language. It
also shows that the VQ variants +Adversarial and +Speaker/F0 do not significantly change
the systematicity from the original VQ-VAE system.

Figure 6.8: Plot of the rank frequency distribution (using a log-log scale) of unigram words,
phones, and VQ phone codes from VQ-VAE, +Adversarial, and +Speaker/F0. The VQ
phone codes do not follow a similar pattern as the words and phones.
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Figure 6.9: Plot of the rank frequency distribution (using a log-log scale) of bigram VQ phone
codes from VQ-VAE, +Adversarial, and +Speaker/F0.

Figure 6.10: Plot of the rank frequency distribution (using a log-log scale) of sentencepiece
SP_256 VQ phone codes from VQ-VAE, +Adversarial, and +Speaker/F0.
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6.3.3 Speaker Codebook

To examine the speaker codebook usage, only two systems are compared: +Adversarial
and +Speaker/F0. This is because the original VQ-VAE system relied on one-hot speaker
encodings so there is no speaker codebook to examine. Unlike the phone codebook described
earlier, the speaker codebook results in each utterance being modeled by a single speaker code.
This is due to the temporal pooling layer in the model. The speaker code is meant to model
utterance-level features that correspond to the identity of the speaker.

Table 6.2: Summary of 5 unique VCTK speakers with metadata showing the diversity of speaker
codes in the +Adversarial and +Speaker/F0 system variants.

VCTK English Speaker Codes
Speaker Gender Age Dialect +Adversarial +Speaker/F0

p306 F 21 American 67, 52 190
p336 F 18 S. African 232, 22 201, 188, 252, 36
p272 M 23 Scottish 30 43, 50, 179
p264 F 23 Scottish 19, 12 201, 50, 188, 237
p226 M 22 English 193, 188, 30, 113 168, 179, 237

From the 1,000 randomly selected utterances that were used for analysis in this section, 5
unique speakers were randomly chosen for examination of their mapping into speaker codebooks.
Table 6.2 shows how each speaker is mapped into speaker codes for each system. In general,
it appears that a given speaker is mapped into one or more speaker codebook representations
regardless of which system is used. This finding of a one-to-many mapping is counter to the notion
that the speaker codebook is modeling unique speakers. Later analysis in this chapter will explore
the distribution of speaker codes for a given speaker using conditional probabilities (Section 6.4.3)
as well as how the codebooks are only partially utilized (Section 6.5). Although the speaker
codebook size was initialized to 256 entries for +Adversarial and +Speaker/F0, each system
only learned to utilize 18 and 19 codebook entries during training for 99 unique speakers. In
general, based on the information in Table 6.2 it appears that the system variant +Speaker/F0
may map a given speaker into more VQ codebooks compared to the +Adversarial system. To
quantify this observation, all of the speaker codes were counted for the 99 speakers who occurred
in the selected 1,000 utterances. The unique speaker codes per speaker were determined. On
average, the +Adversarial system maps a speaker into 2.43 unique speaker codes (std = 1.13)
out of 18 while the +Speaker/F0 system maps a speaker into 2.92 different speaker codes
(std = 1.23) out of 19. For comparison, the unique speakers per speaker code were determined.
On average, the +Adversarial system uses a single speaker code for 13.05 unique speakers
(std = 8.68) and the +Speaker/F0 system uses a single speaker code for 16.89 unique speakers
(std = 8.39). This finding, that there is not a one-to-one mapping between unique speakers and
speaker codes, suggests that the learned representations of speakers and phones are not being
fully disentangled during training by either of these two VQ-VAE system variants. If there was
disentanglement, each speaker would be represented by a unique code. Instead, the VQ phone
codes may contain information that distinguishes between speakers which would be evidence
against disentanglement.
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6.3.4 F0 Codebook

This section presents an initial view of how the F0 codebook was utilized in the system variant
+Speaker/F0. Recall from Chapter 5 that quantized F0 was provided to the +Speaker/F0
system variant during training. The quantization was performed in a manner that associated F0
values with one of 10 categorical bins according to the minimum and maximum range of F0 in
the training data.

To review the F0 quantization process, first the F0 was obtained using the Reaper3 pitch
tracking tool. The frame rate was fr = 5 fps. The minimum F0 and maximum F0 for the
training data was noted and that range was divided into bins. Any F0 values outside of the
min/max values were treated as unvoiced. Each of the 10 bins covered equal proportions of the
min/max range, meaning that the quantization bins scale linearly to the min/max values. In
the VCTK training data, the minimum F0 was determined as F0min = 29.0 and the maximum
was F0max = 716.0, both were determined automatically based on Reaper pitch tracking. After
quantization, each F0 value was then represented by a single integer. For example, if three
frames in a row had an F0 value of F0 = 167.0 before quantization, then the same three frames
could be represented as [3, 3, 3] after quantization (because the original F0 value corresponds to
bin #3).

To obtain VQ F0 codes, a similar inference process was used as described earlier for phones
and speakers. The audio was provided to the system for inference and the resulting F0 codes
were saved. The downsampling rate for VQ F0 codes from the F0 encoder was N/T = 340

codes/second. For the 1,000 randomly sampled utterances used in this analysis, the average
length of F0 code sequences was Lavg = 1757.5 with std = 761.2.

In this analysis, the original, quantized, and VQ F0 codes are plotted and shown for two
different speakers saying the same utterance (“Please call Stella”). The speaker in Figure 6.11 and
Figure 6.12 is a 22-year-old female who has a Northern Ireland dialect of English. The speaker
in Figure 6.13 and Figure 6.14 is a 22-year-old male speaker who has a British English dialect.
Figures 6.11 and 6.13 show the F0 from original speech (shown as log(F0)). Figures 6.12 and
6.14 show the quantized F0 as it was provided to the system during training. Each quantization
bin is labeled with the learned VQ F0 code.

To demonstrate the content of the F0 codebooks, the unvoiced regions were not masked in
Figures 6.12 and 6.14 in order to observe which VQ F0 codes tend to represent unvoiced/silence
regions. The VQ codes appear to learn the voice and unvoiced region boundaries well. From
the plots of natural log(F0), we observe that the log(F0) is overall lower for the male compared
to the female speaker. The gender appears to be reflected in differences for the VQ codes as
well (indicated by codes 8 and 5 for the female, and code 3 for the male). Further analysis will
attempt to quantify characteristic patterns in the F0 sequences, including aligning the VQ F0
codes with the original quantized bins (see Section 6.4.3.3).

3https://github.com/google/REAPER
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Figure 6.11: Female speaker p238. The F0 extracted from natural/original speech using the
reaper tool. This is the log(f0) and unvoiced regions are masked.

Figure 6.12: Female speaker p238. The quantized F0 is shown and each bin is labeled with the
corresponding VQ F0 code. The unvoiced regions are not masked in this view. The VQ F0
codes appear to distinguish between voiced and unvoiced regions. For VQ codes, it appears that
VQ code 4 corresponds to the unvoiced regions.
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Figure 6.13: Male speaker p243. The F0 extracted from natural/original speech using the reaper
tool. This is the log(f0) and unvoiced regions are masked

.

Figure 6.14: Male speaker p243. The quantized F0 is shown and each bin is labeled with the
corresponding VQ F0 code. The unvoiced regions are not masked in this view. The VQ F0
codes appear to distinguish between voiced and unvoiced regions. For VQ codes, it appears that
VQ code 4 corresponds to the unvoiced regions.

126



CHAPTER 6. INTRINSIC ANALYSIS OF DISENTANGLED REPRESENTATIONS

6.3.5 Summary

The analysis presented has so far confirmed that VQ phone codes do not follow statistical
distributions that are similar to natural language, specifically for words and phones. In the
case of system +Adversarial, the rank-ordered frequency distributions are very flat and this
indicates that VQ phone codes occur at similar frequencies when representing content information.
Flat distributions were not observed for the other systems. There is not a one-to-one mapping
between speaker identity labels and VQ speaker codes and this is true for system +Adversarial
as well as +Speaker/F0. The VQ F0 codes appear to accurately model voiced/unvoiced
regions for male and female speakers, and this is partly due to the consistency of representing
unvoiced/silence regions by a single VQ code.
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6.4 Codebook Analysis Using Language Modeling

In this section, the analysis involves drawing from concepts that are part of language modeling
techniques. In particular, three language modeling techniques are explored: perplexity, condi-
tional probabilities, and distribution similarities. Language modeling in general can be done
with various levels of linguistic units. In natural language processing, language modeling can
be used to examine word or letter distributions. In theory, English has 262 possible pairs of
letter combinations, since each letter could combine with each other letter to form a pair. In
practice, however, some pairs are much more likely to occur than others in the English language.
For example, in the English language the letter ‘q’ is commonly followed immediately by the
letter ‘u’, but not the letter ‘z’. By applying this concept to data and calculating the conditional
probability of letters following one another, a language model can be created [Nadkarni et al.,
2011]. This same concept of language modeling can be applied to sequences of letters, phones,
words, VQ phone codes, or VQ F0 codes.

The values that are represented in a language model are entirely dependent on the data that
is used for modeling. For example, if the language model is created on one body of text but
applied to an unseen body of text, then the language model may potentially be mismatched to
the unseen text. Different bodies of text utilize words at different frequencies, and in many cases
they use different types of words altogether [Stamatatos et al., 2000]. Consider that a document
about bird migration uses different words than a document about finance. The mismatch
between the vocabulary causes language models to degrade in predictable ways, namely that it
is relatively easy to detect that a mismatch has occurred.

Perplexity can be calculated when applying a language model to new data. The perplexity
roughly represents how well the language model fits to new data [Chen and Goodman, 1999]. In
fact, the new data is referred to as the test set T in the definition of perplexity (PP ) provided
in Equation 6.1

PPT (PM ) =
1

(
∏t

i=1 PM (wi|w1...wi−1))
1
t

(6.1)

where T is the test set (a text document) with words T = {w1...wt}, PM is computed by the
language model for (next word w|history h). The language model may be estimated on an initial
text that is potentially very different from the test set. In that case, the perplexity will be
relatively high because of the mismatch. The analysis that will be presented in this section aims
to examine the mismatch between a language model and data through a careful construction of
two data subsets. In one data subset, the speakers have all said the same set of utterances. In
another subset, different speakers have each said different utterances. In the next section, the
dataset will be described in more detail.

The perplexity analysis will be shown in more details in Section 6.4.2. Additional language
modeling techniques include conditional probabilities in Section 6.4.3 to measure the most
probable outcome of an event (such as a phone or a word) occurring in sequence given some
history. Finally in Section 6.4.4, subsets of the data will be analyzed according to the distributions
of phone types per speaker to better understand the relationships between phone and speaker
information.
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6.4.1 Data Preparation

When speakers use the same words or phones in a sentence, it can be said that their language
usage is similar and a language model could capture this similarity. For this analysis the data
was selected in a way that controls which utterances are shared among a group of speakers and
which utterances are not shared. All of the selected speakers and utterances that were used to
create data subsets had been seen during system training (this is referred to as condition1 in
Chapter 5). Two groups of speakers were selected and two groups of utterances were selected:
Set1 and Set2. The utterances in Set1 consist of a set of sentences that are spoken by all speakers
in both groups of speakers. The Set1 utterances are provided in Table 6.3. For Set2, each
utterance is different for each speaker. In addition, the speakers are divided into GroupA and
GroupB. The purpose of dividing speakers and utterances is to better understand the similarities
and differences among speakers given the content. Each task in this analysis probes a slightly
different aspect of the problem of disentanglement.

The main factor in deciding the speaker groups was based on utterance match and mismatch.
However there were some additional considerations. The speakers in GroupA were purposefully
selected to be more homogeneous for English dialect whereas the speakers in GroupB were
purposefully selected to be more heterogeneous for English dialect. This decision was made
to help create ‘matched’ and ‘unmatched’ speaker sets. In addition, the speaking rates were
considered for each of the speakers and speakers who tended to speak very fast were omitted
from the GroupA and GroupB. The speaking rates were considered because it can potentially
affect how much information is contained within a particular VQ phone code. If an utterance is
spoken very fast, then it becomes more difficult to associate a VQ phone code with a phone, for
example. Also when examining similarities and differences across speakers, the goal is not to
model speaking rate as a feature. By pre-selecting speakers who have similar speaking rates it
reduces any possibility that speaking rate would be modeled unintentionally. The metadata and
speaking rate for GroupA speakers is provided in Table 6.4 and for GroupB this is provided in
Table 6.5. The metadata consists of age, gender and English dialect.
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Table 6.3: Summary of utterances in Set1 that are shared across all speakers in GroupA and
GroupB. This table shows the VCTK sentence identifier as well as the content of each utterance.

Sent ID Content
008 These take the shape of a long round arch, with its path high above,

and its two ends apparently beyond the horizon.
009 There is, according to legend, a boiling pot of gold at one end.
013 Some have accepted it as a miracle without physical explanation.
015 The Greeks used to imagine that it was a sign from the gods to foretell

war or heavy rain.
016 The Norsemen considered the rainbow as a bridge over which the gods

passed from earth to their home in the sky.
018 Aristotle thought that the rainbow was caused by reflection of the

sun’s rays by the rain.
019 Since then physicists have found that it is not reflection, but

refraction by the raindrops which causes the rainbows.
020 Many complicated ideas about the rainbow have been formed.
023 If the red of the second bow falls upon the green of the first, the

result is to give a bow with an abnormally wide yellow band,
since red and green light when mixed form yellow.

024 This is a very common type of bow, one showing mainly red and yellow,
with little or no green or blue.

Table 6.4: Summary of speakers belonging to GroupA (16 speakers) and their respective metadata
(age, gender, English dialect) as well as their average speaking rate (words per second).

VCTK English Average
Speaker Gender Age Dialect Speaking Rate

p226 M 22 English 2.3
p227 M 38 English 2.6
p228 F 22 English 2.5
p229 F 23 English 3.1
p231 F 23 English 3.4
p232 M 23 English 3.2
p233 F 23 English 2.7
p234 F 22 Scottish 2.9
p237 M 22 Scottish 2.4
p238 F 22 Northern Irish 2.6
p239 F 22 English 3.0
p240 F 21 English 2.9
p243 M 22 English 2.8
p244 F 22 English 2.7
p245 M 25 Irish 2.4
p246 M 22 Scottish 2.6
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Table 6.5: Summary of speakers belonging to GroupB (16 speakers) and their respective metadata
(age, gender, English dialect) as well as their average speaking rate (words per second).

VCTK English Average
Speaker Gender Age Dialect Speaking Rate

p248 F 23 Indian 2.8
p249 F 22 Scottish 2.6
p250 F 22 English 3.4
p251 M 26 Indian 2.8
p252 M 22 Scottish 2.1
p253 F 22 Welsh 3.0
p254 M 21 English 3.2
p255 M 19 Scottish 2.8
p257 F 24 English 3.5
p258 M 22 English 3.0
p259 M 23 English 2.6
p261 F 26 Northern Irish 3.1
p262 F 23 Scottish 2.8
p263 M 22 Scottish 3.2
p264 F 23 Scottish 2.5
p265 F 23 Scottish 2.2
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6.4.2 Perplexity

One way to understand the sequences of phone codes is through the lens of language modeling,
treating each unigram, bigram, and trigram of VQ codes in the same way that a sequence
of words are treated in a sentence. In this section, the matched and unmatched speaker and
utterance groups will be utilized to model phone code sequences using language modeling. As
mentioned earlier, language models of English can be used to understand which letter is most
likely to follow another letter in a word, or which word is most likely to follow another word in
a sentence. By modeling sequences of VQ phone codes with language modeling, it is possible to
assess whether the VQ phone codes may be speaker-dependent. The two groups of speakers
(Group A and Group B) as well as the two sets of sentences (Set 1 and Set 2) have properties such
as overlapping content that allow some predictions to be made regarding language modeling.

The construction of a language model also requires a smoothing technique in order to account
for any n-grams that occur in the testing data, but which were not seen during training. The
Lidstone smoothing method was selected because it designates a very small probability to unseen
n-grams making it more responsive for smaller sized datasets such as the subsets used for this
analysis [Chen and Goodman, 1999]. The smoothing parameter used with Lidstone was set to
α = 0.5. This value was selected after searching within the values 1.0, 0.5, 0.05, 0.005 and there
were no large changes in perplexity for the smaller values. Without smoothing, the perplexity
could potentially be mathematically undefined or infinite due to the mismatch of vocabulary
between the language model training data and the testing data. The language models and
Lidstone smoothing were implemented using the Python NLTK library [Bird et al., 2009].

Language models were created on data from the speakers in GroupA and the content from
Set1. In total, 15 language models were created using n-grams in the range of [1, 2, 3] for words,
phones and VQ phone codes from each of the three systems. As a test and sanity check, language
models were first created using the words of the utterances and then a separate model was
created using the phones of the utterances (the phones came from Montreal forced alignments).
These two different types of language models were further explored using different n-grams
(unigrams, bigrams, and trigrams). The GroupA/Set1 language model was then evaluated
on four different test sets: GroupA/Set1 (for reference), GroupB/Set1, GroupA/Set2, and
GroupB/Set2. The results are reported in Table 6.6 (bold values indicate the lowest perplexity
for a given linguistic unit).

The expected result for words is that the perplexity for GroupA/Set1 and GroupB/Set1
would be lower than the other test sets. Because GroupA/Set1 and GroupB/Set1 contain the
same sentences. The perplexity values in Table 6.6 should only be compared in relative terms.
For both words and phones in Table 6.6, the perplexity decreases when the n-gram size increases.
This is because the larger n-grams are modeling more context and providing a better language
model. The perplexity values for GroupA/Set2 and GroupB/Set2 are higher indicating that the
model is not a good fit. This makes sense because the sentences in Set2 are different from the
sentences in Set1, and in some cases they share few words in common.

The expected result for phones is similar to the expected result for words. While the perplexity
is relatively lower for larger n-gram sizes than for unigrams in the matched GroupB/Set1
condition, the perplexity remains high for unmatched conditions. Overall, the results from words
and phones confirm that the content is having a greater affect on language modeling than the
speakers.
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Table 6.6: Summary of perplexity values for language modeling of words, phones, and VQ
phone codes using language models based on unigrams, bigrams and trigrams. The language
model was constructed from speaker Group A and utterances Set 1. That language model was
then evaluated to the other speaker groups and utterances sets (including GroupA/Set1 for
reference). The fitness of the language model was evaluated with measures of perplexity. Bold
values indicate the lowest perplexity for a given linguistic unit.

Linguistic n-gram GroupA GroupB GroupA GroupB
Unit size Set1 Set1 Set2 Set2

words 1 89 89 1523 1666
2 6 6 156 157
3 4 4 134 135

phones 1 33 33 39 41
2 9 9 47 48
3 4 4 42 42

VQ-VAE codes 1 82 82 83 83
2 44 44 47 47
3 52 52 55 55

+Adversarial codes 1 157 157 163 160
2 91 91 93 95
3 132 131 132 135

+Speaker/F0 codes 1 95 95 99 99
2 53 53 54 53
3 68 68 69 69

Further in Table 6.6, results for language models estimated on sequences of VQ phone
codes from each system variant: VQ-VAE, +Adversarial, and +Speaker/F0. Unlike the
perplexity values for words and phones, there is not a clear trend of relative perplexity values
across the different test sets for speaker and content. That is an unexpected finding and it
suggests that the VQ phone codes are not especially consistent regardless if the content is the
same or different. However, the perplexity does decrease by nearly half when comparing the
unigrams with bigrams. The perplexity increases when comparing bigrams to trigrams. This
suggests that bigrams are modeling context better than unigrams or trigrams. All three system
variants (VQ-VAE, +Adversarial, +Speaker/F0) appear to have similar perplexity values
in all cases and therefore this analysis does not distinguish one system variant over another.
One potential interpretation of these results is that if the speaker and phone information was
more disentangled then the perplexity values for test data GroupB/Set1 would be lower than
for the other test sets.

6.4.3 Conditional Probabilities

Building from the ideas of frequency and perplexity that were introduced in Section 6.3 and
Section 6.4.2, this section explores an approach to codebook analysis that measures how likely it
is that a given code will co-occur with phones, speakers, or F0 quantization bins. In this section,
conditional probabilities are calculated for the purpose of quantifying associations between
learned codebook representations and features of the training data. For phones, this associates
the phones from Montreal forced alignments with VQ phone codes. For speaker, this associates
the speaker identity labels from the VCTK dataset with the speaker VQ codes. And for F0,
this associates the quantization bin (from the pre-processing in Chapter 5) with VQ F0 codes.

Conditional probabilities can be used to measure the most likely outcome of an event
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Figure 6.15: Conditional probability of phones given a word “to”. Four phones were identified
that correspond to occurrences of the word “to” in the subset of data. The phone /T/ is most
probable. For the vowels there are three potential phones with the most probable phone being
/AH0/ and least likely being /UW1/.

depending on another variable, such as how likely it is that a particular phone will occur given
a word. The calculation for conditional probability is described in Equation 6.2. From this
equation, the probability of an event occurring given another event can be determined by
counting the number of times each type of event occurs in the dataset. The term A refers to the
event A and it may reflect the occurrence of a word, while the term B refers to the event B and
it may reflect the occurrence of a phone. The relationship is not symmetrical.

P (A|B) =
P (A given B)

P (B)
(6.2)

While the conditional probabilities shown in Figure 6.15 and Figure 6.16 suggest a very
strong relationship between the phone /T/ and the word “to”, there may not be such a strong
relationship between the phone /AH0/ and the word “to”because /AHO/ is used often in other
contexts. An example of the conditional probability of phones given the word “to” is shown in
Figure 6.15. This figure indicates that the phone /T/ is the most probable phone given the
word “to”. The conditional probability can also be computed in the other direction to obtain the
probability of the word given the phone. An example of the conditional probability of words
given the phone /T/ is shown in Figure 6.16.

6.4.3.1 Phone Analysis

The data subset used for this analysis consists of GroupA speakers and Set1 utterances. This
combination of speakers and utterances was chosen to ensure that there are multiple examples of
similar content that is spoken by different speakers. The result is multiple instances of the same
phone in context. If the speaker and phone information are perfectly disentangled, then the VQ
phone codes will consistently be associated with a particular phone. However, finding a mapping

134



CHAPTER 6. INTRINSIC ANALYSIS OF DISENTANGLED REPRESENTATIONS

Figure 6.16: Conditional probability of words given a phone /T/. In total, 25 words were
identified that correspond to occurrences of the phone /T/. The word “to” is most probable,
followed by the word “it” and “that”. Words such as “complicated” and “light” are less likely in
this subset of the data.

between VQ phone codes and phones is a necessary but insufficient condition for disentanglement.
Disentanglement would also require some evidence that VQ phone code sequences are not also
correlated with speaker identity (such as the analysis that will be explored in Section 6.4.4). To
analyze the VQ phone code sequences, they are used to measure the most probable code and
phone as a conditional probability using Equation 6.2. The analysis was run in both directions,
first treating the phone as event A and the VQ phone code as event B, then again treating the
VQ phone code as event A and the phone as event B.

Along with the conditional probability, the code and phone frequency will also be taken into
consideration in this analysis. Using the earlier example of the high frequency function word “to”
from Figure 6.15, this section will examine conditional probability of a high-frequency phone and
a low-frequency phone. The conditional probability will help to determine the most probable
VQ phone code given a particular phone. From Figure 6.15, it can be seen that given the word
“to” the phone /AH0/ is more likely to occur and /UW1/ is less likely to occur. The following
analysis will examine conditional probabilities involving these two phones (/AH0/ and /UW1/)
using VQ phone codes from each of the three system variants (VQ-VAE, +Adversarial, and
+Speaker/F0). The purpose of this examination is to understand if high-frequency phones also
correspond to high-frequency VQ phone codes. If the VQ phone codes are modeling language
based only on content information (and disregarding speaker information) then there should be
some similarities between high/low frequency phones and high/low frequency VQ codes.

The conditional probability distributions over VQ phone codes for each of the three system
variants are shown in Figure 6.17, Figure 6.18, and Figure 6.19 for the phones /AH0/ and
/UW1/. In each system variant, it can be seen that the distribution of conditional probabilities
relating to the low frequency phone /UW1/ is different compared to the distribution relating
to the high frequency phone /AH0/. Across all three systems, the distributions for /AH0/ are
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(a) (b)

Figure 6.17: Conditional probability distributions for the VQ phone codes from system VQ-
VAE, given the phone: /AH0/ or /UW1/. The distribution for the phone /AH0/ is more flat
compared to that of /UW1/. The most probable VQ phone codes are 509 and 331 for both
phones.

generally more flat compared to /UW1/. Furthermore, the VQ-VAE system in Figure 6.17
indicates that for both phones, the VQ codes 509 and 331 are the most probable. This suggests
that the VQ-VAE system variant may not be modeling phones because two different VQ phone
codes are highly likely to occur for each phone. A deeper inspection of the VQ phone codebook
vectors in Section 6.5 can provide more insight about the relationship between the 509 and 331

VQ phone codes for that system.
Recall that from Chapter 5, the best-performing overall system variant was +Adversarial

across multiple measures of speech synthesis quality. The observable flatness of conditional
probabilities indicated by the high probability phone /AH0/ in Figure 6.18 may provide insight
as to why +Adversarial performed better. It is possible that some of the the learned VQ
phone codes were repeated regularly throughout all sequences regardless of content. If that is
the case, then perhaps the repetition behaved in a manner that enabled the decoder to learn to
produce more consistent speech. It is possible that repetition of codes enabled +Adversarial
to generalize better to unseen content and speakers during the evaluation of speech synthesis in
Chapter 5. An aspect of this will be investigated later in Section 6.4.4, where VQ phone code
distributions will be compared across speakers.
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(a) (b)

Figure 6.18: Conditional probability distributions for the VQ phone codes from system +Ad-
versarial, given the phone: /AH0/ or /UW1/. The distribution for the phone /AH0/ is more
flat compared to that of /UW1/. The most probable VQ phone codes are different for each of
the two phones.

(a) (b)

Figure 6.19: Conditional probability distributions for the VQ phone codes from system +Speak-
er/F0, given the phone: /AH0/ or /UW1/. The distribution for the phone /AH0/ is more flat
compared to that of /UW1/. The most probable VQ phone codes are different for each of the
two phones.
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(a) (b)

Figure 6.20: Conditional probability distributions for VQ phone codes from system VQ-VAE,
given the code: 509 or 331. Code 509 was most probable given the phone /AH0/, and code 331
was most probable given the phone /UW1/.

Next, the conditional probability will be examined in the reverse direction to understand
the conditional probability distributions over phones as shown in Figures 6.20, Figure 6.21,
and Figure 6.22. For each system, the corresponding top-ranking VQ phone code was used
from each of the two phones /AH0/ and /UW1/. In all three system variants, the same set of
phones /AH0/, /N/, /R/, /T/, and /S/ are the most probable phone given that code, except for
+Adversarial with VQ phone code 237 in Figure 6.21(b). Unlike the conditional probabilities
for VQ phone codes, none of the figures for phones have a flat shape. This suggests that the
high frequency phones like /AH0/, /N/, /R/, /T/, and /S/ might be associated with any of the
VQ phone codes in this data subset, and this appears to be the case for all three system variants.
This was an unexpected finding, especially seeing little difference among the system variants. It
could be the result of how self-supervised learning works, or a result of the codebook parameters
such as the initial codebook size. The distributions in Figures 6.20 and Figures 6.22 appear
very similar, compared to the distributions reported in Figure 6.21. This is another example of
the +Adversarial system standing apart from the other two systems.

138



CHAPTER 6. INTRINSIC ANALYSIS OF DISENTANGLED REPRESENTATIONS

(a) (b)

Figure 6.21: Conditional probability distributions for VQ phone codes from system +Adver-
sarial, given the code: 94 or 237. Code 94 was the most probable code given the phone /AH0/
and code 237 was the most probable code given the phone /UW1/.

(a) (b)

Figure 6.22: Conditional probability distributions for VQ phone codes from system +Speak-
er/F0, given the code: 84 or 418. Code 84 was most probable given the phone /AH0/ and code
481 was most probable given the phone /UW1/.
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Finally in this analysis there was an investigation about the relationship between high/low
frequency phones and high/low frequency VQ phone codes, based on the question: Are the most
probable phones associated with the most probable VQ phone codes and vice versa? Table 6.7
shows the most probable VQ phone code for the phones /AH0/ and /UW1/. These two
phones /AH0/ and /UW1/ have very different probabilities of occurring: p(AH0) = 0.104,
and p(UW1) = 0.005. One interpretation of the results in Table 6.7 is that high-probability
phones are correlated with high-probability VQ phone codes, but low-probability phones are
also correlated with high-probability VQ phone codes. This is an unexpected finding. Building
from the earlier conditional probabilities outcomes, it seems that two statements could be made:

1. High frequency phones can be associated with any VQ phone code.

2. Low frequency phones can be associated with high frequency VQ phone codes.

Table 6.7: Most probable VQ phone code given the phones /AH0/ and /UW1/ for each system.

/AH0/ /UW1/
System p(code) Code p(code) Code

VQ-VAE 0.029 509 0.025 331
+Adversarial 0.011 94 0.009 237
+Speaker/F0 0.022 84 0.017 418

While this finding helps describe the relationship between phones and VQ phone codes, it
does make it more difficult to claim that the VQ phone codebooks are interpretable. In fact the
evidence so far points to the fact that the VQ phone codebooks are not interpretable because
it is difficult to pinpoint a mapping between phones and VQ phone codes. In Table 6.8, the
least probable VQ phone code is shown for each system for, and the most probable phone given
the VQ phone code. Note that in Table 6.8 the code 477 from VQ-VAE is different than the
code 477 from +Speaker/F0 because the codes came from two completely separate phone
codebooks. Two systems share /N/ as one of the the most probable phones in these conditions.
The VQ phone codes that have been identified in this section will be further discussed in terms
of the distances between VQ phone vectors in Section 6.5.

Table 6.8: Least probable VQ phone code for each system and the most probable phones given
the VQ phone code.

Lowest Most probable
System p(code) Code Phones

VQ-VAE 0.002 477 /N/, /AH0/
+Adversarial 0.002 82 /N/, /K/
+Speaker/F0 0.001 477 /S/, /T/
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6.4.3.2 Speaker Analysis

The speaker analysis in this section will use the speakers from GroupA and utterances from
Set1 (similar to the phone analysis of the previous section). The objective of this analysis is to
use conditional probability modeling to determine if speakers who are mapped into the same
VQ speaker code tend to share any properties. The speaker properties were obtained through
the metadata provided with the VCTK dataset. This section focuses specifically on accent. Two
system variants are explored for the speaker analysis +Adversarial and +Speaker/F0. The
VQ-VAE system was omitted because the speaker representations in that system are one-hot
encodings and the system did not utilize a speaker codebook.

Figure 6.23 and Figure 6.24 show the likely accents given a VQ speaker code for each system
variant. Within a particular system, there is little overlap of the accent distributions. This
suggests that the VQ speaker codes are representing different types of speakers. This is an
interesting finding in light of the one-to-many mapping that was uncovered earlier in Section 6.3.3
(Table 6.2). So although there is not a one-to-one mapping of speakers to VQ speaker codes in
any system, the conditional probabilities suggest that the VQ speaker codes are representing
information about accent.

The finding of meaningful VQ speaker codes associated with accent is further strengthened
from the results in Figure 6.25 and Figure 6.26 which both show very little overlap of VQ
speaker codes given an accent. There were no noticeable differences between the +Adversarial
and +Speaker/F0 systems. From these findings, further analysis in Section 6.5 will explore
whether VQ speaker codes with similar accents are also represented by VQ speaker vectors that
have high similarity.
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(a) (b)

Figure 6.23: Distributions of accent given two different VQ speaker codes in system +Ad-
versarial. There is relatively little overlap among the accents for the two VQ speaker codes,
suggesting that the VQ speaker codes are representing different accents.

(a) (b)

Figure 6.24: Distributions of accent given two different VQ speaker codes in system +Speak-
er/F0. There is relatively little overlap among the accents for the two VQ speaker codes,
suggesting that the VQ speaker codes are representing different accents.
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(a) (b)

Figure 6.25: The likely VQ speaker codes given the accents of English and Northern Irish for
system +Adversarial. The distributions over the VQ speaker codes suggest little overlap
between English and Northern Irish accents.

(a) (b)

Figure 6.26: The likely VQ speaker codes given the accents of English and Northern Irish for
system +Speaker/F0. The distributions over the VQ speaker codes suggest little overlap
between English and Canadian accents.
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6.4.3.3 F0 Analysis

The data that will be used for conditional probability modeling of VQ F0 codes for system
+Speaker/F0 includes data from both speaker groups (GroupA and GroupB) as well as both
sets of utterances (Set1 and Set2). The decision to use all of the speakers and utterances
combined was in order to maximize the amount of data for analysis. While the analysis in this
section does not explicitly address disentanglement, it does attempt to uncover whether the VQ
F0 codes are interpretable and whether the codes are predictive of speaker gender.

Two renditions of F0 are used in this analysis: quantized bins (referred to as quant) and VQ F0
codes (referred to as codes). One of the challenges of analyzing or comparing quantization bins and
VQ F0 codes is that they follow different frame rates. The quant code frame rate was fr = 5 fps
while the downsample rate for VQ F0 codes was N/T = 340 codes/second. The first step is
to align the VQ F0 codes to the quantization bins. The quantized bins are grouped according
to values that repeat in sequence. For example, if the original quantization bins sequence was:
[1, 2, 2, 3, 1, 4, 4, 3] then the grouped quantization bins becomes: [[1], [2, 2], [3], [1], [4, 4], [3]]. Using
the grouped quantization bins as a reference along with the duration of each bin (5ms), the
start time and end time of each group is calculated. Those start and end times are then used to
create similar groups of VQ F0 codes, resulting in time-aligned groupings. From there, the most
frequent code in each group is determined, separately for the VQ codes and the quantization
bins. The result is two arrays of integers that are aligned, as shown in Figure 6.27.

Quant[0, 2, 0, 2, 1, 2, 1, 0, 2, 0, 2, 1, 2, 0, 1, 2, 1, 2, 1, 0]

V Q[4, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 7, 7, 3, 4, 4, 7, 7, 7, 4]

Figure 6.27: Final result of aligning the VQ F0 codes to the quantization bins, even though
they had two different sample rates.

The array of quant values in Figure 6.27 shows that the F0 value alternates between regions
of bin #0 (this is unvoiced/silence in the audio file). Overall the values are interpretable for the
quant array because the quantization bins reflect real F0 ranges (i.e., the quantized bins are
monotonic). The speaker that Figure 6.27 is based on never produces an F0 value that is high
enough to utilize quantization bin #3. On the other hand, it appears that the VQ code of 4
(and occasionally also 3) corresponds to the unvoiced/silence regions of the audio because they
are aligned with the zero-regions of the quant array (i.e., the VQ F0 codes are not monotonic).
From here, the task is to describe the relationship between the two sets of values quantitatively
using conditional probability. This analysis will help to understand whether particular VQ F0
codes are likely to correspond to particular quantization bins.

Figure 6.28 shows the conditional probability for quantization bin #0 (unvoiced/silence)
and the VQ F0 code 4. The VQ code 4 is highly likely to occur given the quantization bin #0,
and the quantization bin #0 is highly likely to occur given VQ code 4. It is reasonable to draw
the conclusion that quantization bin #0 and VQ code 4 are related and also that since bin #0
corresponds to unvoiced/silence, the VQ code of 4 may also correspond to unvoiced/silence. A
similar finding is shown in Figure 6.29, for a voiced region and the quantization bin #5 with VQ
code 1. Additional analysis with different bins and codes indicated that quantization bins #5,
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(a) (b)

Figure 6.28: Conditional probability of quantization bin #0 (unvoiced/silence) given the VQ F0
code 4. The F0 code 4 appears to be correlated with unvoiced/silence regions.

(a) (b)

Figure 6.29: Conditional probability of quantization bin #5 (voiced regions) given the VQ F0
code 1. The F0 code 1 appears to be correlated with quantization bin #5.

#6, #7, and #8 all tend to correspond to VQ code 1. As Table 6.9(b) shows, quantization bins
#5, #6, #7, and #8 are lower frequency compared to other quantization bins. And VQ code 1
is lower frequency compared to other VQ codes. This relationship will be explored further in
Section 6.5 to better understand if the VQ codes of 4 and 1 have a large distance between them.
If the VQ vectors are interpretable, then a relatively large distance between the vectors for VQ
code 4 and VQ code 1 would be expected.
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Additional analysis was done to find out if particular VQ F0 codes correspond to gender.
Figure 6.30 shows how likely it is that the VQ F0 code 3 corresponds to male speakers (and
lower F0 range), while the VQ F0 code 5 corresponds to female speakers (and higher F0 range).
This finding suggests that the VQ F0 codes may also be useful for controlling prosody though
control over high and low F0 when synthesizing speech with WaveRNN. Of course quantized F0
bins also correspond to gender, but it is not clear how to use the quantized bins for F0 control
during speech synthesis in a VQ-VAE paradigm.

Table 6.9: Frequencies of the VQ F0 codes (a) and the frequencies of the quantization bins (b).
In both groups, some VQ codes or quantization bins have very high or very low frequency.

VQ Code Frequency
1 270
2 0
3 6746
4 8318
5 8859
6 0
7 1189
8 2674
9 0
10 0

(a) Frequencies of VQ F0 codes

Quant Bin# Frequency
0 8936
1 1857
2 7598
3 7314
4 2163
5 140
6 31
7 14
8 3
9 0

(b) Frequencies of Quantization Bins

(a) (b)

Figure 6.30: Conditional probability of gender given VQ F0 code. The code 3 is highly likely for
males and code 5 is highly likely for females.
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6.4.4 Speaker/Phone Separation

When considering disentanglement, one important aspect is to try and uncover whether the
speaker information is tied to the phone information. The VQ phone code usage can be tallied
as a probability distribution for each individual speaker. Then a speaker-to-speaker comparison
can be made based on the probability distributions of the VQ phone codes. The motivation
behind this analysis is to learn if speakers share similar or different distributions of VQ phone
codes. The data used in this analysis is speaker GroupA or GroupB and utterances from Set1
or Set2. The following combinations are considered:

• GroupA/Set1 speakers say the same utterances

• GroupA/Set2 speakers say different utterances

• GroupB/Set1 speakers say the same utterances

• GroupB/Set2 speakers say different utterances

If there is good disentanglement between speaker and content information, then it is expected
that the phone code probability distributions would be similar across speakers when the
utterances are from Set1. Likewise if there is good disentanglement, then the phone code
probability distribution would be dissimilar when the utterances are from Set2. Speakers
from GroupA (Table 6.4) and GroupB (Table 6.5) will be compared because of their accent
makeup, with GroupA being more homogeneous and GroupB being more heterogeneous. If the
GroupB/Set1 has more accent dissimilarity than the GroupA/Set1, this is a reflection of the fact
that GroupB speakers are more dissimilar. The analysis that will be presented in this section
explores whether the accent dissimilarity is also reflected by the VQ phone codes.

The probability distributions over VQ phone codes will be compared on a speaker-to-speaker
basis using the Kullback-Liebler Divergence (also known as KL divergence) [Joyce, 2011]. The
KL Divergence is defined in Equation 6.3

DKL(P ||Q) =
∑
x∈X

P (x)log2

(
P (x)

Q(x)

)
(6.3)

where P (x) is a probability distribution over the variables x ∈ X and Q(x) is another probability
distribution over the variables x ∈ X. In this case, the set X corresponds to either the
words/phones or the VQ phone codes. An analysis using words/phones is presented first as
a sanity-check and to demonstrate expected results for natural language, then the VQ phone
codes are analyzed. Since some speakers utilize a different set of words/phones or VQ codes
than the speaker being compared, smoothing was necessary to avoid errors from dividing by
zero (the value would be undefined). Lidstone smoothing [Chen and Goodman, 1999] was used
and the parameter was set to α = 0.000001. This value was chosen after visually inspecting the
order of magnitude for the probability distributions, but no other values were tried. The KL
divergence measure between the two probability distributions is not symmetrical. To deal with
the lack of symmetry in this analysis, the KL divergence was calculated in both directions and
an average was taken. That means DKL(P ||Q) was calculated as well as DKL(Q||P ). This is
widely known as “symmetric KL divergence”. Comparing two different speakers may show a
dissimilarity between the two speakers (reflected by a high KL-divergence) because their VQ
code probability distributions are different.
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The analysis technique presented here is conceptually similar to probing the VQ code-
books using data, wherein the data contains features that lead to expected results based on
assumptions about phone/speaker disentanglement. The data was used to probe differences
between speakers using the four types of speaker and utterances groupings that was introduced
earlier in Section 6.4.1: GroupA/Set1, GroupA/Set2, GroupB/Set1, and GroupB/Set2. If the
speaker/phone information has been disentangled then there would be more similarity among
speakers in GroupA/Set1 and GroupB/Set1 compared to using utterances from Set2 because
Set1 utterances are the same for all speakers and Set2 utterances are different for each speaker.
In addition, there should be more similarity among speakers in GroupA/Set1 compared to
speakers in GroupB/Set1 because the accents are more similar in GroupA than in GroupB. As
with other analysis shown in this chapter, this analysis will first be performed using words and
phone to establish some expected results that are easily interpretable before examining the VQ
phone codes.

Figure 6.31: Per-speaker KL divergence for words in matched condition GroupA/Set1 (left) and
unmatched condition GroupA/Set2 (right). The matched condition has very low KL divergence
and the unmatched condition has very high KL divergence between all speaker pairs. The
extremes observed in this figure are the expected result for words. Speaker p233 and p234 share
the same sentences

Figure 6.31 shows the two scenarios of matched and unmatched content for speakers in
GroupA. The matched content (left) has low divergence because the content words are the same
for all speakers. The unmatched content (right) has high divergence because the content words
are different for each speaker. The low KL divergence in GroupA/Set2 for speakers p233 and
p234 is due to them sharing the same set of utterances despite efforts to ensure as little overlap
as possible. The same pattern is observed in Figure 6.32 for phones. However, at the phone level,
there are some slight differences in the matched condition which are likely due to individual
variation in pronunciation or due to accent. Also the unmatched condition at the phone level
generally displays lower KL divergence compared to the unmatched condition at the word level.
The reason is because some phones are common across multiple different words and that creates
redundancy within the phone probability distributions.

The probability distributions were also calculated for VQ phone codes for each of the speakers
in GroupA, for both system variants: +Adversarial and +Speaker/F0. Note that VQ-
VAE was omitted because it only contains a phone codebook and is not being assessed for
disentanglement between speaker/phone representations. Looking at the plots in Figure 6.33
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Figure 6.32: Per-speaker KL divergence for phones in matched condition GroupA/Set1 (left) and
unmatched condition GroupA/Set2 (right). The matched condition has very low KL divergence
and the unmatched condition has high KL divergence between all speaker pairs, though not as
much divergence as for words.

Figure 6.33: Per-speaker KL divergence for VQ phone codes from +Adversarial in matched
condition GroupA/Set1 (left) and unmatched condition GroupA/Set2 (right).

and Figure 6.34, there is a similar trend that the unmatched condition (right side) generally
has higher KL divergence compared to matched condition (left side). Overall the results from
the matched condition indicate that there is some disentanglement between phone and speaker
information occurring.

The +Adversarial system shown in Figure 6.33 appears to have a better result for the
matched condition (low KL divergence) compared to the +Speaker/F0 system in Figure 6.34.
On the other hand, +Speaker/F0 appears to have a better result for the unmatched condition
as it shows more dissimilarity. The result for +Adversarial is encouraging because it appears
to perform disentanglement better than +Speaker/F0 based on the low KL divergence in
matched conditions.
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Figure 6.34: Per-speaker KL divergence for VQ phone codes from +Speaker/F0 in matched
condition GroupA/Set1 (left) and unmatched condition GroupA/Set2 (right).

Figure 6.35: Per-speaker KL divergence for VQ phone codes from +Adversarial in matched
condition GroupB/Set1 (left) and unmatched condition GroupB/Set2 (right).

Figure 6.36: Per-speaker KL divergence for VQ phone codes from +Speaker/F0 in matched
condition GroupB/Set1 (left) and unmatched condition GroupB/Set2 (right).
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Next, the two systems +Adversarial and +Speaker/F0 were compared for utterances
and speakers in GroupB/Set1 and GroupB/Set2. The results are shown in Figure 6.35 and
Figure 6.36. The purpose of examining GroupB speakers is to understand if the VQ phone codes
capture information about accent. The speakers from GroupB are more heterogeneous with
regard to accent compared to the GroupA speakers. Compare Figure 6.33 with Figure 6.35 and
observe that Figure 6.35 has lower KL divergence. Next, compare Figure 6.34 with Figure 6.36
and observe that Figure 6.36 also has lower KL divergence. The lowered KL divergence can be
interpreted to mean that the phone content is well separated from speaker information even
when the speakers are more heterogeneous, and this is true for both the matched and unmatched
conditions. Overall, the +Adversarial system achieves lower KL divergence, and thus better
phone/speaker disentanglement, compared to the +Speaker/F0 system in this comparison.

6.4.5 Summary

The data probing tasks sought to measure and visually display similarities and differences among
groups of speakers in matched and unmatched conditions. If the phone and speaker information
was being fully disentangled, then the matched condition would indicate more similarity among
speakers because they say the same sentences. It was found that the +Adversarial system
generally has lower KL divergence among speakers in the matched condition compared to
+Speaker/F0. Therefore it can be said that the +Adversarial system is performing better
disentanglement of speaker/phone information relative to the other system. This finding also
coincides with the performance evaluation from Chapter 5, which found that +Adversarial
generated the highest quality speech across multiple metrics. Further analysis in Section 6.5
will explore similarities and differences among the VQ vectors.
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6.5 Codebook Visualizations

The analysis that will be presented in this section is intended to supplement other findings from
earlier in this chapter. The objective earlier in this chapter has been to explore whether the
learned representations exhibit disentanglement. In particular, this chapter has been exploring
whether representations model target speech features but do not also model non-target speech
features. The codebooks for VQ phones, VQ speakers, and VQ F0 vectors will now each be
visualized with several different methods including visualizing distance between vectors in a 2D
space.

Until now, the analysis in this chapter has considered the VQ codes (or sequences of codes for
phones/F0). At this point, instead of analyzing the codes, the 128-dim vectors will be analyzed.
Recall that the codebooks correspond to a lookup table (Figure 6.1). Each type of codebook
was set to be of a particular size before training. The phone codebook size was fixed at 512, the
speaker codebook size was fixed at 256, and the F0 codebook size was fixed at 10. Each entry in
a codebook a vector. For example, the phone codebook contains 512 vectors each of 128-dim.
Likewise, the F0 codebook contains 10 vectors each of 128-dim.

6.5.1 Data Preparation

The data used in this analysis consists of vectors from the trained VQ codebooks. Table 6.10
shows each system and the number of codebook entries that were active during training. To
determine which codebooks entries were active during training, all of the training data was passed
through the trained model (as a separate inference step) to obtain the VQ codes associated with
the training data. It can be seen from Table 6.10 that none of the system variants made use
of the full quantity of possible codebook entries. The codebook usage, or lack thereof, will be
discussed in more details when visualizing each codebook.

Table 6.10: How many codebook entries were active during training for each system and codebook
type. System VQ-VAE only has a phone codebook, whereas +Adversarial has a speaker and
phone codebook, and system +Speaker/F0 has a speaker, phone, and F0 codebook.

Phone Speaker F0
System Codebook Codebook Codebook

VQ-VAE 92 – –
+Adversarial 170 18 –
+Speaker/F0 109 19 6

6.5.2 Phone Codebook

The full capacity of the phone codebooks was not active. For example, in the phone codebook
for VQ-VAE there were 512 possible entries, and the training data activated only 92 of those
entries. The other remaining 420 codes in that system have values initialized but were never
used. For the training data, only 17% of the full codebook was utilized. In fact, a similarity
matrix based on cosine similarity between codebook vectors reveals that many of the codebook
vectors are similar, as seen in Figure 6.37. Cosine similarity values of sim = 1.0 indicate high
similarity whereas sim = 0 indicates no similarity.
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Figure 6.37: Cosine similarity between codebook vectors for VQ-VAE phone codebook. The
codebook was partially active for the training data, so only 92 phone vectors are shown (only
17% of the codes were active).

Figure 6.38: Cosine similarity between codebook vectors for +Adversarial phone codebook.
The codebook was partially active for the training data, so only 170 phone vectors are shown
(only 33% of the codes were active).
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Figure 6.39: Cosine similarity between codebook vectors for +Speaker/F0 phone codebook.
The codebook was partially active for the training data, so only 109 phone vectors are shown
(only 21% of the phone vectors were active).

The phone codebook in system +Adversarial utilized 170 of 512 codes for the training
data (33%) in Figure 6.38 and the +Speaker/F0 system utilized 109 of 512 codes (21%) shown
in Figure 6.39. Given that system +Adversarial was one of the best-performing systems for
speech synthesis quality (based on evaluation in Chapter 5), it is possible that the higher quality
speech is a result of the +Adversarial system utilizing more codes relative to other system
variants. In fact, one of the machine learning constraints on the +Adversarial system was to
use adversarial layers (gradient reversal) on the phone encoder to encourage the phone codebook
to ignore speaker-specific information.

An additional view of the VQ-VAE phone codebook is shown in Figure 6.40 based on the
tSNE dimensionality reduction technique (t-distributed Stochastic Neighbor Embedding) from
the Python library sklearn4. The tSNE technique reduces dimensionality from high dimensions
(phone codebook vectors are 128-dim) into a lower-dimensional representation and 2D was
selected for this analysis. The tSNE algorithm is highly sensitive to hyper-parameters such as
number of iterations and perplexity. For that reason, values were explored in the range of 5-100
perplexity and iterations was set to maximum of 5,000. These values were recommended from
the sklearn library5. The tSNE visualization shown in Figure 6.40 is based on perplexity = 5

and iterations = 5, 000 for system VQ-VAE. The gray items represent vectors not active from
training (not used) and the blue dots are vectors that were active for the training data in the
final model (used). Interpreting the distances in a tSNE plot can be misleading, especially for
interpreting distances using proportions. Unfortunately the visualization in Figure 6.40 does
not provide information about similarities and differences between phone vectors. The only
cluster that can be identified is the cluster showing codebook vectors that are used. The other

4https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
5https://distill.pub/2016/misread-tsne/
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Figure 6.40: This is a tSNE plot showing the phone codebook vectors from system VQ-VAE.
The pale gray dots represent vectors that were not used for training data whereas the dark blue
dots represent the vectors that were used for training data. The distances reflected in the tSNE
plot are not interpretable. The cluster represents codebook vectors used during training.

system variants have similar visualisations of the phone codebook, for systems +Adversarial
and +Speaker/F0.

As the tSNE visualization from Figure 6.40 has not been informative, and was difficult to
interpret therefore a different type of visualization will be done. The next visualization will
consider only the codebook vectors that were used by the training data. The goal of the next
visualisation is to explore unsupervised clustering of the VQ vectors. It is noted that the VQ-VAE
architecture does create clusters during training, and the VQ vectors represent centroids of those
clusters. However, k-means clustering was applied in this analysis in order to better understand
the relationships among the VQ vectors. First the VQ vector dimensionality was reduced using
principal components analysis (PCA) [Pearson, 1901] with default parameters6 and reduced to
2 components. Then k-means clustering was performed using the implementation provided in
Python sklearn7. Several values for k in k-means were explored and the highest possible k was
chosen that did not produce any singleton clusters. The clustered VQ vectors are presented for
each system in Figure 6.41, Figure 6.42, and Figure 6.43.

Figure 6.41 shows the clusters for system VQ-VAE. In total there were 15 clusters. The
cluster membership was analyzed. The VQ codes 509 and 331 from earlier analysis on conditionals
(Section 6.4.3.1) are somewhat close but they end up in separate clusters. Taking the four most
probable VQ phone codes for each of the two phone plots (/AH0/ and /UW1/) in Figure 6.17
as [509, 331, 176, 146, 308], these VQ codes end up in clusters [7, 2, 9, 3, 9] respectively. These
clusters [7, 2, 9 and 3] are adjacent in Figure 6.17, suggesting that the VQ vectors are close
in distance. The least probable VQ code for VQ-VAE was code 477 and it ended up being
clustered into cluster #14, which is centrally located relative to other clusters. So the VQ vector
for the least probable code does not appear to be an outlier even though that might be expected.

6https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
7https://scikit-learn.org/stable/modules/generated/sklearn.cluster.k-means.html
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Figure 6.41: Result of PCA (2 components) followed by k-means clustering (k = 15) for the
VQ-VAE phone codebook, for VQ vectors that were active for the training data. Cluster
centroids are labeled with integers.

Figure 6.42 shows the clusters for system +Adversarial. In total there were 10 clusters. The
cluster membership was analyzed. The VQ codes 94 and 82 from earlier analysis in Section 6.4.3.1
were examined. VQ code 94 had the highest probability for this system and it was placed into
cluster #1. On the other hand, VQ code 82 had the lowest probability and it was placed into
cluster #8. Cluster #1 and #8 are relatively far apart based on the first principal components
(on the y-axis), meaning also that the least probable and most probable codes are far apart
in this space. VQ code 237 was also examined as it corresponded to a high probability and it
was also the most probable VQ code for the most probable phone /UW1/. VQ code 237 was
found in cluster #9 and far from cluster #1 based on the second principal component (on the
x-axis). There was no evidence of a consistent relationship between least probable phones and
least probable VQ codes.

Figure 6.43 shows the clusters for system +Speaker/F0. In total there were 10 clusters.
The cluster membership was analyzed. The VQ codes 477 and 82 from earlier analysis in
Section 6.4.3.1 were examined. VQ code 477 had lower probability and was found in cluster #4.
VQ code 84 was more probable and was found in cluster #15. Finally VQ code 418 was the
most probable code given the phone /UW1/ and it was placed into cluster #16. The clusters
(#4, #15, and #16) are not very far apart from each other in Figure 6.43. Again there was no
evidence of a consistent relationship between rare phones and rare VQ codes.
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Figure 6.42: Result of PCA (2 components) followed by k-means clustering (k = 10) for the
+Adversarial phone codebook, for VQ vectors that were active for the training data. Cluster
centroids are labeled with integers.

Figure 6.43: Result of PCA (2 components) followed by k-means clustering (k = 20) for the
+Speaker/F0 phone codebook, for VQ vectors that were active for the training data. Cluster
centroids are labeled with integers.
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6.5.3 Speaker Codebook

Similar to the VQ phone codebook visualization in the previous section, the speaker codebooks
were analyzed for two system variants, +Adversarial and +Speaker/F0, using k-means
clustering and PCA. First, Figure 6.44 and Figure 6.45 show the cosine similarity between each
vector in the codebook for each system. Cosine similarity values of sim = 1.0 indicate high
similarity between two vectors, whereas sim = 0 indicates no similarity. The full codebook
contains many vectors that are similar because those vectors were not active during training and
has similar values. When looking at only those codes that were active for the training data, it is
clear that the speaker vectors for the +Speaker/F0 system (Figure 6.45) were more diverse
compared to the speaker vectors for the +Adversarial system (Figure 6.44). Recall from
Section 6.3, the rank-sorted frequency distributions for VQ phone codes in the +Adversarial
system was more flat compared to other system variants (see Figure 6.6). It is possible that
the flat frequency distribution for VQ phone codes is related to the lower diversity of VQ
speaker vectors. As for disentanglement, this relationship suggests that there +Speaker/F0 is
representing speaker information with speaker vectors better than +Adversarial and therefore
has better disentanglement.

Figure 6.44: Cosine similarity between codebook vectors for +Adversarial speaker codebook.
The codebook was partially active for the training data, so only 18 speaker vectors are shown
(only 7% of the speaker vectors were active).
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Figure 6.45: Cosine similarity between codebook vectors for +Speaker/F0 speaker codebook.
The codebook was partially active for the training data, so only 19 speaker vectors are shown
(only 7% of the speaker vectors were active).

Figure 6.46 shows the result of applying PCA and k-means clustering to the speaker codebook
vectors for system +Adversarial. The number of clusters k was selected such that there were no
singleton clusters resulting from k-means. The resulting clusters (k = 4) also seem to correlate
with the findings for accent earlier in Section 6.4.3.2 for the VQ speaker codes 12 and 48 (c.f.
Figure 6.23). Code 12 tended to correspond to the accents: English, Scottish, and Irish. Code
48 tended to correspond to the accents: Northern Irish, Indian, and South African. Based on the
clustering shown in Figure 6.46, these VQ codes occur in separate clusters (code 12 is in cluster
#0, and code 48 is in cluster#2). This indicates that the speaker codes for +Adversarial are
modeling speaker accent to some extent.
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Figure 6.46: Result of PCA followed by k-means clustering (k = 4) for the +Adversarial
speaker codebook, for VQ vectors that were active for the training data. The average intra-cluster
distance was dintra = 0.068. Cluster centroids are labeled with integers.

Figure 6.47: Result of PCA followed by k-means clustering (k = 4) for the +Speaker/F0
speaker codebook, for VQ vectors that were active for the training data. The average intra-cluster
distance was dintra = 0.15. Cluster centroids are labeled with integers.
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Figure 6.47 shows the result of applying PCA and k-means clustering to the speaker codebook
vectors for system +Speaker/F0. The resulting clusters (k = 4) also seem to correlate with
the findings for accent earlier in Section 6.4.3.2 for the VQ speaker codes 160 and 237 (c.f.
Figure 6.24). Code 160 tended to correspond to the accents: Canadian, Australian, and Irish.
Code 237 tended to correspond to the accents: English, Scottish, and Irish. Based on the
clustering shown in Figure 6.47, these VQ codes occur in separate clusters (code 160 is in cluster
#1, and code 237 is in cluster#2). This indicates that the speaker codes for +Speaker/F0 are
modeling speaker accent to some extent.

Comparing the clusters across the two systems in Figure 6.46 and Figure 6.47, it appears
that the codes within clusters for +Adversarial are less spread out because the data points
within each cluster are closer to the centroid compared to the data points in +Speaker/F0.
On the other hand, the inter-cluster distances for +Adversarial appear smaller compared
to the inter-cluster distances for +Speaker/F0. The space was not calibrated between the
two systems, apart from setting the axes to be in the same range, and comparisons between
the two clusterings are difficult. The intra-cluster distance was calculated between each data
point and its assigned cluster centroid using Euclidean distance, and then the distances were
averaged across all clusters for each system. It was found that the +Adversarial system had
an average intra-cluster distance of dintra = 0.07 whereas the +Speaker/F0 system had an
average intra-cluster distance of dintra = 0.15. This could be an indication that the clusters
for +Adversarial are modeling speaker groups, such as accent, better than the other system.
Given that +Adversarial was the best-performing system from Chapter 5, this result may
explain why +Adversarial was better at generalizing to new unseen speakers. However, it’s
not clear if lower intra-cluster distance is preferable for a speaker codebook.

6.5.4 F0 Codebook

Figure 6.48 shows the results of PCA applied to the VQ F0 codebooks that were active for
the training data. Cross-referencing the findings from Section 6.4.3.3, there are some notable
relationships. First, recall from the conditional probability modeling of VQ F0 code and gender
VQ code 3 was likely to correspond to male and VQ code 5 was likely to correspond to female
(c.f. Figure 6.30). The vector representations of these two VQ codes appear quite far according
to the first principal component (on the y-axis) of Figure 6.48. The vector corresponding to VQ
code 4 is a clear outlier and in the earlier analysis using conditional probability, the VQ code 4
is likely to be associated with unvoiced/silence regions (c.f. Figure 6.28). From this analysis,
the learned F0 codes are partially interpretable.
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Figure 6.48: Result of PCA for the +Speaker/F0 F0 codebook, for VQ vectors that were
active for the training data. Note that VQ code 4 was likely to correspond to quantization bin
for unvoiced/silence and in this figure it is the clear outlier. Clusters are singletons and labeled
with integers.

6.5.5 Summary

The visualizations that were provided in this analysis examine similarities and differences
between VQ vectors rather than codes. The vectors allowed for visualizations such as clustering,
similarity matrices, and observing distance relationships in 2D. For all of the phone and speaker
codebooks, most of the VQ codes are not active for the training data. While the unused VQ
codes in each codebook and each system contained values that were initialized (i.e., not zero)
the unused vectors within a codebook were very similar to each other. The inactive VQ codes
had vectors of initialized values and were not useful to visualize or measure since the values in
all inactive VQ vectors were similar.

The VQ phone codebooks were clustered with k-means, and it was found that the +Adver-
sarial system showed some expected results for clustering. In particular the example VQ phone
code with high probability appeared in a cluster that was very far from the example VQ phone
code with low probability. However, the clusters do not seem to be particularly meaningful
or interpretable. A cross-reference was made between the k-means clusters and the earlier
conditional probabilities. In each system there were mixed results compared to expectations.
For example, the VQ code with low probability for VQ-VAE was not an outlier as expected.
In another example, three clusters were identified for +Speaker/F0 that coincided with very
likely codes as well as high and low probability codes and all three clusters were relatively
close to each other instead of relatively far apart. Overall, the phone codebook visualization
supports the finding that the phone codebooks are not interpretable – at least the VQ phone
code categories do not map into phone categories.

The VQ speaker codebooks were also clustered with k-means. When the clusters were
cross-referenced with findings from the earlier conditional probability analysis, it was found
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that clusters appear to correspond with speaker accent. Both systems, +Adversarial and
+Speaker/F0, exhibit some relationship with speaker vector clusters and groups of accents.
The k-means clusters for +Adversarial have smaller intra-cluster distances compared to
+Speaker/F0. This could potentially be evidence that +Adversarial is modeling distinct
speaker groups better than +Speaker/F0. The speaker vectors in +Adversarial are more
diverse overall than the speaker vectors from +Speaker/F0 and this was evidenced by the cosine
similarity heatmaps. It is possible that the diversity of the speaker codebook in +Adversarial
is what allowed this system to generalize better to unseen speakers in the Chapter 5 evaluation.

The VQ F0 codebook from +Speaker/F0 was visualized with PCA, but the codes were
not clustered as there were only six VQ F0 codes that were “used” for the training data. The
F0 codebook visualization was cross-referenced with the conditional probability analysis. The
conditional probability analysis had indicated that a specific VQ code was highly likely to
correspond to unvoiced/silence regions, and that same VQ code was found to be a clear outlier in
the 2D visualization. In addition, particular codes were identified that were likely to correspond
to male or female genders and these codes were also very far apart in terms of one of the principal
components for PCA.

6.6 Additional Analysis of Multilingual Model

This section introduces an additional analysis of the multilingual system. At the end of
Chapter 5, an additional model variant was introduced wherein the monolingual English
model +Adversarial was adapted for multilingual speech synthesis by adding a one-hot
language encoding vector for decoder global conditioning. The resulting multilingual system
is +Adversarial-L since it is based on the original +Adversarial model but fine-tuned to
multilingual data. The analysis presented here will compare the phone and speaker codebooks
between the +Adversarial system and the +Adversarial-L system.

6.6.1 Data Preparation

The data used in this analysis was the SIWIS dataset that consisted of four languages: English,
German, French, and Italian. The +Adversarial-L system had been trained on data in all
four languages combined. Each speaker in the dataset is bilingual or trilingual. Because of
this overlap, the amount of data per-language and per-speaker was slightly skewed. The same
training set that was used for creating the +Adversarial-L system was used also in this analysis.
As with the other systems used in this chapter, the data was used in a forward pass through the
model (as a separate inference step after training) and the VQ codebooks for phone and speaker
were each saved to files. The data that is analyzed in this chapter is based on the VQ phone
codes and vectors that were obtained from the forward pass. Additionally, since comparisons
are made in this section between the +Adversarial-L and +Adversarial systems, the VQ
codes for English VCTK were also obtained for the entire English VCTK training data set.

6.6.2 Phone Codebook

The first task is to assess how the phone codebook changed between the +Adversarial system
and the fine-tuned multilingual +Adversarial-L system. The VQ code frequency distributions
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for English-only (from +Adversarial) were calculated over the VCTK training data. The VQ
code frequency distributions for the multilingual data (from +Adversarial-L) were calculated
over the SIWIS training data. Table 6.11 shows the relative frequency of VQ phone codes for
the original +Adversarial model as well as the adapted +Adversarial-L multilingual model.
The top 3 most frequent VQ codes are shown for each language and dataset, as well as the
relative frequency for each particular language group. All four languages in the SIWIS data
share code 81 as a frequent phone code. As Table 6.11 confirms, there is no overlap between
the VCTK and SIWIS phone code usage for the top 3 most common VQ phone codes as they
are entirely different models. For the multilingual model +Adversarial-L 33% of the phone
codebook was active during training, whereas for the monolingual model +Adversarial 31% of
the phone codebook was active during training.

Table 6.11: Relative frequency of VQ phone codes for the original +Adversarial model trained
on VCTK English, as well as the adapted +Adversarial-L model trained on multilingual
SIWIS data. The top 3 most frequent VQ codes are shown for each language, as well as the
relative frequency given each particular language.

Rank1 Rank2 Rank3
Language VQ Code Freq VQ Code Freq VQ Code Freq

VCTK English (EN) 363 0.13 418 0.13 214 0.12

SIWIS

English (EN) 259 0.17 81 0.16 440 0.15
French (FR) 259 0.16 81 0.15 191 0.15
German (DE) 81 0.16 89 0.14 56 0.14
Italian (IT) 440 0.18 81 0.15 259 0.14

6.6.3 Speaker Codebook

In this analysis the VQ speaker codebooks were compared between the monolingual and multilin-
gual systems. Table 6.12 shows the distribution of VQ speaker codes for each language including
VCTK English (for the +Adversarial system), as well as the four languages from SIWIS (for
the +Adversarial-L system). Due to the fact that speakers in SIWIS are bilingual/trilingual,
some overlap in the VQ speaker codes is expected across the four SIWIS languages. However,
none of the VQ speaker codes representing speakers in the four languages from SIWIS data are
shared with the VQ speaker codes from the original VCTK data. This was unexpected but
could be a consequence of fine-tuning where it is easier for the model to learn new speaker codes
from scratch than to adjust the values for speaker codes that had already been learned. The
monolingual system (+Adversarial) utilized 18 unique VQ speaker codes for 99 unique speakers
(7% of codebook). After the system was adapted to multilingual data the system utilized 11
unique speaker codes for 36 unique speakers (4% of codebook). Table 6.12 confirms that the
two systems did not overlap or re-use speaker codes. Fine-tuning +Adversarial-L led to new
speaker codes being learned. Again the speaker codebook did not learn a one-to-one mapping
between VQ codes and unique speakers, similar to what was observed for the monolingual
+Adversarial and +Speaker/F0 systems. However the multilingual model learned more
speaker codes in proportion to the number of unique speakers compared to the other models
which could have been due to the diversity of languages.
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Table 6.12: Comparison of the VQ speaker codes that were learned in the +Adversarial
VCTK English model with the +Adversarial-L SIWIS multilingual model. The models utilize
different codes. The same VQ codes are used in each of the four SIWIS languages.

Language # Spk # Utt Unique VQ Speaker Codes
VCTK English (EN) 99 40314 5, 12, 19, 30, 48, 52, 67, 73, 109, 113, 128,

129, 135, 188, 193, 220, 232, 242

SIWIS

English (EN) 22 2387 42, 65, 84, 85, 131, 165, 179, 192, 216, 238, 248
French (FR) 31 3405 42, 65, 84, 85, 131, 165, 179, 192, 216, 238, 248
German (DE) 17 1719 42, 65, 84, 85, 131, 165, 179, 192, 216, 238, 248
Italian (IT) 16 1689 42, 65, 84, 85, 131, 165, 179, 192, 216, 238, 248

6.7 Further Considerations

There are several important considerations regarding this analysis. First the compression ratio
that was used in all of the VQ-VAE system variants made the sequences of phone codes extremely
long. When combined with the fact that the phone codebook was also very large, it is difficult
to analyze the phone codebooks with the objective of finding a mapping between VQ codes and
phones. It is not clear what the VQ phone codes are modeling.

The VQ phone vocabulary usage analysis at the beginning of this chapter showed that
the vocabulary was difficult to model compared to natural language. Using the phone code
sequences as a history for predicting the next code in sequence would be equally difficult because
the phone code sequences do not have systematicity. The conditional probability analysis
only examined prediction with unigrams. It may be possible to utilize skip-grams or another
type of token sequence history. However, it is not clear what the benefits would be except
for potential applications such as text-to-speech synthesis, which is not explored in this thesis.
When analyzing conditional probabilities, the phone and accent analysis did not produce strong
conclusions. However there was evidence that accent information is associated with VQ speaker
codes therefore a further analysis of predicting speaker from phone codes (or predicting phone
codes from speaker) is not necessary.

The VQ speaker vectors appear to be modeling accent. It may be possible to attempt further
disentanglement of speaker and accent information however it may require a completely different
architecture than ones tried in this thesis. One potential benefit of separating speaker and
accent information relates to voice privacy, such as concealing an accent [Noé et al., 2021], or
controlling or reducing accent through voice conversion [Aryal and Gutierrez-Osuna, 2014]. Such
applications are beyond the scope of this thesis.
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6.8 Conclusion

This chapter has provided several different analyses that contribute to a deeper understanding
of the learned VQ codebooks as well as disentanglement. The objective was to explore two of
the three proposed principles of disentanglement:

1. The learned representations are sufficiently rich to model targeted speech features.

2. Representations that model targeted speech features do not also model non-target speech
features (e.g., a representation of speaker identity does not also model speech content).

3. Representations have utility outside of the system that disentangles information.

The analysis in Section 6.3 and Section 6.6 addressed aspects of the first principle by showing
that there is not a one-to-one mapping between unique speakers and learned VQ speaker codes.
Section 6.3 also provided some evidence that VQ F0 codes may be modeling unvoiced/silence
regions consistently while Section 6.4.3.3 showed that VQ F0 codes correspond to speaker gender.
The second principle was addressed through a data probing analysis in Section 6.4.4. It was
shown that speakers who are more similar in accent and who speak the same set of sentences
have a low KL divergence for VQ phone code distributions. On the other hand speakers who
are dissimilar in accent and who speaker different sets of sentences have higher KL divergence
for VQ phone code distributions.

There is no single measure of disentanglement. Taken all together, the analysis presented in
this chapter allows for some conclusions to be drawn based on quantitative evidence. The VQ
phone codebooks are not interpretable. Evidence from the vocabulary analysis and perplexity
indicate that VQ phone codes are not functioning similarly to natural language words and phones.
Even when a tool such as sentencepiece was used to identify statistically relevant groupings of
VQ codes, this did not uncover any patterns or groupings that are similar to natural language.
More evidence that the VQ phone codes are not interpretable comes from the analysis using
conditional probabilities. Some VQ codes are highly likely to occur with a given phone, but
also those same VQ codes are highly likely to occur whether the phone is common or rare and
whether it is a vowel or consonant.

The VQ F0 codes are slightly interpretable. A particular VQ F0 code was identified as
being highly likely to correspond to unvoiced/silence regions of speech. Another different VQ F0
code was identified to correspond to female speakers, while yet another different VQ code was
identified to correspond to male speakers. These findings were based on analysis with conditional
probability that aligned the quantized F0 bins with VQ F0 codes. The VQ code corresponding
to female speakers is likely to represent higher ranges of F0 while the VQ code corresponding to
male speakers is likely to represent lower ranges of F0. These findings were confirmed again
later during the codebook analysis. The VQ code for silence was a clear outlier when visualized
in 2D space. The VQ F0 codes corresponding to male and female speakers were very distant
from each other in the 2D space.

The VQ speaker codebooks carry accent information. This was uncovered in the analysis
using conditional probability with speaker codes and accent. It was also confirmed in the
k-means clustering of the speaker codebooks. This association between speaker codes and
accents occurs in both systems that are attempting disentanglement through the use of phone
and speaker codebooks. VQ speaker vectors that were likely to occur given a particular accent
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were also found close in adjacent clusters. The association of accent information with the speaker
representations is interesting because accents are often realized through phone representations.
No evidence was found linking the phone codes to accent, even in the data probing tasks that
compared phone distributions among groups of speakers. Even when a group of speakers who
were more heterogeneous for accent were compared, they were determined to be highly similar
based only on the spoken content.

Any claims of disentanglement must be considered as a relative claim, such as between two
systems. This chapter did not provide absolute evidence that speaker/phone/F0 information
is fully disentangled. There is some evidence that the +Adversarial system stood out from
the other two systems VQ-VAE and +Speaker/F0, but it’s not clear if the reason is because
+Adversarial had better overall disentanglement. The active codes from the VQ speaker
codebook for +Adversarial have higher cosine similarity compared to +Speaker/F0. The
distributions of VQ phone codes in +Adversarial indicate that many codes are equally probable
even though +Adversarial had more active VQ phone codes than the other systems. From the
analysis it is not clear if the +Adversarial system has better speech synthesis and generalization
to new speakers and content (from Chapter 5) because it has better disentanglement or because
the system learns to ignore information. Finally it was shown that fine-tuning a system from
monolingual to multilingual changes the speaker and phone codebooks entirely. The next chapter
will begin to address the remaining principles of disentanglement. A set of speech tasks that
require phone and speaker representations will be evaluated. The principle that will be explored
is: do the learned representations have utility and function outside of the system that disentangled
the information?
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Chapter 7

Extrinsic Analysis of Disentangled
Representations

7.1 Introduction

The analysis that was presented in the previous chapter (Chapter 6) explored various techniques
to probe the learned VQ codebooks using VQ-VAE system variants from Chapter 5. The analysis
revealed that one system variant in particular, +Adversarial, tended to learn better separation
of speaker and content information. That system was also found to generate the highest quality
synthetic speech based on the evaluation of speech synthesis provided in Chapter 5. So far, the
following claims can be made regarding disentanglement in this thesis:

• Individual VQ phone codes are not interpretable

• VQ speaker codes appear to carry speaker identity as well as speaker accent information

• Disentanglement is relative and there is no single metric to quantify this

• Fine-tuning to multilingual data resulted in learning entirely different VQ codes

In this chapter, the analysis of the VQ codebooks will be expanded to task-based assessment.
For task-based assessment, the learned VQ representations will be utilized in a series of tasks
that inherently require some form of disentanglement in order to perform the task. For example,
voice conversion requires that the content information remain unchanged while only the speaker
voice information changes. Recall the three main principles of speech disentanglement under
investigation in this thesis:

1. The learned representations are sufficiently rich to model targeted speech features.

2. Representations that model targeted speech features do not also model non-target speech
features (e.g., a representation of speaker identity does not also model speech content).

3. Representations have utility outside of the system that disentangles information.

The present chapter will be focused on the third principle. The goal for this chapter will be
to explore how well the learned representations can be utilized in other tasks besides speech
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synthesis. Each of the tasks presented in this chapter should be considered a toy problem and
they will be explored for the purpose of establishing a proof-of-concept. Some of the tasks
purposefully utilize utterances that were seen in training of VQ-VAE systems (from Chapter
5) to demonstrate task feasibility in the least challenging case: the goal is not to engineer
systems that generalize well in unseen conditions, rather the goal is to demonstrate and analyze
disentanglement that was learned during training. If the disentanglement or utility of learned
representations is poor for utterances seen in training, there is no reason to expect that the
utility would generalize for unseen speakers or content. Ideally, the dataset used for training
VQ-VAE system variants in Chapter 5 would have been large enough to create several different
held-out partitions that could be used in downstream tasks. One such dataset was considered:
LibriTTS [Zen et al., 2019]. However, early experiments from Chapter 5 proved that training
VQ-VAE to synthesize speech from LibriTTS was difficult and the speech was often unintelligible.
The low quality synthesis was likely due to variable quality of recordings in the LibriTTS dataset.
VCTK was an obvious alternative because of the studio-level recording quality. None of the
tasks presented in this chapter will undergo a full-scale evaluation. The idea behind these tasks
is to observe what is possible with the learned VQ representations and to get a sense of the
limitations in downstream tasks.

Similar to Chapter 6, the system variants being explored here will vary depending on the
task. Five different tasks will be presented: phone recognition, speaker diarization, content
masking for privacy, voice transformation, and language code-switching. Phone recognition and
speaker diarization tasks seek to compare performance between the original VQ-VAE and the
self-supervised/semi-supervised system variants. The purpose of limiting the speaker diarization
and phone recognition tasks to these systems is to focus on speaker/content separation and to
better understand the performance of self-supervised and semi-supervised systems. For phone
recognition in particular, the dual-encoder systems demonstrated better intelligibility after
synthesis compared to the triple-encoder systems (Chapter 5, Table 5.1). Likewise the dual-
encoder system achieved higher KL divergence than the triple-encoder system when comparing
per-speaker phone code distributions (Chapter 6, Figures 6.33 to 6.36) so the speaker diarization
tasks here will be limited to dual-encoder systems. The dual-encoder models also had better
naturalness across all four testing conditions in the MUSHRA test (Chapter 5, Figure 5.13 to
Figure 5.16). The remaining tasks will be focused on the system +Adversarial because that
system was identified as the best-performing system overall for speech synthesis in Chapter 5, and
stood out in several ways in the analysis of Chapter 6. The content privacy task explores methods
that conceal specific targeted words in an utterance without modifying the remaining portions
of the utterance. The voice transformation task explores using the VQ speaker codebooks to
transform voice in both the monolingual +Adversarial and multilingual +Adversarial-L
models. Finally, the +Adversarial-L model will be used to explore linguistic code-switching.

7.2 Related Work

In speech applications, the term disentanglement is used to describe the process of identifying
distinct informational factors from speech inputs [Peri et al., 2020a; Ravanelli et al., 2020; Ebbers
et al., 2021; Polyak et al., 2021]. The primary way of identifying distinct informational factors
is to use probing tasks that treat disentangled representations as inputs to a machine learning
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task, such as classification, and measuring how well the representations perform for the task.
Disentanglement for speech originated from the desire to create speaker embeddings that were
more “pure”, and that also minimized irrelevant information. Speaker embeddings were then
evaluated in machine learning tasks such as emotion and sentiment recognition [Williams and
King, 2019; Raj et al., 2019; Peri et al., 2020a]. The classification accuracy on these tasks was
monitored. Disentanglement was then claimed to be achieved based on a gain or loss of accuracy.

A similar probing approach was also taken in the work of Ebbers et al. [2021] as they
explored methods to purposefully separate content and speaker information. They evaluated
the technique of contrastive predictive coding (CPC) using phone recognition and speaker
recognition tasks. They claimed that disentanglement was achieved based on the evidence that
phone embeddings performed poorly at speaker recognition and speaker embeddings performed
poorly at phone recognition. Apart from these two contrasting downstream tasks, no other
measures or perspectives of disentanglement were offered.

7.3 Phone Recognition

In this section, a phone recognition task is introduced. The purpose of the phone recognition
task is to build upon the analysis from Chapter 6 which had demonstrated that the VQ phone
codebooks were not interpretable. However, in that analysis the VQ phone codes were considered
in terms of a zero history because the analysis involved unigrams. Further, the analysis from
Chapter 6 examined only the +Adversarial system but did not further examine the other
self-supervised system variants. In this phone recognition task, the performance will be compared
for the original VQ-VAE system, along with a baseline that used audio features, as well as three
dual-encoder system variants: +Global VQ, +Speaker, and +Adversarial. The +Global
VQ system was fully unsupervised. The +Speaker and +Adversarial systems were both
semi-supervised. For both of the semi-supervised systems, the softmax and angular-softmax
variants (introduced in Chapter 5.3) will be included for comparison in this phone recognition
task.

7.3.1 Data Preparation

The TIMIT dataset was designed for the purpose of automatic speech recognition [Garofolo,
1993] and that is why it was chosen for this phone recognition task. The data contains read
speech from 630 different speakers of English from 8 different American English accents. Each
speaker read 10 sentences. All of the speech has corresponding transcription including time-
aligned phones and time-aligned words. When the dataset was first created, the transcriptions
had been verified by hand before the dataset was released. The sentences are considered to
be “phonetically rich” meaning that each utterance demonstrates a diversity of phones used.
Overall, the TIMIT dataset contains 63 unique phone types. The TIMIT dataset is split by
default into a training and test set by default wherein the training set contains 10 utterances
from 462 speakers (total 4,620 utterances) and the test set contains 10 utterances from 168
speakers (total 1,680 utterances), with no speaker overlap.
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Table 7.1: Number of training steps that were performed for each system variant when adapting
the model to TIMIT data as well as the number of unique VQ phone codes from each system
that were active during training. (S: softmax, AS: angular-softmax.)

# VQ Fine-tune

Method Phone Codes Steps

VQ-VAE 140 126k

+Global VQ 119 408k

+Speaker S 139 102k

AS 138 102k

+Adversarial S 176 126k

AS 154 126k

7.3.2 Experiments

The experiments in this section are based on VQ phone codes that were obtained from the
TIMIT dataset. The first step was to fine-tune each of the VQ-VAE model variants to the
TIMIT dataset. This fine-tuning step is necessary because the speech synthesis quality is low
for TIMIT data without fine-tuning. Table 7.1 shows how many additional training steps are
performed on each system variant as well as the number of unique VQ phone codes that are
used for the TIMIT data. The fine-tuning stopping criterion is based on monitoring the overall
loss for that system. For the purpose of fine-tuning, the default dataset is divided so that the
training portion of the TIMIT dataset (4620 utterances) is used for both training and validation
in fine-tuning. This is done to preserve the test portion of the TIMIT dataset as a fully held-out
set. Each of the training and validation sets contain 5 utterances per speaker for 462 speakers
(the speakers are overlapping between the training and validation splits). Therefore the training
set has 2,310 utterances and the validation set has a different set of 2,310 utterances. These
train/valid/test splits are the same for all of the VQ-VAE system variants that are fine-tuned in
this task.

After fine-tuning each system variant, the TIMIT data can be used to obtain VQ phone code
sequences for a downstream phone recognition task. To obtain the VQ phone code sequences,
the TIMIT data is passed through each system variant in an inference step separate from model
training to obtain sequences of VQ phone codes. The sequences of VQ codes are converted into
sequences of one-hot vectors (Figure 7.1). The dimensionality for one-hot vectors is different for
each system and depends on the number of unique VQ phone codes used (Table 7.1).

The phone recognition task is done using a simple LSTM encoder-decoder architecture. To
train the LSTM a slightly different data partition from the VQ-VAE fine-tuning is used because
the partitions from fine-tuning are not adequate for LSTM training. The LSTM benefits from
more training examples and fewer validation examples. The held-out test set remains completely
held-out, however the training and validation split is adjusted to 3,694 utterances for training
and 924 utterances for validation (note: 2 files are omitted from LSTM training because they
caused an error when obtaining VQ phone code sequences).

The LSTM input consists of a sequence of one-hot VQ phone codes and the LSTM output is
a string of the recognized phones. To be clear, the integer indices of the VQ phone codes are
transformed into one-hot vectors rather than using VQ phone vectors. This is done to simplify
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w eh w ih dh ey n aw

Phone sequence
Sequence of one-hot

VQ phone vectors

Figure 7.1: The input to LSTM is a sequence of VQ phone code indices represented by one-hot
vectors (or mel-scale filterbank features for the audio baseline) and the output is a string of
phones.

the task and to conceptualize that a sequence of integers could be mapped to a sequence of
phones. This strategy also constrains the problem to be sensitive to the “vocabulary size” of
active VQ phone codes (recall that not all VQ phone codes were active when the VQ-VAE
systems were trained). In the case of the baseline, the input is audio features represented as
mel-scale filterbank features using 80 mel bins. For implementation of the LSTM network,
the ESPNet toolkit1 is used [Inaguma et al., 2020]. The recipe is the CMU AN4 ASR [Kim
et al., 2017] based on a very simple LSTM model with 64 units. For all system variants being
tested in this experiment (including the audio baseline) the LSTM is trained to 100 epochs.
The best LSTM model is selected based on connectionist temporal classification (CTC) loss
(mtlalpha = 1.0). The decoder beam size is 20.

7.3.3 Results

Table 7.2 shows the mean phone error rate (PER) for the held-out test set averaged across all
speakers. The PER is the sum of phone substitution, insertion, and deletion. Bold values signify
the audio baseline (best performance) as well as the best-performing VQ-VAE system variant
+Speaker AS. All of the system variants offer error reductions for insertion and deletion
compared to the strong audio baseline which has fewer substitutions overall. The +Speaker
system with angular-softmax (AS) has better overall performance compared with the +Global
VQ system. These results show it is possible to add global-level speaker components to the
original VQ-VAE model without sacrificing the utility of VQ phone codebook representations.
The VQ-VAE system variants all tend to make errors for substitution more often than the audio
baseline.

7.3.4 Summary

The phone recognition task has shown that all of the VQ-VAE system variants make fewer errors
for insertion and deletion compared to an audio baseline. However, the VQ-VAE system variants
make significantly more substitution errors and these substitution errors resulted in overall
worse PER performance. The dual-encoder +Speaker system achieved similar performance
to original single-encoder VQ-VAE system, which suggests that the addition of a VQ speaker
codebook did not negatively affect the performance of the VQ phone codebook.

1https://github.com/espnet/espnet
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Table 7.2: Phone error rate (% PER) on TIMIT test set from sequences of one-hot VQ phone
codes or mel-scale filterbank features for the audio baseline. (S: softmax, AS: angular-softmax).
The TIMIT test set consists of 168 speakers each with 10 utterances each and using a mix of 8
different American English accents. Bold values signify the audio baseline (best performance) as
well as the best-performing VQ-VAE system variant +Speaker AS.

% PER↓

Method Substitution Insertion Deletion Overall

Audio Baseline 13.8 9.4 7.4 30.6

VQ-VAE 26.6 8.3 6.0 40.9

+Global VQ 28.0 7.7 6.4 42.1

+Speaker S 28.1 9.6 5.8 43.4

AS 27.6 8.0 6.3 41.9

+Adversarial S 28.0 8.6 6.5 43.1

AS 30.4 9.6 6.5 46.5

7.4 Speaker Diarization

The speaker diarization task that will be described in this section presents a technique for using
VQ speaker codes for labeling speaker regions in audio that has two different speakers. The
proposed technique will be compared with performance of an x -vector baseline from the 2nd
DIHARD Challenge2. The goal of speaker diarization is to annotate specific regions of speech
that belong to different speakers. This task is chosen in lieu of speaker recognition on the basis
that Chapter 6 analysis revealed that the VQ speaker codebook did not create a one-to-one
mapping of speakers and VQ speaker codes. Speaker diarization in this chapter only requires
comparative mappings that reflect differences between two speakers. Recall from Chapter 6.3.3
that on average, each speaker is represented by ∼2 different VQ codes and each VQ code is
used for ∼15 different speakers. In order to apply the VQ speaker codebooks to a diarization
task, first the VQ speaker codes for a given speaker are used to create a reference based on code
frequency. The process of using VQ speaker codes to create a reference guide will be described
in more detail in Section 7.4.2.

The VCTK data that was used for training VQ-VAE systems (Chapter 5) always contains
one speaker per utterance. In order to use VQ-VAE system variants in a speaker diarization task
on VCTK data, the diarization will be simulated by concatenating speech from different speakers.
In that sense the turns between speakers are created artificially. The benefit to simulating
speaker turns with VCTK data is that it does not require fine-tuning VQ-VAE systems on
(potentially very noisy) realistic conversational-style data3.

7.4.1 Data Preparation

The VCTK data is used in the speaker diarization task as well as the testing conditions that
were specified in Chapter 5. There are four testing conditions which represented different
combinations of seen and unseen speaker/content during VQ-VAE system training:

2https://dihardchallenge.github.io/dihard2/
3Early attempts to fine-tune to the BU Radio Corpus [Ostendorf et al., 1995] resulted in consistently

unintelligible speech.
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Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a
snack for her brother Bob. When the sunlight strikes raindrops in the air they
act as a prism and form a rainbow. To the Hebrews, it was a token that there

would be no more universal floods.

['113', '113', '113', '113', '193', '193', '193', '113', '113', '113', '113']

Most-frequent VQ code per speaker

Speaker p269: 113

Speaker p256: 193


Generate VQ speaker codes 

using 2-second sliding window

Concatenated audio files

Speaker VQ codes

Reference text files


Figure 7.2: The most frequent VQ speaker code for a speaker is determined for reference. Audio
files from two different speakers are concatenated together. VQ speaker codes are generated at
each 2-second sliding window (using 250ms overlap). The VQ speaker codes determine which
regions of speech belong to the different speakers. In this example, speakerA is 113 and speakerB
193. All concatenated audio files use two turns between the speakers.

• C1 seen speakers / seen content

• C2 seen speakers / unseen content

• C3 unseen speakers / seen content

• C4 unseen speakers / unseen content

The C1 condition should result in the best quality of speech because it was seen during training.
The remaining conditions help to gauge how well the models generalize to unseen conditions.
The C4 condition should be more challenging because it represents full held-out conditions in
terms of the content as well as the speaker.

The speaker diarization task in this section is simulated by concatenating audio files from
different speakers so that each new audio file contains 2 speakers and 2 turns. This process is
shown in Figure 7.2. When simulating speech with multiple speakers, the speakers are always
chosen from similar testing conditions.

7.4.2 Experiments

Since the VQ speaker codebooks do not have a one-to-one mapping between VQ codes and
speaker labels, a reference guide was created to map each speaker to a single VQ speaker code.
This was done by examining the VQ speaker codes for audio files containing each single speakers
and identifying the most frequent VQ speaker code. For example, if the most frequent VQ code
for speakerA was 113 then code 113 was used as a reference guide for identifying speech that
belongs to speakerA.

To obtain diarization labels from the concatenated multi-speaker audio, the speaker VQ
codes were extracted at short intervals. A 2-second sliding window (250ms overlap) was used.
For example, if the speaker code 113 was extracted in a 2-second window and that code belonged
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to speakerA based on the reference guide, then that region of speech was labeled as speakerA.
This process is demonstrated in Figure 7.2. In all VQ-VAE systems, sometimes two different
speakers were mapped into the same VQ code and it was not possible to decide the most frequent
VQ speaker code. In cases where the speaker could not be determined speakerA and speakerB
were selected at random.

The VQ-VAE system variants were compared with the Track #1 x -vector baseline from
the 2019 DIHARD challenge. The x -vector baseline extracted an x -vector using a 2-second
sliding window (with 250ms overlap) and used PLDA scoring and agglomerative hierarchical
clustering [Sell et al., 2018]. The x -vector extraction used a pre-trained model from VoxCeleb4.
The baseline system clustering was trained on the official DIHARD data development set with
knowledge of 2 speakers per audio file for the purpose of clustering. The baseline system was
evaluated on the concatenated VCTK audio files (2 speakers, 2 turns).

7.4.3 Results

The diarization error rate (DER) is reported in Table 7.3. The DER score measures the
proportion of time in an audio file wherein: non-speech was incorrectly labeled as speech (false
alarm), or a speech region was incorrectly labeled as non-speech (miss), or an incorrect speaker
label was generated (error). The +Speaker and +Adversarial systems performed better than
the strong x -vector baseline on average. The self-supervised system (+Global VQ) did not
learn a diverse VQ space, and it was observed that the same VQ speaker code was generated
for all speakers. The term that has been recently adopted to describe this phenomenon is
“codebook collapse” from Dhariwal et al. [2020] though no formal definition exists. As mentioned
earlier, in this case the speaker regions were decided randomly so the scores for +Global VQ
reflect random guessing. Overall the +Adversarial system performed the best across all four
conditions. The x -vector baseline performed particularly well in conditions 1 and 3, and much
worse in conditions 2 and 4. Since the x -vector baseline was not trained on any portion of the
VCTK data, it is not due to seen vs. unseen content. It is possible that the particular speakers
in conditions 2 and 4 had characteristics that were not well modeled by the pre-trained x -vector
extractor, such as speaking rate or accent. In general, the performance in condition 3 was also
best for +Adversarial and +Speaker when softmax was used in the system variants.

7.4.4 Summary

The results from speaker diarization demonstrate the learned VQ speaker codebooks can be
applied to this complex task. Overall, two of the VQ-VAE system variants outperformed the
strong x -vector baseline. It is possible that the x -vector baseline was influenced by accent or
speaking rate. The +Global VQ system did not learn a diverse codebook and suffered from
“codebook collapse” (a term borrowed from Dhariwal et al. [2020]) wherein the same VQ code
was generated for all speakers.

4https://kaldi-asr.org/models/m7
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Table 7.3: Speaker diarization error (DER) scores on concatenated VCTK audio. Each audio file
contained 2 speakers and 2 turns. Speakers were selected from within the same testing condition.
Four testing conditions were examined in order to explore performance in unseen conditions. (S:
softmax, AS: angular-softmax).

%DER↓ per Condition

Method C1 C2 C3 C4 Avg

x -vector 24.3 44.6 27.4 46.7 35.8

VQ-VAE – – – – –

+Global VQ 44.4 39.1 44.7 39.6 42.0

+Speaker S 32.4 32.2 31.0 33.1 32.2

AS 34.6 35.9 36.4 35.9 35.7

+Adversarial S 32.2 32.3 30.5 32.9 31.9
AS 37.2 35.6 36.1 35.2 36.0

7.5 Content Masking for Privacy

Content-based privacy involves creating a capability that conceals certain sensitive words or
phrases using techniques that do not disrupt the normal flow and feel of a speech utterance.
Traditionally, speech content privacy has been rooted in the idea that a signal-emitting device
can be set up within a physical space, such as an office room, to conceal what people say during
private conversations. This device emits a special type of noise to mask semantically-relevant
speech sounds, like words or phonemes [Akagi and Irie, 2012; Kondo and Sakurai, 2014; Donley
et al., 2016]. The process of concealing content can also be understood in terms of speech
synthesis. For example, in speech privacy applications that target content, the masking of certain
sensitive phrases should not result in degraded speech or speaker information elsewhere in the
masked utterance. In some cases, it might be preferable if a content mask does not disrupt the
overall listening experience such as with a loud beep or white noise [Chen et al., 2008]. Masking
targeted content could potentially take place while speech is in a compressed state, similar to
how it is represented in a VQ-VAE system with VQ phone codes [Casebeer et al., 2021].

The content masking task in this chapter will explore the possibility of replacing VQ phone
codes that represent content with VQ codes that represent noise. An assumption will be
made that the targeted content (words) and location (start and end times) have already been
determined. The task that will be presented in this chapter explores whether it is possible to
replace targeted sub-sequences of VQ phone codes with noise and how that affects the overall
quality of surrounding unmasked phrases. Further, the placement of the mask near the beginning
or end of an utterance will be explored in order to observe any degradation in speech synthesis
quality. Two different types of masking will be presented: noise and reversal. In this content
masking task, only the +Adversarial system variant will be used as it has been shown to
produce the highest-quality speech synthesis (from Chapter 5).

7.5.1 Data Preparation

The data that will be used for this task is the training portion of the VCTK data that was used
for training the VQ-VAE system variants in Chapter 5. The training data was chosen because it
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enables an exploration of content masking in terms of the best possible learned representations.
The objective for this toy problem is not to evaluate the robustness of the VQ-VAE system
across domains or test if the model can generalize. By using the same training data from VCTK,
this problem can establish an upper bound for content privacy performance with VQ-VAE. The
VCTK Montreal forced alignments were also used since they provide word-level start and end
times [McAuliffe et al., 2017].

Utterances from the VCTK training set were passed to the +Adversarial system variant to
obtain the VQ phone and speaker codes as an inference step separate from training. One of the
masks that will be explored in this task involves replacing VQ phone codes with noise. Actually,
the VQ phone codes are replace with VQ phone codes corresponding to noise. The noise that
will be used is a waveform consisting of a temporally-modulated speech-shaped noise (SSN)
masker (ICRA noise 9 from Cooke et al. [2013]). The noise was also passed to the +Adversarial
system in an inference step, and the VQ phone codes for the noise were extracted. The noise
VQ phone codes are suitable to use when replacing content VQ phone codes in the experiments.

7.5.2 Experiments

The first masking method was to replace original content VQ phone codes of the target phrase
with VQ phone codes from speech-shaped noise (SSN). The idea for using SSN came from
Dreschler et al. [2001]. The speech-shaped noise offers a non-recoverable masking, which is useful
for applications where speech content redaction must be persistent. Even though the noise does
not truly contain phones, the resulting VQ phone code sequence represented the noise quite
well (as judged by the author of this thesis from listening to the original noise and synthesized
noise side by side). The second masking method was to simply reverse the order of the original
content VQ phone codes for the target phrase, while leaving the remaining VQ phone codes
intact. The VQ code reversal method does render the target phrase unintelligible.

For a given utterance, two different masking positions were explored. Mask position #1
occurs early in the sentence and mask position #2 occurs later in the sentence. The masking
process occurs at the VQ phone code level, so that the VQ phone codes are modified to perform
masking. Montreal forced alignments were used for determining the word boundaries within
the VQ phone code sequences. Two types of masking were used: reversing a VQ phone code
sequence within the mask boundaries, or replacing a VQ phone code sequence with noise VQ
phone codes.

Target phrases were manually selected such that the target phrase to be masked occurred
either early or late within an utterance. The purpose of exploring the target phrase position was
to observe any effects on the decoder ability to synthesize surrounding unmasked words. The
forced-alignments were used to determine the start and end timestamps for the target phrases
to be masked. Those timestamps were used for determining the location of the target phrase
within the sequence of VQ phone codes. The VQ phone codes were modified by swapping the
original VQ phone codes with a new sequence of phone codes from the mask. The swapped
sequence corresponded to the duration of the target phrase and the surrounding VQ phone
codes remained untouched. This process is demonstrated in Figure 7.3.

For the evaluation, two utterances were selected that were shared between a female and a
male speaker. For each utterance, two target phrases were selected to mask at two different
positions in the utterance (near the beginning and near the end). For the first utterance, the
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Task 3: Privacy content masking

5

AnalysisStep 1
Input speech

Modify the VQ phone codes directly

10, 2, 99, 3, 101, 17
VQ phone code sequence

Step 2

Step 3 Synthesis

Masked output speechTrained model
Masked VQ phone code sequence

Trained model

10, 2, 99, 3, 101, 17

Two types of “masking”:
1) Reverse the VQ phone code sequence
2) Use temporally-modulated speech-

shaped noise (SSN) masker
SSN + 

speaker 
VQ code

SSN

Figure 7.3: For a given utterance, two different masking positions were explored. Mask position
#1 occurs early in the sentence and mask position #2 occurs later in the sentence. The masking
process occurs at the VQ phone code level, so that the VQ phone codes are modified to perform
masking. Montreal forced alignments were used for determining the word boundaries within
the VQ phone code sequences. Two types of masking were used: reversing the VQ phone code
sequence within the mask boundaries, or apply a temporally-modulated speech-shaped noise
(SSN) masker (ICRA noise 9 from Cooke et al. [2013]).

two target phrases were “these things” (position1) and “three red bags” (position2). For the
second utterance, the two target phrases were “sunlight strikes” (position1) and “raindrops in
the air” (position2). In total, 16 examples were evaluated.

7.5.3 Results

The experiments were evaluated using a listening test with human subjects. All of the listeners
were fluent in English and were recruited using the Prolific platform5 while the test itself was
administered through the Qualtrics platform6. A total of 20 participants were recruited and
each were paid the equivalent of £ 7.50 per hour.

Participants were instructed that one or more words had been removed from the utterance,
but were not told which ones. They were asked a yes/no question as to whether the speaker
voice remained consistent throughout the utterance. The results are shown in Table 7.4 where
the “Speaker Similarity” reflects the percentage of listeners who responded ‘yes’ to indicate
that the speaker voice remained consistent within an utterance. Overall the SSN was better
for maintaining speaker identity throughout the utterance compared to reversal. Masking the
phrase at position2 resulted in more speaker consistency. It is possible that masking earlier in
the utterances caused some performance degradation with the decoder because the decoder was

5https://www.prolific.co/
6https://www.qualtrics.com/uk/
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based on auto-regressive speech generation from WaveRNN so errors early in the utterance may
have had a compounding effect.

Listeners were also asked to take part in an A/B preference test for SSN versus reversal
masking types. The preference test revealed a slight preference for SSN. Finally, the intelligibility
was estimated from ASR-based word recognition and is reported as word error rate (WER)7.
The IBM Watson Speech-to-Text API8 was used for the ASR. A baseline WER was calculated
on natural unmasked utterances and it was found to be 24.4%. This is higher than expected
but likely due to pronunciations and the audio quality. The WER for masking is reported in
Table 7.4. The WER is reported separately for the unmasked phrases and the masked phrases.
To calculate the WER for masked phrases, the ASR transcript was examined to see if the words
in the target phrase were present and if not then the WER is reported as 100% for the masked
phrase only. To calculate the WER for unmasked phrases, the ASR transcript was compared
with the original but with the target phrase removed from the original transcript. The words
were converted to lowercase, punctuation was removed, and any ASR-based notation (such as
%HESITATION) was also removed. Overall, the WER increased for unmasked phrases compared
to the original speech and that is because some of the non-target phrases were unintelligible
after masking. Example transcripts from ASR and the original texts are shown in Table 7.5.
The WER for unmasked phrases was lowest when the target phrase was in position1 for both
types of masking.

Table 7.4: Within-utterance speaker similarity and ASR-based WER for content masking,
comparing two masking techniques and two different target phrase positions within an utterance.

Speaker ASR-Based WER

Masks & Positions Similarity↑ Masked↑ Unmasked↓

Reversal Position #1 63.7% 100% 47.7%

Reversal Position #2 77.5% 100% 69.2%

SSN Position #1 70.0% 100% 52.4%

SSN Position #2 76.2% 100% 61.5%

Table 7.5: Example transcripts from ASR (for utterances with masking) and the original texts

Reversal Position #1 – target phrase “these things”

Original she can scoop these things into three red bags and we will go meet her

wednesday at the train station

ASR skip in the second three backpacks market may tell wednesday at the train station

SSN Position #1 – target phrase “sunlight strikes”

Original when the sunlight strikes raindrops in the air they act as a prism

and form a rainbow

ASR thanks in advance the act as a prism and full knowing

7https://pypi.org/project/jiwer/
8https://www.ibm.com/cloud/watson-speech-to-text
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7.5.4 Summary

The goal of speech privacy masking was to conceal targeted content without disrupting the
intelligibility of surrounding words or causing changes to the speaker identity. It was found
that masking at the beginning of an utterance (position1) resulted lower WER from ASR for
the non-target words that were intended to remain intelligible. The within-utterance speaker
similarity appears to be more consistent when the masking occurs at the end (position2). The
results suggest that the decoder may “recover” slightly better from the SSN masking compared
to the reversal masking.

7.6 Voice Transformation

Voice transformation involves the ability to model speaker identity in a way that is divorced
from the utterance content. For disentangled representations, the quality of separation between
phone and speaker can be observed by swapping VQ speaker codes while keeping the VQ phone
codes constant. As it has been stated in Chapter 6, the dual-encoder VQ-VAE system variants
did not learn a one-to-one mapping between speaker labels and VQ speaker codes. It is for
that reason that this task will be framed as a “transformation” task rather than a “conversion”
task. It is voice transformation because the input data will be transformed into a specific VQ
speaker code, but not a specific target speaker. Neither the monolingual +Adversarial nor the
multilingual +Adversarial-L models utilized all of the possible VQ speaker codes, from the
available 256 for each model. In the multilingual model (SIWIS), 11 VQ speaker codes were
utilized for 36 speakers. In the monolingual model (VCTK) there were 18 VQ speaker codes
utilized for 110 speakers. Framing this task as voice transformation will also allow for voice
mixing, wherein VQ speaker vectors could be combined, such as by taking an average between
two vectors, in order to create a mixture of two VQ speaker codes. While the VQ code indices
are discrete integers, each VQ code has a corresponding VQ vector that consists of continuous
values so it is possible to calculate a centroid between two given VQ vectors.

7.6.1 Data Preparation

Similar to the reasoning for content privacy in Section 7.5, the training data was utilized in this
task because it presents the easiest case where the learned representations are expected to be
higher quality than those in test data (in terms of potential disentanglement as well as the speech
synthesis quality). The purpose of a voice transformation task in this thesis is to demonstrate
a capability rather than demonstrate that a model is robust and generalizes to out of domain
speakers or content. Two different datasets were used in these experiments. For monolingual
voice transformation with +Adversarial, VCTK training data from condition1 was used. For
multilingual voice transformation with +Adversarial-L, SIWIS training data from condition1
was used. Data from Italian was omitted in the voice transformation experiments due to the
strong data imbalance across languages. To prepare the data, the audio was passed through
the VQ-VAE system variant as an inference step separate from model training. The VQ phone
codes and VQ speaker codes were obtained as shown in Figure 7.4.
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Task 1: voice transformation
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Figure 7.4: Diagram showing the voice transformation experiments. Input speech is passed
to a trained encoder to perform inference and obtain sequences of VQ phone codes as well
as a VQ speaker code. VQ speaker codes are swapped for a different speaker code from the
codebook learned for that system. Two VQ speaker vectors are averaged to obtain a new speaker
representation.

7.6.2 Experiments

There were two main experiments in the voice transformation task. One set of experiments was
based on swapping VQ speaker codes to change the source voice. Another set of experiments
was based on mixing VQ speaker vectors to create new voices. The VQ speaker vector mixing
was possible due to the nature of the VQ codebook lookup table. Recall that all VQ codes map
to VQ vectors. It is the vectors themselves that are passed on to the decoder (WaveRNN) for
speech synthesis. Therefore it is possible to mix VQ vectors and then pass the resulting vector
to the decoder. Figure 7.4 shows a comparison of both types of voice transformation.

7.6.2.1 Single Code Representation

For the multilingual model, one male and one female speaker were selected (spk13-male,
spk04-female) from the SIWIS data and seen conditions. The VQ phone and speaker codes
were extracted. The VQ speaker codes were replaced with each of the 11 multilingual VQ
speaker codes from the codebook that was learned in training (described in Chapter 5). For
the multilingual model, two utterances per speaker per language were used, making a total of
12 examples (3 languages, 2 speakers, 2 utterances). Recall that the +Adversarial-L system
requires a one-hot language vector for the decoder. For the one-hot language vector the language
from the source sentence was used. For the monolingual model and codebook, the same approach
was followed by selecting a male and female speaker from the VCTK data and seen conditions
(p229-female-English, p302-male-Canadian). For the monolingual model, two utterances per
each speaker were used making a total of 4 examples (1 language, 2 speakers, 2 utterances).
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7.6.2.2 Mixed Code Representations

For the mixed representations, the VQ vectors were combined in an effort to create new voices.
This was one in a similar spirit as one-shot voice conversion [Wu et al., 2020]. Ideally, this
could be done using various combinations of VQ speaker codes and weighting them. In this
section, two VQ speaker vectors were mixed by calculating an unweighted mean between the
vectors. In a vector space, the resulting representation is a new centroid that is equidistant
between the paired vectors. VQ speaker vectors were randomly selected for each model and
then mixed. Similar source utterances were selected for synthesis as described in 7.6.2.1. For
the multilingual model, two utterances per speaker per language were used making a total of 12
examples (3 languages, 2 speakers, 2 utterances). For the monolingual model, two utterances
per each speaker were used making a total of 4 examples (1 language, 2 speakers, 2 utterances).

7.6.3 Results

The voice transformation task was evaluated using a listening test with human subjects who
self-reported as fluent in the respective language that was being tested. 20 participants per
language were recruited using the same platform, payment, and test delivery as reported in
7.5.3 (Qualtrics and Prolific). For the listening test evaluation, 4 speaker VQ codes (3 single-
representations, 1 mixed) were selected from each model. As stated before, two source sentences
were used for synthesis (one male and one female). In the case of the multilingual model, this was
per-language. Participants listened to all 8 samples in their language and marked naturalness on
a scale of 1 to 5. Table 7.6 and Table 7.7 show the results from naturalness. In the multilingual
model, German and French each had the overall best quality MOS scores for all three VQ
speaker codes as well as the mixed voice whereas English had the worst. The high MOS scores
for German indicate that the multilingual model has a dominant language in terms of quality.
The monolingual results in Table 7.7 show consistency across each of the speaker VQ codes. It
is not possible to compare MOS across systems or languages because they used different source
speakers as well as different listeners, however some speaker codes appear to result in more
natural speech within a language.

Table 7.6: Multilingual MOS naturalness scores from human judgements for voice transformation
and voice mixing in English, French and German (SIWIS) data using VQ speaker codes from
the +Adversarial-L system variant.

Speaker Code English French German Avg

Code 85 2.4 2.9 3.4 2.9

Code 192 2.6 3.0 3.1 2.9

Code 238 2.5 3.0 3.2 2.9

Code 131+248 2.4 3.1 3.3 2.9
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Table 7.7: Monolingual MOS naturalness scores from human judgements for voice transformation
and voice mixing in English (VCTK) using VQ speaker codes from the +Adversarial system.

Speaker Code Avg

Code 67 2.3

Code 109 2.3

Code 242 2.5

Code 109+242 2.4

The listeners were also asked about speaker similarity in an effort to understand the
consistency of the VQ speaker codes. Listeners were provided with matched and unmatched
pairs in an A/B test, and were asked to decide if the A/B examples were from the same or
different speaker. There were 16 total matched pairs and 24 unmatched pairs per language
and dataset. This format worked well since there was not a prototypical target voice for the
comparison. Comparing VQ code similarity allows for observation of trends across a particular
language as well as across a particular VQ speaker code. Mixing VQ speaker vectors did not
impact the overall quality of synthesis. Figure 7.5 shows that German language samples resulted
in the highest similarity between the VQ speaker codes, followed by French, and then English.
Some VQ speaker codes are judged to have high similarity in two or more languages, for example
192 and 131+248 for each of German and French. Figure 7.6 had overall worse similarity
compared to the multilingual model, and likewise codes 67 and 242 appear to be similar.

Figure 7.5: Multilingual +Adversarial-L: matrix representation of voice transformation speaker
similarity for results of A/B similarity tests. The German language samples resulted in the
highest similarity between the VQ speaker codes, followed by French, and then English. Some
VQ speaker codes are judged to have high similarity in two or more languages, for example 192
and 131+248 for each of German and French.
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Figure 7.6: Monolingual +Adversarial: matrix representation of voice transformation speaker
similarity for results of A/B similarity tests. Some of the codes sound similar to the listeners,
such as 67 and 242.

7.6.4 Summary

The voice transformation task revealed that it is possible to create new voices using VQ speaker
vector mixing. Overall the German voice transformation utterances had higher quality and
higher speaker similarity compared to the other languages. Some codes are similar within each
model. For example in the multilingual model codes 192 and 131+248 sound very similar to
listeners for German as well as to listeners of French. The ability to perform voice transformation
with high MOS naturalness is an indication that there is some disentanglement between the
phone content and speaker information in the VQ codebooks.

7.7 Language Code-Switching

The purpose of exploring linguistic code-switching is to find out if speech can be generated from
VQ phone codes in completely different languages in the same utterance. Code-switching will be
simulated in this task by concatenating together VQ phone codes from utterances in different
languages and using only one VQ speaker code for synthesis. This task will also take advantage
of the fact that the SIWIS data contains utterances from bilingual and trilingual speakers, so it
is possible to ensure that natural source utterances in two different languages are spoken by one
single speaker. However, recall from Chapter 6 that there is not a one-to-one mapping between
speakers and VQ speaker codes. Only one VQ speaker code will be used for the code-switching
utterances. The expected outcome is an utterance in two languages that sounds consistently
like one speaker throughout the utterance.

7.7.1 Data Preparation

The data in this task was the SIWIS dataset because only the multilingual +Adversarial-L
system was utilized. Files from the SIWIS training set were passed to the system as an inference
step separate from model training to obtain the VQ phone codes and VQ speaker code. As
described earlier in Section 7.6 and Section 7.5, the training data was used in order to simplify
the problem and examine the scenario where performance on the task is expected to be the
best since the model is not being required to generalize to unseen speakers or content. There
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is no guarantee that the same VQ speaker code would be obtained for both utterances, even
if the source speaker is the truly the same speaker. Only the VQ speaker code from the first
utterance will be used. For this reason, all of the code-switching language pairs (English/French,
English/German) are concatenated in two different language orderings (e.g., English-French,
French-English). This process is described in Figure 7.7.

Task 2: linguistic code-switching

Analysis

English
109

Trained model

10, 2, 99, 3, 101, 17

(1) Get VQ codes

(VQ phone codes)

(VQ speaker code)

Analysis

French
109

Trained model

10, 2, 99, 3, 101, 17 (VQ phone codes)

(VQ speaker code)

(2) Concatenate 
Phone VQ codes

10, 2, 99, 3, 101, 17 10, 2, 99, 3, 101, 17
Synthesis

Output speech
Trained model

109(VQ speaker code)

English phrase French phrase English French

Figure 7.7: A demonstration of language code-switching by obtaining VQ phone codes for speech
in each language and then concatenating the VQ phone code sequences before synthesis. The
result is speech in two languages. Note in this example, the speaker with VQ code 109 is
bilingual so the VQ speaker code remains the same.

7.7.2 Experiments

To simulate language code-switching, the VQ phone codes from entire files were concatenated
together as demonstrated in Figure 7.7 because the label files that came with the SIWIS dataset
had proven to contain unreliable time alignments for all of the languages. Two speaker were
selected for each language, one male and one female. Six utterances were then selected for
English-German and 6 utterances were selected for English-French. Both language pairs used
male and female speakers. In addition, the language order was reversed so that the pairs were:
English-German, German-English, English-French, and French-English. The order of languages
was reversed in order to observe whether the WaveRNN decoder was particularly sensitive to
language ordering, since the decoder could only accept a single one-hot language code. There
were a total of 24 code-switched files (6 per language pair). For the one-hot language vector the
language of the first utterance was used. Apart from concatenating the VQ phone codes (as
demonstrated in Figure 7.7) there were no other modifications made.

7.7.3 Results

The main objective for this task was to find out if the multilingual model could preserve speaker
similarity while also synthesizing the multilingual speech. Listeners were recruited in the same
manner as described earlier in 7.6.3. Participants were required to self-identify as fluent in both
of the languages belonging to a language pair. 20 participants per language pair were recruited,
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for example the same participants did tasks in English-German as well as German-English.

In a modified A/B test, participants were presented with (A) code-switched speech from
concatenated VQ phone codes, and (B) code-switched speech from concatenated audio files.
The participants were asked to to decide if the speaker was the same between the two A/B
samples. The results are reported in Table 7.8 and the values reflect the percentage of responses
indicating that ‘yes’ the speaker is the same in sample A and sample B. The French-English pair
had the lowest agreement. It is possible that the WaveRNN decoder was not able to recover
from generating speech in the French language and switch to English midway through. This
could have been caused by the data imbalance as French is the majority language in the SIWIS
dataset.

The listeners were also presented with single code-switched utterances from only (A) that
were based on concatenated VQ phone codes. The participants were asked to judge if the speaker
voice was consistent throughout each utterance, or if the speaker had changed part-way through.
All of the language-switching was set up using bilingual or trilingual speakers, and the utterances
carefully selected to ensure that the speaker remained the same. So the expected result is that
the speaker would sound the same regardless of the simulated language code-switching. Results
in Table 7.8 reflect the percent of listeners who judged that the speaker had not changed. There
was slightly more consistency for English-German pairs, compared to French.

Table 7.8: Speaker similarity for linguistic code-switching. A/B examples compare speaker
similarity from VQ phones with the concatenated audio. A-only is within-utterance speaker
consistency. German-English has the highest speaker consistency.

Speaker Similarity

Data A/B↑ A only↑

English-French 57.9% 69.0%

French-English 30.8% 60.7%

English-German 67.5% 77.5%

German-English 75.0% 77.5%

7.7.4 Summary

The language code-switching task has demonstrated that the multilingual +Adversarial-L
system can perform language switching, at least at the utterance level. The speaker similarity
for French-English code-switching was inconsistent between the concatenated audio files and
the concatenated VQ phone codes. The reason for this is not known but it could be related
to the decoder ability to “recover” from French and switch to generating English. It could also
be due to different VQ phone code distributions between French and English. Overall, the
German-English pairs had high speaker consistency within the utterances.
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7.8 Further Considerations

Some of the related work that was described earlier in this chapter had presented disentanglement
in terms of contrasting prediction or probing tasks. For example Ebbers et al. [2021] had evaluated
speaker and phone representations in a phone recognition task. The work presented in this
chapter did not follow a similar procedure as Ebbers et al. [2021]. In this thesis, it is not possible
to do a phone recognition task from VQ speaker codes/vectors because of the temporal pooling
that was built into the VQ-VAE system variants, resulting in one speaker code per utterance. It
is not possible to perform a speaker recognition task based on VQ phone codes/vectors because
they would need to be recombined into a new representation or treated as a sequence. However
the sequences depend on factors such as duration of utterance and speaking rate, which may
be speaker dependent but is not a useful way to represent speaker information for real-world
speech applications such as automatic speaker verification. Therefore contrastive probing tasks
were omitted in this thesis.

Using VQ vectors instead of one-hot vectors of VQ codes may have improved the performance
for phone recognition. Furthermore, the phone error rate substitution was the most significant
type of error made by VQ-VAE system variants. It would be interesting to find out if the
substitutions were reasonable or if they were related to factors such as speaker accent. It was
shown in Chapter 6 that the speaker accent information is most likely being carried by the
VQ speaker codes rather than the VQ phone codes. It is possible that the overall quantity of
substitution errors would decrease if the analysis was repeated using a single-speaker dataset.

7.9 Conclusion

This chapter has presented five separate tasks that demonstrate the utility and function of
learned VQ representations. The tasks have included: phone recognition, speaker diarization,
content privacy masking, voice transformation, and language code-switching. The objective set
forth in this chapter was to better understand if the learned representations had a use outside
of the system that had performed disentanglement.

The phone recognition and speaker diarization tasks have been particularly useful for assessing
the objective. From phone recognition, it was found that the dual-encoder system +Speaker
performed better (on average) than the other dual-encoder VQ-VAE variants but not as well
as the audio baseline. The addition of a VQ speaker codebook did not significantly degrade
performance on this task compared to the original single-encoder VQ-VAE. It was also found
that the VQ-VAE system variants made similar proportions of error types in phone recognition
as the audio baseline. Overall, the VQ-VAE variants had less insertions and deletions than the
baseline but more substitutions. The speaker diarization task demonstrated that it is possible
to use VQ speaker codes for diarization. The +Adversarial system performed best on speaker
diarization (on average) even compared to the strong x -vector baseline. The +Global VQ
system only produced one single VQ speaker code for all speakers, and is evidence of “codebook
collapse”.

The content masking for privacy task revealed that it may be difficult for the WaveRNN
decoder to recover from noise masking when the mask occurs early in the utterance. At the
same time, this task demonstrated that it is possible to mask words in an utterance while
the speech is in a compressed state (the VQ codebook and code sequences are considered
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to be a compressed state). Likewise the WaveRNN decoder was also tested in the language
code-switching task. There was some evidence to suggest that the decoder is not able to recover
from the language shift of French to English midway through an utterance. Finally, the results
from voice transformation indicate that there has been some disentanglement between the
phone content and speaker information based on the MOS naturalness and speaker similarity
judgements from human listeners.

These tasks taken altogether along with the analysis that was presented earlier in Chapter
6 show that there is some evidence of disentanglement between phone content and speaker
information. Just as Chapter 6 had demonstrated there is no single measure of disentanglement,
the tasks presented here in this chapter show that there is no single task that can prove
disentanglement. The +Adversarial system was shown to have the best speech synthesis
quality from Chapter 5 evaluation, as well as the best intrinsic disentanglement from Chapter
6 analysis. The same system was compared to self-supervised and semi-supervised techniques
for phone recognition and speaker diarization. It was also the main system used for content
privacy as well as voice transformation and language code-switching. While disentanglement
may be relative across systems, it can be said that the +Adversarial system variant is the
most promising based on evaluation and analysis.
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Chapter 8

Conclusion

8.1 Summary of Findings

This thesis has presented experiments that explore how to learn and use speech representations
in a variety of tasks ranging from speech authenticity and naturalness assessment to multilingual
speech synthesis and voice conversion. The purpose of this thesis was to understand disentan-
glement in the context of speech. While the term itself has been borrowed from research in the
image domain (where objects can be fully segmented or factorized) the term has been applied
inconsistently in speech research especially at the time that this thesis was conceived and written.
To continue the analogy of disentanglement for image processing, it may be straightforward to
segment objects in an image using edges, such as finding the boundary between a red-coloured
segment and a white-coloured segment. For the same analogy applied to speech disentanglement,
the objective is to take a pink-colored section and retrieve a representation of red and a separate
representation of white. Each of the chapters in this thesis has addressed a different angle
of speech representations and disentanglement. Some of the original motivation for speech
disentanglement in this work was inspired by early work in the field of speaker recognition which
models factors of variability between different speakers and within utterances of a particular
speaker. Unlike speaker recognition, which seeks to separate and discard unwanted or irrelevant
informational factors (channel, noise, session variability, etc) the objective in this thesis has
been to separate and retain representations of informational factors.

Chapter 3: Methods to Estimate Speech Authenticity and Quality. The exper-
iments in this chapter explored representation learning for detecting replayed speech in an
automatic speaker verification (ASV) scenario and the technique was entered into the 2019
ASVspoof challenge. The learned representations (a special type of x -vector) explicitly modeled
environmental factors such as room size and reverberation time as well as spoofing attack factors
such as replay device quality. The proposed technique combined abstract speech representations
with low-level signal features for training a convolutional neural network to predict spoofed vs.
bonafide decisions for speech utterances. The speech replay detection technique resulted in a
method that generalized well to unseen conditions and demonstrated consistent performance
between very mismatched train and evaluation datasets. The work on speech replay detection
was further expanded and similar representation learning techniques were applied to automatic
estimation of synthetic speech naturalness mean-opinion scores (MOS) from human listening
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judgements. Representation learning can help with MOS estimation, especially for preserving
the relative quality among speakers for a given TTS system but the problem of automatic scoring
for synthetic speech remains challenging. An automatic tool for MOS estimation was developed
and made publicly available, as well as utilized for synthetic speech scoring in Chapter 5.

Chapter 4: Methods to Disentangle Representations of Speaker Identity. A new
approach was proposed and tested for separating speaker identity and emotion/style information
from existing state-of-the-art speaker representations such as x -vectors and i-vectors using
autoencoders. The approach that was presented was also defined as a type of disentanglement
because it did not discard information but rather moved information of one type into one
representation (such as speaker information) and moved information of another type into a
another representation (such as style/emotion information). The disentangled representations
were created and evaluated at several levels of compression by altering the dimensionality of
the latent space in the disentangling autoencoder. Evaluation found that disentanglement
of speaker identity and style/emotion could be done with high dimensional representations
(400-dim to 512-dim) as well as low-dimensional representations (50-dim to 100-dim). The
approach was based on existing speaker representations (x -vectors and i -vectors) so any resulting
disentanglement would be dependent on initial conditions of those representations, including
the number of MFCCs that were used or the size of the neural network. Therefore Chapter 4
proposed to explore an end-to-end solution for disentanglement in Chapter 5.

Chapter 5: Methods for End-to-End Disentanglement. An end-to-end architecture
with several variations was introduced in Chapter 5 based on the VQ-VAE paradigm and
operating on directly on the speech waveform as input and output. The objective of using and
modifying VQ-VAE was to encourage information disentanglement in the latent space (VQ
codebooks) using self-supervised or semi-supervised learning. 10 variants of the system were
developed using a combination of additional encoders and VQ codebooks, as well as additional
classifiers for multi-task learning. The 10 system variants were compared to two existing VQ-VAE
baseline systems for speech synthesis quality. The top-performing system for speech synthesis
quality was identified and further developed for multilingual speech synthesis. Listening tests for
speech naturalness as well as objective measures (F0 reconstruction, MOS estimation, speaker
similarity, and ASR word error rate) showed that it is possible to learn separate representations
of speaker identity and speech content for multi-speaker English data as well as multi-speaker
multi-language data for English, French, German, and Italian.

Chapter 6: Intrinsic Analysis of Disentangled Representations The analysis pre-
sented in Chapter 6 set forth the objective to better understand if the learned representations
from the top-performing systems in Chapter 5 were modeling targeted speech features (such as
speaker identity and content) as well as whether the representations model only the targeted
features. The analysis consisted of understanding how the VQ codebooks were utilized and the
frequency distribution of codes. Several language modeling techniques were adapted to analyze
sequences of VQ codes for the phone content as well as VQ codes for speaker identity. The
language modeling analysis revealed that the VQ phone codebooks did not learn representations
that correspond directly to speech phonemes. However, the VQ F0 codebooks did learn some
representations that correspond to unvoiced/silence as well as male and female speaker genders.
It was found that accent information tends to be correlated with the VQ speaker codebooks
rather than the VQ phone codebooks. Overall the analysis revealed the inherent difficulty of
quantifying and qualifying the meaning of disentanglement and it was suggested that disen-
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tanglement be considered as a relative term. In the case that disentanglement is relative, one
system was identified as having better disentanglement than another, and the system with better
disentanglement was also the top-performing system from speech synthesis evaluation that was
done in Chapter 5. It was also revealed that fine-tuning one of the proposed VQ-VAE variants
from English-only to multi-language data resulted in entirely new VQ codebooks being learned
for speakers as well as phones.

Chapter 7: Extrinsic Analysis of Disentangled Representations. Several tasks were
explored in this chapter that utilized the learned VQ representations and those tasks included:
phone recognition, speaker diarization, content masking for privacy, voice transformation, and
language-switching. The phone recognition task revealed that the proposed VQ-VAE systems
performed worse than a state-of-the-art audio baseline (using MFCCs) but all of the VQ-VAE
systems made similar proportions of errors as the audio baseline (i.e., substitutions were most
common and deletions were least common). All of the tested VQ-VAE system variants made
similar types of errors in similar proportions as the audio baseline. It was found that the addition
of a speaker codebook did not negatively impact phone recognition performance, by comparing
one of the dual-encoder VQ-VAE models (from Chapter 5) with the original VQ-VAE model.
The speaker diarization task revealed that the VQ codes from the proposed speaker codebooks
(from Chapter 5) can be utilized for speaker diarization and perform as well as a traditional
strong baseline based on x -vectors. Content privacy masking demonstrated how VQ phone
codes can be manipulated in a way that conceals content information (specifically words) while
speech is compressed in a latent representation. The VQ-VAE decoder (WaveRNN) is able to
generate speech that is intelligible and retains speaker consistency throughout the utterance
despite having some content masked with noise. The voice transformation task revealed that
the learned VQ speaker codes can be used to transform voices between male and female. In
addition, the VQ speaker codes can be mixed together to create new voices. The multi-language
code-switching task showed that it is possible to use the VQ phone codebooks to generate
utterances that contain content from more than one language in the same utterance. This is a
step forward for multilingual speech synthesis, especially because the VQ phone codebook that
was utilized in the experiments was a single codebook representing four languages.

8.2 Evidence for Disentanglement

The three principles of disentanglement that this thesis contributes are as follows:

1. The learned representations are sufficiently rich to model targeted speech features.

2. Representations that model targeted speech features do not also model non-target speech
features (e.g., a representation of speaker identity does not also model speech content).

3. Representations have utility outside of the system that disentangles information.

For each of the three principles, evidence was found for and against disentanglement through
rigorous experimentation. Each of the principles will be described here as well as a summary of
which experimental outcomes support each principle.

In support of the first principle, it was found that there was high quality speech synthesis
in seen and unseen conditions, high quality speech for voice conversion tasks, successful phone
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recognition performance, and successful speaker diarization performance. The content masking
task that was introduced in Chapter 7 also provides support for the first principle. Evidence
against disentanglement for the first principle were that no one-to-one mapping between VQ
codes and phones or speaker was found. Furthermore, high-frequency phones were not found to
correlate with high-frequency VQ phone codes.

In support of the second principle, it was found that there was low KL-divergence for matched
content conditions on VQ phone code probabilities when comparing distributions across different
speakers. Similarly, there was high KL-divergence for unmatched content conditions on VQ
phone code probabilities across different speakers. Both of these findings suggest that the VQ
phone codes correctly model content information and not speaker information, and therefore
support the second principle of disentanglement. The probing task should be interpreted carefully
because KL-divergence alone may not provide a sufficiently strong model of the presence or
absence of information. Therefore it is possible that the VQ phone codes do model speaker
information but it is not captured by the probing task. Additionally, there is evidence against
disentanglement for the second principle such as the same phone being represented by different
sequences of VQ phone codes. Some of the differences in the sequences are due to the length or
duration of a phone, but phones are also often represented by entirely different VQ phone codes
(rather than repeating sequences). The VQ F0 codes correlate with speaker gender which can
be expected to some extent, but this shows that the VQ F0 codes are not disentangled from
speaker attributes. Finally the speaker vectors in VQ-VAE systems are often very similar to
each other, suggesting that the learned representations are not modeling speaker uniquely.

In support of the third principle, this was demonstrated by extrinsic tasks in Chapter 7,
specifically: phone recognition, speaker diarization, and voice conversion. Further the speaker
vectors were found to correlate with accent information in Chapter 6. While the utility of
the learned representations was shown in these tasks, several of the tasks continued to utilize
the trained WaveRNN decoder so it is difficult to claim that the representations have utility
completely outside of the trained systems.

8.3 Limitations

While the work in this thesis provides new insights about disentanglement and exciting avenues of
future work, this thesis is not without some limitations. There were advancements in the field of
speech processing related to self-supervised learning that arose after the experiments in Chapter
5 had already been started based on the VQ-VAE architecture. In particular, a new type of
autoencoder has since been published called a variable-rate autoencoder [Dieleman et al., 2021]
and a new representation learning technique has been proposed in an unpublished manuscript
based on contrastive predictive coding (CPC) [van den Oord et al., 2018]. Both of these advances
were developed at Google/DeepMind with a multitude of other engineering resources available.
Generally, interest in speech disentanglement has been increasing during the past few years.
Even with these recent advancements, there is no single definition or formalism that defines
speech disentanglement. The speech community would benefit from such a development. The
work presented in this thesis shows why it is so difficult to define disentanglement for speech.
The VQ-VAE method for disentanglement from Chapter 5 may potentially lose information
(which would falsely present as disentanglement) or the information may be redistributed into
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other parts of the multi-task system (which may falsely present as lack of disentanglement).
There may be some aspects to speech disentanglement that are fundamentally limiting such as
the separation of speaker identity and speaking style, or the separation of phones and accent.

8.4 Future Directions

Given that the multi-language speech synthesis and representation learning was successful for
voice transformation and language-switching, it would be interesting to explore an approach
that learns discrete latent units for applications to speech-to-speech direct translation using
waveforms. This research direction would require a lot of clean, parallel audio in the source and
target languages as well as additional modules that model the translation aspect. It may be
possible to translate between source and target languages within a learned latent space, such as
VQ codebooks or similar representations from other speech synthesis architectures.

8.5 Final Remarks

The view of disentanglement presented in this thesis relies on the ability to evaluate learned
representations either intrinsically or as they can be applied in downstream tasks. The approach
to disentanglement that was presented in this thesis shows that disentanglement is a very difficult
problem and there are some aspects of it that can only be assessed successfully with downstream
tasks such as voice transformation and phone recognition. The principles of disentanglement
that were explored in this thesis can be used as a guide for further work on speech representation
learning especially for cases where learned representations may be obtained externally to the
application technology, such as learning disentangled phone/speaker representations and then
utilizing the speaker representations for diarization. Speech disentanglement is an inherently
difficult task but experiments in this work show that disentanglement has a high utility for a
variety of downstream tasks.
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