2,528 research outputs found

    Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities

    Full text link
    Intensity inhomogeneities in images constitute a considerable challenge in image segmentation. In this paper we propose a novel biconvex variational model to tackle this task. We combine a total variation approach for multi class segmentation with a multiplicative model to handle the inhomogeneities. Our method assumes that the image intensity is the product of a smoothly varying part and a component which resembles important image structures such as edges. Therefore, we penalize in addition to the total variation of the label assignment matrix a quadratic difference term to cope with the smoothly varying factor. A critical point of our biconvex functional is computed by a modified proximal alternating linearized minimization method (PALM). We show that the assumptions for the convergence of the algorithm are fulfilled by our model. Various numerical examples demonstrate the very good performance of our method. Particular attention is paid to the segmentation of 3D FIB tomographical images which was indeed the motivation of our work

    Serial Correlations in Single-Subject fMRI with Sub-Second TR

    Full text link
    When performing statistical analysis of single-subject fMRI data, serial correlations need to be taken into account to allow for valid inference. Otherwise, the variability in the parameter estimates might be under-estimated resulting in increased false-positive rates. Serial correlations in fMRI data are commonly characterized in terms of a first-order autoregressive (AR) process and then removed via pre-whitening. The required noise model for the pre-whitening depends on a number of parameters, particularly the repetition time (TR). Here we investigate how the sub-second temporal resolution provided by simultaneous multislice (SMS) imaging changes the noise structure in fMRI time series. We fit a higher-order AR model and then estimate the optimal AR model order for a sequence with a TR of less than 600 ms providing whole brain coverage. We show that physiological noise modelling successfully reduces the required AR model order, but remaining serial correlations necessitate an advanced noise model. We conclude that commonly used noise models, such as the AR(1) model, are inadequate for modelling serial correlations in fMRI using sub-second TRs. Rather, physiological noise modelling in combination with advanced pre-whitening schemes enable valid inference in single-subject analysis using fast fMRI sequences

    Stabilised bias field: segmentation with intensity inhomogeneity

    Get PDF
    Automatic segmentation in the variational framework is a challenging task within the field of imaging sciences. Achieving robustness is a major problem, particularly for images with high levels of intensity inhomogeneity. The two-phase piecewise-constant case of the Mumford-Shah formulation is most suitable for images with simple and homogeneous features where the intensity variation is limited. However, it has been applied to many different types of synthetic and real images after some adjustments to the formulation. Recent work has incorporated bias field estimation to allow for intensity inhomogeneity, with great success in terms of segmentation quality. However, the framework and assumptions involved lead to inconsistencies in the method that can adversely affect results. In this paper we address the task of generalising the piecewise-constant formulation, to approximate minimisers of the original Mumford-Shah formulation. We first review existing methods for treating inhomogeneity, and demonstrate the inconsistencies with the bias field estimation framework. We propose a modified variational model to account for these problems by introducing an additional constraint, and detail how the exact minimiser can be approximated in the context of this new formulation. We extend this concept to selective segmentation with the introduction of a distance selection term. These models are minimised with convex relaxation methods, where the global minimiser can be found for a fixed fitting term. Finally, we present numerical results that demonstrate an improvement to existing methods in terms of reliability and parameter dependence, and results for selective segmentation in the case of intensity inhomogeneity. </jats:p

    A Geometric Flow Approach for Segmentation of Images with Inhomongeneous Intensity and Missing Boundaries

    Full text link
    Image segmentation is a complex mathematical problem, especially for images that contain intensity inhomogeneity and tightly packed objects with missing boundaries in between. For instance, Magnetic Resonance (MR) muscle images often contain both of these issues, making muscle segmentation especially difficult. In this paper we propose a novel intensity correction and a semi-automatic active contour based segmentation approach. The approach uses a geometric flow that incorporates a reproducing kernel Hilbert space (RKHS) edge detector and a geodesic distance penalty term from a set of markers and anti-markers. We test the proposed scheme on MR muscle segmentation and compare with some state of the art methods. To help deal with the intensity inhomogeneity in this particular kind of image, a new approach to estimate the bias field using a fat fraction image, called Prior Bias-Corrected Fuzzy C-means (PBCFCM), is introduced. Numerical experiments show that the proposed scheme leads to significantly better results than compared ones. The average dice values of the proposed method are 92.5%, 85.3%, 85.3% for quadriceps, hamstrings and other muscle groups while other approaches are at least 10% worse.Comment: Presented at CVIT 2023 Conference. Accepted to Journal of Image and Graphic

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    Level set segmentation using non-negative matrix factorization with application to brain MRI

    Get PDF
    We address the problem of image segmentation using a new deformable model based on the level set method (LSM) and non-negative matrix factorization (NMF). We describe the use of NMF to reduce the dimension of large images from thousands of pixels to a handful of metapixels or regions. In addition, the exact number of regions is discovered using the nuclear norm of the NMF factors. The proposed NMF-LSM characterizes the histogram of the image, calculated over the image blocks, as nonnegative combinations of basic histograms computed using NMF (V ~ W H). The matrix W represents the histograms of the image regions, whereas the matrix H provides the spatial clustering of the regions. NMF-LSM takes into account the bias field present particularly in medical images. We define two local clustering criteria in terms of the NMF factors. The first criterion defines a local intensity clustering property based on the matrix W by computing the average intensity and standard deviation of every region. The second criterion defines a local spatial clustering using the matrix H. The local clustering is then summed over all regions to give a global criterion of image segmentation. In LSM, these criteria define an energy minimized w.r.t. LSFs and the bias field to achieve the segmentation. The proposed method is validated on synthetic binary and gray-scale images, and then applied to real brain MRI images. NMF-LSM provides a general approach for robust region discovery and segmentation in heterogeneous images
    corecore