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Abstract 

Dimah Dera 

LEVEL SET SEGMENTATION USING NON-NEGATIVE MATRIX 

FACTORIZATION WITH APPLICATION TO BRAIN MRI 

2014-2015 

Nidhal Bouaynaya, Ph.D. 

Master of Science in Electrical & Computer Engineering 

 

 We address the problem of image segmentation using a new deformable model 

based on the level set method (LSM) and non-negative matrix factorization (NMF). We 

describe the use of NMF to reduce the dimension of large images from thousands of 

pixels to a handful of “metapixels” or regions. In addition, the exact number of regions is 

discovered using the nuclear norm of the NMF factors. The proposed NMF-LSM 

characterizes the histogram of the image, calculated over the image blocks, as 

nonnegative combinations of basic histograms computed using NMF (ܸ ≈ ܹ �). The 

matrix W represents the histograms of the image regions, whereas the matrix � provides 

the spatial clustering of the regions. NMF-LSM takes into account the bias field present 

particularly in medical images. We define two local clustering criteria in terms of the 

NMF factors. The first criterion defines a local intensity clustering property based on the 

matrix ܹ by computing the average intensity and standard deviation of every region. The 

second criterion defines a local spatial clustering using the matrix �. The local clustering 

is then summed over all regions to give a global criterion of image segmentation. In 

LSM, these criteria define an energy minimized w.r.t. LSFs and the bias field to achieve 

the segmentation. The proposed method is validated on synthetic binary and gray-scale 

images, and then applied to real brain MRI images. NMF-LSM provides a general 

approach for robust region discovery and segmentation in heterogeneous images.  
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Chapter 1

Introduction

In this section, we will motivate and state the problem of medical image segmentation,

review the state-of-the-art approaches applied in this field and shed the light on the main

contributions of our thesis work.

1.1 Motivation, Problem Statement and Background

Medical image segmentation is one of the most important and complex tasks in medical

image analysis and is often the first and the most critical step in many clinical applications,

such as surgical planning and image-guided interventions. For instance, in brain MRI anal-

ysis, we need to visualize and measure the brain anatomical structures, detect the changes

in the brain and delineate the pathological regions. Segmentation of brain MRI images

into specific tissue types requires assigning to each element or pixel in the image a tissue

label, where the labels are defined in advance. For normal brain, image pixels are typi-

cally segmented into three main tissue types: white matter (WM), gray matter (GM) and

cerebrospinal fluid (CSF), while in the case of brain tumors, such Glioblastoma, there are

additional structures that include the tumor, edema (swelling) and necroses (dead cells).

There are three main challenges with brain MRI segmentation: i) The (normal and ab-

normal) brain anatomical structures have complex morphologies and boundaries; ii) The

distinct regions of the brain MRI are not homogeneous but present an intensity inhomo-

geneity, or bias field. The bias field arises from the spatial inhomogeneity of the magnetic

field, the variations in the sensitivity of the reception coil and the interaction between the

magnetic field and the human body [37]; and iii) Distinct anatomical structures may have
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close average intensity values, e.g., gray-matter and necrosis. These challenges make clas-

sical segmentation techniques, such as thresholding [36], edge detection [16], [17], region

growing [34], [43], classification [15], [42], [44], and clustering [1], [9], [14] ineffective at

accurate delineation of complex boundaries.

Deformable models are ones of the most powerful and advanced methods for image

segmentation. The basic idea is to evolve a curve in the image domain around the object

or the region of interest until it locks onto the boundaries of the object. The deformable

model segmentation problem is formulated and solved using calculus of variations and par-

tial differential equations (PDEs). Deformable models can be classified into two groups:

snakes or active contour models [6], [12], [20], [21] and level set methods [31], [32], [35].

In the snake or active contour model, the contour is represented in a parameterized form by

a set of points that are propagated under the influence of an internal energy and an exter-

nal energy. The internal energy defines the shape of the contour and imposes smoothness

and relevant geometrical constraints on the curve. The external energy is computed from

the image and attracts the contour towards objects boundaries and other desired features in

the image. However, the major drawbacks of the active contour model are its sensitivity

to the initial conditions and the difficulties associated with the topological changes for the

merging and splitting of the evolving curve. These difficulties actually lie in the parametric

representation of the contour. For instance, when the contour merges and splits to fit the

objects boundaries in the image, one has to keep track of which points are in which contour

and what their order is. The level set approach proposes a geometric (rather than paramet-

ric) representation of the contour. Specifically, the contour is represented as the zero level

of a higher dimensional function, referred to as the level set function. Instead of tracking
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a curve through time, the level set method evolves a curve by updating the level set func-

tion at fixed coordinates through time. In particular, since the level set does not have any

contour points, the merging and splitting of the curve is done automatically and no new

contours need to be defined or removed. The internal and external energies, in the level

set approach, are defined in a similar manner as in the active contour method. The power

of the level set and active contour methods, referred to as deformable models, stems from

their continuous formulation, which can achieve pixel-level accuracy, a highly desirable

property in medical image segmentation.

A good body of the work has been done to develop an accurate and robust external

energy, also called the data term, that can move the curve and accurately fit the regions

boundaries in the image. One of the earliest level set approaches is the Mumford Shah

(MS) model [39]. It assumes that the image is piecewise smooth in the areas of objects and

backgrounds. However, it is difficult to apply the gradient descent method to solve the MS

model because of the non-differentiability with respect to the image boundary. Chan and

Vese [7] simplified the MS model using a variational level-set formulation. The Chan-Vese

model is based on the assumption that the intensity within each region is homogenous or

roughly constant. The image is thus approximated by a constant inside every region. This

model, however, is only effective for piecewise constant images and it does not handle

intensity inhomogeneity within regions. A major shortcoming of the MS and Chan-Vese

models is their assumption of intensity homogeneity within each region of the image.

Recently, local intensity information has been incorporated into the level set methods

to effectively handle intensity inhomogeneity. In [26], Li et al. defined a region-scalable

fitting (RSF) energy functional as the external energy term of the level set by using a kernel
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function with a scale parameter, which allowed the use of local intensity information in

image regions at a controllable scale, and two fitting functions that locally approximate the

image intensities on the two sides of the contour. The RSF model simultaneously estimates

the local intensity mean of each region with the level set function through an iterative pro-

cedure. This local definition of regions statistics was the only way to handle the intensity

inhomogeneity in the RSF model. In [41], Wang et al. proposed a local Gaussian distri-

bution fitting (LGDF) energy with a level set function by also using a kernel function and

local means and variances as variables, that were also simultaneously derived with the level

set function in an iterative procedure. Both the RSF and LGDF models relied on estimating

the local statistics of the image regions through the level set formulation to handle inten-

sity inhomogeneity without introducing the bias field as a separate variable to correct for

the intensity inhomogeneity in the original image. More recent applications of the level

set approach, which also took into account the intensity inhomogeneity, defined a local

clustering criterion for the image intensities in a neighborhood of each pixel. This local

clustering was then integrated to give a global criterion of image segmentation, and served

as the external energy term of the level set formulation. These methods used localized clus-

tering (Localized-LSM) [25], and statistical characteristics of local intensities (Improved

LGDF-LSM) [10]. Obviously, the performance of the level set approach depends on the lo-

cal clustering criterion used. These two methods added the bias field as a separate variable

estimated through the variational principle of the level set formulation in order to correct

for the intensity inhomogeneity in the original image. Multiplying the local average in-

tensity of each region inside the neighborhood by the bias field variable gives us different

intensity values in the same region and thus handles the intensity inhomogeneity in every
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region. Moreover, each local clustering criterion has its own parameters that have to be

simultaneously estimated along with the level set function and the bias field. For instance,

in the localized level set clustering criterion (Localized-LSM) in [25], the local intensi-

ties in every region have to be estimated along the bias field and the level set functions.

Similarly, the statistical approach (Improved LGDF-LSM) in [10] involved simultaneous

and iterative estimation of the mean and variance and other parameters of the local density

approximation.

All previously mentioned approaches involved simultaneous and iterative estimation of

a number of model parameters in addition to the bias field and the level set function, which

is the main parameter to be estimated. Given the high-dimensionality and non-convexity of

the variational optimization problem, all additional model parameters are estimated in an

iterative procedure that does not guarantee convergence or optimality of the results. Hence,

one of the drawbacks of these state-of the-art approaches is the number of model param-

eters that are introduced, and have to be simultaneously estimated, which decreases the

estimation accuracy of the main segmentation parameters, namely the level set functions.

Moreover, all recent level set approaches are built based only on the first and second order

statistical features: the mean and standard deviation intensities of the pixel values. More-

over, these features do not incorporate any information on the spatial distribution of the

pixel values which may greatly improve the segmentation.

1.2 Research Contributions

This thesis contributes to the field of (medical) image segmentation by introducing a new

deformable model that is able to delineate complex boundaries of image regions by relying
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on the image density information (histogram) rather than the absolute pixel intensity val-

ues and correcting for the intensity inhomogeneity without introducing additional model

parameters to be estimated simultaneously with the level set functions. The proposed seg-

mentation framework has four advantages compared to the state-of-the-art: i) less sensitive

to the model parameters, ii) more robust to noise in the image, iii) less sensitive to the initial

contour, and iv) has a higher convergence rate. Specific contributions of this work include:

• Building the data matrix using the histograms of the image blocks rather than relying

on the absolute pixel intensity values. This characterization makes the subsequent

algorithm more robust to noise in the image.

• Elucidating how the non-negative matrix factorization (NMF) of the data matrix can

cluster the image into distinct regions, and how relevant image structures can be

extracted from the NMF factors.

• Deriving a measure based on the nuclear norm of the NMF factors to estimate the

number of distinct regions in the image.

• Introducing two new external energy or data terms derived from the two factors of

the NMF. In particular, introducing a new spatial term, which increases the resolution

of the proposed algorithm by increasing its ability to discriminate between distinct

regions with close average intensity values.

• Proposing a new NMF-based level set method with the bias field correction to take

into account intensity inhomogeneity. The proposed model does not require the es-

timation of spurious model parameters in addition to the bias field and the level set
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functions.

• Incorporating the statistics of noise in the data by using probabilistic non-negative

matrix factorization (PNMF) given in [4], which assumes that the data matrix is

corrupted by additive white Gaussian noise.

1.3 Organization

This thesis is organized as follows.

In Chapter 2, we provide a literature review of the state-of-the-art level set models,

describing their mathematical formulation and model parameters. It is crucial to understand

the mathematical and theoretical assumptions of the previous work in order to grasp the

novelty of this thesis.

In Chapter 3, we review the mathematical and theoretical formulation of the non-

negative matrix factorization (NMF) and its variants, including probabilistic NMF (PNMF).

PNMF assumes that the data matrix is not deterministic but corrupted by additive white

Gaussian noise. We subsequently explain how NMF can be used to discover the image

regions and cluster them.

In Chapter 4, we review the mathematical and theoretical formulation of the level set

method (LSM), including the level set membership functions that partition the image do-

main into disjoint, non-overlapping regions.

In Chapter 5, we introduce the proposed PNMF-LSM approach. We describe how the

positive factors of the PNMF discover and cluster the image domain into distinct regions.

We introduce two external energy terms that will drive the contour to the regions bound-
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aries. We take into account the bias field and carry out the segmentation by minimize the

total energy functional with respect to the level set functions.

In Chapter 6, we provide and discuss the simulation results by evaluating the perfor-

mance of the proposed PNMF-LSM method as compared to two other state-of-the-art level

set methods, the localized level set model (localized-LSM) [25] and the improved LGDF

level set model (improved LGDF-LSM) [10]. We study the robustness of the models to the

model parameters, initial conditions and noise introduced in the image. We also discuss the

convergence time of the models.

In Chapter 7, we apply the proposed PNMF-LSM method to real brain MRI images,

with and without tumor, to delineate the complex structures of the brain: gray matter, white

matter, cerebrospinal fluid (CSF), edema (swelling), tumor and necroses (dead brain cells).

We also show the robustness of our method to blurring by Gaussian kernels and to salt and

pepper noise.

Finally in Chapter 8, we provide a brief conclusion that summarize this work.
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Chapter 2

Literature Review

In this chapter, we will review the state-of-the-art in level set methods that build differ-

ent data terms (or external energies) in the level set framework for image segmentation.

2.1 Mumford-Shah Model [39]

Let Ω be the image domain, and I : Ω → R be a gray-value image. The goal of the

segmentation is to find a contour C, which separates the image domain Ω into disjoint

regions Ω1, · · · ,Ωk, and a piecewise smooth function u that approximates the image I and

is smooth inside each region Ωi. This is formulated as the minimization of the following

Mumford-Shah functional:

FMS(u,C) =

∫
Ω

(I − u)2dx + µ

∫
Ω\C
|∇u|2dx + ν|C|, (2.1)

where |C| is the length of the contour C. In the right hand side, the first term is the external

energy term, which drives u to be close to the image I , and the second term is the internal

energy, which imposes smoothness on u within the regions separated by the contour C.

The third term regularizes the contour. The MS model is very general and does not assume

a specific form for the approximating function u. It also assumes that the objects to be

segmented are homogeneous.
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2.2 Chan and Vese Model [7]

Chan and Vese simplified the Mumford-Shah model by assuming that the approximating

function u is a piecewise constant:

FCV (φ, c1, c2) =

∫
Ω

|I(x)− c1|2H(φ)dx

+

∫
Ω

|I(x)− c2|2(1−H(φ))dx + ν

∫
Ω

|∇H(φ)|dx, (2.2)

where H is the Heaviside function, and φ is a level set function, whose zero level contour

C partitions the image domain Ω into two disjoint regions Ω1 = {x : φ(x) > 0} and

Ω2 = {x : φ(x) < 0}. Equation (2.2) is a piecewise constant model, as it assumes that the

image I can be approximated by constants ci in region Ωi. In the case of more than two

regions, two or more level set functions can be used to represent the regions Ω1, · · ·Ωk.

2.3 Localized-LSM Model [25]

In [25], Li et al. proposed a variational level set method that deals with intensity inhomo-

geneity by considering the following model for the observed image I:

I = b ∗ J + n, (2.3)

where b is the bias field, J is the true image and n is the additive noise. This approach has

two assumptions: a) the bias field is assumed to be slowly varying, and b) the true image

J is approximated by a constant inside each region: J(x) ≈ ci for x ∈ Ωi. Consider the

neighborhood around pixel y, Oy = {x : ‖x − y‖ ≤ ρ}, then b(y) ≈ b(x) inside the
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neighborhood Oy. The energy function is then formulated as the following [25]:

F(φ,b, c)

=

∫ ( N∑
i=1

∫
K(y − x)(I(x)− b(y)ci)

2Mi(φ(x))dx

)
dy, (2.4)

where K(y − x) is a non-negative weighting function that defines the neighborhood Oy,

Mi(φ(x)) is the membership function that represents each region using the Heaviside func-

tion, (for two regions M1(φ) = H(φ), and M2(φ) = 1 − H(φ)). In the localized-LSM

model, the intensity means c1, · · · , ck of each region are estimated iteratively along with

the level set function φ and the bias field b using the variational principle of the level set

framework.

2.4 Improved LGDF-LSM Model [10]

In the Improved LGDF-LSM model [10], Chen et al. characterize the local distribution

of the intensities in the neighborhood Ox using a local Gaussian distribution. The seg-

mentation is then achieved by maximizing the a posteriori probability. They used the log

transform of the same image model in Li’s method Ĩ = log(I) = log(J) + log(b) so that

the bias becomes an additive factor rather than a multiplicative factor.

Let p(x ∈ Ωi ∩ Ox|Ĩ(x)) be the a posteriori probability of the subregions Ωi ∩ Ox

given the log transform of the observed image. Using Bayes’ rule p(x ∈ Ωi ∩ Ox|Ĩ(x)) ∝

p(Ĩ(x)|x ∈ Ωi∩Ox) p(x ∈ Ωi∩Ox). Assuming that the prior probabilities of all partitions

are equal, and the pixels within each region are independent, the MAP estimate can be

achieved by finding the maximum of
∏N

i=1

∏
x∈Ωi∩Ox pi,y(Ĩ(x)). It can be shown that the

MAP formulation can be converted to the minimization of the following energy functional
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in the level set framework:

F(φ,b, c, σ2) =∫ N∑
i=1

∫
−K(y − x) log pi,y(J̃(x)− b̃(y))Mi(φ(x))dxdy, (2.5)

where pi,y(J̃(x) − b̃(y)) is modeled by a Gaussian distribution. In the improved LGDF

model the intensity means {ci}ki=1 and variances {σ2
i }ki=1 of each region are simultane-

ously and iteratively estimated with the level set function φ, and the bias field b using the

variational principle of the level set framework.
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Chapter 3

Non-Negative Matrix Factorization

In this chapter, we review the theoretical and mathematical formulation of the non-

negative matrix factorization and some of its variants. Then, we shed the light on the NMF

as a clustering technique.

3.1 NMF and Its Variants

3.1.1 Standard-NMF. Non-negative matrix factorization (NMF) is a matrix decom-

position approach which decomposes a non-negative matrix into two low-rank non-negative

matrices. It was introduced as a dimensionality reduction method for pattern analysis

[24]. When a set of observations is given in a matrix with nonnegative elements, NMF

seeks to find a lower rank approximation of the data matrix, where the factors that give

the lower rank approximation are also non-negative. The non-negativity constraint is re-

quired in some applications in order to obtain physically meaningful results and interpreta-

tions. Mathematically, the problem is formulated as follows: Given a non-negative matrix

V ∈ Rn×m, NMF provides two non-negative matrices W ∈ Rn×k and H ∈ Rk×m such

that V ≈ WH . The optimal factors minimize the squared error and are the solutions to the

following constrained optimization problem,

min
W,H

f(W,H) = ‖V −WH‖2
F , subject to W,H ≥ 0, (3.1)

where ‖.‖F denotes the Frobenius norm and f is the squared Euclidean distance function

between V and WH . Observe that the cost function f is convex with respect to one of

the variables W or H , but not both. Alternating minimization of such a cost leads to the
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Alternating Least squares (ALS) algorithm [22], which can be described as follows:

1. Initialize W randomly or by using any a priori knowledge.

2. Estimate H as H = (W TW )−W TV with fixed W .

3. Set all negative elements of H to zero or some small positive value.

4. Estimate W as W = V HT (HHT )− with fixed H .

5. Set all negative elements of W to zero or some small positive value.

In this algorithm, A− denotes the MoorePenrose inverse ofA. The ALS algorithm has been

used extensively in the literature [2], [18]. However, it is not guaranteed to converge to a

global minimum nor even a stationary point. Moreover, it is often not sufficiently accurate,

and it can be slow when the factor matrices are ill-conditioned or when the columns of these

matrices are co-linear. Furthermore, the complexity of the ALS algorithm can be high for

large-scale problems as it involves inverting a large matrix [4]

Lee and Seung [23] proposed a multiplicative update rule, which is proven to converge

to a stationary point, and does not suffer from the ALS drawbacks. The multiplicative

update rule of the Lee and Seung’s algorithm is shown in Eq. (3.2) as a special case of a

class of update rules, which converge towards a stationary point of the NMF problem.
Hij ← Hij

(WTV )ij
(WTWH)ij

Wij ← Wij
(V HT )ij

(WHHT )ij
.

(3.2)

Iteration of these update rules converges to a local maximum of the objective function:

F =
n∑
i=1

m∑
j=1

[Vij log(WH)ij − (WH)ij] . (3.3)
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The update rules preserve the non-negativity ofW andH and also constrain the columns of

W to sum to unity. This sum constraint is a convenient way of eliminating the degeneracy

associated with the invariance of WH under the transformation W → WΛ, H → Λ−1H ,

where Λ is a diagonal matrix.

3.1.2 Sparse-NMF. Sparsity is a popular regularization principle in statistical mod-

eling [38], and has been used to reduce the non-uniqueness of solutions and also to enhance

the interpretability of the NMF results. The sparse-NMF proposed in [29] imposes sparsity

on the factor matrixH by constraining the l1-norm of its columns and imposes a unity-norm

on the columns of W to ensure the uniqueness:

min
W,H

f(W,H) = ‖V −WH‖2
F + λ

n∑
i=1

‖hi‖1 (3.4)

subject to W,H ≥ 0, ‖wi‖2
2 = 1, i = 1, ..., k.

The optimization problem in Eq. (3.4) is solved in [29] using non-negative quadratic pro-

gramming (NNQP).

For a more comprehensive overview of the different variants of NMF, including Versa-

tile sparse matrix factorization and Kernel-NMF, the reader is referred to [29].

3.1.3 Probabilistic Non-Negative Matrix Factorization PNMF [4]. In [4], It is

assumed that the data, represented by the non-negative matrix V , is corrupted by additive

white Gaussian noise, and follows the following conditional distribution,

p(V |W,H, σ2) =
N∏
i=1

M∏
j=1

N (Vij|uTi hj, σ2), (3.5)
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whereN (.|µ, σ2) is the probability density function of the Gaussian distribution with mean

µ and standard deviation σ, ui, and hj denote, respectively, the ith row of the matrixW and

the jth column of the matrix H . Zero mean Gaussian priors are with standard deviations

σW and σH , respectively, imposed on ui and hj to control the model parameters. W , and

H are estimated using MAP criterion by minimizing the following function:

f(W,H) = ‖V −WH‖2
F + α‖W‖2

F + β‖H‖2
F , subject to W,H ≥ 0, (3.6)

where the parameters α and β depend on σ, σW and σH . It was shown that the update rules

for the optimization problem in (3.6) are given by [4],
Hij ← Hij

(WTV )ij
(WTWH+βH)ij

Wij ← Wij
(V HT )ij

(WHHT+αW )ij
.

(3.7)

Observe that, since the data matrix V is non-negative, the update rules in (3.7) lead to non-

negative factors W and H as long as the initial values of the algorithm are chosen to be

non-negative.

3.2 NMF as a Clustering Technique

In [5], NMF was used to extract relevant biological correlations in gene expression data.

The data was represented by an expression matrix A of size N ×M , whose rows contain

the expression levels of N genes in M samples. The NMF reduces the dimensionality of

the gene expression data into a small number (k < N ) of “metagenes”, defined as positive

linear combinations of the N genes. Then, the gene expression pattern of the samples are

approximated as positive linear combinations of these metagenes. Mathematically, this

corresponds to factoring the matrix A into two matrices with positive entries, A ≈ WH .
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Matrix W has size N × k, with each of the k columns defining a metagene; The wij entry

is the coefficient of gene i in metagene j. Matrix H has size k ×M , with each of the M

columns representing the metagene expression pattern of the corresponding sample; The

hij entry represents the expression level of metagene i in sample j. Given a factorization

A ≈ WH , the matrix H is used to group M samples into k clusters. Each sample is

placed into a cluster corresponding to the most highly expressed metagene in the sample;

that is, sample j is placed in cluster i if the hij is the largest entry in column j; (see

Fig. (1)). In [24], Lee et al. used the NMF to decompose images of human faces into

Figure 1. Rank-2 reduction of a DNA microarray of N genes and M samples is obtained
by NMF, A ≈ WH . Metagene expression levels (rows of H) are color coded by using a
heat color map, from dark blue (minimum) to dark red (maximum). The same data is shown
as continuous profiles below. The relative amplitudes of the two metagenes determine two
classes of samples, class 1 and class 2. Here, the samples were ordered to better expose the
class distinction [5].
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parts reminiscent of features such as eyes and noses, while the application of traditional

factorization methods, such as principal component analysis (PCA) and vector quantization

(VQ), to the image data yielded components with no obvious interpretation. The database

of images is viewed as an n × m matrix V , where each column contains n non-negative

pixel values of one of them facial images. The NMF leads to the decomposition V ≈ WH ,

where the dimensions of the factors W and H are n × r and r × m, respectively. The r

columns of W are termed “basis images”. Each column of H is called an encoding and is

in one-to-one correspondence with a face in V . An encoding consists of the coefficients

by which a face is represented as a linear combination of basis images. The NMF basis

and encodings contain a large fraction of vanishing coefficients. Both the basis images

and the image encodings are sparse. The basis images are sparse because they are “non-

global” and contain several versions of mouths, noses and other facial parts, where the

various versions are in different locations or forms. The variability of a whole face is

generated by combining these different parts. Although all parts are used by at least one

face, any given face does not use all the available parts. This results in a sparsely distributed

image encoding, in contrast to the unary encoding of VQ and the fully distributed PCA

encoding [24] as shown in Fig. (2).

In the sequel of this thesis, we will show how to leverage NMF for image segmentation.
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Figure 2. Non-negative matrix factorization (NMF) learns a parts-based representation
of faces, whereas vector quantization (VQ) and principal component analysis (PCA) learn
holistic representations. The three learning methods find approximate factorizations of the
form V ≈ WH , but with three different types of constraints on W and H . As shown in the
7× 7 montages, each method has learned a set of r = 49 basis images. Positive values are
illustrated with black pixels and negative values with red pixels. A particular instance of
a face, shown at top right, is approximately represented by a linear superposition of basis
images. The coefficients of the linear superposition are shown next to each montage, in a
7×7 grid, and the resulting superpositions are shown on the other side of the equality sign.
Unlike VQ and PCA, NMF learns to represent faces with a set of basis images resembling
parts of faces, such as eyes, mouth and nose [24].
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Chapter 4

Deformable Models

In this chapter, we explain the detailed theoretical and mathematical formulation of the

two classes of deformable models: the parametric deformable model, also known as snake

or active contour, and the geometric deformable model, also known as the level set method.

Deformable models refer to a powerful class of physics-based modeling techniques

widely employed in the image synthesis, image analysis, image segmentation, shape de-

sign and related fields. By numerically simulating the governing equations of motion, typi-

cally expressed as Partial Differential Equations (PDEs) in a continuous setting, deformable

models mimic various generic behaviors of natural non-rigid materials in response to ap-

plied forces, such as continuity, smoothness and elasticity. Deformable models offer a

potent approach that combines geometry, physics and approximation theory. Such models

can be used to infer image disparity fields, image flow fields, and to infer the shapes and

motions of objects from static or video images. In this context, deformable models are sub-

ject to external forces that impose constrains derived from image data. The forces actively

shape and move the model to achieve maximal consistency with the objects of interest and

maintain consistency over time. These models are widely used in medical image analy-

sis; they have proven to be very useful in segmenting, matching and tracking anatomic

structures by exploring constraints derived from the image data in conjunction with a priori

knowledge about the location, size and shape of these structures [32]. There are two types

of deformable models: parametric and geometric models. Parametric deformable models

represent curves and surfaces explicitly in its parametric form, i.e., using a set of contour

points. Its popularity in medical image analysis is credited to the work of snake or (active
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contour) by [20]. The geometric deformable model (level set method) is based on the the-

ory of curve evolution and geometric flow, which represents curves and surfaces implicitly

as a level set of an evolving higher dimensional function [19].

4.1 The Parametric Deformable Model (Snake or Active Contour)

Active contour models (ACMs) are based on the idea of evolving a curve in the image

domain under the influence of an internal energy and an external energy [20]. The optimal

contour minimizes the total energy functional, given by the weighted sum of the internal

energy and external energy terms. This curve is represented in a parameterized form by

a set of contour points. The internal energy defines the shape of the contour and imposes

smoothness and relevant geometrical constraints on the curve, e.g., Eq. (4.1). In Equation

(4.1), υ(s) denotes the parameterized curve, where the points (x(s), y(s)) move through

the spatial domain of the image to minimize the energy functional, and w1, w2 are the

weighting parameters that control the contour’s elasticity and rigidity. The external energy

in Eq. (4.2) is computed from the image and attracts the contour towards objects boundaries

and other desired salient features in the image. The total active contour energy functional is

given in Eq. (4.3). This model is used for image segmentation and some other applications

in image processing, such as edge detection, shape modeling and motion tracking [20].

EInternal =
w1(s)

2
|υ′(s)|2 +

w2(s)

2
|υ′′(s)|2, (4.1)

EExternal = −|∇I(υ(s))|2, (4.2)

EACM = EInternal + EExternal =
w1(s)

2
|υ′(s)|2 +

w2(s)

2
|υ′′(s)|2 − |∇I(υ(s))|2. (4.3)
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In order to minimize the total energy EACM , we formulate this functional as a Euler-

Lagrange functional L(s, υ(s), υ′(s), υ′′(s)) and solve the Euler-Lagrange equation of the

general form:

F (f) =

∫ x1

x0

L(x, f(x), f ′(x), f ′′(x), ..., fn(x))dx, f ′ =
df

dx
, f ′′ =

d2f

dx2
, fn =

dnf

dxn
.

(4.4)

The stationary values of the functional F (f) in Eq. (4.4) can be obtained by solving the

Euler-Lagrange equation [8]:

∂L

∂f
− d

dx
(
∂L

∂f ′
) +

d2

dx2
(
∂L

∂f ′′
)− ....+ (−1)n

dn

dxn
(
∂L

∂fn
) = 0. (4.5)

By adding the time variable, it can be shown that minimizingEACM corresponds to solving

the following Euler-Lagrange equation.

υt(s, t) = −(w1υ
′)′ + (w2υ

′′)′′ +∇EExternal(υ) = 0, (4.6)

where υt = ∂υ
∂t

. The finite difference equation in (4.6) can be solved numerically using

gradient descent.

4.2 Drawbacks of the Active Contour Model

There are two main difficulties in the active contour model: First, the contour must be ini-

tialized fairly close to the final target in order to converge. However, to make a “good”

initialization, we need to have a “good” estimate of the solution before starting the itera-

tive process of adapting the contour. This leads to a solution that is sensitive to the initial

condition. Secondly, there are difficulties associated with the topological changes for the

merging and splitting of the evolving curve. These difficulties lie in the parametric repre-

sentation of the contour. For instance, when the contour merges and splits to fit the objects’
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boundaries in the image, one has to keep track of which points are in which contour and

what their order is. Figure 3 shows an example, where the active contour model fails in

handling the topological changes associated with the movement of the fingers [13].

Figure 3. The active contour model fails to handle the topological changes of the moving
fingers [13].

4.3 The Level Set Method

The basic idea of the level set method [33], [31] is to embed the moving contour as the zero

iso-contour of a higher-dimension implicit function φ : Rn ×R+ −→ R. In the 2D spatial

dimension, the closed curve, denoted by C, can be implicitly represented as the zero level

C(t) = {(x, y)|φ(x, y, t) = 0} of a level set function φ(x, y, t). The evolution of the level
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set function follows the Hamilton- Jacobi equation:
∂φ
∂t

+ F |∇φ| = 0

φ(x, y, 0) = φ0(x, y),

(4.7)

where the functionF , called the speed function, is defined depending on the mean-curvature

[33] or image edges information [6]. In the early implementations of the level set method

[30], [31], the level set function φ can develop discontinuous jumps, known as shocks,

during the evolution, which makes further computation highly inaccurate. To avoid these

problems, a common numerical scheme is to initialize the function φ as a signed distance

function before the evolution, and then “reshape” (or “re-initialize”) the function φ to be a

signed distance function periodically during the evolution. It is crucial to keep the evolving

level set function as an approximate signed distance function during the evolution, espe-

cially in a neighborhood around the zero level set. It is well known that a signed distance

function must satisfy a desirable property of |∇φ| = 1. Conversely, any function φ sat-

isfying |∇φ| = 1 is the signed distance function plus a constant. In order to avoid the

drawbacks of the re-initialization procedure, Li et al proposed in [27] a variational level set

formulation that does not require o the re-initialization procedure by using the following

integral:

R(φ) =

∫
Ω

0.5(|∇φ| − 1)2dx, (4.8)

as a metric to characterize how close a function φ is to a signed distance function. Then the

level set variational formulation is given by:

E(φ) = µR(φ) + Em(φ), (4.9)
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where µ > 0 is a parameter controlling the effect of penalizing the deviation of φ from a

signed distance function, and Em(φ) is a certain energy that would drive the motion of the

zero level curve of φ.

Using calculus of variation, the evolution of the level set function is given by:

∂φ

∂t
= −∂E

∂φ
. (4.10)

For the purpose of image segmentation, Em is defined as a functional that depends only on

the image data, and is, therefore, called the external energy. Accordingly, the energy R(φ)

is called the internal energy of the function φ, since it is a function of φ only [27]. We can

also add other smoothing constraints to the energy functional E.
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Chapter 5

NMF-Based Level Set Segmentation

In this chapter, we will show how the NMF can be used to discover the image regions

and estimate their number. We will present the theoretical and visual interpretations of the

W , and H factors of the NMF and explain how they can be used to build a robust energy

functional of the image. The proposed NMF-based level set model is subsequently derived.

5.1 Region Discovery using NMF

We first construct a data matrix based on the histogram of the image, rather than the inten-

sity values directly. This data matrix takes into account the local information in the image

by partitioning the image into m blocks and computing the histogram of each block. The

histograms of the blocks are then stacked to form the columns of the data matrix V . The

data matrix V = {υij} is an n×mmatrix, where n is the number of intensity bins or ranges

in the histograms standardized for all image blocks. Specifically, the (i, j) entry, υij , is the

number of pixels in the block j with intensity range in the bin i. The rows of V describe

the ranges of intensity in the bin i in every j block. Our goal is to find k < m “basic

histograms” such that the histogram of every image block can be expressed as a positive

linear combination of the basic histograms. This can be achieved using non-negative ma-

trix factorization (NMF). NMF provides a natural way to cluster the histogram data matrix,

because it involves nonnegative entries. Other matrix decomposition techniques, such as

principal component analysis (PCA) or singular value decomposition (SVD) do not guar-

antee the non-negativity constraints, and hence loose the physical and intuitive interpreta-

tion of the factorization. However, this non-negativity requirement makes the factorization
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problem more challenging, as we saw in Chapter 3. We use the Probabilistic NMF (PNMF)

algorithm in [4], which takes into account the noise in the data matrix and performs a max-

imum a posteriori NMF factorization. This algorithm was presented in Chapter 3 Section

3.1.3.

Mathematically, the task of finding the basic histograms of the image corresponds to

factoring the histogram data matrix V into two matrices with positive entries V ≈ WH ,

where W is n×k and H is k×m. The k columns of W define the basic histograms, which

we will show, correspond to the histograms of the distinct image regions. The k rows of the

matrix H cluster the data matrix into metabins, and represents the distribution of the image

regions within the m blocks. An illustration of the NMF factorization of the data matrix is

provided in Fig. (4).

The PNMF factorization V ≈ WH induces then a clustering of the histogram data

matrix into k basic histograms or k metabin regions Ωi, i = 1, · · · , k. In the sequel, we

will investigate how the non-negative matrices W and H provides statistical and spatial

information about the clustered regions in the image. We first consider the synthetic binary

image in Fig. (5). The PNMF of the data matrix of this image with k = 2 results in

the W and H matrices shown in Fig. (5a), (5b), respectively. Plotting the entries of each

column of W , we obtain two sharp peaks: one peak at the (0 − 1) range of intensity

value, corresponding to the black region, and a second peak at the (254 − 255) range,

corresponding to the white region. Hence, the matrix W seems to provide the distribution

of the pixel intensity values in each region, and from this distribution, we can obtain the

statistical information (mean and variance of every region in the image). The normalized

entries of the columns of H provide the percentage of pixels in every block that are within
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(a) Dividing the image into blocks and computing
the histogram of each block.

(b) Data matrix and histogram factorization.

Figure 4. Building the data matrix and histogram factorization using PNMF.
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the clustered regions of the image. For instance, when the image block is included entirely

in one region, we obtain the value of 1 in the entry that corresponds to that region and zero

in the other. While, if two regions are included in the block, we obtain the exact percentages

of the local areas of these regions in that block (see Fig. (5b)).

The same interpretation has been reached on the synthetic gray-scale image given in

Fig. (6). For this synthetic image, we started by meshing the image into N × N blocks

first (N = 16 in this case). From the plot of the columns of the matrix W in Fig. (7a), we

observe that the PNMF captured the four large regions in the image, while the two small

regions in the image with intensity values (102) and (26) were not detected. Both W and

H matrices were unable to capture these two small regions with a block size of (16× 16).

Even when we increase the number of regions k, we get additional zero columns in W ,

and additional zero rows in H , thus unable to capture these two small regions. However,

by decreasing the size of the blocks to (8 × 8), so that the block size fits into these small

regions, we found that the W and H matrices of the PNMF factorization specified six

regions including the two small regions, as shown in Fig. (8). Hence, by decreasing the

block size to partition the image and build the data matrix V , the PNMF resolution ability

to distinguish small regions increases. The resolution of the PNMF is thus directly related

to the block size used when partitioning the image. In other words, the smallest distinct

region that can be detected by the PNMF has a size approximately equal to the block size.

In summary, applying the probabilistic non-negative matrix factorization PNMF on the

histogram data matrix, that we build in section 5.1, provides two positive matrices that pro-

vide the statistical and spatial characteristics of the image regions. The matrix W provides

the histogram distribution of each region in the image, which means that we can obtain the
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(a) “W” matrix Interpretation.

(b) “H” matrix interpretation.

Figure 5. “W” and “H” matrices interpretation for a synthetic binary image with 16× 16
blocks and the entries of H normalized for each column.
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statistical mean and variance of each region; While the matrix H provides the local spatial

characteristics of each region: the percentage area of each region that is included in every

block size. Based on these statistical and spatial characteristics of the image regions, we

propose to build a robust external energy or a data term that will be used in the level set

approach.

5.1.1 Estimating the number of distinct regions in the image. We show how to

use the factor matrices W and H to estimate the number of distinct clusters or regions k.

To illustrate the idea, we start by changing the value of k for the synthetic gray-scale image

in Fig. (6) and observing the corresponding changes in the matrices W and H . We notice

that when we increase k to be more than the true number of regions in the image (which

is in this case k = 6), we obtain additional zero rows in H and additional zero columns in

W . We, therefore, propose to use the sum of the nuclear norms (also known as the trace

norms) of W and H . The nuclear norm of the matrix A is defined as

‖A‖∗ = trace(
√
AHA) =

min{m,n}∑
i=1

σi, (5.1)

where the σis are the singular values of the matrix A. We start by choosing an initial guess

for the number of regions k0 and we apply the PNMF on the histogram data matrix V with

k = k0. We obtain Vn×m ≈ Wn×k0Hk0×m. We compute the sum of the nuclear norms

of Wn×k0 and Hk0×m. Then, we increase k and repeat the same steps. The sum nuclear

norm is a nondecreasing function of k. This function platforms when k ≥ k∗. The optimal

number of regions is then given by k∗.

Fig. (9) shows how the sum of the nuclear norms increases with k for the synthetic

gray-scale image in Fig. (6), until it stabilizes at k = 6, which corresponds to the exact
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number of regions in the image.

The idea behind using the nuclear norm is that appending the matrixW , having singular

values {σi}ki=1, by a column of zeros, zw, and forming the matrix W̃a = [W, zw] will add

a zero singular value. In other words, the singular values of W̃a are given by {{σi}ki=1, 0}.

Thus, the nuclear norm does not change when we add a column of zeros. Similarly, ap-

pending the matrix H by a row of zeros, zth, and forming the matrix H̃a =
[H
zth

]
, will not

change the sum of the singular values. In practice, we do not have exact zeros in the addi-

tional columns and rows of the appended matrices W̃a and H̃a, respectively, but we have

small values that are close to zero. We will show that if the column vector zw and the row

vector zth have small entries, then the additional singular values in the appended matrices,

W̃a and H̃a, are also small. In particular, the nuclear norm will change only slightly when

we append a column or a row of small values. The following lemma formalizes and proves

this result.
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Lemma 1. Let W ∈ Rn×k and H ∈ Rk×m, where k < min{n,m}. Let {σWi }ki=1 and

{σHi }ki=1 be the singular values of W and H , respectively. Consider the augmented ma-

trices W a = [W |0] and Ha =
[
H
0t

]
, where 0 denotes the vector with zero entries. Then

‖W a‖∗ = ‖W ‖∗ and ‖Ha‖∗ = ‖H‖∗. (5.2)

Similarly, consider the augmented matrices W̃ a = [W |zw] and H̃a =
[H
zth

]
, where zw and

zh are vectors. Then, we have

‖W ‖∗ ≤ ‖W̃ a‖∗ ≤ ‖W ‖∗ + ‖zw‖, (5.3)

‖H‖∗ ≤ ‖H̃a‖∗ ≤ ‖H‖∗ + ‖zh‖. (5.4)

In particular, if ‖zw‖ ≤ ε, and ‖zh‖ ≤ ε′, then

0 ≤ ‖W̃ a‖∗ − ‖W ‖∗ ≤ ε, (5.5)

0 ≤ ‖H̃a‖∗ − ‖H‖∗ ≤ ε′. (5.6)

5.1.2 Proof of Lemma 1. We will first prove that appending the matrix W by a

column of zeros and the matrix H by a row of zeros will not change the sum of the singular

values of the appended matrices W a and Ha.

We have,

{σW a
i }ki=1 = {λi(W t

aW a)}ki=1, (5.7)

where {λi(W t
aW a)}ki=1 are the eigenvalues of the matrix W t

aW a,

W t
aW a =

[
W t

0t

]
∗ [W |0] =

 W tW 0

0t 0

 ; (5.8)

To find the eigenvalues {λi(W t
aW a)}ki=1 we need to solve the characteristic polyno-

33



mial:

det(W t
aW a − λI) = −λ det(W tW − λI) = 0. (5.9)

Then

λ(W t
aW a) = {λ(W tW ), 0} ⇒ σ(W a) = {σ(W ), 0}. (5.10)

Similarly, we can show that if Ha =
[
H
0

]
, then λ(HaH

t
a) = {λ(HH t), 0} ⇒ σ(Ha) =

{σ(H), 0}.

We now prove the second part of the Lemma, namely, Eqs. (5.3) and (5.4). First, we

can write the appended matrix W̃ a as follows:

W̃ a = [W |zw] = [W |0n×1] + [0n×k|zw] , (5.11)

where the first zero in [W |0n×1] is a n× 1 vector, while the second zero in [0n×k|zw] is a

matrix with the same dimension as W . Using the triangular inequality, we have

‖W |zw‖∗ ≤ ‖W |0‖∗ + ‖0|zw‖∗. (5.12)

We can easily see that ‖0n×k|zw‖∗ = ‖zw‖ and from the first part of the proof, ‖W |0n×1‖∗ =

‖W ‖∗. Thus,

‖W |zw‖∗ ≤ ‖W ‖∗ + ‖zw‖. (5.13)

In particular, small values of zw result in a small perturbation of the nuclear norm of W̃ a.

In order to prove the left hand side of the Eqs. (5.3), (5.4) we use the determinant

formula for block matrices det

A B

C D

 = det(A) det(D −CA−1B). We have

W̃
t

aW̃ a − λI =
[
W t

ztw

]
∗ [W |zw]− λI =

 W tW − λI W tzw

ztwW ‖zw‖2 − λ

 . (5.14)
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Using the determinant formula we can write the determinant of W̃
t

aW̃ a − λI as follows

det
(
W tW − λI

)
det
(
‖zw‖2 − λ− ztwW (W tW − λI)−1W tzw

)
= 0, (5.15)

⇒


det
(
W tW − λI

)
= 0,

det
(
‖zw‖2 − λ− ztwW (W tW − λI)−1W tzw

)
= 0⇒ λ∗ ≥ 0.

 . (5.16)

Hence, the eigenvalues of W̃
t

aW̃ a are {λ(W tW ), λ∗}, where λ(W tW ) are the eigenval-

ues of W tW and λ∗ ≥ 0 because W tW is a positive semi-definite matrix.. Then

‖W̃ a‖∗ =
∑
i

σi(W̃ a) =
∑
i

σi(W ) +
√
λ∗ ⇒ ‖W̃ a‖∗ ≥ ‖W ‖∗. (5.17)

Similarly, for the matrix H , we can use the triangular inequality and the determinant

formula of the block matrices to prove the following:

‖H‖∗ ≤ ‖H̃a‖∗ ≤ ‖H‖∗ + ‖zh‖. (5.18)

5.2 Proposed Variational Framework

We consider the image model I(x) = J(x) ∗ b(x) + n(x), where I(x) is the observed

intensity at pixel x, J(x) is the “true” (noiseless/unbiased) intensity at pixel x, b(x) is the

bias field associated with x and n(x) is the observation noise. We take into account the

two matrices W and H in the PNMF factorization V ≈ WH to build the proposed energy

functional. This functional codes the external energy and contains two terms: a statistical

term and a spatial term. The statistical term uses the matrix W and characterizes the mean

and standard deviation of the histogram of each region. The spatial term relies on the

matrix H and characterizes the local spatial area of each region inside the blocks. In order
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to compute the statistical energy term, we formulate the segmentation problem as one of

computing the maximum a posteriori (MAP) partition of the image domain Ω into disjoint

regions by maximizing the posterior probability p({Ω1,Ω2, · · · ,Ωk}|I) for the image I .

According to the Bayes rule

p({Ω1,Ω2, · · · ,Ωk}|I) ∝ p(I|{Ω1,Ω2, · · · ,Ωk}) p({Ω1,Ω2, · · · ,Ωk}). (5.19)

Assuming that the prior probabilities of all partitions p({Ω}) are equal, and the pixels

within each region are independent, the MAP estimate reduces to finding the maximum

of
∏k

i=1

∏
x∈Ωi

pi(I(x)), where pi(I(x)) = p(I(x)|Ωi), i = 1, 2, ..., k. By taking the

logarithm, the maximization can be converted to the minimization of the following energy

function:

EStatistical =
k∑
i=1

∫
Ωi

− log pi(I(x))dx, (5.20)

where pi(I(x)) is modeled as a Gaussian distribution.

pi(I(x)) =
1√

2πσi
exp(−(I(x)− µib(x))2

2(σi)2
), (5.21)

where µi, and σi are computed form the matrix W . To compute the spatial energy term,

we consider the matrix H , which induces a local spatial clustering of the regions Ωi, i =

1, · · · , k in each block. Ideally, if the block j is included entirely in the region i, then

hij = 1, and hlj = 0 for l 6= i. Hence, by dividing the entries of H by the sum of

each column, we can interpret hij as the proportion of the area of region i in the block

j. Therefore, we can represent the local spatial area of each region i inside the block j

as a weighted linear combination of the block area where the weights are given by the

normalized entries of the jth column of the matrix H . We propose the following spatial
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data term:

ESpatial =
k∑
i=1

m∑
j=1

(∫
Ωi

ISj(x)dx− hija∑k
i=1 hij

)2

, (5.22)

where a is the area of each block (all blocks are assumed to have equal areas), and ISj(x)

is the characteristic function that introduces all pixels in the block Sj , and is defined as

follows:

ISj(x) =


1, if x ∈ Sj

0, otherwise.

(5.23)

The total data term is then given by the sum of the statistical energy and the spatial energy

terms.

E = EStatistical + ESpatial, (5.24)

E =
k∑
i=1

∫
Ωi

(log(
√

2πσi) +
(I(x)− µib(x))2

2σ2
i

)dx +
m∑
j=1

(∫
Ωi

ISj(x)dx− hija∑k
i=1 hij

)2
 .

(5.25)

The energy functional E is subsequently converted to a level set formulation by gen-

erating the level set functions φ(x) and representing the disjoint regions with a number

of membership functions Mi(φ(x)). The membership functions satisfy two constraints: i)

they are valued in [0, 1] and ii) the summation of all membership functions is equal to 1,

i.e.,
∑k

i=1 Mi(φ(x)) = 1. This can be achieved by representing the membership function

as a smoothed version of the Heaviside function. For example, in the two-phase formu-

lation, the regions Ω1 and Ω2 can be represented with their membership functions defined

by M1(φ) = H(φ) and M2(φ) = 1 − H(φ) respectively, where H is the Heaviside func-

tion. For a multi-phase formulation, the combination of the Heaviside functions is different.

For example, in the four-phase formulation, we have two level set functions φ1 and φ2. The
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membership functions are given as follows: M1 = H(φ1)H(φ2),M2 = H(φ1)(1−H(φ2)),

M3 = (1 − H(φ1))H(φ2) and M4 = (1 − H(φ1))(1 − H(φ2)). The total energy in Eq.

(5.25) can be equivalently expressed as the following level set energy functional:

E(φ, b) =
k∑
i=1

[∫
Ω

(
log(
√

2πσi) +
(I(x)− µib(x))2

2σ2
i

)
Mi(φ(x))dx

]

+
k∑
i=1

m∑
j=1

(∫
Ω

ISj(x)Mi(φ(x))dx− hija∑k
i=1 hij

)2

. (5.26)

Equation (5.26) can be rewritten as:

E(φ, b) =
k∑
i=1

∫
Ω

ei(x, b)Mi(φ(x))dx +
m∑
j=1

(∫
Ω

ISj(x)Mi(φ)dx− hija∑k
i=1 hij

)2
 ,

(5.27)

where ei(x, b) = log(
√

2πσi) + (I(x)−µib(x))2

2σ2
i

. The energy term E(φ, b) represents the

external energy or the data term in the total energy of the proposed variational level set

formulation. The total external and internal energy is given by

F(φ, b) = αE(φ, b) + βR(φ) + γLg(φ) + νAg(φ), (5.28)

where R(φ), Lg(φ) and Ag(φ) are the regularization terms, and α, β, γ and ν are weighting

parameters. The energy term R(φ), defined by R(φ) = 1
2

∫
Ω

(|∇φ| − 1)2dx, is a distance

regularization term [28] that is minimized when |∇φ| = 1, a property of the signed distance

function. The second energy term, Lg(φ) =
∫

Ω
g|∇H(φ(x)|dx, computes the arc length of

the zero level set contour, (
∫

Ω
|∇H(φ(x)|dx), and therefore serves to smooth the contour

by penalizing its arc length during propagation. The contour length is weighted by the edge

indication function g = 1
1+|∇(Gσ∗I)|2 , whereGσ∗I is the convolution of the image I with the

smoothing Gaussian kernel Gσ. The function g works to stop the level set evolution near

the optimal solution; since it is near zero in the variational edges and positive otherwise.
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Therefore, the regularization term Lg serves to minimize the length of the level set curve

at the image edges. The third regularization term, Ag(φ) =
∫

Ω
gH(φ(x)dx, is the area

obtained by the level set curve weighted by the edge indication function.

Finally, the total energy functional to be minimized for the purpose of segmentation is

expressed as:

F(φ, b) = α

k∑
i=1

∫
Ω

ei(x, b)Mi(φ)dx+
m∑
j=1

(∫
Ω

ISj(x)Mi(φ)dx− hija∑k
i=1 hij

)2


+
β

2

∫
Ω

(|∇φ| − 1)2dx+ γ

∫
Ω

g|∇H(φ|dx+ ν

∫
Ω

gH(φ)dx, (5.29)

5.3 Level Set Formulation and Energy Minimization

The minimization of the energy functional F in Eq. (5.29) can be achieved iteratively by

minimizing F w.r.t. each of the two variables, φl and b, assuming that the other variable is

constant. We first fix the variable b, then the minimization of the energy functional F(φ, b)

w.r.t φ can be achieved by solving the gradient flow equation:

∂φ

∂t
= −∂F

∂φ
. (5.30)

We compute the derivative ∂F
∂φl

with k-phase formulation and l = 1, · · · , r (the number of

level set functions) and re-express Eq. (5.30) as follows:

∂φl
∂t

= −α
k∑
i=1

(
∂Mi(φ)

∂φl
ei + 2

m∑
j=1

ISj
∂Mi(φ)

∂φl
(ISjMi(φ)− hija∑k

i=1 hij
)

)

+ β(∇2φl − div(
∇φl
|∇φl|

)) + γδ(φl) div(g
∇φl
|∇φl|

) + νgδ(φl), (5.31)
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where δ(φl) is the dirac delta function obtained as the derivative of the Heaviside function.

Then, for fixed φl, the optimal bias field b that minimizes the energy F is estimated by:

b(x) =

∑k
i=1

∫
Ω
I(x)µi
σ2
i
Mi(φl)d(x)∑k

i=1

∫
Ω

µ2i
σ2
i
Mi(φl)d(x)

. (5.32)
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Figure 6. A synthetic gray-scale image with all specified regions (from outside the image
0, 255, 51, 77, 26, and 102 intensity value).

41



(a) “W” matrix Interpretation.

(b) “H” matrix interpretation.

Figure 7. “W” and “H” matrices interpretation for a synthetic gray-scale image with
16× 16 block size and the entries of “H” normalized for each column.
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(a) “W” matrix Interpretation.

(b) “H” matrix interpretation.

Figure 8. “W” and “H” matrices interpretation for a synthetic gray-scale image with 8×8
block size and the entries of “H” normalized for each column.
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Figure 9. Nuclear norm for the synthetic gray-scale image in Fig. (6) which has six regions
by increasing k from 1 to 20.
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Chapter 6

Simulation Results and Discussion

In the implementation of our proposed PNMF-based level set method, we choose α, β,

and γ to be equal to 1 in Eq. (5.31). The smoothed version of the Heaviside function is

approximated by Hε(x) = 0.5 sin(arctan(x
ε
)) + 0.5, while the dirac delta function, δ(x),

is approximated by δ(x) = 0.5 cos(arctan(x
ε
)) ε
ε2+x2

. In our simulations, we set ε = 1. We

automate the initialization of the level set function by using the fuzzy c-means (FCM) algo-

rithm and initiate the level set function as φo = −4ε(0.5−Bk), where Bk is a binary image

obtained from the FCM result. The detailed explanation of FCM used for the initialization

is provided in [11]. The weighting parameter ν is defined as ν = 2 ∗ (1− η ∗ (2 ∗Bk + 1)),

for some constants η. We choose the block size to be (8 × 8) as it is small enough to

capture the fine details that we are interested in. Although we choose the block size to

be (8 × 8), we will show that the PNMF interpretation of the matrices W and H carries

over at the limit, when the block size is equal to 1. The nuclear norm versus the number

of region for block size one in Fig. (17) is given as an example. In order to evaluate the

performance of the proposed PNMF-based level set method, we first apply it to ten syn-

thetic images whose boundaries are known and used as the ground truth. These images

are corrupted with different levels of noise and intensity inhomogeneity. We then compare

the performance of the proposed approach with two other state-of-the-art level set models,

namely the localized level set model (localized-LSM) [25], and the improved LGDF-LSM

model [10]. We study the robustness of our method to the initial conditions. We also

study the influence of the weighting parameters α, β, and γ in Eq. (5.28), by choosing

different values for each parameter within the range [0.1, 20]. We show that the proposed
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PNMF-LSM approach carries over at the limit, when the block size is equal to 1 by apply-

ing PNMF-LSM with different block sizes on a synthetic gray-scale image used in chapter

5. The only disadvantage of choosing small block size is the computational cost. The

quantitative comparison of the segmentation accuracy between our approach and the other

level set methods is achieved using three different similarity measures, Jaccard Similarity

(JS) [40], Dice coefficient (DC) [3], and root mean square error (RMSE). The Jaccard

Similarity (JS) is defined as the ratio between the intersection and the union of two regions

S1 and S2, representing, respectively, the segmented region and the ground truth.

J (S1, S2) =
| S1 ∩ S2 |
| S1 ∪ S2 |

, (6.1)

where | S | represents the area of region S. The closer the JS to 1 the better the segmen-

tation result. The Dice coefficient (DC) is another metric that measures the spatial overlap

between two images or two regions, defined as:

D(S1, S2) =
2 | S1 ∩ S2 |

| S1 ∩ S2 | + | S1 ∪ S2 |
. (6.2)

Although Jaccard and Dice coefficients are very similar, the Jaccard similarity is more sen-

sitive when the regions are more similar, while the Dice coefficient gives more weighting to

instances where the two images agree [40]. Both of the JS and DC provide values ranging

between 0 (no overlap) and 1 (perfect agreement). The root mean square error RMSE is a

distance measure that gives the difference between two image regions or image intensities,

denoted by R1 and R2 as follows,

RMSE(R1(x), R2(x)) =

√
1

N

∑
x∈Ω

(R1(x)−R2(x))2, (6.3)

where N is the total number of pixels in the region Ω.
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6.1 Performance Evaluation and Comparison

We compare our proposed PNMF-LSM method with the localized-LSM model [25], and

the improved LGDF-LSM model [10] using Jaccard similarity, Dice coefficient, and root

mean square error. Figure (10) shows three synthetic images with the segmentation results

of the three models. We can see that our PNMF-LSM model is able to delineate the bound-

aries of the objects more accurately than the other two methods, although each image is

corrupted with the same level of noise and intensity inhomogeneity. Figure (11) shows

the comparison using JS, DC and RMSE values (mentioned in Table (1)) of the three

methods on the 10 synthetic images. As shown in Fig. (11) and Table (1), the perfor-

mance of the proposed PNMF-LSM is more stable with higher JS and DC values than the

localized-LSM and the improved LGDF-LSM models. PNMF-LSM also results in a lower

mean error rate, while the performance of the other two models changes from one image to

another with lower values of JS, DC and higher mean error rate.

6.2 Robustness to Contour Initialization

With the previously mentioned similarity metrics, Jaccard, Dice coefficients and root mean

square error, we can quantitatively evaluate the performance of our method starting from

different initial conditions. We applied our method to a synthetic image in Fig. (12) with

10 different initializations of the contour. We show three of the 10 initial contours (red

contours) and the corresponding segmentation results (green contours) in Fig. (12). In these

three different initializations, the initial contour encloses the objects of interest, crosses the

objects, and is totally inside one of the objects as displayed in Fig. (12). Starting from these
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Figure 10. Performance evaluation of the proposed PNMF-LSM, the localized-LSM [25]
and the improved LGDF-LSM [10] on three synthetic images corrupted with different level
of noise and intensity inhomogeneity. The first column represents the original images to
be segmented. The second column shows the segmentation of the proposed PNMF-LSM
algorithm. The third and fourth columns show the results of the localized-LSM and the
improved LGDF-LSM models, respectively.
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(a) Comparison based on Jaccard similarity.

(b) Comparison based on Dice coefficient.

(c) Comparison based on root mean square error.

Figure 11. Comparison based on JS, DC and RMSE values between the three meth-
ods, PNMF-LSM, localized-LSM and LGDF-LSM, on 10 synthetic images with different
degrees of intensity inhomogeneities and different levels of noise.
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Table 1

JS, DC and RMSE similarity measures of the three segmentation models, the proposed
PNMF-LSM, the localized-LSM and the improved LGDF-LSM, applied on 10 synthetic
images.

Proposed NMF-LSM Localized-LSM Improved LGDF-LSM
JS DC RMSE JS DC RMSE JS DC RMSE

0.9788 0.9893 0.0633 0.1534 0.2659 0.7205 0.1634 0.2810 0.7239
0.9943 0.9171 0.0641 0.8780 0.8189 0.0763 0.2121 0.3500 0.8710
0.8600 0.8700 0.0100 0.5422 0.7032 0.5095 0.6813 0.8104 0.3854
0.8904 0.9952 0.0918 0.2586 0.4109 0.6103 0.1397 0.2451 0.9220
0.9880 0.9340 0.0857 0.6844 0.8127 0.4335 0.8815 0.8370 0.2230
0.8948 0.7972 0.0135 0.8948 0.7274 0.0377 0.2562 0.4079 0.8624
0.9840 0.9119 0.0112 0.9502 0.7951 0.0452 0.2035 0.3382 0.8879
0.7621 0.8910 0.0593 0.4035 0.5069 0.9976 0.7706 0.7851 0.0761
0.9100 0.9095 0.0303 0.6200 0.7920 0.3100 0.7527 0.8263 0.1292
0.8663 0.7813 0.1967 0.7161 0.6346 0.2358 0.8685 0.6465 0.1212

initial contours, the corresponding segmentation results are almost the same, all accurately

capturing the objects’ boundaries. The segmentation accuracy is quantitatively assessed in

terms of the Jaccard similarity, the Dice coefficient and the root mean square error. The

Jaccard and Dice coefficients of these results are all between 0.78 and 0.97 pixel, while the

root mean square error is between 0.03 and 0.1 as shown in Fig. (13). These experiments

demonstrate the robustness of our PNMF-LSM model to contour initialization.

6.3 Stable Performance for Different Weighting Parameters

We compare our PNMF-LSM model with the localized-LSM and the improved LGDF-

LSM models for different weighting parameters α, β and γ in Eqs. (5.28) and (5.31). Fig-
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ure (14) shows the box plots of the JS, DC and RMSE values for each method (PNMF-

LSM, localized-LSM and improved LGDF-LSM). From the box plots of the JS, DC and

RMSE values, it is clear that the PNMF-LSM has better and more stable performance

in terms of segmentation accuracy and robustness. We notice that the boxes shown in the

box plots of the PNMF-LSM are relatively shorter with higher JS, DC values and lower

error rate for different values of α, β and γ. Table (2) shows different values of JS, DC

and RMSE obtained from our PNMF-LSM model and the other two level set models for

different values of α, β and γ.

At the same time, our model is much more computationally efficient than the localized-

LSM and the improved LGDF-LSM models. This can be seen from the CPU times of

the three models in Fig. (15) and Table (3). In this experiment, our PNMF-LSM model

is remarkably faster than the other two models for different values of α, β and γ. The

CPU times were recorded from Matlab programs on a Asus K53E laptop with Intel(R)

Core(TM)i5-2450M CPU, 2.50 GHz, 8 GB RAM, with Matlab R2013a on Windows 7.

Figure (15) shows the convergence time of the three models for different values of α, β and

γ, by using the box plots. It can be seen from Fig. (15) that the boxes of our model are

relatively shorter with lower values of the convergence time than the localized-LSM and

the improved LGDF-LSM models.

6.4 PNMF-LSM Evaluation for Small Block Sizes

We apply the proposed PNMF-LSM approach on the synthetic gray-scale image in chapter

5 with different block sizes (16×16), (8×8), (4×4), (2×2) and (1×1). The segmentation

accuracy is quantitatively assessed in terms of the Jaccard similarity, the Dice coefficient
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and the root mean square error. The Jaccard and Dice coefficients of these results are all

between 0.74 and 0.98 pixel, while the root mean square error is between 0.001 and 0.06

as shown in Fig. (16) and Table (4). This experiment demonstrates that decreasing the

block size to be very small (less than (8 × 8) in this case) will not affect the segmentation

accuracy of the proposed approach. It also demonstrates that the proposed PNMF-LSM

algorithm carries over at the limit, when the block size is equal to 1. Figure (17) shows the

nuclear norm versus the number of region for block size one for the synthetic gray-scale

image used in chapter 5. We notice that the nuclear norm stabilizes at k = 6 for block size

1 × 1, which is the true number of regions in the image. The disadvantage of decreasing

the block size to be very small is the computational cost. This can be seen from the CPU

times of the proposed PNMF-LSM with different block sizes in Table (4).
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Figure 12. Robustness of the proposed PNMF-LSM segmentation to contour initializa-
tions. The initial contours are represented by the red contours and the corresponding seg-
mentation results are represented by the green contours.

Figure 13. Segmentation accuracy of the proposed PNMF-LSM approach for different
initial contours as measured by the JS, DC and RMSE.

53



(a) JS, DC and RMSE for different α.

(b) JS, DC and RMSE for different β.

(c) JS, DC and RMSE for different γ.

Figure 14. The box plots of the JS, DC and RMSE values for the star object in the
synthetic image obtained from the proposed PNMF-LSM, the localized-LSM and the im-
proved LGDF-LSM for different values of the parameters α, β and γ.
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Figure 15. The box plots of convergence times of the three models, the proposed PNMF-
LSM, the localized-LSM and the improved LGDF-LSM, for different value of the param-
eters α, β and γ.

Figure 16. PNMF-LSM performance evaluation for different block sizes using the JS,
DC and RMSE.
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Table 2

JS, DC and RMSE similarity measures of the three segmentation models, the proposed
PNMF-LSM, the localized-LSM and the improved LGDF-LSM, for different values of α, β
and γ.

Proposed PNMF-LSM Localized-LSM Improved LGDF-LSM
α JS DC RMSE JS DC RMSE JS DC RMSE

0.1 0.7902 0.8191 0.0303 0.7824 0.6509 0.4544 0.7125 0.8321 0.3760
0.5 0.9801 0.8800 0.0243 0.8201 0.6578 0.3919 0.7677 0.8686 0.3286
1 0.8990 0.7993 0.0010 0.4927 0.8602 0.5504 0.8815 0.9370 0.2230
10 0.9753 0.9862 0.0862 0.5235 0.6872 0.5314 0.5620 0.7196 0.4133
20 0.8622 0.8991 0.0712 0.5637 0.7210 0.3022 0.4531 0.6236 0.5944
β JS DC RMSE JS DC RMSE JS DC RMSE

0.1 0.8330 0.8091 0.0303 0.6841 0.7524 0.3586 0.7831 0.8379 0.2211
0.5 0.7090 0.7992 0.0010 0.4875 0.6555 0.4548 0.8958 0.9451 0.2075
1 0.9794 0.8791 0.0200 0.5927 0.5602 0.5504 0.8815 0.7370 0.2230
10 0.7353 0.8262 0.1584 0.300 0.2800 0.6139 0.2100 0.3200 0.6139
20 0.8960 0.9452 0.2011 0.1320 0.1260 0.3139 0.1500 0.1200 0.5139
γ JS DC RMSE JS DC RMSE JS DC RMSE

0.1 0.7971 0.6991 0.0950 0.5916 0.6591 0.5511 0.6329 0.8459 0.3576
0.5 0.7391 0.8791 0.1231 0.4920 0.7195 0.5108 0.8569 0.9230 0.2471
1 0.9364 0.7472 0.1581 0.4127 0.6202 0.2704 0.8815 0.9370 0.2230
10 0.8621 0.8397 0.0237 0.6965 0.6935 0.3480 0.7786 0.8755 0.3172
20 0.9971 0.9814 0.0348 0.7992 0.5060 0.5463 0.7883 0.7816 0.2949
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Table 3

Convergence time of the three segmentation models, the proposed PNMF-LSM, the
localized-LSM and the improved LGDF-LSM, for different values of the parameters α,
β and γ (measured in seconds).

α Proposed PNMF-LSM Localized-LSM Improved LGDF-LSM
0.1 2.246 81.88 184.46
0.5 6.997 102.20 183.44
1 4.165 103.74 192.13
10 10.794 110.10 293.77
20 4.887 97.89 327.43
β Proposed PNMF-LSM Localized-LSM Improved LGDF-LSM
0.1 10.981 108.31 205.77
0.5 6.965 105.56 192.71
1 1.825 103.74 336.29
10 2.950 68.72 574.63
20 3.840 64.53 521.36
γ Proposed PNMF-LSM Localized-LSM Improved LGDF-LSM
0.1 6.809 101.46 452.57
0.5 7.950 110.07 402.89
1 1.872 103.74 336.29
10 3.856 107.37 363.47
20 10.809 98.44 348.434
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Figure 17. Nuclear norm with a block size one for the synthetic gray-scale image in Fig.
(6) which has six regions by increasing k from 1 to 20.

Table 4

JS, DC, RMSE and CPU time (in seconds) of the proposed PNMF-LSM approach with
different block sizes (16× 16), (8× 8), (4× 4), (2× 2) and (1× 1).

Proposed PNMF-LSM
Block size JS DC RMSE CPU Time
1× 1 pixel 0.9635 0.8911 0.0101 92.896
2× 2 pixel 0.9855 0.9525 0.0120 46.235
4× 4 pixel 0.9845 0.8756 0.0010 16.589
8× 8 pixel 0.9511 0.8892 0.0060 4.165
16× 16 pixel 0.7512 0.7456 0.0600 1.825
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Chapter 7

Application to Real Brain MRI Images

In this chapter, we focus on the application of the proposed PNMF-LSM algorithm on

real brain MRI images with and without Glioblastoma. The aim is to segment the different

brain and tumor structures. We first apply a preprocessing step on the brain MRI images:

histogram equalization and morphological operations. Histogram equalization improves

the contrast of the image by spreading out the most frequent intensity values. We subse-

quently remove the non-brain structures using morphological operations. Specifically, we

used thresholding to remove the background, erosion to shrink the brain and skull, opening

to remove the small non-brain structures, labeling to isolate the brain from the skull and

non-brain structures and dilation to recover the exact boundaries of the brain. Figures (18),

(19), (20) show the segmentation result of our proposed PNMF-LSM approach on different

MRI slices of the brain. We notice from the figures that our model is able to delineate

the different brain structures: gray matter, white matter, CSF, edema, and tumor with the

necrosis inside. Although we applied histogram equalization to enhance the contrast in

the MRI images, they are still corrupted with intensity inhomogeneity, which the proposed

PNMF-LSM approach is able to handle. We can see in Figs. (18), (19), (20), that although

the intensities of the gray matter, the white matter and the edema (flair) are very close to

each other and their histograms overlap, PNMF-LSM is able to separate them using an

8× 8 block size, which is small enough to capture the fine details in the image. The PNMF

retrieves the histogram of each region (or brain structure, see the right image in the second

row). We subsequently compute the means and variances of each brain structure and use

them to delineate the boundaries of these structures in the level-set framework, as described
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in Chapter 5. We show also the bias field in the MRI images (right image in the first row),

which is estimated through the level set formulation. In Fig. (21), we apply our proposed

PNMF-LSM on MRI images of normal brain without tumor. It is seen from Fig. (21) that

PNMF-LSM is able to separate the gray matter, the white matter and the CSF. The binary

representation of each brain structure shows the exact boundaries of these structures.

7.1 Robustness to Noise

In order to show the robustness of our method to noise introduced in the brain MRI images,

we add two types of noise: i) blurring by Gaussian noise with standard deviation equal to

(2) and ii) salt and pepper noise with density (15%) . Then we apply our proposed PNMF-

LSM algorithm, the localized-LSM and the improved LGDF-LSM methods on the same

MRI images with and without noise. The segmentation result of the PNMF-LSM on the

brain MRI image without noise is shown in Fig. (22). Figure (22) shows the contours with

the binary representation of each brain structure: gray matter, white matter, tumor with

the necroses, edema (flair) and CSF with background. It also shows the bias field and the

histogram of each brain structure obtained from the matrix W in the PNMF factorization.

In Fig. (23), the same MRI image of Fig. (22) is blurred by Gaussian noise with standard

deviation equal to (2). We notice that the blurring did not change the boundaries of each

segmented brain structure. Similar segmentation performance in Fig. (24) was obtained

when the image was corrupted with salt and pepper noise. The binary representations of

each brain structure in Figs. (22), (23), (24) are visually indistinguishable. The robustness

to noise of the PNMF-LSM approach can be explained by the fact that the clustering model

relies on the histogram rather than the image absolute intensity values. We also applied
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the localized-LSM approach [25] on the same MRI images with and without noise. Figure

(25) shows the segmentation result of the localized-LSM model on the same MRI image

in Fig. (22). We observe that the localized-LSM is not able to separate the tumor region

from the white matter and the flair (or edema) region from the gray matter. Moreover, the

localized LSM boundary of each brain structure (each region) is not accurately delineated.

Finally, we applied the improved LGDF-LSM model [10] on the same MRI images with

and without noise. We notice in Fig. (28) that the improved LGDF-LSM model is also

unable to separate the brain regions accurately. For instance, we can see in Fig. (28) that

part of the flair region is merged with the gray matter and the other part is merged with the

CSF and background region. Also, parts of the white matter region appear in the CSF. The

improved LGDF-LSM model is also not able to capture the “roots” of the tumor. When the

image was blurred by gaussian noise in Fig. (29), we noticed that the white matter region

is more obvious but merged with the tumor. The edema (flair) region still appears with the

CSF and the background while part of it merged with the gray matter. We obtained similar

results when we added salt and pepper noise and applied the improved LGDF-LSM model.

The unreliable segmentation results of the localized-LSM and the improved LGDF-LSM

models are caused by the overlapping histograms of the gray matter, white matter, edema,

CSF and the tumor, and especially the gray matter with the edema (flair), and the white

matter with the tumor. These overlapping histograms made the models misclassify the

regions accurately. The proposed PNMF-LSM approach is able to handle this problem

because it considers local histograms and resizable block sizes that can fit into the small

details.
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Figure 18. Segmentation of a brain MRI image with Glioblastoma using the proposed
PNMF-LSM approach. First row from the left: original image, tumor, flair (or edema),
gray matter, white matter, CSF with the background and the estimated bias field. Second
row from the left: binary representations of the tumor, flair (edema), gray matter, white
matter and CSF with the background; and the histogram of each brain structure obtained
from the factor matrix W .

Figure 19. Segmentation of a brain MRI image with Glioblastoma using the proposed
PNMF-LSM approach. First row from the left: original image, tumor, flair (edema), gray
matter, white matter, CSF with the background and the estimated bias field. Second row
from the left: binary representations of the tumor, flair (edema), gray matter, white matter
and CSF with the background; and the histogram of each brain structure obtained from the
matrix W .
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Figure 20. Segmentation of a brain MRI image with Glioblastoma using the proposed
PNMF-LSM approach. First row from the left: original image, tumor, flair (edema), gray
matter, white matter, CSF with the background and the estimated bias field. Second row
from the left: binary representations of the tumor, flair (edema), gray matter, white matter
and CSF with the background; and the histogram of each brain structure obtained from the
matrix W .

Figure 21. Segmentation of a normal brain MRI image using the proposed PNMF-LSM
approach. First row from the left: original image, gray matter, white matter, CSF with the
background and the estimated bias field. Second row from the left: binary representations
of the gray matter, white matter and CSF with the background; and the histogram of each
brain structure obtained from the matrix W .
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Figure 22. Segmentation of a brain MRI image with Glioblastoma using the proposed
PNMF-LSM approach. First row from the left: original image, tumor, flair (edema), gray
matter, white matter, CSF with the background and the estimated bias field. Second row
from the left: binary representations of the tumor, flair (edema), gray matter, white matter
and CSF with the background; and the histogram of each brain structure obtained from the
matrix W .

Figure 23. PNMF-LSM segmentation of a brain MRI image with Glioblastoma blurred
by Gaussian noise with standard deviation (2). First row from the left: the original image,
tumor, flair (edema), gray matter, white matter, CSF with the background and the estimated
bias field. Second row from the left: binary representations of the tumor, flair (edema),
gray matter, white matter and CSF with the background; and the histogram of each brain
structure obtained from the matrix W .
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Figure 24. PNMF-LSM segmentation of a brain MRI image with Glioblastoma corrupted
by salt and pepper noise. First row from the left: the original image, tumor, flair (edema),
gray matter, white matter, CSF with the background and the estimated bias field. Second
row from the left: binary representations of the tumor, flair (edema), gray matter, white
matter and CSF with the background; and the histogram of each brain structure obtained
from the matrix W .

Figure 25. Localized-LSM segmentation of a brain MRI image with Glioblastoma. First
row from the left: the original image, tumor, flair (edema), gray matter, white matter and
CSF with the background. Second row from the left: the estimated bias field and the binary
representations of the tumor, flair (edema), gray matter, white matter and CSF with the
background.
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Figure 26. Localized-LSM segmentation of a brain MRI image with Glioblastoma blurred
by Gaussian noise. First row from the left: the original image, tumor, flair (edema), gray
matter, white matter and CSF with the background. Second row from the left: the estimated
bias field and the binary representations of the tumor, flair (edema), gray matter, white
matter and CSF with the background.

Figure 27. Localized-LSM segmentation of a brain MRI image with Glioblastoma cor-
rupted by salt and pepper noise. First row from the left: the original image, tumor, flair
(edema), gray matter, white matter and CSF with the background. Second row from the
left: the estimated bias field and the binary representations of the tumor, flair (edema), gray
matter, white matter and CSF with the background.
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Figure 28. Improved LGDF-LSM segmentation of a brain MRI image with Glioblastoma.
First row from the left: the original image, tumor, flair (edema), gray matter, white matter
and CSF with the background. Second row from the left: the estimated bias field and the
binary representations of the tumor, flair (edema), gray matter, white matter and CSF with
the background.

Figure 29. Improved LGDF-LSM segmentation of a brain MRI image with Glioblastoma
blurred by Gaussian noise. First row from the left: the original image, tumor, flair (edema),
gray matter, white matter and CSF with the background. Second row from the left: the
estimated bias field and the binary representations of the tumor, flair (edema), gray matter,
white matter and CSF with the background.
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Figure 30. Improved LGDF-LSM segmentation of a brain MRI image with Glioblastoma
corrupted by salt and pepper noise. First row from the left: the original image, tumor, flair
(edema), gray matter, white matter and CSF with the background. Second row from the
left: the estimated bias field and the binary representations of the tumor, flair (edema), gray
matter, white matter and CSF with the background.
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Chapter 8

Summary and Conclusion

Medical image segmentation is one of the most important and challenging tasks in

medical image analysis. In particular, brain MRI segmentation is a difficult task, due to the

complexity of the brain anatomical structures and the intensity inhomogeneity that corrupts

the quality of MRI images. Great efforts have been made in this field in order to achieve

automatic accurate segmentation results. In this thesis, we proposed a new deformable

model for image segmentation based on variational level set formulation and probabilistic

non-negative matrix factorization, termed PNMF-LSM. The main advantages of the pro-

posed PNMF-LSM approach over the state-of-the-art, as well as the contributions of this

thesis are:

• Relying on the histogram data of the image for clustering rather than the pixel inten-

sity values; thus making the algorithm robust to additional noise and outliers.

• Estimating the number of regions/clusters in the image based on the nuclear norm of

the PNMF factors (proof provided).

• Providing useful interpretation of the NMF as an image clustering and decomposition

tool.

• Deriving two data terms based on the PNMF factors.

• No other method in the LSM literature introduced a spatial term in addition to the

intensity-model terms.

• No additional nuisance or spurious model parameters are simultaneously estimated
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with the bias field and the level set functions. This increases the estimation accuracy

of the main parameters; thus leading to a higher segmentation accuracy.
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