103 research outputs found

    Signal waveform estimation in the presence of uncertainties about the steering vector

    Get PDF
    We consider the problem of signal waveform estimation using an array of sensors where there exist uncertainties about the steering vector of interest. This problem occurs in many situations, including arrays undergoing deformations, uncalibrated arrays, scattering around the source, etc. In this paper, we assume that some statistical knowledge about the variations of the steering vector is available. Within this framework, two approaches are proposed, depending on whether the signal is assumed to be deterministic or random. In the former case, the maximum likelihood (ML) estimator is derived. It is shown that it amounts to a beamforming-like processing of the observations, and an iterative algorithm is presented to obtain the ML weight vector. For random signals, a Bayesian approach is advocated, and we successively derive an (approximate) minimum mean-square error estimator and maximum a posteriori estimators. Numerical examples are provided to illustrate the performances of the estimators

    Robust adaptive beamforming using a Bayesian steering vector error model

    Get PDF
    We propose a Bayesian approach to robust adaptive beamforming which entails considering the steering vector of interest as a random variable with some prior distribution. The latter can be tuned in a simple way to reflect how far is the actual steering vector from its presumed value. Two different priors are proposed, namely a Bingham prior distribution and a distribution that directly reveals and depends upon the angle between the true and presumed steering vector. Accordingly, a non-informative prior is assigned to the interference plus noise covariance matrix R, which can be viewed as a means to introduce diagonal loading in a Bayesian framework. The minimum mean square distance estimate of the steering vector as well as the minimum mean square error estimate of R are derived and implemented using a Gibbs sampling strategy. Numerical simulations show that the new beamformers possess a very good rate of convergence even in the presence of steering vector errors

    Constant Modulus Waveform Estimation and Interference Suppression via Two-stage Fractional Program-based Beamforming

    Get PDF
    In radar and communication systems, there exist a large class of signals with constant modulus property, including BPSK, QPSK, LFM, and phase-coded signals. In this paper, we focus on the problem of joint constant modulus waveform estimation and interference suppression from signals received at an antenna array. Instead of seeking a compromise between interference suppression and output noise power reduction by the Capon method or utilizing the interference direction (ID) prior to place perfect nulls at the IDs and subsequently minimize output noise power by the linearly constrained minimum variance (LCMV) beamformer, we devise a novel power ratio criterion, namely, interference-plus-noise-to-noise ratio (INNR) in the beamformer output to attain perfect interference nulling and minimal output noise power as in LCMV yet under the unknown ID case. A two-stage fractional program-based method is developed to jointly suppress the interferences and estimate the constant modulus waveform. In the first stage, we formulate an optimization model with a fractional objective function to minimize the INNR. Then, in the second stage, another fraction-constrained optimization problem is established to refine the weight vector from the solution space constrained by the INNR bound, to achieve approximately perfect nulls and minimum output noise power. Moreover, the solution is further extended to tackle the case with steering vector errors. Numerical results demonstrate the excellent performance of our methods

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter
    • 

    corecore