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We propose a Bayesian approach to robust adaptive beamforming which entails

considering the steering vector of interest as a random variable with some prior

distribution. The latter can be tuned in a simple way to reflect how far is the actual

steering vector from its presumed value. Two different priors are proposed, namely a

Bingham prior distribution and a distribution that directly reveals and depends upon the

angle between the true and presumed steering vector. Accordingly, a non-informative

prior is assigned to the interference plus noise covariance matrix R, which can be viewed

as a means to introduce diagonal loading in a Bayesian framework. The minimum mean

square distance estimate of the steering vector as well as the minimum mean square

error estimate of R are derived and implemented using a Gibbs sampling strategy.

Numerical simulations show that the new beamformers possess a very good rate of

convergence even in the presence of steering vector errors.

1. Introduction and problem statement

Designing robust adaptive beamformers is a major

requirement of most practical systems where one is most

likely faced with partially unknown array characteristics

[1,2]. Steering vectors errors due e.g., to partially uncali-

brated arrays, uncertainties about the direction of arrival,

pointing errors are known to be very detrimental to

conventional adaptive beamformers unless some proper

action is taken. This is especially the case when the signal

of interest (SOI) is present in the measurements [3–6].

Indeed, any input signal whose steering vector differs

from the presumed SOI steering vector is deemed an

interference, and hence should be suppressed. This results

in the self-nulling phenomenon where the adaptive

beamformer tends to place nulls towards the SOI. Accord-

ingly, limited observation time is another limitation of

minimum power distortionless response (MPDR) beam-

formers since errors in the estimation of the interference

plus noise covariance matrix result in a significant

increase of the number of snapshots required to come

close to the optimal beamformer. Thus it comes at no

surprise that the literature about robust adaptive beam-

forming (RAB) is abundant, see e.g., [1,2,6]. Our aim is not

here to provide an exhaustive review of the literature,

rather give a short overview of the main approaches

available so far.

The first approach that undoubtedly comes to mind

when dealing with steering vector errors or a limited

number of snapshots is diagonal loading [7–9]. Notwith-

standing the issue of setting the loading level, diagonal

loading (DL) is a simple yet powerful method to mitigate

steering vector errors and/or small sample size. In addi-

tion to be a natural way to regularize the covariance

matrix estimation or to enforce a desired value for the

white noise array gain [10,6], diagonal loading also

emerges as the solution to RAB approaches which, from

their very principle, do not enforce diagonal loading. For

instance, the robust Capon beamformers of [11–13] which
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either entail minimizing the output power subject to the

SOI steering vector belonging to a sphere centered around

its presumed value, or maintaining a minimum gain

within this sphere, boil down to diagonal loading. The doubly

constrained Capon beamformer of [14] which imposes a

norm constraint of the steering vector also results in a DL-

type beamformer. The main difference lies in the fact that

the loading level is now computed as a function of the

sphere radius. This issue of determining an optimal

loading level has attracted a great deal of attention and,

recently, some references have addressed the problem of

computing automatically the loading level, see e.g.,

[15,16]. In a similar vein albeit with a different methodol-

ogy, the idea of ensuring a given gain around the pre-

sumed steering vector using some constraints forms the

basis of many methods, see e.g., [17–19]. One difference

between the aforementioned methods [11–13] and the

original DL is that an estimate of the SOI steering vector is

made available. Indeed, SOI steering vector estimation is

also a viable approach to combat steering vector errors,

capitalizing on a better estimate of the SOI steering

vector. Refs. [20–22] are a few examples of such an

approach.

The references presented so far mostly adopt a determi-

nistic view of steering vector errors. However, stochastic

modeling of steering vector errors has been addressed in

some references. For instance, [23] assumes that the differ-

ence between the actual and presumed steering vector is a

random quantity with a given distribution. Then, [23]

considers minimizing the output power under the con-

straint that the gain towards the actual steering vector be

larger than one with a given probability. Ref. [24] also

addresses the design of an adaptive beamformer under a

Gaussian hypothesis for the steering vector errors. A pena-

lizing term is introduced in the output power minimization

that takes into account the distribution of the steering

vector. In [25] Kristine Bell considers a Bayesian approach

to RAB with uncertainties in direction of arrival, modeling

the latter as a random variable with a given prior distribu-

tion. A Bayesian beamformer is derived, which amounts to a

weighted sum of Wiener filters where the weights depend

on the posterior distribution of each pointing direction. A

Bayesian beamformer is also derived in [26] based on

maximum a posteriori or minimum mean square error

estimation of the SOI waveform in the case of a Gaussian

distributed SOI steering vector.

In this paper, we also address the problem of designing

an adaptive beamformer in the case of steering vector

uncertainties. The latter are considered as random with

some prior distribution. A Bayesian framework is thus

formulated and the minimum mean square distance

estimation of the steering vector as well as the minimum

mean square error estimate of the interference plus noise

covariance matrix are derived. They are then used to

compute a beamformer which hopefully could perform

well in spite of the presence of steering vector errors.

2. Data model and assumptions

In this section, we state the assumptions regarding our

data model. We assume that K snapshots are received on

the array, which can be written as

zk ¼ an

kvþnk; k¼ 1, . . . ,K ð1Þ

where

� zk 2 C
N�1 is the output of the array (snapshot) at time

k. In the sequel we let Z¼ ½z1 � � � zK � denote the data

matrix.

� v is the signal of interest signature and is assumed to be

a random vector with some prior distribution pðvÞ. Two

different priors will be considered in the sequel, namely a

Bingham distribution and a distribution which depends

directly on the angle between v and its presumed value

v.

� the interference plus noise vectors nk are assumed to

be independent, complex-valued Gaussian distributed,

with zero-mean and covariance matrix R, i.e.,

p nk9R
ÿ �

¼ pÿN9R9ÿ1
expfÿnH

k R
ÿ1nkg ð2Þ

where 9 � 9 stands for the determinant of a matrix.

Herein, we assume that R is a random matrix, drawn

from an inverse Wishart distribution [27,28] with mean

mIN and n degrees of freedom, viz

pðR9n,mÞp9R9ÿðnþNÞ
etrfÿðnÿNÞmRÿ1g ð3Þ

where p means proportional to and etrf�g stands for

the exponential of the trace of the matrix between

braces. The choice of an inverse Wishart distribution

for R is mostly due to the fact that it is conjugate with

respect to the Gaussian distribution of the snapshots in

(2). This is a usual choice in Bayesian estimation and it

facilitates mathematical derivation of the posterior

distributions. Note however that the distribution in

(3) is non-informative as it is a maximum entropy prior

distribution subject to EfTrfRÿ1gg ¼ c1 and Eflog9R9g ¼
c2 [29], and it does not depend on any prior covariance

matrix. This prior is mainly aimed at increasing robust-

ness of the adaptive beamformer. Indeed, (3) means

that R should be close to a scaled identity matrix and is

tantamount to introducing diagonal loading in the

beamformer calculation, see below for further details.

� the amplitudes ak are assumed to be independent and

identically distributed according to a complex Gaussian

distribution with zero mean and (known) variance s2
a,

i.e.,

pða9s2
aÞ ¼

Y

K

k ¼ 1

pÿ1sÿ2
a expfÿsÿ2

a 9ak9
2gpexpfÿsÿ2

a a
H
ag

ð4Þ

where a¼ ½a1 � � � aK �T . We denote this distribution as

a�CNð0,s2
aIK Þ and note that it is conjugate with

respect to the conditional Gaussian distribution of zk.

The assumption that s2
a is known means that we have a

rough idea of the signal power level, which is reason-

able in numerous applications. In Appendix B we

extend the algorithms developed below to the case of

an unknown random s2
a. Additionally, in the numerical

section, we study the robustness of our algorithms to a

non-perfect knowledge of s2
a.



The statistical model is thus summarized by the like-

lihood function

pðZ9a,v,RÞ ¼ pÿNK9R9ÿK
etrfÿðZÿvaHÞHRÿ1ðZÿvaHÞg ð5Þ

and the prior distributions pðvÞ, pðR9n,mÞ and pða9s2
aÞ. Our

objective is, from the data measurements Z and given the

statistical assumptions described above, to obtain a

beamformer aimed at recovering the SOI with maximum

signal to interference and noise ratio (SINR). Since the

optimal filter is woptpRÿ1v, we will obtain estimates of

both v and R, so as to approach wopt as closely as possible.

3. Bingham model

As stated previously, we assume that v is a random

vector which is close to a nominal steering vector v. First

note that any scaling factor affecting v can be reported in

s2
a. Herein, we assume that JvJ¼ 1, i.e., v 2 SN , where SN

is the unit sphere in C
N . We further assume that v follows

a complex Bingham distribution (see [30,31] for definition

and properties of real Bingham distributions, [32,33] for

complex Bingham distributions and Appendix A for a brief

overview and an extension to complex Bingham von

Mises Fisher distributions), i.e.,

pðvÞpexpfk9vHv92g ð6Þ

where k is a positive scalar and v 2 SN is the nominal

steering vector. The distribution in (6) is often referred to

as the complex Watson distribution [33] which is a

special case of the complex Bingham distribution. Note

that the distribution in (6) depends on cos2 y where y

stands for the angle between v and v: pðvÞ is thus

constant for any vector lying on a cone whose axis is v

and whose aperture is y. The scalar k serves as a

concentration parameter: the larger k the closer v and

v. Therefore, k reflects our knowledge of the amplitude of

steering vector uncertainties. More precisely, using

changes of variables similar to those in [32,33], it is

possible to show that the probability density function

(pdf) of y is given by

pðyÞ ¼ kNÿ1expfÿkg
gðNÿ1,kÞ sinð2yÞðsin2 yÞNÿ2expfk cos2 yg ð7Þ

where gða,xÞ ¼
R x
0 t

aÿ1expfÿtg dt is the incomplete Gamma

function [34]. Therefore, the choice of the complex Wat-

son distribution in (6) and a given value of k lead to a

given distribution for y. Moreover, it is straightforward to

show that

Ef9vHv92g ¼ 1ÿ 1

k

gðN,kÞ
gðNÿ1,kÞ ð8Þ

Although Ef9vHv92g is not exactly the average square

distance between v and v, it is close to, see the discussion

below. Hence, the previous formula indicates that

Ef9vHv92g is roughly proportional to kÿ1, and hence that

k is indeed a concentration parameter. This is illustrated

in Fig. 1 where we plot pðyÞ for different values of k.
The statistical description of our model is now com-

plete and we turn to the estimation of v and R, in order to

compute a filter wpR̂
ÿ1

v̂ which is hopefully close to the

optimal filterwoptpRÿ1v. Prior to that, a few observations

are in order regarding the estimation of v. Note that v is

not an arbitrary vector in C
N but lies on the unit sphere,

and hence its estimate should also inherit this property.

However, the natural metric on the unit sphere is not the

mean square error between v̂ and v: hence the usual

minimum mean square error (MMSE) approach should be

revisited [35,36]. Indeed, the natural distance on the

sphere is given by the angle between v̂ and v and,

therefore, it seems logical to estimate v by minimizing

this angle. However the latter is given by arccos 9v̂H
v9 and

it appears intractable to obtain an expression for the

estimator that minimizes this distance. In contrast, mini-

mizing the average square sine angle between v̂ and v

leads in a straightforward way to

vmmsd ¼ arg min
v̂

Efsin2ðv̂,vÞg ¼ arg max
v̂

Ef9v̂H
v92g

¼ arg max
v̂

Z Z

9v̂H
v92pðv9ZÞ dv

� �

pðZÞ dZ

¼ arg max
v̂

v̂
H
Z

vvHpðv9ZÞ dv
� �

v̂

¼P

Z

vvHpðv9ZÞ dv
� �

ð9Þ

where Pf�g stands for the principal eigenvector of the

matrix between braces. With a slight abuse of language,

we refer to (9) as the minimum mean square distance

(MMSD) estimate of v: it does not minimize the true

distance but, for small y, sin yCy, and hence (9) is

meaningful. The MMSD estimator of v thus amounts to

computing the principal eigenvector of the posterior

mean of the projection matrix vvH . The problem asso-

ciated with this approach is that we do not know how to

obtain an expression for pðv9ZÞ: marginalizing pðZ9a,v,RÞ
with respect to (w.r.t.) a is straightforward – see (12)

below – but further marginalizing w.r.t. R is intractable.

Furthermore, v is not the only parameter of interest as we

also need to estimate R. In contrast, a can be considered

as a nuisance parameter, which is not necessarily to be

estimated. Therefore, the first approach that crosses one’s

Fig. 1. Distribution of the angle between v and v , when v is drawn from

(6), for different values of k. N¼16.



mind consists in computing the MMSD estimator of v and

the MMSE estimator of R which is given by

EfR9Zg ¼
Z

RpðR9ZÞ dR ð10Þ

The first step towards obtaining these estimates is to

marginalize w.r.t. a in order to derive the joint posterior

distribution pðv,R9ZÞ of v and R only. Observing that

sÿ2
a a

H
aþTrfðZÿvaHÞHRÿ1ðZÿvaHÞg

¼ sÿ2
a a

H
aþTrfZHRÿ1ZgÿvHRÿ1Za

ÿaHZHRÿ1vþðaH
aÞðvHRÿ1vÞ

¼ ðsÿ2
a þvHRÿ1vÞ aÿ ZHRÿ1v

sÿ2
a þvHRÿ1v































2

þTr ZHRÿ1ZÿZHRÿ1vvHRÿ1Z

sÿ2
a þvHRÿ1v

( )

ð11Þ

it follows that:

pðZ9v,RÞ ¼
Z

pðZ9a,v,RÞpða9s2
aÞ da

pðs2
aÞ

ÿK

Z

9R9ÿK
etrfÿðZÿvaHÞHRÿ1ðZÿvaHÞg

expfÿsÿ2
a a

H
ag da

pðs2
aÞ

ÿK9R9ÿK
etr ÿZHRÿ1Zþ ZHRÿ1vvHRÿ1Z

sÿ2
a þvHRÿ1v

( )

�
Z

exp ðsÿ2
a þvHRÿ1vÞ aÿ ZHRÿ1v

sÿ2
a þvHRÿ1v































2
8

<

:

9

=

;

da

pðs2
aÞ

ÿK9R9ÿK ðsÿ2
a þvHRÿ1vÞÿK

etr ÿZHRÿ1Zþ ZHRÿ1vvHRÿ1Z

sÿ2
a þvHRÿ1v

( )

p9Rþs2
avv

H9ÿK
etrfÿZHðRþs2

avv
HÞÿ1Zg: ð12Þ

At this stage, it appears intractable to derive an analytic

expression for pðZ9vÞ and pðZ9RÞ which are required to

compute the MMSD estimator of v and the MMSE esti-

mator of R. To circumvent this problem, one may think of

resorting to Markov chain Monte-Carlo (MCMC) simula-

tion methods [37], more precisely to a Gibbs sampler that

would draw samples from the posterior distributions

pðv9R,ZÞ or pðR9v,ZÞ and approximate the integrals in

(9)–(10) by arithmetic means. However, using (12), the

conditional posterior distributions pðv9R,ZÞ and pðR9v,ZÞ
are given by

pðv9R,ZÞppðZ9v,RÞpðv9s2
aÞ

pðsÿ2
a þvHRÿ1vÞÿKexp k9vHv92þ vHRÿ1ZZHRÿ1v

sÿ2
a þvHRÿ1v

( )

ð13aÞ

pðR9v,ZÞppðZ9v,RÞpðR9n,mÞ
p9R9ÿðnþNÞ9Rþs2

avv
H9ÿK

etrfÿðnÿNÞmRÿ1g
etrfÿZHðRþs2

avv
HÞÿ1Zg ð13bÞ

These distributions do not belong to a familiar class,

rendering generation of samples according to pðv9R,ZÞ or
pðR9v,ZÞ a difficult issue. To conclude, there is no way but

to estimate a jointly with v and R. More specifically, a

Gibbs sampler is now proposed which generates samples

from pðv9a,R,ZÞ, pða9v,R,ZÞ and pðR9a,v,ZÞ. As illustrated

below, these conditional posterior distributions are easy

to simulate.

Indeed, using (5) along with (11), one can write

pða9v,R,ZÞpexp ÿðsÿ2
a þvHRÿ1vÞ aÿ ZHRÿ1v

sÿ2
a þvHRÿ1v































2
8

<

:

9

=

;

ð14Þ

and hence a, conditioned on v, R, Z, is Gaussian distrib-

uted, i.e.,

a9v,R,Z�CN
ZHRÿ1v

sÿ2
a þvHRÿ1v

, ðsÿ2
a þvHRÿ1vÞÿ1IK

 !

ð15Þ

Accordingly, we deduce from (6), (5) and (11) that

pðv9a,R,ZÞpexpfk9vHv92ÿðaH
aÞðvHRÿ1vÞ

þvHRÿ1Zaþa
HZHRÿ1vg ð16Þ

which is recognized as a complex Bingham von Mises

Fisher (BMF) distribution with parameters kvvHÿ
ðaH

aÞRÿ1 and Rÿ1Za, i.e.,

v9a,R,Z� BMFcðkvvHÿðaH
aÞRÿ1

,Rÿ1ZaÞ ð17Þ

An efficient sampling scheme for generating samples

according to a real BMF distribution was proposed by

Hoff [38]. This scheme can be adapted to generate a

complex BMF distributed vector, utilizing the relation

between real and complex BMF distributions, see

Appendix A. Finally, the conditional posterior distribution

of R is obtained as

pðR9a,v,ZÞp9R9ÿðnþNþKÞ
etrfÿRÿ1Mða,v,ZÞg ð18Þ

with

Mða,v,ZÞ ¼ ðnÿNÞmINþðZÿvaHÞðZÿvaHÞH ð19Þ

This conditional posterior distribution is an inverse

Wishart distribution with nþK degrees of freedom and

parameter matrix Mða,v,ZÞ. The latter is, up to a scaling

factor, the posterior mean of R9a,v,Z. It is instructive to

observe that, due to the choice of the prior of R in (3), the

form of Mða,v,ZÞ bears strong resemblance with the usual

diagonal loading, as we hinted at in the introduction.

Since diagonal loading is known to be efficient to mitigate

steering vector errors, the introduction of the non-infor-

mative prior pðRÞ in (3) can be viewed as a means to

improve robustness. It is also worth noticing that ðnÿNÞm=K
corresponds to the loading level, which provides a way to fix

n and m.
Before proceeding, we note that the distributions

pða9v,R,ZÞ and pðv9a,R,ZÞ depend on R through its inverse

Rÿ1. Moreover, our final objective is to derive a beamfor-

mer whose weight vector depends directly on Rÿ1. There-

fore, since we look for an estimate of Rÿ1 rather than an

estimate of R, the Gibbs sampler will generate directly the

inverse of R from a Wishart distribution

Rÿ19a,v,Z�CWðnþK ,½Mða,v,ZÞ�ÿ1Þ ð20Þ

The Gibbs sampler will thus successively draw samples

from (15), (17) and (20), as described in Algorithm 1.



Algorithm 1. Gibbs sampler for estimation of v and Rÿ1.

Require: initial values Rÿ1ð0Þ, vð0Þ
1: for n¼ 1, . . . ,NbiþNr do

2: sample aðnÞ from pða9vðnÿ1Þ,Rðnÿ1Þ,ZÞ in (15).

3: sample vðnÞ from pðv9aðnÞ,Rðnÿ1Þ,ZÞ in (17).

4: sample Rÿ1ðnÞ from pðRÿ19aðnÞ,vðnÞ,ZÞ in (20).

5: end for

Ensure: sequence of random variables aðnÞ, vðnÞ, Rÿ1ðnÞ.

Once these samples are available, the MMSD estimator of

v and the MMSE estimator of Rÿ1 can be approximated by

v̂mmsd ¼P
1

Nr

X

Nbi þNr

n ¼ Nbi þ1

vðnÞvHðnÞ
( )

ð21aÞ

R̂
ÿ1

mmse ¼
1

Nr

X

Nbi þNr

n ¼ Nbi þ1

Rÿ1ðnÞ ð21bÞ

where Nbi stands for the number of burn-in iterations and Nr

is the effective number of iterations. Finally, with the above

estimates available, a beamformer can be designed whose

weight vector is given by

wpR̂
ÿ1

mmsev̂mmsd ð22Þ

4. A model based on the angle between v and v

In this section, we consider a slightly different model

for v which stems from the following observation. One

drawback of the Bingham distribution is that it is not easy

to set a value for k, even if a rough knowledge of the

average value of 9vHv92 along with (8) can serve as a guide

to select a value for k. Additionally, the choice of a

Bingham distribution for v results in a given distribution

for y and hence the user cannot choose the latter. In

contrast, we would be interested in a model that directly

depends on y and where the prior distribution of y could

be set by the user. This is the approach we take in this

section. With no loss of generality we assume now that

v ¼ ½1 0 � � � 0�T : if this is not the case, the measurements

Z can be pre-multiplied by the unitary matrix Q – without

it modifying the distribution of Z in (5) – such that

QHv ¼ ½1 0 � � � 0�T . Then we use a model for v that

directly involves the angle y between v and v, namely

v¼
cos y

v2 sin y

" #

eif ð23Þ

In (23), v2 is an arbitrary vector in SNÿ1 and we assume

that it is uniformly distributed on the sphere. As for f, we

note that since a and aeif have the same distribution, eif

can be absorbed in a which amounts to set f¼ 0 in (23).

Regarding y we assume that it is uniformly distributed on

½0,ymax�, i.e., y�Uð½0,ymax�Þ. ymax sets the maximum angle

between v and v and thus indicates how confident we are

in v. This model is more intuitive than the Binghammodel

as ymax is an intelligible parameter which is easier to set

than k. Moreover, the pdf of the angle between v and v is

uniform and thus different from that in a Bingham

distribution, see (7). Finally, the average distance between

v and v as well as the average value of cos2 y can be

evaluated in a straightforward manner as

Ef9vHv92g ¼ 1

2
þ 1

4

sin 2ymax

ymax
ð24aÞ

Efdðv,vÞg ¼ Efyg ¼ ymax

2
ð24bÞ

Note that (23) is the vector version of the CS (cosine–sine)

decomposition for unitary matrices [39], and a similar model

for subspaces of rank greater than one has been used in [40].

We use the same approach as before, except that now

we need to derive the conditional posterior distributions

of v2 and y: indeed, the conditional posterior distributions

of a and R remain the same as in (15) and (20). Let us

begin by observing that, for an arbitrary Hermitian matrix

A and an arbitrary vector c

vHAv¼ ½cos y vH2 sin y�
A11 A12

A21 A22

" #

cos y

v2 sin y

" #

¼ A11 cos2 yþðvH2A22v2Þsin2 yþðvH2A21þAH
21v2Þcos y sin y

ð25Þ

vHc¼ ½cos y vH2 sin y�
c1

c2

" #

¼ c1 cos yþðvH2 c2Þ sin y ð26Þ

Therefore, from (5), we have

pðy,v29a,R,ZÞpexpfÿðaH
aÞðvHRÿ1vÞþvHRÿ1Zaþa

HZHRÿ1vg

pexpfÿðaH
aÞ½½Rÿ1�11 cos2 yþðvH2 ½R

ÿ1�22v2Þ sin
2 y�g

�expfÿðaH
aÞ½vH2 ½R

ÿ1�21þ½Rÿ1�H21v2� cos y sin yg
�expf½Rÿ1Za�1cos yþðvH2 ½R

ÿ1Za�2Þ sin yg
�expf½Rÿ1Za�n1 cos yþð½Rÿ1Za�H2 v2Þ sin yg ð27Þ

The conditional posterior distribution of y only is thus

given by

pðy9v2,a,R,ZÞpexpfÿðaH
aÞ½½Rÿ1�11ÿvH2 ½R

ÿ1�22v2� cos2 yg
�expfÿðaH

aÞReðvH2 ½R
ÿ1�21Þ sin 2yg

�expf2Reð½Rÿ1Za�1Þ cos yþ2ReðvH2 ½R
ÿ1Za�2Þ sin yg

ð28Þ

This distribution does not belong to a known family. Since

y 2 ½0,p=2�, a simple way to draw samples from (28)

consists in using an inverse cumulative density function

approach. The conditional posterior distribution of v2 can

be written as

pðv29y,a,R,ZÞpexpfvH2bþb
H
v2þvH2Bv2g ð29Þ

with

b¼ÿðaH
aÞ½Rÿ1�21 cos y sin yþ½Rÿ1Za�2 sin y ð30Þ

B¼ÿðaH
aÞ½Rÿ1�22 sin2 y ð31Þ

It ensues that

v29y,a,R,Z�BMFcðB,bÞ ð32Þ

The Gibbs sampler corresponding to the CS model will

thus work similarly to that of Algorithm 1 except that, on



line 3, we need to draw y and v2 according to their

conditional posterior distributions in (28) and (29), and

then reconstruct v using (23). The MMSD estimate of v

and MMSE estimate of Rÿ1 will still be obtained as in

(21a)–(21b), and the final beamformer constructed as in

(22).

5. Numerical simulations

In this section, we assess the performance achieved

with the beamformer wpR̂
ÿ1

mmsev̂mmsd. We consider a

uniform linear array of N¼16 elements spaced a half-

wavelength apart. The signal received on the array is the

superposition of the signal of interest, the interferences

and the receiver noise, which is assumed to be temporally

and spatially white with power s2
n. As for the interfer-

ences, we assume that there are two of them, impinging

from directions ÿ151 and 201, with respective interfer-

ence to noise ratio (INR) equal to 30 dB and 20 dB.

The signal of interest (SOI) is assumed to propagate

from the broadside of the array so that v ¼ að01Þ where

aðjÞ ¼ ½1 eip sin j � � � eipðNÿ1Þ sin j�T=
ffiffiffiffi

N
p

is the (normalized)

steering vector of the array. We consider pointing errors

so that the SOI actually impinges from the direction

of arrival (DOA) jtrue. The latter is expressed in fraction

of the half power beam width (HPBW) [6] as jtrue ¼
d� HPBW . We stress the fact that the true steering vector

is not generated according to the prior distribution assumed

by each Bayesian beamformer. The signal to noise ratio

(SNR) defined as

SNR¼ 10 log10
s2
av

Hv

Ns2
n

is set to SNR¼0 dB. In order to set the values for n and m,
we use the expression of Mða,v,ZÞ in (19), which corre-

sponds, up to a scaling factor, to the posterior mean of R

conditioned on a, v and Z. In order for the term due to the

data and the term corresponding to diagonal loading to

have approximately the same weight, we set n¼ KþN so

that m is tantamount to a diagonal loading level. We fix it

to 5 dB above the white noise level, a good rule of thumb

in practice [6].

The performance metric of the adaptive beamformer

will be the SINR loss with respect to the noise-only-

environment defined by [41]

SINRloss ¼
9wHv92

wHRw

1

sÿ2
n vHv

ð33Þ

First, we investigate the sensitivity of the Bayesian

beamformers towards the parameters one has to set,

namely k for the Bingham-based model and ymax for the

CS-based model. The results are shown in Figs. 2 and 3.

For d¼ 0:2 [respectively d¼ 0:4] the angle between v and

v, i.e., arccos 9vHv9, is equal to 18:431 [respectively

36:451]. The following comments about these figures can

be made. For moderate steering vector error (d¼ 0:2), the

Bayesian beamformers are seen to achieve a quasi-

constant SINR loss over a large range of values for k and

ymax. This is very important from a practical point of view

as it means that the user does not have to tune these

parameters very accurately: the performance is guaran-

teed to be almost the same over a rather large interval. On

the other hand, for large steering vector errors (d¼ 0:4) it

is mandatory to adapt the values of k and ymax. The

former should not be taken too large while ymax should

not be chosen too small in order to accommodate the

possibly large difference between v and v: recall that a

large k or a small ymax implies that v should be close to v.

Note however that the case d¼ 0:4 corresponds to a

rather large error, the case d¼ 0:2 may be more repre-

sentative. In the latter situation, hopefully there is no

need to select very accurately the values of k and ymax. To

summarize this sensitivity analysis, we can conclude that

the Bayesian beamformers are rather robust to the choice

of the parameters k and ymax: the latter need not be set

very accurately, a very interesting property in practice.

We now study the influence of the number of snap-

shots K and the pointing error d in Figs. 4–7. The

beamformers are compared with conventional diagonal

Fig. 2. SINR loss of the adaptive beamformer in the Bingham model

versus k. K¼32.

Fig. 3. SINR loss of the adaptive beamformer in the CS model versus

ymax . K¼32.



loading using the presumed steering vector, i.e.,

wDLÿvpðKÿ1ZZHþmINÞÿ1v ð34Þ

with a loading level 5 dB above the white noise level. We

also consider a ‘‘clairvoyant ’’ diagonally loaded beamfor-

mer which would have knowledge of v, i.e.,

wDLÿvpðKÿ1ZZHþmINÞÿ1v ð35Þ

Of course, the latter is hypothetical but it enables to

consider only finite-sample effects without any steering

vector error.

These figures call for the following observations:

� The Bayesian beamformers significantly improve upon

conventional diagonal loading using the presumed

steering vector but they also outperform the diagon-

ally loaded beamformer constructed with the true

steering vector. This is a rather remarkable result,

especially with large steering vector errors.

� The CS-based beamformer and its Bingham counter-

part result in approximately the same output SINR.

� For large steering vector errors, diagonal loading with

v performs very poorly and the performance is mainly

dominated by the steering vector error: for instance

the output SINR does not improve when K increases,

see Fig. 5. On the contrary for moderate steering vector

errors (d¼ 0:2) the output SINR increases when K is

increased. The diagonally loaded beamformer which

knows v does not suffer from this phenomenon of

course: its output SINR is independent of d, see Figs. 6

and 7, and increases when K increases.

� Remarkably enough, the Bayesian beamformers are

seen to be quite insensitive to the magnitude of the

steering vector errors, see Figs. 6 and 7. In contrast,

their performance depends on the number of snap-

shots, cf. Figs. 4 and 5.

� The Bayesian beamformers have a very high rate of

convergence. Indeed, the SINR loss is inferior to 3 dB at

about K ¼ 2N, a rate of convergence commensurate

with that of an MVDR beamformer (where the signal of

Fig. 4. SINR loss of the adaptive beamformers versus number of snap-

shots K. k¼ 50, ymax ¼ 451 and d¼ 0:2.

Fig. 5. SINR loss of the adaptive beamformers versus number of snap-

shots K. k¼ 50, ymax ¼ 451 and d¼ 0:4.

Fig. 6. SINR loss of the adaptive beamformers versus pointing error.

K¼16, k¼ 50 and ymax ¼ 451.

Fig. 7. SINR loss of the adaptive beamformers versus pointing error.

K¼32, k¼ 50 and ymax ¼ 451.



interest is not contained in the data) and much better

than that of a conventional MPDR beamformer. This

high rate of convergence is achieved despite steering

vector errors being present.

To summarize, the new Bayesian beamformers pre-

sented herein enable one to achieve a close to optimal

performance very rapidly, despite the presence of steering

vector errors which they are not very sensitive to.

As a final simulation, we investigate the robustness of

the beamformers to an imprecise knowledge of s2
a, which

was assumed to be known in the previous simulations.

First, we study the SINR loss obtained when the assumed

value of s2
a – or equivalently the assumed value of the

SNR- differs from its true value. More specifically, we fix

the value of the SNR to 0 dB – which sets s2
a – and we run

the beamformers with an assumed value of the SNR that

might differ from the true one. The SINR loss, relative to

the SINR loss obtained when the SNR is known, is plotted

in Fig. 8. As can be observed, the degradation is not very

important (about ÿ1 dB) for differences between true and

assumed SNR up to 76 dB. The beamformer based on the

Bingham prior distribution appears to be slightly more

robust than the CS-based beamformer. Therefore, a wrong

guess of the SNR does not affect too much the beamfor-

mers provided that the assumed SNR stays within a few

decibels from the actual SNR.

If our knowledge about the SOI power is not that

accurate, then the extended Gibbs sampler presented in

Appendix B can be used. The latter assumes an inverse

Gamma prior distribution for s2
a and the Gibbs sampler is

extended to draw samples from the posterior distribution

of s2
a, see the Appendix for more details. In Fig. 9 we

compare the SINR loss achieved with these extended

beamformers to the SINR loss obtained when s2
a is known.

As can be observed (similar results were obtained in other

simulations not reported here), the difference is marginal,

at most 0.2 dB. Therefore, in the case where s2
a is not

known precisely, the extended beamformers can be used

without any performance degradation.

6. Conclusions

We presented a new Bayesian approach of robust

adaptive beamforming based on two novel prior distribu-

tions for the steering vector of interest, namely a Bingham

(or Watson) distribution or a CS-based distribution which

depends only on the angle between the actual steering

vector and its presumed value. Additionally, an inverse

Wishart distribution with a parameter matrix propor-

tional to I was assumed for the interference covariance

matrix, which amounts to introducing diagonal loading

and hence improving robustness. For both models, the

MMSE estimator of the interference covariance matrix as

well as the MMSD estimator of the steering vector were

derived and implemented through a Gibbs sampling

procedure. The new algorithms were shown to signifi-

cantly improve over conventional diagonal loading espe-

cially in low sample support and under steering vector

errors.
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Appendix A. Complex Bingham and Bingham von Mises

Fisher distributions

In this appendix we briefly review the complex Bing-

ham distribution [32,33] and introduce the complex

Bingham von Mises Fisher distribution from its real-

valued counterpart. For any vector v, we let ~v ¼ ½vTR vTI �
T

denote the 2N-length real-valued vector obtained by

concatenating the real (vR) and imaginary (vI) parts of v.

Accordingly, for any Hermitian matrix A we let
~A ¼ ½AR

AI

ÿAI
AR

� which is a 2N � 2N symmetric matrix.

A complex-valued vector v 2 SN is said to follow a

(complex) Bingham distribution with parameter matrix A

if its probability density function can be written as

pðvÞpexpfvHAvg. We denote this distribution as
Fig. 8. SINR loss of the Bayesian beamformers versus assumed SNR (true

SNR is 0 dB). K¼32, k¼ 50, ymax ¼ 451 and d¼ 0:2.

Fig. 9. SINR loss of the extended Bayesian beamformers versus number

of snapshots K. k¼ 50, ymax ¼ 451 and d¼ 0:2.



v�BcðAÞ. Since

vHAv¼ ½vTR vTI �
AR ÿAI

AI AR

" #

vR

vI

" #

¼ ~vT ~A ~v

we have the equivalence v� BcðAÞ � ~v �Bð ~AÞ where

BðÿÞ denotes the real-valued Bingham distribution. A

special case of interest is when A¼ kvvH where v 2 SN:

the distribution is then referred to as the complex

Watson distribution [33]. In this case, one has

pðvÞpexpfk9vHv92g and the term 9vHv92 within the

exponential corresponds to the square cosine angle

between v and v. We emphasize that

9vHv92 ¼ ðvTRvRþvTI vIÞ2þðvTRv IÿvTI vRÞ2

¼ ½vTR vTI �
vR

v I

" # !2

þ ½vTR vTI �
v I

ÿvR

" # !2

Therefore, v�BcðkvvHÞ is not equivalent to ~v � Bðk½vR
v I
�

½vT
R vT

I �Þ, where the last distribution depends on the square

cosine angle between ~v and ½vT
R vT

I �T .
A complex-valued vector v 2 SN is said to follow a

(complex) Bingham von Mises Fisher distribution with

parameter matrix A and parameter vector c if its prob-

ability density function can be written as

pðvÞpexpfvHcþcHvþvHAvg. We denote this distribution

as v�BMFcðA,cÞ. Since

vHcþcHv¼ 2ðvTRcRþvTI cIÞ ¼ 2 ~vT ~c

we have the equivalence v�BMFcðA,cÞ � ~v �BMFð ~A,2 ~cÞ
where BMFðÿ,ÿÞ denotes the real-valued BMF distribution.

Appendix B. Extension to random r
2
a

In this appendix, we relax the assumption that s2
a is

known and consider it as a random variable with a

possibly non-informative prior. More precisely, we

assume that s2
a follows an inverse-Gamma distribution,

denoted as s2
a � IGða,bÞ, whose expression is

pðs2
aÞpðs2

aÞ
ÿðaþ1Þexpfÿbsÿ2

a g ð36Þ

The above distribution is mainly chosen for mathema-

tical tractability since it is a conjugate prior with

respect to (4). Note however that, depending on the

choice of a and b, this prior can be made rather non-

informative. We now proceed to the derivation of the

new conditional posterior distributions for this case:

the latter should be used accordingly in a modification

of the Gibbs sampler. The joint posterior distribution of

all variables becomes

pða,v,R,s2
a9ZÞppðZ9a,v,R,s2

aÞpða9s2
aÞpðvÞpðRÞpðs2

aÞ

p9R9ÿK
etrfÿðZÿvaHÞHRÿ1ðZÿvaHÞg

�ðs2
aÞÿðaþKþ1Þexpfÿsÿ2

a a
H
agexpfÿbsÿ2

a g

�9R9ÿðnþNÞ
etrfÿðnÿNÞRÿ1gpðvÞ ð37Þ

It is straightforward to show that pða9v,R,s2
a,ZÞ,

pðv9a,R,s2
a,ZÞ and pðR9a,v,s2

a,ZÞ are the same as in (14),

(16) and (18). The conditional posterior of s2
a is given by

pðs2
a9a,v,R,ZÞpðs2

aÞ
ÿðaþKþ1Þexpfÿsÿ2

a ½bþa
H
a�g ð38Þ

and hence s2
a9a,v,R,Z� IGðaþK ,bþa

H
aÞ. The extended

Gibbs sampler will work similarly to that of Algorithm

1, except that s2
a needs now to be generated according

to pðs2
a9a,v,R,ZÞ in (38). Observe that the Gibbs sampler

of Algorithm 1 requires sÿ2
a and hence the latter can be

generated according to a Gamma distribution with

parameters aþK and bþa
H
a.
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