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Signal Waveform Estimation in the Presence of
Uncertainties About the Steering Vector

Olivier Besson, Member, IEEE, Andrei A. Monakov, and Christophe Chalus

Abstract—We consider the problem of signal waveform estima-
tion using an array of sensors where there exist uncertainties about
the steering vector of interest. This problem occurs in many situa-
tions, including arrays undergoing deformations, uncalibrated ar-
rays, scattering around the source, etc. In this paper, we assume
that some statistical knowledge about the variations of the steering
vector is available. Within this framework, two approaches are
proposed, depending on whether the signal is assumed to be deter-
ministic or random. In the former case, the maximum likelihood
(ML) estimator is derived. It is shown that it amounts to a beam-
forming-like processing of the observations, and an iterative algo-
rithm is presented to obtain the ML weight vector. For random
signals, a Bayesian approach is advocated, and we successively de-
rive an (approximate) minimum mean-square error estimator and
maximum a posteriori estimators. Numerical examples are pro-
vided to illustrate the performances of the estimators.

Index Terms—Array processing, beamforming, signal waveform
estimation, steering vector errors.

I. INTRODUCTION

I N future generations of satellite communication systems, the
payload is likely to include arrays of sensors together with

onboard digital beamforming capabilities in order to improve
coverage and capacity and to enhance the flexibility of infor-
mation processing. Such systems use a multibeam concept in
which multiple beams (“spots”) are formed, each of them cov-
ering a region whose diameter is approximately a few hundreds
of kilometers, which corresponds to a 1 –2 beamwidth, as seen
from a geostationary satellite; see, e.g., [1] for the description of
such a concept. Since there is already some experience of using
them and because they turn out to be the most promising so-
lution in reception, a focal array fed reflector (FAFR) remains
an interesting solution within this framework. A FAFR natu-
rally concentrates energy impinging from each spot on a small
number of feeds in its focal plane. Therefore, only a few feeds
need to be controlled in order to form a spot, which simplifies
the beamforming operation. For instance, one can typically have
hundreds of feeds in the array, and only seven to 12 of them are
used for each spot.
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In order to obtain high gains and sufficient isolation between
spots, large apertures may be required (depending on the fre-
quency band in which the satellite operates), which in turn im-
plies an increased weight. Since weight is a major concern in
satellite systems, some constraints may be relaxed, e.g., on the
system that ensures rigidity of the paraboloid. Then, the parab-
oloid undergoes deformation, and the beamformer weights that
have been calculated based on a nominal position of the array
are no longer capable of providing the required level of perfor-
mance. In particular, signal waveform estimation may be de-
graded. Accordingly, thermal and gravitational effects as well
as surface errors give rise to similar effects. Consequently, it
becomes important to compensate for these effects and to re-
cover a beamformer that still maintains a specified performance
under these conditions. This is the main problem we address in
this paper. A few specificities of the above-mentioned problem
are worthy of mention.

• In a FAFR, the deformations or surface errors mainly af-
fect the main parabola, and therefore, the feeds are no
longer exactly located in the focal plane.

• In contrast to a direct radiating array (DRA), there does
not exist, for a FAFR, any simple, analytical model for the
steering vector associated with a source impinging on the
array as a function of its direction of arrival (DOA) and the
positions of the antenna elements. Only electromagnetism
simulation tools are able to recover the spatial signature.
In other words, the usual model , where denotes
the DOA and is the vector of sensor locations, cannot be
used.

• Models for the possible deformations of the FAFR are
available [2], [3]. These models, along with electromag-
netism numerical tools, are able to characterize the varia-
tions of the spatial signatures.

To summarize, we consider herein the problem of signal
waveform estimation, where, on one hand, there exist uncer-
tainties about the spatial signature of interest, but on the other
hand, some a priori information about the variations of the
steering vectors is available. Usually, in order to cope with
this problem, two main approaches can be advocated. The first
consists in designing a robust beamformer, i.e., a beamformer
whose performance does not dramatically deteriorate in the
presence of uncertainties. The second approach consists of
estimating the spatial signature (including those terms that
affect it such as gain and phases, etc) and then designing
a beamformer based on the estimated steering vector. This
second approach is often referred to as calibration.

Robust adaptive beamforming has attracted a large amount of
attention in recent decades; see, e.g., [4, ch. 6] and [5] for com-
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prehensive overviews. The most widely used method [due to its
simplicity and effectiveness] is diagonal loading [6]. Diagonal
loading can either be viewed as a means to “equalize” the least
significant eigenvalues of the sample covariance matrix or to
constrain the array gain. The latter interpretation also suggests
that it can be effective when dealing with uncalibrated arrays
(see [4, ch. 6]). Steering vector mismatch is often treated via
the introduction of linear constraints. The latter include direc-
tional constraints, derivative constraints, quadratic constraints
on the norm of the weight vector [7], and soft constrained beam-
formers [8]–[10]. Accordingly, null broadening techniques [11],
[12] or covariance matrix tapering [13], [14] can be employed.
Finally, an effective approach was proposed in [15] (with a gen-
eralization in [16]), which consists of projecting the presumed
steering vector onto the subspace where it is expected to lie.
Generally, a combination of these techniques is required, de-
pending on the application. The latest developments in this area
[17]–[19] concern worst-case approaches whose idea is to en-
sure that the response of the beamformer be above some level
for all steering vectors whose distance to the presumed steering
vector is less than a certain distance. Essentially, these methods
amount to generalized (i.e., not necessarily diagonal) loading
of the sample covariance matrix. Most of the above-mentioned
approaches make no use of some a priori knowledge in some
statistical form, except for a few works. Only recently, Bell and
her co-authors have advocated in [20] a Bayesian approach to
address the case where the direction of arrival is assumed to be a
discrete random variable with a known probability density func-
tion (pdf). This allows the design of a beamformer that is robust
to uncertainties in DOA within a neat statistical framework.

The second way to tackle the uncertainty about the steering
vector is to use an explicit model for the steering vector that
is usually in terms of the DOA and some nuisance parameters
such as gain and phases, sensor locations, etc. The beamformer
is then designed based on their estimates. To obtain the latter,
two different approaches can be taken; either consider the nui-
sance parameters as deterministic (see, e.g., [21] and [22] or as
random [23]–[26]). In the latter category, the nuisance param-
eters are assigned an a priori pdf, and for instance, MAP ap-
proaches are considered in [23] and [25]. However, these ref-
erences consider a model for the steering vector of the type

, where is a random vector that consists, e.g., of the
sensor gains and phases or locations. Unfortunately, as stated in
the introduction, such a model is not applicable for an FAFR,
and hence, the corresponding methods cannot be applied. This
is why we turn to another model where the steering vector is
random, but we do not try to explicitly parameterize it in terms
of some specific parameters. The advantage of doing so is that
the model is general, and the analysis to be presented is suitable
for many problems. In other words, we do not try to identify the
reason why the steering vector is random; indeed, in most appli-
cations, this uncertainty can be due to many reasons, including
scattering around the source, propagation through an inhomo-
geneous medium, or uncalibrated or displaced sensors.

The paper is organized as follows. In Section II, we present
the model used through the paper. Section III considers max-
imum likelihood signal waveform estimation, while Bayesian
approaches are proposed in Section IV. Numerical simulations

are reported in Section V, and our conclusions are drawn in Sec-
tion VI.

II. DATA MODEL

Let us consider an -element array. Assuming narrowband
processing, the output of the array can be written as

(1)

where is the steering vector of interest, and is the corre-
sponding emitted signal. denotes the noise contribution (pos-
sibly including interferences). In the sequel, we make the fol-
lowing assumptions.

• We assume that is drawn from a complex Gaussian dis-
tribution with mean (which corresponds to the “nom-
inal” presumed steering vector) and a known covariance
matrix :

(2)

The covariance matrix captures the uncertainties in
the steering vector. In the satellite communications appli-
cation, models for the deformations of the reflector are
available. These models, along with extensive simulations,
allow the simulation of a large number of possible de-
formations, and therefore, we can obtain (through elec-
tromagnetic simulation tools) the associated spatial signa-
tures, from which an accurate estimate of can be made
available. We would like to stress that (2) provides a gen-
eral framework to work with and that it enables us to treat
a large number of problems.

• The noise component is a zero-mean, complex-valued
Gaussian process with known covariance matrix , i.e.,

In the satellite communications application, although fre-
quency reuse is present, adjacent spots will not share the
same frequency. Hence, for the spot of interest, interfer-
ences can only impinge from spots that are far apart; in
such a case, the feeds of the FAFR corresponding to the
spot of interest are likely not to receive much energy from
these interferences compared with the thermal noise. Even
so, one knows where this energy comes from, and there-
fore, auxiliary feeds can be used to obtain accurate esti-
mates of the interferences covariance matrix. Accordingly,
in some operating modes where no communications orig-
inate from the spot of interest, one may acquire the noise
covariance matrix. The main source of noise is, in fact, the
thermal white noise whose power can be accurately mea-
sured. However, in order to keep the analysis as general as
possible, we consider a general matrix .

Our goal here is to estimate the emitted waveform vector
from snapshots . Toward

this end, two approaches are proposed corresponding to two dif-
ferent assumptions for . First, is considered as a deterministic
vector, and a maximum likelihood (ML) approach is presented.
The second approach consists of assuming that is a random
vector with some a priori probability density function. In such
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a case, we successively examine a minimum mean-square error
(MMSE) and maximum a posteriori (MAP) approaches.

Before examining new approaches, it is worthwhile to make
the following observation. The most popular approach to
solving this problem is to use the minimum variance distortion-
less beamformer (MVDR). The latter amounts to maximizing
the output signal-to-interference plus noise ratio and is given,
up to a scaling factor, by

(3)

where stands for the principal eigenvector of the matrix
between braces. Note that the MVDR beamformer can be com-
puted as and are known.

III. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive the maximum likelihood estimator
(MLE) of . It will be shown that the latter corresponds
to a beamforming-like operation applied to the snapshots.
However, the weight vector depends on , which is unknown;
in other words, satisfies an implicit equation of the type

. In order to solve this problem, an iterative
procedure is proposed. As a first step toward deriving the ML
estimator, the probability density function of the observations

is required. For the sake of clarity, these
derivations have been deferred to Appendix A, and we refer to
this Appendix for details that would be omitted in the sequel.
First, note that

where is the conditional pdf, given is
the pdf of the steering vector of interest and where we used a
semicolon to stress that the pdf depends on . Using the previous
expression along with (27), it follows that

(4)

Therefore, the MLE of obeys the following equation:

(5)

which corresponds to beamformer-like data processing with
weight vector given by

(6)

where is the a posteriori mean. It should
be observed that the previous equation is meaningful; the ML
beamformer is, up to a scaling factor, given by times the
MMSE estimator of . It can also be noticed that when

, this beamformer converges (up to a scaling factor) to ,
which corresponds to the MVDR beamformer for .
Next, since and are jointly Gaussian, it follows that [27]

(7)

Accordingly, the a posteriori covariance matrix is given by

(8)

which yields the following expression for :

Tr
(9)

Unfortunately, depends on , which is unknown, and thus,
this beamformer cannot be computed directly from (9). In other
words, the ML problem amounts to an implicit equation of the
type . However, an iterative algorithm can be
employed in order to solve (5). Toward this end, note that

so that

where

(10)

denotes the sample covariance matrix. The previous relations
suggest the iterative scheme of Table I to estimate .

This scheme allows the recovery of the solution of the ML
problem. The algorithm requires approximately multipli-
cations/additions plus a matrix inversion at each iteration. The
algorithm is stopped whenever , where

in the simulations of Section V. Note that in
the case of small uncertainties, the ML solution should not be
far from the MVDR beamformer, and hence, initializing the
iterative scheme with the MVDR solution already provides a
good initial estimate, which prevents convergence problems. In-
deed, in the numerical results shown in Section V, we did not
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TABLE I
ITERATIVE SCHEME FOR COMPUTING THE

ML BEAMFORMER

encounter any convergence problem [we observed that conver-
gence is achieved within a few (two to ten) iterations].

IV. BAYESIAN APPROACHES

In this section, we consider a Bayesian approach in which is
considered to be a random vector we would like to estimate. For
the sake of convenience, we assume that is complex Gaussian,
with zero-mean and a covariance matrix equal to .

A. Approximate MMSE Estimation

First, we investigate a MMSE approach. The MMSE esti-
mator of can be written as [27]

(11)

where is the covariance matrix for a
given . In the previous equation, we used the fact that

is the MMSE estimate of for a given
. When is known, and are jointly Gaussian, and

therefore, the MMSE estimate of becomes . The
MMSE estimator is a beamformer whose weight vector has the
following expression:

(12)

Unfortunately, it appears that no exact expression is available
for the above integral, and one has to resort to some approxima-
tions; see, e.g., [20] for a similar discussion. Prior to that, a few

observations are in order. When the signal-to-noise ratio (SNR)
is large, or when is large or when there are high uncertain-
ties, the a posteriori probability will tend to be highly
concentrated around the a posteriori mean of the steering vector.
Under such conditions, the MMSE weight vector will approxi-
mately be proportional to . In contrast, when the
SNR is low and or is small, the a posteriori density will
be nearly equal to the a priori pdf, and therefore

(13)

The weight vector in (13) has also a nice interpretation. It cor-
responds to averaging, over the pdf of , the optimal weight
vector for a given . Therefore, it corresponds to a sensible ap-
proach. In either case (12) or (13), one needs to compute

(14)

where is either the a posteriori or the a priori density of
. In Appendix B, we show that this integral can be accurately

approximated by

(15)

where is the mean of (associated with ), and is
the corresponding covariance matrix, where and depend on

and . It appears rather difficult to derive the
mean and the covariance matrix of . Indeed, we get from
(7)

(16)

and therefore, is not obvious to obtain. In addition,
as mentioned above, a more practically interesting situation is
when the SNR is low or is small; under these conditions, the a
posteriori will approximately be the a priori density. Therefore,
we propose to compute an approximate MMSE beamformer
from (13). Using (15), it leads to

(17)

Note that it corresponds to a weighted sum of the optimal beam-
former in the absence of uncertainty and a term that depends
on the level of uncertainty. Finally, observe that in practice,
may not be known, and therefore, (17) cannot be implemented
directly. In order to remedy this problem, a simple solution is to
estimate the source power. The most intuitive and simple way
in practice is to set

(18)

which corresponds to the optimal source power estimate in the
absence of uncertainties. In case of small uncertainties, this es-
timate should remain quite accurate. In summary, the approx-
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imate MMSE weight vector is given by (17), where is re-
placed by its estimate in (18).

B. Maximum a Posteriori Estimation

Since the MMSE cannot be implemented directly and only
an approximation of it is available, we turn to the derivation of
the MAP estimator. The latter is obtained as the solution to the
following maximization problem:

(19)

Observing that

(20)

it follows that

(21)

Consequently, using arguments similar to those leading to the
ML estimator, the MAP estimator is also in a beamforming-like
form, where the weight vector is given by

Tr
(22)

where is the a posteriori correlation matrix given
and . The previous equation is very similar to that satisfied
by the ML weight vector [see (6)] except for the term in
the denominator. This additional term may induce some differ-
ences between the ML and the MAP estimator, especially at low
SNR. In order to obtain the MAP estimate, an iterative proce-
dure, similar to that proposed in Section III—see Table I—for
the ML estimator can be employed with the slight modification
mentioned above regarding . However, the latter quantity is
unknown. Similarly to what was done for the MMSE estimator,
we propose to replace, at each stage of the iterative scheme,
by an estimate, namely, . Therefore, the scheme of
Table I can be used with a single modification affecting the de-
nominator in the computation of .

C. Joint MAP Estimation of and

In the previous subsection, MAP estimation of only was
proposed. However, since both and are random (and
unknown), a possible approach is to estimate them jointly.
This is achieved by maximizing or, equivalently,

. Given the as-
sumptions made, this amounts to minimizing (see Appendix A
for details)

(23)

Differentiating w.r.t. yields

(24)

Inserting this value into , the MAP estimate of is obtained
by minimizing

(25)

This corresponds to an -dimensional minimization problem.
In order to solve it efficiently, first note that the gradient is easily
computed as

Therefore, computationally efficient gradient-based methods
can be used to minimize this function. However, a good initial
estimate is necessary to avoid convergence to local minima
and to avoid running too many iterations. An initial estimate
can be found by observing that cancels the second term of

. Additionally, for small , the minimizer of should be
close to . When the uncertainty increases, however, emphasis
should be placed on minimizing the first term of . This
is approximately equivalent to selecting as the principal
eigenvector of . Combining these two observations, we
choose as an initial guess for the projection of onto the
principal eigenvector of . In the numerical results to be
presented next, this choice turns out to be effective in that we
did not encounter numerical problems with minimizing .

V. NUMERICAL EXAMPLES

In this section, we provide numerical illustrations of the
performances of the four estimators proposed, namely, the
ML beamformer (9), implemented as in Table I, the approxi-
mate MMSE (17), and the MAP estimators. For comparison
purposes, we also display the performance of the MVDR
beamformer (3). We consider a FAFR where feeds are
used to form a spot. The matrix was computed through
electromagnetic simulations, taking into account various
kinds of deformations that can affect the paraboloid. In all
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Fig. 1. Output SINR versus SNR. N = 50 and UR = 0 dB.

simulations, the noise covariance matrix will be .
The source signal is generated as a random Gaussian process
with power . The number of snapshots is set to . We
define the uncertainty ratio and the SNR, respectively, as

UR
Tr

SNR

All estimators will be compared in terms of the output signal-to-
interference-plus-noise ratio (SINR). For each figure,
Monte Carlo simulations were run with a different drawn
from (2), and a weight vector was computed using the methods
presented above. For a generic weight vector , the SINR is
averaged and computed as

SINR

and is plotted in decibels (dB) in the figures. We examine the
performances of the proposed estimators versus the SNR and
the uncertainty ratio; see Figs. 1 and 2, respectively.

The following comments can be made from inspection of
these figures. The ML, MAP, and joint MAP beamformer are
seen to produce the most accurate estimates in nearly all sce-
narios, with the ML and joint MAP beamformers performing
slightly better. These two beamformers outperform the MVDR
beamformer, especially for high uncertainty ratio or high SNR.
For instance, at SNR dB, the improvement is around 1
dB for UR dB and 2 dB for UR dB. Similarly, for
UR dB, the improvement is around 1 dB for SNR supe-
rior to 2 dB. In case of small UR, the MVDR beamformer
performs similarly as these three methods. Observe that the ML
and joint MAP estimators provide very good output SINR, even
in short data samples or high UR. The approximate MMSE es-
timator provides an output SINR inferior to that of the ML and
MAP estimators. This result may be explained by the fact that
it approximates the a posteriori probability by the a

Fig. 2. Output SINR versus UR. N = 50 and SNR = 0 dB.

priori pdf . Therefore, it does not make use of the infor-
mation about brought by the data.

VI. CONCLUSION

In this paper, we considered the problem of estimating
a signal waveform when there exist uncertainties about the
spatial signature of interest, but at the same time, some a
priori information about these uncertainties is available. To
account for this information, a probability density function
was assumed for the random steering vector. This provides a
general framework that can accommodate many practical cases
of interest. In this preliminary study, we consider the case
where the interference plus noise covariance matrix is known.
Deterministic (i.e., maximum likelihood) as well as Bayesian
approaches were investigated. It was shown that they all entail
finding a beamformer. For the ML and MAP estimators, an
iterative scheme was proposed, whereas the approximate
MMSE beamformer is obtained in closed form. The joint MAP
estimator requires the minimization of an -D function. The
proposed methods were shown to provide accurate estimates,
especially the ML and joint MAP beamformers, even in the
presence of high uncertainties. A future direction of research
consists of deriving “adaptive” versions of these algorithms,
considering a possibly unknown noise covariance matrix .

APPENDIX A
DERIVATION OF THE PROBABILITY DENSITY FUNCTION OF THE

OBSERVATIONS

In this Appendix, we provide an expression for the pdf of the
observations that, in turn, will be used to derive the maximum
likelihood estimator. Toward this end, we can write

(26)

where is the conditional pdf for a given , whereas
denotes the a priori pdf of the steering vector of interest.
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The semicolon indicates that the pdf depends on . From the
assumptions made, the conditional pdf is given by

(27)

where stands for the determinant of matrix . By some
straightforward algebra, one can show that

(28)

with Tr so that

(29)

Next, for any vectors and in and any two positive
definite covariance matrices and , the following relation
is readily shown to hold:

with and . Using this
result along with the fact that

yields

Tr

(30)

which completes the derivation of the pdf of the observations.
Remark 1: An alternate derivation for the above expression

can be obtained as follows. Let
be the vector constructed by stacking the

columns of . Since and are independent Gaussian

vectors, it follows that is Gaussian distributed. Additionally,
observe that

and similarly

In the previous equations, stands for the conditional
mean given , whereas is the mean with respect to
(w.r.t.) the pdf of . Hence, is a Gaussian vector with mean

and covariance matrix . It follows
that its pdf is given by

(31)

APPENDIX B
APPROXIMATING THE INTEGRALS IN (12) AND (13)

In this Appendix, we provide an approximation for the
MMSE weight vector. Let be a real-valued random vector
with associated pdf , and let and denote its mean and
covariance matrix, respectively. Let us consider the problem of
calculating the following integral:

(32)

where is a real-valued scalar function of . Toward this
end, we can expand in a Taylor series around as

(33)

Therefore, neglecting high-order terms, we obtain

Tr (34)

where is the Hessian evaluated at . Consider now a complex-
valued circular random vector with mean and covariance
matrix , and assume we wish to compute

(35)

where is a real-valued scalar function of the
complex-valued vector . Applying the result (34) to

Re Im along with well-known results
on the derivatives with respect to complex-valued parameters,
it is straightforward to show that

Tr (36)



BESSON et al.: SIGNAL WAVEFORM ESTIMATION IN THE PRESENCE OF UNCERTAINTIES ABOUT THE STEERING VECTOR 2439

The previous result is now used to compute
with

(37)

and where is the th component of . The first and second-
order derivatives can be readily obtained as

(38)

where is a vector whose elements are all zero except the th,
which equals 1. Consequently

Tr
Tr

(39)

and hence

Tr (40)

Gathering the previous equation for in a single
vector results in

(41)

with

Tr

(42)
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