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Abstract—In radar and communication systems, there exist a 
large class of signals with constant modulus property, including 
BPSK, QPSK, LFM, and phase-coded signals. In this paper, 
we focus on the problem of joint constant modulus waveform 
estimation and interference suppression from signals received 
at an antenna array. Instead of seeking a compromise between 
interference suppression and output noise power reduction by 
the Capon method or utilizing the interference direction (ID) 
prior to place perfect nulls at the IDs and subsequently mini-
mize output noise power by the linearly constrained minimum 
variance (LCMV) beamformer, we devise a novel power ratio 
criterion, namely, interference-plus-noise-to-noise ratio (INNR) 
in the beamformer output to attain perfect interference nulling 
and minimal output noise power as in LCMV yet under the 
unknown ID case. A two-stage fractional program-based method 
is developed to jointly suppress the interferences and estimate 
the constant modulus waveform. In the first s tage, we formulate 
an optimization model with a fractional objective function to 
minimize the INNR. Then, in the second stage, another fraction-
constrained optimization problem is established to refine the 
weight vector from the solution space constrained by the INNR 
bound, to achieve approximately perfect nulls and minimum 
output noise power. Moreover, the solution is further extended 
to tackle the case with steering vector errors. Numerical results 
demonstrate the excellent performance of our methods.

Index Terms—Waveform estimation and interference sup-
pression (WEIS), Interference-plus-noise-to-noise ratio (INNR), 
Fractional programming, Constant modulus signal, Interference 
direction.

I. INTRODUCTION

Waveform estimation or extraction plays an important role
in the fields of array signal processing, including radar, sonar,
acoustics, astronomy, communications, and medical imaging,
and thus has received a lot of attention [1]-[10].

As one of the classic waveform estimation methods, the
Capon beamformer [11] adaptively selects the weight vector
to minimize its output power subject to a unit-gain con-
straint on the direction of the signal-of-interest (SOI) so that
the SOI does not suffer from any distortion. Although the
standard Capon beamformer may attain minimum variance
distortionless response (MVDR) on the SOI, the minimum
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output power metric-based objective function essentially seeks
a compromise between the interference suppression and output
noise power reduction. If the interference directions (IDs) are
known, the linear null constraints at the IDs can be introduced
into the Capon method to formulate the linearly constrained
minimum variance (LCMV) beamformer, achieving minimum
output noise power subject to perfect nulls at the IDs [4],
[6]. However, in practice, the SOI steering vector may not be
accurate due to direction-of-arrival (DOA) or array calibration
errors, and in this case, the aforementioned beamformers
may treat the SOI as an interference to suppress. To address
this issue, many robust beamforming methods have been
developed. For example, a robust Capon beamforming method
via diagonal loading [12] is presented in [13], where an opti-
mization problem on the steering vector is formulated to first
determine the Lagrange multiplier via nonlinear equation root
finding, and then obtain the accurate steering vector. Following
this work, a robust Capon beamformer with two constraints
is introduced in [14] to control the white noise gain; while
the total weighted power output of the array is minimized in
[15] under the constraint that the gain should exceed unity for
all array responses in a given ellipsoid, and the weights are
then calculated using the Lagrange multiplier method. In [16],
the robust beamforming problem is formulated as a second-
order cone program for worst-case performance optimization
(WCPO). In [17], with the Capon spectral estimator integrated
over a region separated from the desired signal direction, the
interference covariance matrix is reconstructed to establish a
more robust beamformer than the sample covariance matrix
counterpart. In [18], [19], two-sided mainlobe constraints are
enforced on the Capon method to enhance its robustness.
The resultant beamformer has the mathematical form of a
regularized semidefinite programming (SDP) [20] problem and
possesses superior robustness against arbitrary array model
errors, where the weight vector is determined from a high-
dimensional matrix with the help of spectral factorization.
In [21]-[25], quadratic or linear constraints are applied to
formulate convex optimization problems [22], which can then
be solved efficiently. In [26], two quadratic constraints are
constructed to ensure that the magnitude responses at the
arrival angles between two steering vectors exceed unity, and a
closed-form solution is derived for the corresponding problem
while the diagonal loading factor can be computed system-
atically. In [27], the DOA is modeled as a discrete random
variable with known a priori probability density function,
and a robust adaptive beamformer against DOA uncertainty is
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derived using the Bayesian approach. In [28], the difference
between the actual and presumed steering vectors is estimated
to correct the erroneous presumed steering vector and thus
the resultant method does not need any assumption on the
norm of the mismatch vector or its probability. In [29], robust
beamforming is achieved for both rank-one (point source)
and high-rank (scattered source/fluctuating wavefront) signal
models via explicit modeling of uncertainties in the desired
signal array response and data covariance matrix. Furthermore,
the minimum dispersion distortionless response beamformers
are formulated in [30]-[32] for the non-Gaussian signals,
including the lp norm, gradient projection, and phase-only
methods. The resultant non-convex quadratically constrained
quadratic programming problems from the robust adaptive
beamformers are tackled with the use of the quadratic matrix
inequality method [33]-[34]. For online implementation, in
[35]-[37], robust beamforming is realized using the recursive
least squares filter or constrained Kalman filter. Recently, the
deep learning (DL) techniques have been applied for beam-
forming [2], [38], huge numbers of sample covariance matrix-
beamformer weight pairs are involved as the training data
for a complex-valued convolutional neural network (CVCNN),
respectively.

In radar and communication systems, there exist a large
class of signals, exhibiting the constant modulus (CM) proper-
ty. For example, in radar systems, besides the linear frequency
modulation (LFM) signals, unimodularity or constant envelope
has been a standard requirement in transmit phased-code se-
quence design [39]-[42] to maximize the achievable sensitivity
and power efficiency through operating the power amplifiers
in saturation. The BPSK {±1} or QPSK {±1,±j} modulated
signals are widely used in communication systems. Therefore,
the CM property may be utilized to solve the CM beamforming
problem [43]-[45]. Although the beamformer output follows
the Gaussian distribution under the Gaussian noise assumption,
its magnitude (from absolute value operator) no longer follows
the Gaussian distribution. As a result, the Gaussian property
cannot be utilized by the CM-based beamforming methods
[43]-[45]. To estimate the SOI waveform using an antenna
array with uncertain steering vector, a Bayesian approach is
introduced in [46] to successively derive an approximate mini-
mum mean square error estimator and maximum a posteriori
estimator, whereas an expected least-squares (LS) strategy is
suggested in [47], resulting in a simple linear beamformer,
which often performs similarly to the maximum likelihood es-
timator in terms of mean square error (MSE) and outperform-
s conventional signal-to-interference-plus-noise-ratio (SINR)-
based approaches. The latter is also extended to minimize the
MSE between the estimated and unknown signal waveforms
via competitive beamforming approaches involving a robust
MSE measure [48], [49].

Recently, we address the robust adaptive beamforming
problem using the alternating direction method of multipliers
(ADMM) [50], [51], where the two-sided mainlobe constraints
or double constraints [52], [53] are adopted to improve the
robustness of the Capon beamformer. Different from [52],
[53], this paper focuses on the problem of constant modulus
waveform estimation and interference suppression via two-

stage fractional programming methods. The main contributions
of this paper are summarized as follows:
• We devise an optimization criterion based on the

Interference-plus-Noise-to-Noise Ratio (INNR) at the beam-
former output to achieve perfect nulling at the IDs and
minimum output noise power, which is analogous to LCMV
beamformer, yet under the unknown ID case.
• An efficient two-stage approach is developed. In the first

stage, we formulate an optimization model with a fractional
objective function to attain the INNR bound; whereas in
the second stage, another fraction-constrained optimization
problem is established to refine the weight vector from the
solution space constrained by the INNR bound, attaining
deeper notches at the IDs and smaller output noise power than
the first stage.
• Our framework is further extended to handle steering

vector uncertainties, where the introduced bound variables for
the numerator and denominator are utilized to breakdown the
complicated problem into easily tackled subproblems.

The rest of this paper is organized as follows. The waveform
estimation and interference suppression problem under known
steering vector is formulated in Section II. The corresponding
solution is derived in Section III, whereas its robustification
against steering vector errors is presented in Section IV. In
Section V, simulation results are provided to evaluate the
performance of the developed algorithms. Finally, conclusions
are drawn in Section VI.

Notation: Vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. ‖ · ‖ denotes
the Frobenius norm, while (·)T , (·)∗, (·)H and (·)−1 are the
transpose, conjugate, conjugate transpose and matrix inverse
operators, respectively. 0m×n and In represent the m×n zero
matrix and n× n identity matrix, respectively. <{} and ={}
return the real and imaginary parts with j =

√
−1. | · |, and

∠{·} are the magnitude and phase of a complex-valued scalar,
respectively.

II. PROBLEM FORMULATION

The received N -snapshot matrix X ∈ CM×N by an antenna
array with M sensors can be expressed as:

X = a(θ0)α0s
T
0 +

I∑
i=1

a(θi)s
T
i + N, (1)

where α0s0 ∈ CN×1 is a constant modulus SOI with s-
teering vector a(θ0) ∈ CM×1 at the direction θ0, com-
plex amplitude α0, and unimodular waveform vector s0 =
[s0(1), s0(2), ..., s0(N)]T (i.e., |s0(n)| = 1, n = 1, · · · , N );
and the ith interference signal si = [si(1), si(2), ..., si(N)]T

from the direction θi can be either constant modulus or not,
for i = 1, · · · , I . In addition, N ∈ CM×N is the additive
white Gaussian noise matrix with independent and identically
distributed entries following CN (0, σ2).

To extract the waveform s0, we may use the well-known
Capon method (or MVDR beamformer) [11] with the con-
straint wHa(θ0) = 1, which designs a weight vector w ∈
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CM×1 to attain the minimum output power, i.e.,

min
w

wHRw

s.t. wHa(θ0) = 1, (2)

where R = E{XXH} is the covariance matrix of X, and is
replaced by the sample covariance matrix 1

NXXH in practice.
The power of the Capon beamformer output wHX with the

constraint wHa(θ0) = 1 can be written as:

wHRw = |α0|2E{|s0(n)|2}

+
∑
i

|wHa(θi)|2E{|si(n)|2}+ σ2wHw, (3)

where we can see that the first term |α0|2E{|s0(n)|2} is
unrelated to w. However, the second and third components
depend on w. As a result, the minimum output power metric-
based Capon beamformer actually tries to reach a compromise
between

∑
i |wHa(θi)|2E{|si(n)|2}T (interference suppres-

sion) and σ2wHw (output noise power reduction), and thus it
may not effectively suppress the interferences.

If we know the IDs {θi}Ii=1, the constraints {wHa(θi) =
0}Ii=1 can be introduced into the Capon beamformer where
the perfect nulls are placed at the IDs, corresponding to the
LCMV beamformer [4], [6]. That is, both minimum output
noise power and maximum SNR subject to the constraints of
perfect nulls at the IDs and unit gain at the direction of SOI
are attained via the following formulation:

min
w

wHRw

s.t. wHa(θ0) = 1,

wHa(θi) = 0, i = 1, · · · , I. (4)

However, in practice, the IDs may be unknown but only the
direction of SOI is available. To address this challenge, this
paper first utilizes the INNR in the beamformer output:∑

i |wHa(θi)|2E{|si(n)|2}+ σ2wHw

σ2wHw

=

∑
i |wHa(θi)|2E{|si(n)|2}

σ2wHw
+ 1. (5)

Minimizing (5) is equivalent to minimizing the interference
power to the noise power, i.e.,∑

i |wHa(θi)|2E{|si(n)|2}
σ2wHw

, (6)

where the minimum is attained at wHa(θi) = 0 for i =
1, · · · , I . In other words, the INNR minimization criterion
implies wHa(θi) = 0. Through an intuition, we adopt INNR
to approximate perfect interference nulling of the LCMV
beamformer even when the IDs are unknown.

To realize this criterion, the expected value is approximated
based on finite array snapshots. On the one hand, under
Gaussian noise assumption, we may still use σ2wHw to
represent the denominator. On the other hand, the numerator
of (5) is replaced by the empirical power of the difference of
the beamformer output and the constant modulus SOI:

1

N
‖
∑
i

wHa(θi)s
T
i + wHN‖2 =

1

N
‖wHX− α0s

T
0 ‖2, (7)

where the beamformer output

wHX = α0s
T
0 +

∑
i

wHa(θi)s
T
i + wHN, (8)

and the unit-gain constraint wHa(θ0) = 1 are applied.
Thus, the practical realization of (5) becomes:

(wHX− α0s
T
0 )(wHX− α0s

T
0 )H

σ2wHw
, (9)

which is equivalent to

(wHX− α0s
T
0 )(wHX− α0s

T
0 )H

wHw
. (10)

The expected value of (10) is given by:

E

{
(wHX− α0s

T
0 )(wHX− α0s

T
0 )H

wHw

}
=σ2 +

∑
i |wHa(θi)|2E{|si(n)|2}

wHw
, (11)

where the minimum is still achieved at wHa(θi) = 0 for i =
1, · · · , I . Hence we also refer (10) to as the INNR criterion.

Based on the aforementioned discussion, we formulate the
following optimization problem via INNR minimization to
estimate the constant modulus SOI and suppress the interfer-
ences:

min
w,α0,s0

(wHX− α0s
T
0 )(wHX− α0s

T
0 )H

wHw

s.t. wHa(θ0) = 1

|s0(n)| = 1, n = 1, · · · , N. (12)

From (12), it can be seen that α0 depends on {w, s0}. When
{w, s0} is known, α0 is given by:

α0 =
wHXs∗0
N

, (13)

which implies that wHXs∗0s
T
0 XHw

N2 is the power estimate at the
direction θ0. Substituting (13) into (12) yields an optimization
problem with only the variables {w, s0} (see Appendix A for
the detailed derivation of the objective function):

min
w,s0

wHX(IN − 1
N s∗0s

T
0 )XHw

wHw

s.t. wHa(θ0) = 1

|s0(n)| = 1, n = 1, · · · , N. (14)

However, if any vector w satisfies

wHa(θ0) = 1

wHa(θi) = 0, i = 1, · · · , I, (15)

from the mathematical expectation view, it will be the solution
of (14) and can recover the waveform s0 and attain the
objective function bound (i.e., INNR bound). Since I+1 < M ,
i.e., the number of linear constraints on w is less than the
dimensionality of w, there exists many solutions to (14),
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all of which can recover the SOI accurately, and suppress
the interferences effectively. Therefore, similar to the LCMV
beamformer, which minimizes the output noise power under
the constraints of perfect nulls on the IDs and unit-gain
on the SOI, we consider the following fraction-constrained
optimization problem (i.e., the second stage) to minimize the
beamformer output noise power (σ2wHw, where the unknown
constant σ2 is removed) subject to the inherited INNR bound
from (14) (i.e., the first stage):

min
w,s0

wHw

s.t.
wHX(IN − 1

N s∗0s
T
0 )XHw

wHw
≤ σ̂2

wHa(θ0) = 1

|s0(n)| = 1, n = 1, · · · , N, (16)

where σ̂2, i.e., the objective function value of (14), is provided
as the INNR bound of wHX(IN− 1

N s∗0s
T
0 )XHw

wHw
in the second

stage. Thus, with the INNR bound constraint it is ensured that
the second stage essentially inherits the minimal INNR from
the first stage. According to the mathematical expectation, (16)
may further refine the weight vector from the solution space
constrained by the INNR bound σ̂2 . Therefore, the synergy
of both stages may achieve perfect interference nulling and
minimum output noise power as the LCMV beamformer yet
under the unknown ID case.

Now we discuss another physical meaning of (16). Let
w1 and w2 denote the obtained weight vectors by (14) and
(16), respectively. According to the objective function of (14)
and the constraint in (16), we have

∑
i |w

H
2 a(θi)|2E{|si(n)|2}

wH2 w2
≤∑

i |w
H
1 a(θi)|2E{|si(n)|2}

wH1 w1
. Moreover, according to the objective

function in (16) and because there is no energy constraint on
w (i.e.,wHw) in (14), we have wH

2 w2 ≤ wH
1 w1, and thus∑

i |wH
2 a(θi)|2E{|si(n)|2} ≤

∑
i |wH

1 a(θi)|2E{|si(n)|2}.
In other words, (16) will generate deeper notch levels, and
higher output SINR, signal-to-interference-ratio (SIR) and
SNR than (14).

Consequently, our task is to determine the waveform s0, and
weight vector w with a two-stage procedure, i.e., implement
(14) to compute σ̂2 and then solve (16) to find w and s0.

III. SOLUTIONS TO (14) AND (16)

Both (14) and (16) form the complete Waveform Estimation
and Interference Suppression (WEIS) algorithm with known
accurate steering vector. In this section, we first derive the
solution to (14), and then (16) for the WEIS algorithm.

A. Stage 1: Solution to (14)

For (14), variables s0 and w can be updated via an alternat-
ing optimization (AO) procedure, i.e., update s0(k) with gotten
w(k − 1) from the latest (k − 1)th iteration, and then update
w(k) with the newly obtained s0(k) in the kth iteration, i.e.,

s0(k) = arg min
s0

wH(k − 1)X(IN − 1
N s∗0s

T
0 )XHw(k − 1)

wH(k − 1)w(k − 1)

= arg min
s0

wH(k − 1)XXHw(k − 1)

wH(k − 1)w(k − 1)

+
− 1
NwH(k − 1)Xs∗0s

T
0 X

Hw(k − 1))

wH(k − 1)w(k − 1)

= arg min
s0

− 1
N ‖w

H(k − 1)Xs∗0‖2

wH(k − 1)w(k − 1)

= arg max
s0

‖wH(k − 1)Xs∗0‖2

s.t. |s0(n)| = 1, n = 1, · · · , N

= ej∠(wH(k−1)X), (17)

w(k) = arg min
w

wHX(IN − 1
N s∗0(k)sT0 (k))XHw

wHw

= arg min
w

wHXXHw

wHw
−

1
N ‖w

HXs∗0(k)‖2

wHw
s.t. wHa(θ0) = 1. (18)

The AO procedure is repeated until a given Stopping Criterion
(SC) (see Exp. 1 for detailed discussion) is reached.

According to the equivalent max operation in the objective
function of (17), it is essentially to pursuit the maximum
correlation between wHX and s∗0. Therefore, in (18) the first
component essentially minus a maximum (second) component.
Therefore, the iterations with (17) and (18) enable the objec-
tive function in (14) to be nonincremental with the iterations,
and thus the AO procedure is convergent [58] (or see Appendix
E for details).

As (17) has a closed-form solution for s0, we focus on
deriving the solution to (18) here. First we simplify (18) as:

min
w

wHR1(k)w

wHw
s.t. wHa(θ0) = 1, (19)

where the matrix:

R1(k) = X(IN −
1

N
s∗0(k)sT0 (k))XH ∈ CM×M , (20)

is introduced for presentation simplicity purpose.
Introducing a scalar variable η to ensure that (ηw)H(ηw) =

1 and thus eliminate the fraction, we rewrite (19) as:

min
w,η

(ηw)HR1(k)(ηw)

s.t. (ηw)H(ηw) = 1

(ηw)Ha(θ0) = η. (21)

To facilitate the solution derivation, we define two augment-
ed vectors:

w̄ = [(ηw)T η]T∈ C(M+1)×1, (22)

ā(θ0) = [aT (θ0) − 1]T∈ C(M+1)×1, (23)
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to represent (21) with one vector variable w̄:

min
w̄

w̄HR̄1(k)w̄

s.t. w̄H ĪM+1w̄ = 1

w̄H ā(θ0) = 0, (24)

where the augmented matrices are:

R̄1(k) =

[
R1(k) 0M×1

01×M 0

]
∈ C(M+1)×(M+1), (25)

ĪM+1 =

[
IM 0M×1

01×M 0

]
∈ C(M+1)×(M+1). (26)

Note that the challenging fraction is removed at the cost
of introduction of the optimization variable η. Although the
dimensionality increase of both the augmented optimization
variable w̄ and matrices {R̄1(k), ĪM+1} enlarges the scale of
the optimization problem, (24) is equivalent to (19). Therefore,
we may solve the simpler (24) to find the solution to (19).

To tackle the nonconvex constraint w̄H ĪM+1w̄ = 1, we
consider introducing a consensus variable v̄ ∈ C(M+1)×1:

w̄ = v̄, (27)

to separate the two constraints into two groups, where only
the constraint w̄H ĪM+1w̄ = 1 associates with the objective
function so that the resultant subproblem may be readily
tackled, i.e.,

min
w̄,v̄

w̄HR̄1(k)w̄

s.t. w̄H ĪM+1w̄ = 1

w̄ = v̄

v̄H ā(θ0) = 0. (28)

With (28), we construct an augmented Lagrangian as:

L1 (w̄, v̄,λ) = w̄HR̄1(k)w̄ + <(λH (w̄ − v̄)) +
ρ

2
‖w̄ − v̄‖2

s.t. w̄H ĪM+1w̄ = 1

v̄H ā(θ0) = 0, (29)

where λ∈ C(M+1)×1 is the Lagrange multiplier vector corre-
sponding to the consensus constraint in (27), and ρ > 0, called
(user-defined) step size or augmented Lagrangian parameter in
ADMM [50], is the penalty parameter on the consensus error
(CE). Then, we apply the ADMM [50], [51] to solve (29) via
the following iterative steps.

Step A1: Update v̄(t+ 1) with given {w̄(t),λ(t)}:

v̄(t+ 1) = arg min
v̄
L1 (w̄(t), v̄,λ(t))

s.t. v̄H ā(θ0) = 0, (30)

where t denotes the iteration index.
Completing the square and ignoring the constant terms, we

simplify (30) into:

min
v̄
‖v̄ − ṽ(t+ 1)‖2

s.t. v̄H ā(θ0) = 0, (31)

where

ṽ(t+ 1) = w̄(t) +
λ(t)

ρ
∈ C(M+1)×1, (32)

is introduced for presentation simplicity. Then, the solution to
(31) is given by:

v̄(t+ 1) = − āH(θ0)ṽ(t+ 1)

āH(θ0)ā(θ0)
ā(θ0) + ṽ(t+ 1). (33)

Step A2: Update w̄(t+ 1) with given {v̄(t+ 1),λ(t)} via
solving (see Appendix B for details):

w̄(t+ 1) = arg min
w̄

L1 (w̄, v̄(t+ 1),λ(t)) (34)

s.t. w̄H ĪM+1w̄ = 1.

Step A3: Update λ(t+ 1) with given {w̄(t+ 1), v̄(t+ 1)}:

λ(t+ 1) = λ(t) + ρ (w̄(t+ 1)− v̄(t+ 1)) . (35)

Steps A1) to A3) are repeated until a given SC is reached.
Once w̄(t + 1) is computed from the ADMM procedure,

we obtain w(k) via throwing out the last element of w̄(t+1),
i.e.,

w(k) =
1

w̄M+1
[w̄1, w̄2, ..., w̄M ]T , (36)

where w̄m is the mth element of w̄(t+1) for m = 1, · · · ,M+
1. Completing AO procedure, we insert w(k) and s0(k) into
the objective function of (14) to yield the INNR bound σ̂2:

σ̂2 =
wH(k)X(IM − 1

N s∗0(k)sT0 (k)XHw(k)

wH(k)w(k)
, (37)

as the input of Stage 2.
We summarize the aforementioned procedure for INNR

bound computation in Stage 1 of WEIS (WEIS-S1) in Fig. 1.

B. Stage 2: Solution to (16)
As in Stage 1, we solve (16) with an AO procedure:

update s0(k) using (17), and then update w(k) via solving
the following subproblem:

min
w

wHw

s.t.
wHR1(k)w

wHw
≤ σ̂2

wHa(θ0) = 1, (38)

where R1(k) is defined in (20). The AO procedure is repeated
until a given SC is reached. Similarly, here we focus on the
solution derivation of (38).

Since the matrix R1(k) is semidefinite positive (see Ap-
pendix A for details), it can be decomposed as R1(k) =
UkU

H
k . Then, introducing two auxiliary vectors:

g = wHUk∈ CM×1, (39)

h = w∈ CM×1, (40)

we transform (38) into the following equivalent problem:

min
w,g,h

wHw

s.t.
‖g‖2

‖h‖2
≤ σ̂2

g = wHUk

h = w

wHa(θ0) = 1. (41)
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With (41), we construct another augmented Lagrangian:

L2 (w,g,h,λg,λh)

= wHw + <(λHg
(
g −wHUk

)
) +

ρ

2
‖g −wHUk‖2

+ <(λHh (h−w)) +
ρ

2
‖h−w‖2

s.t.
‖g‖2

‖h‖2
≤ σ̂2

wHa(θ0) = 1, (42)

where λg∈ CM×1 and λh∈ CM×1 are the Lagrange multiplier
vectors corresponding to the equality constraints g = wHUk

and h = w, respectively, and ρ > 0 is a user-defined penalty
parameter on the CE.

Then, based on the ADMM [50], [51], we solve (42) via
the following iterative steps.

Step B1: Update w(t + 1) with given
{g(t),h(t),λg(t),λh(t)} via solving:

min
w

L2 (w,g(t),h(t),λg(t),λh(t))

s.t. wHa(θ0) = 1, (43)

the solution to which is given by:

w(t+ 1) = ((
2

ρ
+ 1)IM + UkU

H
k )−1(r +

γ∗

2
a(θ0)), (44)

where

r = Uk(g(t) +
λg(t)

ρ
)H + h(t) +

λh(t)

ρ
∈ CM×1, (45)

γ =
2− 2rH(( 2

ρ + 1)IM + UkU
H
k )−1a(θ0)

aH(θ0)(( 2
ρ + 1)IM + UkUH

k )−1a(θ0)
∈ C. (46)

Step B2: Update g(t+ 1) and h(t+ 1) with given {w(t+
+1),λg(t),λh(t)} via solving the following subproblem (see
Appendix C for details):

min
g,h

L2 (w(t+ 1),g,h,λg(t),λh(t)) ,

s.t.
‖g‖2

‖h‖2
≤ σ̂2. (47)

Step B3: Update λg(t+1) and λh(t+1) with given {w(t+
1),g(t+ 1),h(t+ 1)}:

λg(t+ 1) = λg(t) + ρ
(
g(t+ 1)−wH(t+ 1)Uk

)
(48)

λh(t+ 1) = λh(t) + ρ (h(t+ 1)−w(t+ 1)) . (49)

Steps B1) to B3) are repeated until a given SC is reached.
Now, the complete derivation of the WEIS method is

finished. Here we give a block diagram in Fig. 1 for the
complete procedure to show the inputs and outputs of each
block in all stages (see detailed SC1-SC4 discussion in Exp.1).

IV. EXTENSION TO INACCURATE STEERING VECTOR

In this section, we tackle the Waveform Estimation and
Interference Suppression problem (under inaccurate steering
vector case) via Robust beamforming (named as WEIS-R
algorithm). Similar to [15], we assume that the uncertainty
of the steering vector a(θ0) is contained in an ellipsoid, i.e.,
{a(θ0) ∈ Au + ā, ‖u‖ ≤ 1}, where ā and A are the

Stage2 of WEIS 
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Input3: 
0s , 2̂  from Stage1; X , ( )0a  , 0k = , SC3 for AO2; 

1k k= + ; Update ( )0 ks  using ( )17 ; 

Input4: ( )0g , ( )0h , ( )0g
, ( )0h

; SC4 for ADMM procedure; 

Update ( )kw using ( ) ( )43 49− ; 

Output4: ( )kw  

SC3 for AO2? 

Output3: w ,
0s  

Input1: X , ( )0a  , ( )0w , 0k = , SC1 for AO1; 

1k k= + ; Update 
0( )ks  using ( )17 ; 

Input2:  , ( )0 ks , ( )0w , ( )0 , SC2 for ADMM procedure; 

Update ( )kw using ( ) ( )30 36− ; 

Output2: ( )kw  

SC1 for AO1? 

Output1: ( )0 ks , 2̂  

Fig. 1: Block diagram of WEIS algorithm.

ellipsoid center and configuration matrix, respectively. Thus,
the constraint on w is given by [15]:

‖AHw‖ ≤ |āHw| − 1, (50)

and the waveform estimation and interference suppression
problem under the inaccurate steering vector case is formu-
lated as:

min
w,s0

wHX(IN − 1
N s∗0s

T
0 )XHw

wHw

s.t. ‖AHw‖ ≤ |āHw| − 1

|s0(n)| = 1, n = 1, · · · , N. (51)

Similar to (14), s0 and w in (51) are optimized alternately.
Since the subproblem on s0 can be solved in a closed form
(see (17) for details), we focus on the subproblem on w:

min
w

wHR1(k)w

wHw
s.t. ‖AHw‖ ≤ <(āHw)− 1

=(āHw) = 0, (52)

where R1(k) is defined in (20), and <{.} and ={.} operators
are introduced to avoid the phase ambiguity of the solutions
(see [15] for details).

Note that both the numerator and denominator in the objec-
tive function of (52) are functions of w. To decouple them,
the following equality constraints with auxiliary variables
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{c ∈ CM×1,d ∈ CM×1, q ∈ <, p ∈ <} are introduced:

c = R
1
2
1 (k)w, (53)

d = w, (54)

q = ‖c‖2, (55)

p = ‖d‖2. (56)

Employing q = ‖c‖2 and p = ‖d‖2, the objective function
of the optimization problem becomes q

p with the constraints
q = ‖c‖2 and p = ‖d‖2. In this case, although the introduced
constraints simplify the objective function, the resultant prob-
lem from them is still hard to solve. Moreover, we relax the
two constraints as ‖c‖2 ≤ q and ‖d‖2 ≥ p. It is easily found
that the minimum of q

p is reached at the lower and upper
bounds of the numerator and denominator, respectively, i.e.,
q = ‖c‖2 and p = ‖d‖2. Therefore, the constraint relaxation
still ensures the equivalence with the original problem. Finally,
we introduce q = q̄ and p = p̄ to decouple the objective
function q

p and the constraints ‖c‖2 ≤ q and ‖d‖2 ≥ p. In
doing so, (52) is transformed to:

min
w,p,q,p̄,q̄,c,d

q̄

p̄

s.t. c = R
1
2
1 (k)w

d = w

‖c‖2 ≤ q
‖d‖2 ≥ p
q = q̄

p = p̄

‖AHw‖ ≤ <(āHw)− 1

=(āHw) = 0. (57)

Then, its augmented Lagrangian is constructed as

L3(w, p, q, p̄, q̄, c,d, λ, κ, ξ, ζ) =
q̄

p̄

+ λ(q − q̄) +
ρ

2
|q − q̄|2 + κ(p− p̄) +

ρ

2
|p− p̄|2

+ <{ξH(c−R
1
2
1 (k)w)}+

ρ

2
‖c−R

1
2
1 (k)w‖2

+ <{ζH(d−w)}+
ρ

2
‖d−w‖2

s.t. ‖c‖2 ≤ q
‖d‖2 ≥ p
‖AHw‖ ≤ <(āHw)− 1

=(āHw) = 0, (58)

where {λ ∈ <, κ ∈ <, ξ ∈ CM×1, ζ ∈ CM×1} are the
Lagrange multipliers corresponding to the constraints q = q̄,
p = p̄, c = R

1
2
1 (k)w, and d = w, respectively, and ρ > 0 is

the user-defined penalty parameter.
Based on the ADMM [50], [51], we solve (58) via the

following iterative steps.
Step C1: Update {w(t+ 1), p̄(t+ 1), q̄(t+ 1)} with given

{p(t), q(t), c(t),d(t), λ(t), κ(t), ξ(t), ζ(t)} by solving:

min
w,p̄,q̄

L3(w, p(t), q(t), p̄, q̄, c(t),d(t), λ(t), κ(t), ξ(t), ζ(t))

s.t. ‖AHw‖ ≤ <(āHw)− 1

=(āHw) = 0, (59)

which can be divided into two subproblems. One only involves
{p̄, q̄}:

min
p̄,q̄

q̄

p̄
+
ρ

2
(q̌(t+ 1)− q̄)2 +

ρ

2
(p̌(t+ 1)− p̄)2, (60)

and another is related to only w:

min
w
‖c̄(t+ 1)−R

1
2
1 (k)w‖2 + ‖d̄(t+ 1)−w‖2

s.t. ‖AHw‖ ≤ <(āHw)− 1

=(āHw) = 0, (61)

where the squares are completed and the constant term is
ignored, and

q̌(t+ 1) = q(t) +
λ(t)

ρ
∈ <, (62)

p̌(t+ 1) = p(t) +
κ(t)

ρ
∈ <, (63)

c̄(t+ 1) = c(t) +
ξ(t)

ρ
∈ CM×1, (64)

d̄(t+ 1) = d(t) +
ζ(t)

ρ
∈ CM×1. (65)

Here (61) is solved via the CVX toolbox [54]; whereas we
solve (60) via the following procedure. Partial differentiating
(60) with respect to q̄ and p̄ yields

1

p̄
+ ρ(q̄ − q̌(t+ 1)) = 0 =⇒ q̄ = q̌(t+ 1)− 1

ρp̄
, (66)

− q̄

p̄2
+ ρ(p̄− p̌(t+ 1)) = 0. (67)

Inserting (66) into (67), we obtain:

ρ2p̄4 − ρ2p̌(t+ 1)p̄3 − ρq̌(t+ 1)p̄+ 1

ρp̄3
= 0, (68)

where its four roots are given by {p̄1, p̄2, p̄3, p̄4} (via MAT-
LAB function “roots”). Inserting them into q̄ = q̌(t+ 1)− 1

ρp̄

yields {q̄1, q̄2, q̄3, q̄4}. From the four pairs {p̄i, q̄i}4i=1, we pick
the real pair with the smallest objective function value of (60),
denoted as {p̄(t+ 1), q̄(t+ 1)}.

Step C2: Update {p(t+1), q(t+1), c(t+1),d(t+1)} with
given {w(t + 1), p̄(t + 1), q̄(t + 1), λ(t), κ(t), ξ(t), ζ(t)} by
solving (see Appendix D for detailed derivation)

min
p,q,c,d

L3(w(t+ 1), p, q, p̄(t+ 1), q̄(t+ 1), c,d,

λ(t), κ(t), ξ(t), ζ(t))

s.t. ‖c‖2 ≤ q
‖d‖2 ≥ p. (69)
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Step C3: Update {λ(t+1), κ(t+1), ξ(t+1), ζ(t+1)} with
given {w(t+ 1), p(t+ 1), q(t+ 1), p̄(t+ 1), q̄(t+ 1), c(t+ 1),
d(t+ 1)}:

λ(t+ 1) = λ(t) + ρ(q(t+ 1)− q̄(t+ 1)), (70)
κ(t+ 1) = κ(t) + ρ(p(t+ 1)− p̄(t+ 1)), (71)

ξ(t+ 1) = ξ(t) + ρ(c(t+ 1)−R
1
2
1 (k)w(t+ 1)), (72)

ζ(t+ 1) = ζ(t) + ρ(d(t+ 1)−w(t+ 1)). (73)

Steps C1) to C3) are repeated until a given SC is reached.
We summarize the aforementioned procedure in Stage 1 of
WEIS-R in Fig. 2.

Similar to (14), (51) helps us to determine the INNR bound
σ̂2 accurately, but it may not suppress the output noise power
sufficiently. Therefore, we construct the following model to
further reduce the output noise power with σ̂2:

min
w,s0

wHw

s.t.
wHX(IN − 1

N s∗0s
T
0 )XHw

wHw
≤ σ̂2

‖AHw‖ ≤ <(āHw)− 1

=(āHw) = 0

|s0(n)| = 1, n = 1, · · · , N, (74)

which may be solved via replacing the constraint wHa(θ0) =
1 in (16) of the WEIS with ‖AHw‖ ≤ <(āHw) − 1 and
=(āHw) = 0 (whereas other steps are the same as Stage
2 of WEIS). Thus, (51) and (74) form the complete WEIS-
R method. Here we give a block diagram in Fig. 2 for the
complete procedure to show the inputs and outputs of each
block in all stages of the WEIS-R method (see detailed SC5-
SC8 discussion in Exp. 3).

V. SIMULATION RESULTS

Computer simulations are conducted to assess the perfor-
mance of the proposed methods. We consider a uniform linear
antenna array with half-wavelength inter-element spacing. In
addition, we set the transmit waveform s0 and the interference
{si} as constant modular signals with random phases, and
the additive noise is assumed to be a zero-mean circularly
symmetric complex Gaussian random process with variance
δ2 at each antenna. To compare the proposed methods with
their counterparts, we compute the corresponding normalized
mean square error (NMSE) based on L = 100 Monte Carlo
runs as:

NMSE =
1

L

L∑
l=1

‖ŝ0(l)− s0(l)‖2

‖s0(l)‖2
, (75)

where s0(l) and ŝ0(l) are the true and estimated waveforms
in the lth Monte Carlo run, respectively.

A. Performance of WEIS Algorithm
Experiment 1. Convergence Performance and SC Setting: In

this subsection, we explore the convergence performance and
SCs for the WEIS algorithm. Here we set the direction of SOI
as θ0 = 0◦, and the DOAs of two interferences to be ±60◦. In

Stage 2 of WEIS-R 
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Fig. 2: Block diagram of WEIS-R algorithm
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Fig. 3: Convergence performance of WEIS-AO in Exp. 1.

addition, the sensor number is M = 10, and snapshot number
is N = 200. Meanwhile, the input SNR is fixed at 15dB but
the SIR varies from −10dB to 18dB. For WEIS-S1, the penalty
parameter is set as ρ = 0.05, and w is initialized using the
MVDR beamformer; whereas the output {s0, σ̂

2} of WEIS-S1
and ρ = 0.1 are used for WEIS-S2. Other parameters, such
as auxiliary variables and Lagrange multipliers, are initialized
randomly for the two stages.

Note that here we set sufficiently large numbers of iter-
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Fig. 5: Power estimation and waveform NMSE in Exp. 1.

ations, namely KS1
AO = 500 and TS1

ADMM = 500 (they are
not the SC) for AO and ADMM procedures of WEIS-S1,
respectively, to observe the convergence behaviour; whereas
KS2

AO = 100 and TS2
ADMM = 2000 (they are not the SC) are

employed for WEIS-S2.
For AO, we first compute the objective function value

(OFV) wH(k)X(IN− 1
N s∗0(k)sT0 (k))XHw(k)

wH(k)w(k)
, the difference of suc-

cessive OFVs (DOFVs) |w
H(k)X(IN− 1

N s∗0(k)sT0 (k))XHw(k)

wH(k)w(k)
−

wH(k−1)X(IN− 1
N s∗0(k−1)sT0 (k−1))XHw(k−1)

wH(k−1)w(k−1)
| for WEIS-S1, and

OFVs wH(k)w(k) and DOFVs |wH(k)w(k) − wH(k −
1)w(k − 1)| for WEIS-S2, respectively. Then, we calculate
the progress errors (PEs) { 1

M ‖w(k)−w(k− 1)‖, 1
N ‖s0(k)−

s0(k− 1)‖} of {w(k), s0(k)} in successive AO iterations for
WEIS-S1 and WEIS-S2. In addition, we compute the CEs

1
M+1‖w̄(t)− v̄(t)‖ and DOFVs |w̄H(t)R̄1(k)w̄(t)−w̄H(t−
1)R̄1(k)w̄(t − 1)| for the ADMM procedure of the WEIS-
S1 (WEIS-S1-ADMM) with different k ∈ {50, 100, · · · , 500}
since R̄1(k) is related to k; whereas the CEs 1

M+1‖g(t) −
wH(t)Uk‖ and DOFVs |wH(t)w(t) − wH(t − 1)w(t − 1)|
are computed for the ADMM procedure of WEIS-S2 (WEIS-
S2-ADMM) with different k ∈ {10, 20, · · · , 100}.

We plot the values of OFVs, DOFVs, PEs of {s0,w} in
AO procedure versus iteration number (IN) in Figs. 3(a) to
(d) under different SIRs, respectively. For SIR=10dB, we plot
the CEs and DOFVs of ADMM procedure versus IN in Figs.
4(a) and (b) under different values of k (IN of AO) for WEIS-
S1 and WEIS-S2, respectively. We observe that: i) all the
OFVs, DOFVs, PEs of {w(k), s0(k)} basically decrease with
the increase of INs under different input SIRs; ii) for WEIS-
S1, upon convergence, all the DOFVs are less than 10−15.68
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Fig. 6: SOI waveform estimation results in Exp. 1.

, and the PEs of w(k) and s0(k) remain below 10−9.84 and
10−11.65, respectively; iii) for WEIS-S2, all the DOFVs upon
convergence are less than 10−15.05, and the PEs of w(k) and
s0(k) remain below 10−15.06 and 10−16.79, respectively. While
from the ADMM results in Fig. 4, we see that: i) both the
CEs and DOFVs exhibit the decreasing and converging trend
at different outer AO iterations; ii) in ADMM procedure of
WEIS-S1, the maximum CEs and DOFVs upon convergence
are not larger than 10−5.6 and 10−5.3, respectively; and iii)
in ADMM procedure of WEIS-S2, the maximum CEs and
DOFVs upon convergence are not larger than 10−15.93 and
10−14.48, respectively.

Based on the aforementioned discussion, we consider the
following SC settings for the four cycles of Fig. 1: i) for
AO1 of WEIS-S1, SC1 is: the values of DOFVs, PEs of
s0, and PEs of w being below 10−15, 10−11, and 10−9,
respectively; otherwise, reaching the preset maximum iteration
number KS1

AO = 500; ii) for AO2 of WEIS-S2, SC3 is: the
values of DOFVs, PEs of s0 and PEs of w being below
10−15, 10−16, and 10−15, respectively; otherwise, reaching
the preset maximum iteration number KS2

AO = 100. Whereas
for the ADMM procedure in WEIS-S1, SC2 is: both the values
of DOFVs and CEs being less than 10−5; otherwise, reaching
the preset maximum iteration number KS1

ADMM = 500. Finally
for the ADMM procedure in WEIS-S2, SC4 is: the values of
DOFVs and CEs being below 10−14 and 10−15, respectively;
otherwise, reaching the preset maximum iteration number
KS2

ADMM = 2000.
Furthermore, to ascertain the convergence and its impact

on the precision of power and waveform estimation, we
calculate the corresponding SOI-power estimation error (SOI-
PEE) ||α̂0|2 − |α0|2| and NMSE upon convergence under
different SIRs, where α̂0 =

wHXs∗0
N . For comparison purposes,

we implement LCAP (loading Capon beamformer) with load-
ing factor 10δ2 [7], MVDR [11], CMA (constant modulus
beamforming with accurate steering vector) in Chapter 6 of
[1], EIG (eigenspace-based) [56], and CVCNN-LR (CVCNN-
the lower triangular elements of the sample covariance matrix
(LR)) and CVCNN-R (CVCNN-the whole sample covariance
matrix (R)) in [38]. From Figs. 5(a) and (b), we observe that:
i) Both WEIS-S1 and WEIS-S2 outperform the competing
beamformers in terms of SOI-PEE, that is, they provide
more accurate SOI power estimation; ii) for NMSE, WEIS-
S1 performs comparably with CMA and LCMV; whereas the
refinement scheme from (16) enables WEIS-S2 to have an
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Fig. 7: NMSE versus input SNR, input SIR and snapshot number.

obvious NMSE improvement, achieving the highest waveform
estimation accuracy. As a direct exhibit of accurate waveform
estimate, in Fig. 6, we plot the real and imaginary components
of the waveform estimate extracted from a single Monte Carlo
run at SIR = 6dB.

Experiment 2: Output and Beampattern Performance in
WEIS Algorithm: In this experiment, we set the sensor number
as M = 15, and the directions of SOI and two interferences
are θ0 = 0◦, θ1 = −50◦ and θ2 = 70◦, respectively. Here we
adopt the similar SC settings and maximum iteration numbers
as Exp. 1, with ρ = 0.05 and ρ = 0.1 being applied for the
two stages, respectively. In addition, similar initializations as
Exp. 1 are used.

First, we investigate the effects of input SNR, input SIR, and
snapshot number on the NMSE performance of WEIS algo-
rithm. In Fig. 7, we plot the NMSE computed from different
input SNR, input SIR, and snapshot number configurations.
Especially, in Fig. 7(a), we set snapshot number N = 300,
input SIR= 0dB, and the input SNR varies from -10dB to
20dB; whereas in Fig. 7(b), we set snapshot number N = 300,
input SNR= 10dB, but the input SIR varies from −10dB to
20dB. In Fig. 7(c), input SNR= 10dB and input SIR= 0dB
are set, but the snapshot number varies from 80 to 280. We can
see that both WEIS-S1 and WEIS-S2 produce lower NMSE
than the competing schemes; whereas WEIS-S2 outperforms
WEIS-S1 with the use of the result of WEIS-S1, which is
consistent with Exp. 1.

In addition to NMSE, we also explore the relationship
between the output SINR, output SNR and input SNR, which
are plotted in Figs. 8(a) and (b). It is observed that the WEIS-
S1 occasionally performs worse than the CMA, and the output
SNR of WEIS-S2 is slightly lower than that of the EIG,
CVCNN-LR, CVCNN-R and LCMV. However, in high input
SNR region, the output SINR of WEIS-S2 is closest to the
optimal output SINR among all beamformers except for the
LCMV, which requires the IDs prior. Furthermore, Fig. 8(c)
depicts the beampattern comparisons at input SNR= 10dB,
showing that WEIS-S2 not only produces the deep notches in
the unknown IDs, i.e., −140.25dB in −50◦ and −209.59dB
in 70◦, but also has good sidelobe suppression effect.

B. Performance of WEIS-R Algorithm
In this subsection, the direction of SOI is θ0 = 0◦, and

we define the inaccurate DOA set Ωθ̂ = {θ̂n}, where θ̂ ∈
[θ0 − ∆, θ0 + ∆]. In addition, we consider 200 angle values
uniformly sampled from the region θ̂ ∈ [θ0 − ∆, θ0 + ∆]
[1][15]. As a result, the center ā and the configuration matrix
A of the ellipsoid used in (50) are given by [1][15]:

ā =
1

Card(Ωθ̂)

∑
θn∈Ωθ̂

a(θn) (76)

A =
1

ε Card(Ωθ̂)

∑
θn∈Ωθ̂

(a(θn)− ā)(a(θn)− ā)H (77)

where Card(Ωθ̂) represents the element number (sample size)
of Ωθ̂, and the normalization factor ε is denoted by [1][15]:

ε = sup(a(θn)− ā)HA−1 sup(a(θn)− ā), θn ∈ Ωθ̂. (78)

In order to evaluate the performance of the WEIS-R algo-
rithm, we compare with a number of beamformers, including
the CMA beamformer based on inaccurate steering vector in
Chapter 6 of [1], the least-squares (LS) beamformer [47],
the principal eigenvector (PEIG) beamformer [57], the robust
beamformer (ROB) [29], and the WCPO [16], in which the
diagonal loading parameters of LS, PEIG, ROB are set as 30,
50 and 50, respectively.

Experiment 3. Convergence Performance and SC Setting: In
this experiment, the input SNR and input SIR are fixed while
the snapshot number varies from 110 to 200. Besides, ∆ = 1
and we sample θ̂ uniformly. The sensor number is M = 15, the
DOAs of two interferences are ±45◦ while input SNR= 15dB
and input SIR= 0dB. For both WEIS-R-S1 and WEIS-R-S2,
we set ρ = 0.1, KAO = 50, TADMM = 200, and adopt the same
initializations as before.

From the AO results plotted in Fig. 9, we observe that: i) all
the OFVs, DOFVs, and PEs, including WEIS-R-S1 and WEIS-
R-S2, basically decrease and then converge with the increase
of INs under different snapshots (N ∈ {110, 120, · · · , 200});
ii) for WEIS-R-S1, all the DOFVs, and the PEs of s0(k) and
w(k) upon convergence are less than 10−7.81, 10−9.99, and
10−9.14, respectively; iii) for WEIS-R-S2, all the DOFVs, and
the PEs of s0(k) and w(k) upon convergence are less than
10−8.30, 10−10.14, and 10−9.44, respectively. While the AD-
MM results versus AO iteration (k ∈ {1, 10, 20, 30, 40, 50})
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Fig. 8: Comparison of output SINR, output SNR and beampatterns.
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Fig. 9: Convergence performance of WEIS-R-AO in Exp. 3
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Fig. 10: Convergence performance of WEIS-R-ADMM in
Exp.3.

in Fig. 10 indicate that: i) all the CEs and DOFVs, in-
cluding WEIS-R-S1 and WEIS-R-S2, exhibit the descending
and converging trends; ii) in ADMM procedure of WEIS-
R-S1, all the CEs and DOFVs upon convergence are not
larger than 10−16.28 and 10−10.04, respectively; and iii) in

ADMM procedure of WEIS-R-S2, all the CEs and DOFVs
upon convergence are not larger than 10−5.16 and 10−5.67,
respectively.

Based on the aforementioned discussion, we consider the
following SC settings for the four cycles (SC5-SC8) of Fig.
2: i) for AO3 of WEIS-R-S1, SC5 is: the values of DOFVs,
PEs of s0, and PEs of w being below 10−7, 10−9, and
10−9, respectively, otherwise reaching the preset maximum
iteration number KS1

AO = 50; ii) for AO4 of WEIS-R-S2,
SC7 is: the values of DOFVs, PEs of s0 and PEs of w
being below 10−8, 10−10, and 10−9, respectively, otherwise
reaching the preset maximum iteration number KS2

AO = 50.
Whereas for the ADMM procedure in WEIS-R-S1, SC6 is:
the values of DOFVs and CEs being below 10−10 and 10−16,
respectively, otherwise reaching the preset maximum iteration
number KS1

ADMM = 200. Finally for the ADMM procedure
in WEIS-R-S2, SC8 is: both the values of DOFVs and CEs
being less than 10−5, otherwise reaching the preset maximum
iteration number KS2

ADMM = 200.
Experiment 4. Output and Beampattern Performance of

WEIS-R: The results of Figs. 11 to 13 are obtained with the set-
tings: the sensor number M = 20, snapshot number N = 200,
input SIR = 0dB, and the DOAs of two interferences are −40◦

and 70◦, respectively. Here we adopt the similar SC settings
and maximum iteration numbers as Exp. 3. To evaluate the
performance of WEIS-R-S1 and WEIS-R-S2, we consider two
scenarios, i.e., ∆ = 3 and ∆ = 6, where ρ = 10 in WEIS-R-
S1 and ρ = 20 in WEIS-R-S2 are set for the former (∆ = 3);
whereas ρ = 10 in WEIS-R-S1 and ρ = 1 in WEIS-R-S2 are
adopted for the latter (∆ = 6).
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Fig. 11: NMSE versus input SNR for different values of ∆
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As shown in Fig. 11, the NMSEs obtained by the WEIS-R-
S2 are lower than those of other counterparts, particularly at
moderate and high SNR regions, which implies that our pro-
posed WEIS-R method estimates constant modulus waveform
with higher accuracy.

Figs. 12(a) and (b) and Figs. 13(a) and (b) plot the results
of output SINRs and output SNRs versus input SNR at ∆ = 3
and ∆ = 6, respectively, from which it is easily found that the
WEIS-R-S2 has the higher output SINR and output SNR than
those of the WEIS-R-S1 as well as the competing schemes
in moderate and high input SNR ranges. The observations
indicate again that the introduced WEIS-R-S2 is helpful in
improving the output SINR and output SNR.

Moreover, for ∆ = 3, we use the obtained weight vectors
from WEIS-R-S1 and WEIS-R-S2 to generate the beampat-
terns, as shown in Fig. 12(c). It is seen that the WEIS-R-S2
has the deepest notch levels compared with the other ones,
i.e., −150.19dB in −40◦ and −141.23dB in 70◦.

In addition, Fig. 13(c) shows the beampattern results at ∆ =
6, which indicates that the notches generated by the WEIS-
R-S2 are more deeper (−85.44dB in −40◦ and −90.68dB in
70◦) than others. The wide mainlobe in Fig. 13(c) costs more
degree-of-freedom than 12(c) and thus the resultant notches
are inferior to that of ∆ = 3.

VI. CONCLUSION

In this paper, we have proposed two-stage algorithms for
constant modular waveform estimation and interference sup-
pression via fractional programming, where one is developed
for the known steering vector case; while the other is designed
for the inaccurate steering vector case. Simulation results
demonstrate that the proposed methods are superior to existing
algorithms in terms of both the NMSE and the achieved notch
level. As a future work, we will extend our studies to handle
desired signals without modulus or energy constraints.

APPENDIX A: POSITIVE SEMIDEFINITE PROPERTY OF R1(k)

In (12), the denominator has the form of ‖wHX−α0s
T
0 ‖2.

Thus, we apply the standard least-squares method to represent
α0 as α0 =

wHXs∗0
N (as shown in (13)), where the unimodu-

larity property of s0 is utilized (i.e.,sT0 s
∗
0 = N ).

Then, inserting α0 =
wHXs∗0
N into ‖wHX−α0s

T
0 ‖2 yields:

‖wHX− α0s
T
0 ‖2

= ‖wHX− 1

N
wHXs∗0s

T
0 ‖2 = ‖wHX(IN −

1

N
s∗0s

T
0 )‖2

= wHX(IN −
1

N
s∗0s

T
0 )(IN −

1

N
s∗0s

T
0 )HXHw

= wHX(IN −
1

N
s∗0s

T
0 −

1

N
s∗0s

T
0 +

1

N2
s∗0s

T
0 s
∗
0s
T
0 )XHw

= wHX(IN −
1

N
s∗0s

T
0 −

1

N
s∗0s

T
0 +

1

N
s∗0s

T
0 )XHw

= wHX(IN −
1

N
s∗0s

T
0 )XHw. (79)

Employing the definition of R1(k) = X(IN − 1
N s∗0s

T
0 )XH

in (20), we have:

R1(k) =

(
X(IN −

1

N
s∗0s

T
0 )

)(
X(IN −

1

N
s∗0s

T
0 )

)H
.

(80)

According to (80), for any vector w, we have:

wHR1(k)w = ‖wHX(IN −
1

N
s∗0s

T
0 )‖2 ≥ 0, (81)

Therefore, R1(k) is positive semidefinite.

APPENDIX B: ON STEP A2 SOLUTION OF STAGE 1 IN
WEIS

Completing the square and ignoring the irrelevant terms in
(34), we have:

min
w̄

w̄HR̄1(k)w̄ +
ρ

2
‖w̄ − w̃(t+ 1)‖2

s.t. w̄H ĪM+1w̄ = 1. (82)

Similar to (32), w̃(t+ 1) ∈ C(M+1)×1 is introduced:

w̃(t+ 1) = v̄(t+ 1)− λ(t)

ρ
. (83)

The Lagrangian of (82) is easily constructed as:

l1(w̄, λw) = w̄HR̄2w̄ −
ρ

2
w̄Hw̃ − ρ

2
w̃Hw̄ + λw(w̄H ĪM+1w̄ − 1),

(84)

where the t+ 1 in w̃(t+ 1) and k in R̄1(k) are omitted,

R̄2 = R̄1(k) +
ρ

2
IM+1, (85)

and λw is the Lagrange multiplier corresponding to the con-
straint w̄H ĪM+1w̄ = 1.

Differentiating (84) with respect to w̄ yields:

2(R̄2 + λw ĪM+1)w̄(t+ 1)− ρw̃ = 0, (86)

from which w̄(t+ 1) is easily determined as:

w̄(t+ 1) =
ρ

2
(R̄2 + λw ĪM+1)−1w̃. (87)

Inserting (87) into w̄H ĪM+1w̄ = 1 leads to:

ρ2

4
w̃H(R̄2 + λw ĪM+1)−1ĪM+1(R̄2 + λw ĪM+1)−1w̃ = 1.

(88)

Since the matrix R̄2 is positive definite (see (85) or see
[15] for details), we implement the eigenvalue decomposition
(EVD) of (R̄

1
2
2 )−1ĪM+1(R̄

1
2
2 )−1 to yield the eigenvector ma-

trix U = [u1,u2, ...,uM+1], where UHU = I and UUH = I.
Next, the generalized eigenvalue pair of {R̄2, ĪM+1} are
given by:

σm = uHmR̄2um, σ̄m = uHmĪM+1um, (89)

which are corresponding to the eigenvector um for m =
1, · · · ,M . Then, we have R̄2 = Udiag{σ1, · · · , σM}UH

and ĪM+1 = Udiag{σ̄1, · · · , σ̄M}UH . Thus, insert-
ing R̄2 = Udiag{σ1, · · · , σM}UH and ĪM+1 =
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(a) Output SINR versus input SNR.
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Fig. 12: Comparison of output SINR, output SNR and beampatterns (∆ = 3).
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Fig. 13: Comparison of output SINR, output SNR and beampatterns (∆ = 6)

Udiag{σ̄1, · · · , σ̄M}UH into the left side of (88) (denoted
as a function of λw, i.e., g(λw)) yields :

g(λw) =
ρ2

4

M+1∑
m=1

σ̄m|w̃Hum|2

(σm + λwσ̄m)2
= 1. (90)

Similar to the analysis of [13], [15], g(λw) is a mono-
tonically decreasing function with respect to λw in the
region [maxm−σmσ̄m ,+∞). Since lim

λw→+∞
g(λw) = 0 and

lim
λw→maxm−σmσ̄m

g(λw) = +∞, there exists a solution in the

region [max
m
−σmσ̄m ,+∞), which can be determined via the

bisection method [13].

APPENDIX C: ON STEP B2 SOLUTION OF STAGE 2 IN WEIS

Completing the squares and ignoring the irrelevant term, we
rewrite (47) as:

min
g,h

‖g − ĝ(t+ 1)‖2 + ‖h− ĥ(t+ 1)‖2

s.t.
‖g‖2

‖h‖2
≤ σ̂2, (91)

where

ĝ(t+ 1) = w(t+ 1)HUk −
λg(t)

ρ
, (92)

ĥ(t+ 1) = w(t+ 1)− λh(t)

ρ
. (93)

Then, we construct the Lagrangian for (91):

l2(g,h, µ) = ‖g − ĝ(t+ 1)‖2 + ‖h− ĥ(t+ 1)‖2

− µ(‖h‖2σ̂2 − ‖g‖2), (94)

where µ is the Lagrange multiplier. According to the Karush-
Kuhn-Tucker (KKT) theory, we have

∂l2(g,h, µ)

∂g
= 2(g − ĝ(t+ 1) + µg) = 0, (95)

∂l2(g,h, µ)

∂h
= 2(h− ĥ(t+ 1)− µσ̂2h) = 0, (96)

µ(‖h‖2σ̂2 − ‖g‖2) = 0, (97)

‖g‖2 ≤ σ̂2‖h‖2. (98)

Thus, we have g = ĝ(t+1)
1+µ and h = ĥ(t+1)

1−µσ̂2 . Then, we
discuss µ from two cases: i) if µ = 0 and ‖g‖2 < σ̂2‖h‖2,
we have g = ĝ(t+ 1) and h = ĥ(t+ 1); and ii) if µ 6= 0 and
‖g‖2 = σ̂2‖h‖2, µ should satisfy:

‖ĝ(t+ 1)‖2

(1 + µ)2
= σ̂2 ‖ĥ(t+ 1)‖2

(1− µσ̂2)2
, (99)

the solution to which is given by:

µ =
−(2A+ 2σ̂2) +

√
8Aσ̂2 + 4σ̂4A+ 4A

2(A− σ̂4)
, (100)

where A = ‖ĥ(t+1)‖2σ̂2

‖ĝ(t+1)‖2 .
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APPENDIX D: ON STEP C2 SOLUTION OF STAGE 1 IN
WEIS-R

In Step C2, we may divide (69) into two independent
subproblems, i.e.,

min
c,q

(q − q̂(t+ 1))2 + ‖c− ĉ(t+ 1)‖2

s.t. ‖c‖2 ≤ q, (101)

and

min
d,p

(p− p̂(t+ 1))2 + ‖d− d̂(t+ 1)‖2

s.t. ‖d‖2 ≥ p, (102)

where the squares are completed and the constant terms are
ignored, and {ĉ(t+ 1) ∈ CM×1, d̂(t+ 1) ∈ CM×1, q̂(t+ 1) ∈
C1×1, p̂(t + 1) ∈ C1×1} are introduced for the presentation
simplicity, i.e.,

ĉ(t+ 1) = R
1
2
1 (k)w(t+ 1)− ξ(t)

ρ
, (103)

d̂(t+ 1) = w(t+ 1)− ζ(t)

ρ
. (104)

p̂(t+ 1) = p̄(t+ 1)− κ(t)

ρ
, (105)

q̂(t+ 1) = q̄(t+ 1)− λ(t)

ρ
, (106)

The convex problem in (101) may be solved via the CVX
toolbox. In fact, the nonconvex problem in (102) can still
be solved (via the semidefinite relaxation trick [61]) by the
CVX toolbox, but it requires introducing a high-dimensional
auxiliary matrix variable. Here we derive the solution for the
nonconvex problem in (102) according to two cases:

Case 1: if ‖d̂(t+ 1)‖2 ≥ p̂(t+ 1), we have{
d(t+ 1) = d̂(t+ 1)

p(t+ 1) = p̂(t+ 1),
(107)

Case 2: if ‖d̂(t+ 1)‖2 ≤ p̂(t+ 1), d(t+ 1) is given by

d(t+ 1) =
d̂(t+ 1)

‖d̂(t+ 1)‖
√
p, (108)

with the assumption that p is known. Thus, inserting (108)
into (102) yields an optimization problem on a single-variable
p:

min
p

(p− p̂(t+ 1))2 + ‖ d̂(t+ 1)

‖d̂(t+ 1)‖
√
p− d̂(t+ 1)‖2.

(109)

Let γ =
√
p ≥ 0, and we transform (109) into an

optimization problem on γ without the square root operation:

min
γ

γ4 + (1− 2p̂(t+ 1))γ2 − 2γ‖d̂(t+ 1)‖

s.t. γ ≥ 0, (110)

the derivative of which (denoted by g(γ)) with regard to γ is
set as 0, i.e.,

dg(γ)

dγ
= 4γ3 + 2(1− 2p̂(t+ 1))γ − 2‖d̂(t+ 1)‖ = 0.

(111)

With the Cardano’s formula, we can obtain three roots to
(111). Then, we select the real nonnegative one γ(t+ 1) with
the smallest g(γ) to generate p(t+ 1).

APPENDIX E: COMPUTATIONAL COMPLEXITY AND LOCAL
CONVERGENCE ANALYSIS

We first evaluate the computational complexity of multipli-
cation operations of the presented methods.

For WEIS-S1, the complexity of determining s0 is O(NM),
and in the inner cycle employing the ADMM, the complexities
of updating v̄, w̄ and λ are O(2M), O(M3) [62], O(M),
respectively, in which the middle term is due to the inversion
operation of an M×M matrix [62]. Similarly, the complexity
of updating {w,g,h,λg,λh} in the single inner cycle of
WEIS-S2 is O(2M2 + 2M). As a result, the WEIS’s overall
computational complexity is O(K1(NM+T1(M3 +3M)))+
K2(NM+T2(2M2+2M)))), where K1 and T1 correspond to
the total iteration numbers of outer (AO) and inner (ADMM)
cycles of WEIS-S1, respectively, and K2 and T2 are similarly
defined.

For WEIS-R-S1, the primal-dual interior point method with
complexity O(M3 log(ς)) may be applied to determine w
[54], where ς is the acceptable duality gap. Additionally, the
complexity of remaining steps to obtain {p, q, c,d, λ, κ, ξ, ζ}
is O(2M2 + 3M). Then, the total computational complexity
of WEIS-R is O(K1(NM +T1(M3 log(ς)+2M2 +3M)))+
K2(NM + T2(M3 log(ς) + 2M2 + 2M)))).

Now, we discuss the convergence of the proposed meth-
ods. Note that all the provided methods, including WEIS-S1,
WEIS-S2, WEIS-R-S1 and WEIS-R-S2, are realized with AO
procedure [58]. Here we take the AO procedure of WEIS-S1
(shown in (17)-(18)) as an example to discuss the convergence
with the definition (i.e., the objective function of (14)):

f1(s0,w) =
wHX(IN − 1

N s∗0s
T
0 )XHw

wHw
. (112)

Since the s0(k) computed from (17) satisfies

s0(k) = arg min
s0

f1(s0,w(k − 1))

s.t. |s0(n)| = 1, n = 1, · · · , N, (113)

f1(s0,w(k − 1)) surely attains its minimum at s0 = s0(k)
under unimodular constraints. Therefore, we have:

f1(s0(k),w(k − 1)) ≤ f1(s0(k − 1),w(k − 1)). (114)

In addition, the ADMM procedure shown in (19)-(36) solves
the problem minw f1(s0(k),w) s.t. wHa(θ0) = 1 to obtain
w(k). Therefore, when the obtained w(k) provided by the
ADMM procedure is a local solution to (18), f1(s0(k),w)
will attain one of its locally minima at w = w(k) under the
constraints wHa(θ0) = 1. That is, we have:

f1(s0(k),w(k)) ≤ f1(s0(k),w(k − 1)). (115)

Combining (114) and (115) yields:

f1(s0(k),w(k)) ≤ f1(s0(k),w(k − 1))

≤ f1(s0(k − 1),w(k − 1)), (116)
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which shows that the objective function value is non-increasing
along with the iterations, and thus the AO procedure is con-
vergent (or see [58] for details). Similar procedure derivations
and analyses also hold for WEIS-S2, WEIS-R-S1, and WEIS-
R-S2.

Note that the ADMM convergence analysis on nonconvex
problems still remains an open problem [50], [59], [60], [63],
[64], [65]. Here we borrow the idea from them to discuss the
procedure shown in (19)-(36).

To illustrate the convergence of (19)-(36) employing the
ADMM [50], we denote {w̄(t), v̄(t),λ(t)} as the obtained
results at the t-th iteration with ρ > 0. According to (35), we
introduce the condition [50], [59], [60], [63], [64], [65]:

lim
t→∞

λ(t+ 1)− λ(t) = 0. (117)

Therefore, combining (35) and (117) yields

lim
t→∞

w̄(t+ 1)− v̄(t+ 1) = 0. (118)

Moreover, since (31) is convex, there exists a stationary
point v̄� satisfying lim

t→∞
v̄(t) = v̄�. Then we construct the

inequality:

‖w̄(t)‖ ≤ ‖w̄(t)− v̄(t)‖+ ‖v̄(t)‖ (119)

where the vector w̄(t) is also bounded, and thus there exists
a stationary point w̄� satisfying:

lim
t→∞

w̄(t) = w̄�. (120)

Therefore, we have the consensus convergence result [59],
[60], [63], [64], [65]:

lim
t→∞

w̄(t+ 1)− v̄(t+ 1) = w̄� − v̄� = 0. (121)

Additionally, we have [50], [59], [60], [63], [64], [65]:

(w̄�)HR̄1(k)w̄� ≤ w̄H(t+ 1)R̄1(k)w̄(t+ 1)

+ <{(λ�)Hr(t+ 1)}, (122)

and

w̄H(t+ 1)R̄1(k)w̄(t+ 1)− (w̄�)HR̄1(k)w̄� ≤
− ρ<{(v̄(t+ 1)− v̄(t))H(−r(t+ 1) + v̄(t+ 1)− v̄�)}
− <{λH(t+ 1)r(t+ 1)}, (123)

where λ� is a stationary point, and r(t + 1) = w̄(t + 1) −
v̄(t+ 1).

The right hand side in (122) goes to zero as t→∞ since the
consensus error r(t + 1) goes to 0 [50]. On the other hand,
the right hand side in (123) goes to 0 as t → ∞, because
v̄(t+1)− v̄� is bounded and both r(t+1) and v̄(t+1)− v̄(t)
go to 0 . Thus, we have lim

t→+∞
w̄H(t+ 1)R̄1(k)w̄(t+ 1) =

(w̄�)HR̄1(k)w̄�, i.e., the objective is convergent [50].
Similar results hold for other ADMM procedures, including

those of WEIS-S1, WEIS-S2, WEIS-R-S1, and WEIS-R-S2.
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