14,679 research outputs found

    Situation awareness measurement: A review of applicability for C4i environments

    Get PDF
    The construct of situation awareness (SA) has become a core theme within the human factors (HF) research community. Consequently, there have been numerous attempts to develop reliable and valid measures of SA but there is a lack of techniques developed specifically for the assessment of SA in command, control, communication, computers and intelligence (C4i) environments. During the design, development and evaluation of novel systems, technology and procedures, valid and reliable situation awareness measurement techniques are required for the assessment of individual and team SA, in order to determine the improvements (or in some cases decrements) resulting from proposed design and technological interventions. The paper presents a review of existing situation awareness measurement techniques for their suitability for use in the assessment of SA in C4i environments. Seventeen SA measures were evaluated against a set of HF methods criteria. It was concluded that current SA measurement techniques are inadequate by themselves for use in the assessment of SA in C4i environments, and a multiple-measure approach utilising different approaches is recommended

    EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings

    Get PDF
    Car driving is considered a very complex activity, consisting of different concomitant tasks and subtasks, thus it is crucial to understand the impact of different factors, such as road complexity, traffic, dashboard devices, and external events on the driver’s behavior and performance. For this reason, in particular situations the cognitive demand experienced by the driver could be very high, inducing an excessive experienced mental workload and consequently an increasing of error commission probability. In this regard, it has been demonstrated that human error is the main cause of the 57% of road accidents and a contributing factor in most of them. In this study, 20 young subjects have been involved in a real driving experiment, performed under different traffic conditions (rush hour and not) and along different road types (main and secondary streets). Moreover, during the driving tasks different specific events, in particular a pedestrian crossing the road and a car entering the traffic flow just ahead of the experimental subject, have been acted. A Workload Index based on the Electroencephalographic (EEG), i.e., brain activity, of the drivers has been employed to investigate the impact of the different factors on the driver’s workload. Eye-Tracking (ET) technology and subjective measures have also been employed in order to have a comprehensive overview of the driver’s perceived workload and to investigate the different insights obtainable from the employed methodologies. The employment of such EEG-based Workload index confirmed the significant impact of both traffic and road types on the drivers’ behavior (increasing their workload), with the advantage of being under real settings. Also, it allowed to highlight the increased workload related to external events while driving, in particular with a significant effect during those situations when the traffic was low. Finally, the comparison between methodologies revealed the higher sensitivity of neurophysiological measures with respect to ET and subjective ones. In conclusion, such an EEG-based Workload index would allow to assess objectively the mental workload experienced by the driver, standing out as a powerful tool for research aimed to investigate drivers’ behavior and providing additional and complementary insights with respect to traditional methodologies employed within road safety research

    Increasing Pilots Understanding of Future Automation State an Evaluation of an Automation State and Trajectory Prediction System

    Get PDF
    A pilot in the loop flight simulation study was conducted at NASA Langley Research Center to evaluate a trajectory prediction system. The trajectory prediction system computes a five-minute prediction of the lateral and vertical path of the aircraft given the current and intent state of the automation. The prediction is shown as a graphical representation so the pilots can form an accurate mental model of the future state. Otherwise, many automation changes and triggers are hidden from the flight crew or need to be consolidated to understand if a change will occur and the exact timing of the change. Varying dynamic conditions like deceleration can obscure the future trajectory and the ability to meet constraints, especially in the vertical dimension. Current flight deck indications of flight path assume constant conditions and do not adequately support the flight crew to make correct judgments regarding constraints. The study was conducted using ten commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of conditions that provided evaluation in a realistic environment with complex traffic and weather conditions. In particular, scenarios probed automation state and loss of state awareness. The technology was evaluated and contrasted with current state-of-the-art flight deck capabilities modeled from the Boeing 787. Objective and subjective data were collected from aircraft parameters, questionnaires, audio/video recordings, head/eye tracking data, and observations. This paper details findings about the trajectory prediction system including recommendations about further study

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    A Novel Analysis of Performance Classification and Workload Prediction Using Electroencephalography (EEG) Frequency Data

    Get PDF
    Across the DOD each task an operator is presented with has some level of difficulty associated with it. This level of difficulty over the course of the task is also known as workload, where the operator is faced with varying levels of workload as he or she attempts to complete the task. The focus of the research presented in this thesis is to determine if those changes in workload can be predicted and to determine if individuals can be classified based on performance in order to prevent an increase in workload that would cause a decline in performance in a given task. Despite many efforts to predict workload and classify individuals with machine learning, the classification and predictive ability of Electroencephalography (EEG) frequency data has not been explored at the individual EEG Frequency band level. In a 711th HPW/RCHP Human Universal Measurement and Assessment Network (HUMAN) Lab study, 14 Subjects were asked to complete two tasks over 16 scenarios, while their physiological data, including EEG frequency data, was recorded to capture the physiological changes their body went through over the course of the experiment. The research presented in this thesis focuses on EEG frequency data, and its ability to predict task performance and changes in workload. Several machine learning techniques are explored in this thesis before a final technique was chosen. This thesis contributes research to the medical and machine learning fields regarding the classification and workload prediction efficacy of EEG frequency data. Specifically, it presents a novel investigation of five EEG frequencies and their individual abilities to predict task performance and workload. It was discovered that using the Gamma EEG frequency and all EEG frequencies combined to predict task performance resulted in average classification accuracies of greater than 90%

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    In-ear SpO2 for classification of cognitive workload

    Get PDF
    The brain is the most metabolically active organ in the body, which increases its metabolic activity, and thus oxygen consumption, with increasing cognitive demand. This motivates us to question whether increased cognitive workload may be measurable through changes in blood oxygen saturation. To this end, we explore the feasibility of cognitive workload tracking based on in-ear SpO2 measurements, which are known to be both robust and exhibit minimal delay. We consider cognitive workload assessment based on an N-back task with randomised order. It is shown that the 2-back and 3-back tasks (high cognitive workload) yield either the lowest median absolute SpO2 or largest median decrease in SpO2 in all of the subjects, indicating a measurable and statistically significant decrease in blood oxygen in response to increased cognitive workload. This makes it possible to classify the four N-back task categories, over 5 second epochs, with a mean accuracy of 90.6%, using features derived from in-ear pulse oximetry, including SpO2, pulse rate and respiration rate. These findings suggest that in-ear SpO2 measurements provide sufficient information for the reliable classification of cognitive workload over short time windows, which promises a new avenue for real time cognitive workload tracking

    A Comparison of Supervised Machine Learning Classification Techniques and Theory-Driven Approaches for the Prediction of Subjective Mental Workload

    Get PDF
    In the modern world of technological progress, systems and interfaces are becoming more and more complex. As a consequence, it is a crucial to design the human-computer interaction in the most optimal way to improve the user experience. The construct of Mental Workload is a valid metric that can be used for such a goal. Among the different ways of measuring Mental Workload, self-reporting procedures are the most adopted for their ease of use and application. This research is focused on the application of Machine Learning as an alternative to theory-driven approaches for Mental Workload measurement. In particular, the study is aimed at comparing the classification accuracy of a set of induced models, from an existing dataset, to the mental workload indexes generated by well-known subjective mental workload assessment techniques - namely the Nasa Task Load Index and the Workload profile instruments
    • …
    corecore