17,033 research outputs found

    Multibody Multipole Methods

    Full text link
    A three-body potential function can account for interactions among triples of particles which are uncaptured by pairwise interaction functions such as Coulombic or Lennard-Jones potentials. Likewise, a multibody potential of order nn can account for interactions among nn-tuples of particles uncaptured by interaction functions of lower orders. To date, the computation of multibody potential functions for a large number of particles has not been possible due to its O(Nn)O(N^n) scaling cost. In this paper we describe a fast tree-code for efficiently approximating multibody potentials that can be factorized as products of functions of pairwise distances. For the first time, we show how to derive a Barnes-Hut type algorithm for handling interactions among more than two particles. Our algorithm uses two approximation schemes: 1) a deterministic series expansion-based method; 2) a Monte Carlo-based approximation based on the central limit theorem. Our approach guarantees a user-specified bound on the absolute or relative error in the computed potential with an asymptotic probability guarantee. We provide speedup results on a three-body dispersion potential, the Axilrod-Teller potential.Comment: To appear in Journal of Computational Physic

    Improving Personalized Consumer Health Search

    Get PDF
    CLEF 2018 eHealth Consumer Health Search task aims to investigate the effectiveness of the information retrieval systems in providing health information to common health consumers. Compared to previous years, this year’s task includes five subtasks and adopts new data corpus and set of queries. This paper presents the work of University of Evora participating in two subtasks: IRtask-1 and IRtask-2. It explores the use of learning to rank techniques as well as query expan- sion approaches. A number of field based features are used for training a learning to rank model and a medical concept model proposed in previous work is re-employed for this year’s new task. Word vectors and UMLS are used as query expansion sources. Four runs were submitted to each task accordingly

    Issues in Evaluating Health Department Web-Based Data Query Systems: Working Papers

    Get PDF
    Compiles papers on conceptual and methodological topics to consider in evaluating state health department systems that provide aggregate data online, such as taxonomy, logic models, indicators, and design. Includes surveys and examples of evaluations

    Matching Queries to Frequently Asked Questions: Search Functionality for the MRSA Web-Portal

    Get PDF
    As part of the long-term EUREGIO MRSA-net project a system was developed which enables health care workers and the general public to quickly find answers to their questions regarding the MRSA pathogen. This paper focuses on how these questions can be answered using Information Retrieval (IR) and Natural Language Processing (NLP) techniques on a Frequently-Asked-Questions-style (FAQ) database

    Overview of the 2005 cross-language image retrieval track (ImageCLEF)

    Get PDF
    The purpose of this paper is to outline efforts from the 2005 CLEF crosslanguage image retrieval campaign (ImageCLEF). The aim of this CLEF track is to explore the use of both text and content-based retrieval methods for cross-language image retrieval. Four tasks were offered in the ImageCLEF track: a ad-hoc retrieval from an historic photographic collection, ad-hoc retrieval from a medical collection, an automatic image annotation task, and a user-centered (interactive) evaluation task that is explained in the iCLEF summary. 24 research groups from a variety of backgrounds and nationalities (14 countries) participated in ImageCLEF. In this paper we describe the ImageCLEF tasks, submissions from participating groups and summarise the main fndings

    Evaluating implicit feedback models using searcher simulations

    Get PDF
    In this article we describe an evaluation of relevance feedback (RF) algorithms using searcher simulations. Since these algorithms select additional terms for query modification based on inferences made from searcher interaction, not on relevance information searchers explicitly provide (as in traditional RF), we refer to them as implicit feedback models. We introduce six different models that base their decisions on the interactions of searchers and use different approaches to rank query modification terms. The aim of this article is to determine which of these models should be used to assist searchers in the systems we develop. To evaluate these models we used searcher simulations that afforded us more control over the experimental conditions than experiments with human subjects and allowed complex interaction to be modeled without the need for costly human experimentation. The simulation-based evaluation methodology measures how well the models learn the distribution of terms across relevant documents (i.e., learn what information is relevant) and how well they improve search effectiveness (i.e., create effective search queries). Our findings show that an implicit feedback model based on Jeffrey's rule of conditioning outperformed other models under investigation
    corecore