30 research outputs found

    A Unifying Model for Representing Time-Varying Graphs

    Get PDF
    Graph-based models form a fundamental aspect of data representation in Data Sciences and play a key role in modeling complex networked systems. In particular, recently there is an ever-increasing interest in modeling dynamic complex networks, i.e. networks in which the topological structure (nodes and edges) may vary over time. In this context, we propose a novel model for representing finite discrete Time-Varying Graphs (TVGs), which are typically used to model dynamic complex networked systems. We analyze the data structures built from our proposed model and demonstrate that, for most practical cases, the asymptotic memory complexity of our model is in the order of the cardinality of the set of edges. Further, we show that our proposal is an unifying model that can represent several previous (classes of) models for dynamic networks found in the recent literature, which in general are unable to represent each other. In contrast to previous models, our proposal is also able to intrinsically model cyclic (i.e. periodic) behavior in dynamic networks. These representation capabilities attest the expressive power of our proposed unifying model for TVGs. We thus believe our unifying model for TVGs is a step forward in the theoretical foundations for data analysis of complex networked systems.Comment: Also appears in the Proc. of the IEEE International Conference on Data Science and Advanced Analytics (IEEE DSAA'2015

    A Unifying Model for Representing Time-Varying Graphs

    Get PDF
    We propose a novel model for representing finite discrete Time-Varying Graphs~(TVGs). We show how key concepts, such as degree, path, and connectivity, are handled in our model. We also analyze the data structures built following our proposed model and demonstrate that, for most practical cases, the asymptotic memory complexity of our model is restricted to the cardinality of the set of edges. Moreover, we prove that if the TVG nodes can be considered as independent entities at each time instant, the analyzed TVG is isomorphic to a directed static graph. This is an important theoretical result since this allows the use of the isomorphic directed graph as a tool to analyze both the properties of a TVG and the behavior of dynamic processes over a TVG. We also show that our unifying model can represent several previous (classes of) models for dynamic networks found in the recent literature, which in general are unable to represent each other. In contrast to previous models, our proposal is also able to intrinsically model cyclic~(i.e. periodic) behavior in dynamic networks. These representation capabilities attest the expressive power of our proposed unifying model for TVGs.Nous proposons un modèle (TVG pour \emph{Time-Varying Graphs}) pour représenter les graphes dynamiques (\emph{i.e.}, des graphes susceptibles d'évoluer au cours du temps). Nous montrons qu elles définitionsclefs comme le degré, la notion de chemin, de connectivité sont prise en compte par ce modèle. Une analyse de la complexité des structures de données nécessaire à la représentation de ce modèle montre que la complexité asymptotique est en O(m)O(m) (cardinalité du nombre d'arêtes du graphe dynamique). Si les sommets d'un TVG peuvent être considérés comme des entités indépendantes à chaque instant, alors on démontre que le graphe TVG est isomorphe à un graphe orienté static. Notre modèle permet de représenter et de prendre en compte les différentes propositions existantes qui n'étaient pas en mesure de se représenter les unes les autres

    Discovering Patterns of Interest in IP Traffic Using Cliques in Bipartite Link Streams

    Full text link
    Studying IP traffic is crucial for many applications. We focus here on the detection of (structurally and temporally) dense sequences of interactions, that may indicate botnets or coordinated network scans. More precisely, we model a MAWI capture of IP traffic as a link streams, i.e. a sequence of interactions (t1,t2,u,v)(t_1 , t_2 , u, v) meaning that devices uu and vv exchanged packets from time t1t_1 to time t2t_2 . This traffic is captured on a single router and so has a bipartite structure: links occur only between nodes in two disjoint sets. We design a method for finding interesting bipartite cliques in such link streams, i.e. two sets of nodes and a time interval such that all nodes in the first set are linked to all nodes in the second set throughout the time interval. We then explore the bipartite cliques present in the considered trace. Comparison with the MAWILab classification of anomalous IP addresses shows that the found cliques succeed in detecting anomalous network activity

    Computing maximal cliques in link streams

    Full text link
    A link stream is a collection of triplets (t,u,v)(t, u, v) indicating that an interaction occurred between u and v at time t. We generalize the classical notion of cliques in graphs to such link streams: for a given Δ\Delta, a Δ\Delta-clique is a set of nodes and a time interval such that all pairs of nodes in this set interact at least once during each sub-interval of duration Δ\Delta. We propose an algorithm to enumerate all maximal (in terms of nodes or time interval) cliques of a link stream, and illustrate its practical relevance on a real-world contact trace

    Analytical computation of the epidemic threshold on temporal networks

    Full text link
    The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the Susceptible-Infectious-Susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is both of fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.Comment: 22 pages, 6 figure

    Social Events in a Time-Varying Mobile Phone Graph

    Get PDF
    The large-scale study of human mobility has been significantly enhanced over the last decade by the massive use of mobile phones in urban populations. Studying the activity of mobile phones allows us, not only to infer social networks between individuals, but also to observe the movements of these individuals in space and time. In this work, we investigate how these two related sources of information can be integrated within the context of detecting and analyzing large social events. We show that large social events can be characterized not only by an anomalous increase in activity of the antennas in the neighborhood of the event, but also by an increase in social relationships of the attendants present in the event. Moreover, having detected a large social event via increased antenna activity, we can use the network connections to infer whether an unobserved user was present at the event. More precisely, we address the following three challenges: (i) automatically detecting large social events via increased antenna activity; (ii) characterizing the social cohesion of the detected event; and (iii) analyzing the feasibility of inferring whether unobserved users were in the event.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Social Events in a Time-Varying Mobile Phone Graph

    Get PDF
    The large-scale study of human mobility has been significantly enhanced over the last decade by the massive use of mobile phones in urban populations. Studying the activity of mobile phones allows us, not only to infer social networks between individuals, but also to observe the movements of these individuals in space and time. In this work, we investigate how these two related sources of information can be integrated within the context of detecting and analyzing large social events. We show that large social events can be characterized not only by an anomalous increase in activity of the antennas in the neighborhood of the event, but also by an increase in social relationships of the attendants present in the event. Moreover, having detected a large social event via increased antenna activity, we can use the network connections to infer whether an unobserved user was present at the event. More precisely, we address the following three challenges: (i) automatically detecting large social events via increased antenna activity; (ii) characterizing the social cohesion of the detected event; and (iii) analyzing the feasibility of inferring whether unobserved users were in the event.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    corecore