1,446 research outputs found

    A distributionally robust perspective on uncertainty quantification and chance constrained programming

    Get PDF
    The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones

    A probabilistic interpretation of set-membership filtering: application to polynomial systems through polytopic bounding

    Get PDF
    Set-membership estimation is usually formulated in the context of set-valued calculus and no probabilistic calculations are necessary. In this paper, we show that set-membership estimation can be equivalently formulated in the probabilistic setting by employing sets of probability measures. Inference in set-membership estimation is thus carried out by computing expectations with respect to the updated set of probability measures P as in the probabilistic case. In particular, it is shown that inference can be performed by solving a particular semi-infinite linear programming problem, which is a special case of the truncated moment problem in which only the zero-th order moment is known (i.e., the support). By writing the dual of the above semi-infinite linear programming problem, it is shown that, if the nonlinearities in the measurement and process equations are polynomial and if the bounding sets for initial state, process and measurement noises are described by polynomial inequalities, then an approximation of this semi-infinite linear programming problem can efficiently be obtained by using the theory of sum-of-squares polynomial optimization. We then derive a smart greedy procedure to compute a polytopic outer-approximation of the true membership-set, by computing the minimum-volume polytope that outer-bounds the set that includes all the means computed with respect to P

    Kernel Exponential Family Estimation via Doubly Dual Embedding

    Get PDF
    We investigate penalized maximum log-likelihood estimation for exponential family distributions whose natural parameter resides in a reproducing kernel Hilbert space. Key to our approach is a novel technique, doubly dual embedding, that avoids computation of the partition function. This technique also allows the development of a flexible sampling strategy that amortizes the cost of Monte-Carlo sampling in the inference stage. The resulting estimator can be easily generalized to kernel conditional exponential families. We establish a connection between kernel exponential family estimation and MMD-GANs, revealing a new perspective for understanding GANs. Compared to the score matching based estimators, the proposed method improves both memory and time efficiency while enjoying stronger statistical properties, such as fully capturing smoothness in its statistical convergence rate while the score matching estimator appears to saturate. Finally, we show that the proposed estimator empirically outperforms state-of-the-artComment: 22 pages, 20 figures; AISTATS 201

    Recent advances in multiobjective convex semi-infinite optimization

    Get PDF
    This paper reviews the existing literature on multiobjective (or vector) semi-infinite optimization problems, which are defined by finitely many convex objective functions of finitely many variables whose feasible sets are described by infinitely many convex constraints. The paper shows several applications of this type of optimization problems and presents a state-of-the-art review of its methods and theoretical developments (in particular, optimality, duality, and stability)

    SOS-convex Semi-algebraic Programs and its Applications to Robust Optimization: A Tractable Class of Nonsmooth Convex Optimization

    Get PDF
    In this paper, we introduce a new class of nonsmooth convex functions called SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex polynomials. This class of nonsmooth convex functions covers many common nonsmooth functions arising in the applications such as the Euclidean norm, the maximum eigenvalue function and the least squares functions with â„“1\ell_1-regularization or elastic net regularization used in statistics and compressed sensing. We show that, under commonly used strict feasibility conditions, the optimal value and an optimal solution of SOS-convex semi-algebraic programs can be found by solving a single semi-definite programming problem (SDP). We achieve the results by using tools from semi-algebraic geometry, convex-concave minimax theorem and a recently established Jensen inequality type result for SOS-convex polynomials. As an application, we outline how the derived results can be applied to show that robust SOS-convex optimization problems under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty and answers the open questions left in [Optimization Letters 9, 1-18(2015)] on how to recover a robust solution from the semi-definite programming relaxation in this broader setting

    Data-Driven Robust Optimization

    Full text link
    The last decade witnessed an explosion in the availability of data for operations research applications. Motivated by this growing availability, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using statistical hypothesis tests. The approach is flexible and widely applicable, and robust optimization problems built from our new sets are computationally tractable, both theoretically and practically. Furthermore, optimal solutions to these problems enjoy a strong, finite-sample probabilistic guarantee. \edit{We describe concrete procedures for choosing an appropriate set for a given application and applying our approach to multiple uncertain constraints. Computational evidence in portfolio management and queuing confirm that our data-driven sets significantly outperform traditional robust optimization techniques whenever data is available.Comment: 38 pages, 15 page appendix, 7 figures. This version updated as of Oct. 201
    • …
    corecore