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Abstract

Set-membership estimation is usually formulated in the context of set-valued calculus and no probabilistic calculations are necessary.
In this paper, we show that set-membership estimation can beequivalently formulated in the probabilistic setting by employing sets of
probability measures. Inference in set-membership estimation is thus carried out by computing expectations with respect to the updated
set of probability measuresP as in the probabilistic case. In particular, it is shown thatinference can be performed by solving a particular
semi-infinite linear programming problem, which is a special case of the truncated moment problem in which only the zero-th order
moment is known (i.e., the support). By writing the dual of the above semi-infinite linear programming problem, it is shown that, if the
nonlinearities in the measurement and process equations are polynomial and if the bounding sets for initial state, process and measurement
noises are described by polynomial inequalities, then an approximation of this semi-infinite linear programming problem can efficiently be
obtained by using the theory of sum-of-squares polynomial optimization. We then derive a smart greedy procedure to compute a polytopic
outer-approximation of the true membership-set, by computing the minimum-volume polytope that outer-bounds the set that includes all
the means computed with respect toP .

Key words: State estimation; Filtering; Set-membership estimation;set of probability measures; Sum-of-squares polynomials.

1 Introduction

Inferring the value of the state of a dynamical system at the
various time instants is a classical problem in control and es-
timation theory. The state is estimated based on noisy signal
observations and on a state transition model, which in turn
is affected by two sources of uncertainty (namely, process
disturbance and uncertainty on the initial state conditions).
In the literature, there are two main approaches for dealing
with the uncertainties and noises acting on the system:

• the stochastic (probabilistic) approachthat assumes that
the noises and the uncertainties are unknown but they can
be described by known probability distributions.
• theset-membership approachthat assumes that the noises

and the uncertainties are unknown but bounded in some
compact sets.

The probabilistic approach is grounded on Bayesian filter-
ing, whose aim is to update with the measurements and
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propagate up on time theprobability density function(PDF)
of the state. Inferences are then carried out by computing
expectations with respect to this PDF, i.e., mean, variance,
credible regions. It is well known that, for linear discrete-
time dynamical systems corrupted by Gaussian noises, the
Bayesian filter reduces to the Kalman filter.

The set-membership approach is instead based on the
construction of a compact set which is guaranteed to in-
clude the state values of the system that are consistent
with the measured output and the assumed bounds on the
noises/disturbances [1–6]. This compact set is propagated
in time and updated recursively with the output observa-
tions. In set-membership estimation, computing inferences
thus means to determine this compact set. Set-membership
estimation was first proposed in [7,8], where an ellipsoidal
bounding of the state of linear dynamical systems is com-
puted. The application of ellipsoidal sets to the state esti-
mation problem has also been studied by other authors, for
example [9,10], and, independently, in the communications
and signal processing community, starting from the works
[11–14]. In order to improve the estimation accuracy, the
use of a convex polytope instead of an ellipsoid has been
proposed in [15,16]. Unfortunately such a polytope may be
extremely complex and the corresponding polytopic updat-

Preprint submitted to Automatica 6 March 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/33752022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ing algorithms may require an excessive amount of calcula-
tions and storage (without any approximations, the number
of vertices of the polytope increases exponentially in time).
For this reason, it has been suggested to outer approximate
the true polytope with a simpler polytope, i.e. possessing
a limited number of vertices or, equivalently, faces [17].
In this respect, a parallelotopic approximation of the set-
membership set was presented in [18,19]. A parallelotope
is the generalisation of the parallelogram toR

n. Minimum-
volume bounding parallelotopes are then used to estimate
the state of a discrete-linear dynamical system with polyno-
mial complexity. Zonotopes have been proposed to reduce
the conservativeness of parallelotopes. Intuitively zono-
topes are polytopes with parallel faces, for a more precise
definition see [20, Ch. 2]. A parallelotope is thus a special
zonotope. Zonotopes are used in [21–23] to build a state
bounding observer in the context of linear discrete systems.

Zonotopes are also employed to address the problem of
set-membership estimation for non-linear discrete-time sys-
tems with a bounded description of noise and uncertain-
ties [24]. At each sample time, a guaranteed bound of the
uncertain state trajectory of the system is calculated us-
ing interval arithmetic applied to the nonlinear functions
through the mean interval extension theorem. This outer
bound is represented by a zonotope. Similar approaches for
set-membership estimation for nonlinear systems are pre-
sented in [25–27], where ellipsoids are used instead of zono-
topes. Recently, randomized methods are used in [28] to ap-
proximate, with probabilistic guarantees, the uncertain state
trajectory with polynomial sublevel sets.

The aim of this paper is to address the problem of the es-
timation of the state of a discrete-time non-linear dynami-
cal system (characterized by polynomial non-linearities)in
which initial state and noises are unknown but bounded by
some compact sets (defined by polynomial inequalities). We
are therefore in the context of set-membership estimation,
but we will address this problem in a very different way
from the approaches presented above. We reformulate set-
membership in the probabilistic setting and solve it using
the theory of moments and positive polynomials. More pre-
cisely the contributions are the following.

First, by exploiting recent results on filtering with sets of
probability measures [29,30], we show that set-membership
estimation can be equivalently formulated in a probabilis-
tic setting by employing sets of probability measures. In
particular, we show that the prediction and updating steps
of set-membership estimation can be obtained by applying
Chapman-Kolmogorov equation and Bayes’ rule point-wise
to the elements of this set of probability measuresP . This
unifies the probabilistic approach (Bayes filter) and the set-
membership approach to state estimation. This result can
have an enormous impact, because it finally can allow us to
combine set-membership and classical probabilistic uncer-
tainty in order to obtain hybrid filters, i.e., stochastic (prob-
abilistic) filters that are for instance able to use information
about the bounding region as well as the probabilistic mo-

ments (mean and variance) of the noises or that are able
to deal with a Gaussian measurement noise and a bounded,
with known moments, process noise etc.. Moreover, it can
allow us to compute credible regions (Bayesian confidence
intervals) that takes into account of both deterministic and
probabilistic uncertainty, as well as it allows us to make de-
cisions by choosing the action that minimizes the expecta-
tion of some loss function (this is important, for instance,in
control design). In the context of this paper a first attempt
in combining deterministic and probabilistic uncertaintyhas
been proposed in [29], while [31] has proposed a joint Zono-
topic and Gaussian Kalman filter for discrete-time LTV sys-
tems simultaneously subject to bounded disturbances and
Gaussian noises. The work [32] instead proposes a Bayesian
approach to set-membership estimation imposing a uniform
distribution on the membership-set similar to the idea pro-
posed in [33,34]. We will show that this approach is differ-
ent from set-membership estimation, since set-membership
estimation cannot be interpreted in the Bayesian framework,
but only in the framework of set of probability measures.
Second, under this probabilistic interpretation, inferences in
set-membership estimation are carried out by computing ex-
pectations with respect to the setP as in the probabilistic
case. In particular, we show that the membership setX (i.e.,
the set that includes the state with guarantee) can be ob-
tained by computing the union of the supports of the prob-
ability measures inP . Moreover, we prove that a minimum
volume convex outer-approximation ofX can simply be ob-
tained by computing the setM that includes all the means
computed with respect to the probabilities inP . The proof
is not constructive, hence we do not have a convenient de-
scription ofM. However we show that we can determine the
least conservative half-spaceH that includesM , by solving
a semi-infinite linear programming problem. This problem
is a special case of the truncated moment problem [35–37]
in which only the zero-th order moment is known (i.e., the
support).
Third, by writing the dual of the above semi-infinite linear
programming problem, we show that, if the nonlinearities in
the measurement and process equations are polynomial and
if the bounding sets for initial state, process and measure-
ment noises are described by polynomial inequalities, then
a feasible solution of the dual can be obtained by simply
checking the non-negativity of a polynomial on a compact
set described by polynomial inequalities. An approximation
of this semi-infinite linear programming problem can be ob-
tained by reformulating it as semidefinite programming by
using the theory ofsum-of-squares(SOS) polynomial opti-
mization. We prove that the approximate solution is robust,
in the sense that the computed half-spaceH is guaranteed
to includeM, and so the membership setX .
Fourth, we provide a procedure to determine the minimum-
volume polytopeS boundingM. This procedure is based
on a refinement of the algorithm originally proposed in [38]
to compute an approximation of the minimum-volume poly-
tope containing a given semialgebraic set. In particular, we
use a Monte Carlo integration approach to compute an ap-
proximation of the volume of a polytope, and a greedy pro-
cedure to determine an outer-bounding polytopeS as the
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intersection of a pre-specified number of half-spacesHj ,
where each half-spaceHj is added to the description ofS
so to minimize the volume of the polytope includingM.
This allows us to solve the set-membership estimation prob-
lem for polynomial non-linear systems very efficiently and
through convex optimization.
Finally, by means of a numerical example involving the
Lotka Volterra prey-predator model, we show the effective-
ness of our approach.

2 Problem Description

Consider an uncertain non-linear discrete-time dynamical
system described by the difference equations:

{

x(k) = ad(x(k − 1), k − 1) +w(k − 1),

y(k) = cd(x(k), k) + v(k),
(1)

wherex(k) = [x1(k), . . . , xn(k)]
⊤ ∈ R

n is the state of the
system at the timek, y(k) ∈ R

m is the measured output
vector,w(k − 1) ∈ R

n is the process noise andv(k) ∈
R

m is the measurement noise. In this paper, we consider
polynomial non-linearitiesad(x(k), k) andcd(x(k), k), i.e.,

ad(x(k − 1), k − 1) =Ak−1qd(x(k − 1)), (2a)
cd(x(k), k) =Ckqd(x(k)), (2b)

with

qd(x) =

[1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1xn, x

2
n, . . . , x

d
1, . . . , x

d
n]

⊤

(3)
being the vector of all monomials of degrees less than or
equal tod, which has dimensions(d) =

(
n+d
d

)
, andAk−1 ∈

R
n×s(d), Ck ∈ R

m×s(d) are known time-variant coefficient
matrices. The resulting system will be referred in the paper
as uncertain time-variant polynomial system of degreed.

Example 1 Let us consider the discrete-time polynomial
system:

x1(k) = x1(k − 1) (2− x1(k − 1)) + w1(k − 1),

x2(k) = x1(k − 1)x2(k − 1) + 0.5x2(k − 1) + w2(k − 1),

The output equation is given by:y(k) = x1(k) + x2(k) +
v(k). We can rewrite this system as in (2a)–(2b):

qd(x) = [1, x1, x2, x
2
1, x1x2, x

2
2]

⊤

Ak−1 =

[

0 2 0 −1 0 0

0 0 0.5 0 1 0

]

Ck−1 =
[

0 1 1 0 0 0
]

and thereforen = 2, m = 1, d = 2 ands(d) =
(
n+d
d

)
= 6.

We further assume that the only available information about
the initial statex(0) and the noisesw(k),v(k) is:

x(0) ∈ X0, w(k) ∈ Wk, v(k) ∈ Vk, (4)

whereX0,Wk,Vk are compact basic semi-algebraic sets,
i.e., compact sets described by the polynomial inequalities:

Wk = {w(k) ∈ R
n : hw

i (w(k), k) ≤ 0, i = 1, . . . , tw} ,

(5)
wherehw

i (with i = 1, . . . , tw, tw ∈ N) are polynomial
functions in the variablew(k). The setsX0,Vk are described
in a similar manner.

This paper addresses a set-membership filtering problem,
which aims at recursively estimating, at each time sample
k = 1, 2, . . . , To, (an outer approximation of) the state un-
certainty setXk, defined as the set of all valuesx(k) com-
patible with the available information, namely the system
equations (1), the bounds on the initial state and on the noises
(4), and the output observationsy(1),y(2), . . . ,y(To). For-
mally, the set-membership filtering problem is defined as
follows.

Problem 1 [Set-membership filtering]
Given the system equations (1), the observations, the bound-
ing sets for the noisesWk,Vk and the initial state uncer-
tainty setX0, compute recursively the state uncertainty set
Xk defined as:

Xk = { x(k)∈Rn: x(k)−ad(x(k − 1), k − 1)∈Wk−1,

y(k) − cd(x(k), k) ∈ Vk,

x(k − 1) ∈ Xk−1 }

for eachk = 1, 2, . . . , To. �

Note that, in general, the setsXk might be nonconvex and
their representation can become more and more complicated
as the time indexk increases. Under the assumption that
Xk is bounded, algorithms for computing simple sets (e.g.,
boxes, parallelotopes, zonotops or ellipsoidal regions) outer-
bounding the state uncertainty setsXk have been then pro-
posed to reduce this complexity. After formulating the set-
membership filtering problem in a probabilistic setting, this
paper presents an algorithm for computing (an approxima-
tion of) the minimum-volume polytope outer-bounding the
setsXk.

3 A probabilistic framework for set-membership esti-
mation

Set-membership estimation is usually formulated in the con-
text of set-valued calculus. We will show in the following
paragraph that set-membership estimation can be equiva-
lently formulated in the probabilistic setting by employing
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sets of probability measures. Consider the set-membership
constraintx ∈ X (the time index is dropped for brevity of
notation) withX ⊂ R

n. This constraint can be translated
in a probabilistic setting by saying that the only probabilis-
tic information on the valuex of the variableX is that it
belongs to the setX , or equivalently,

Pr(X ∈ X ) = Pr(X ) = 1,

wherePr is a probability measure onX . 1 More precisely
Pr is a nonnegative Borel measure onX . 2 In other words,
this means that we only know the support of the probability
measure of the variableX.

The support does not uniquely define a probability measure,
as there are an indefinite number of probability measures
with supportX . 3 Hence,x ∈ X is equivalent to the con-
straint that the probability measure ofx belongs to the set
PX (X), that is the set of all probability measures on the
variableX with supportX . Let us define withP the Cumu-
lative Distribution Function (CDF) of the probability mea-
surePr. For instance onR we have thatP (x) = Pr(−∞, x]
(this definition can easily be extended toRn). Then we can
easily characterize the set of probability measuresPX (X)
as follows:

PX (X) =
{
P :

∫

X dP (x) = 1
}
, (6)

where the integral is a Lebesgue-Stieltjes integral with re-
spect toP . Hence, because of the equivalence between Borel
probability measures and cumulative distributions, hereafter
we will use interchangeablyPr andP .

3.1 Inference on the state

In state estimation, we are interested in making inferences
aboutX or, equivalently, computing expectations of real-
valued functionsg of X. Since there are an indefinite number
of probability measures with supportX , we cannot compute
a single expectation ofg. However, we can compute upper
and lower bounds for the expectation ofg with respect to the
probability measuresPr with supportX . For instance, the
upper bound for the expectation ofg is given by the solution

1 To clarify this aspect, consider the experiment of rolling adice.
Assume that the probabilityPr of the outcomesx of the dice
is completely unknown, then the only knowledge about the ex-
periment is thatx ∈ X = {1, 2, 3, 4, 5, 6}, or, equivalently, that
Pr({1, 2, 3, 4, 5, 6}) = 1. Therefore, the statementPr(X ) = 1 is
a model for our (epistemic) uncertainty about the probabilities of
the dice outcomes. We only know thatx ∈ {1, 2, 3, 4, 5, 6}.
2 The sample space isRn and we are considering the Borelσ-
algebra.X is assumed to be an element of theσ-algebra.
3 The uniform distribution is one of them, but it is not the only
one. So by considering only the uniform distribution as in [32],
we loose the full equivalence with set-membership.

of the optimization problem:

sup
P

∫

X
g(x)dP (x),

s.t. P ∈ PX (X),
(7)

which is a semi-infinite linear program, since it has a finite
number constraints and an infinite dimensional variable (the
probability measurePr). Note that we use “sup” instead
of “max” to indicate that an optimal solution might not be
attained. The lower bound of the expectation can be obtained
by replacingsupwith inf.

Problem (7), i.e., determining an upper bound for the expec-
tation ofg with respect to the probability measurePr given
the knowledge of its supportX , is a special case of the trun-
cated moment problem [35–37] in which only the zero-th
order moment is known (i.e., the support). Hence, we have
the following result [39], [40, Lemma 3.1]:

Proposition 1 The optimum of (7) is obtained by an atomic
measure4 Pr = δx̂, wherex̂ = arg supx∈X g(x).

Note in fact that,∀Pr ∈ PX (X), with associated CDFP ,

E[g] =

∫

X

g(x)dP (x) ≤

∫

X

g(x)δx̂(dx) = g(x̂),

whereg(x̂), by definition of x̂, is the supremum ofg on
X . The first integral must be understood as a Lebesgue-
Stieltjes integral with respect to the cumulative distribution
of an atomic measure onRn. This means thatdP (x) denotes
the distributional derivative of the cumulative distribution
of an atomic measure, that are in our case Dirac measures
δx̂(dx) (hence the second integral). From this result, it fol-
lows that the probability measures that gives the lower and
upper bounds for the expectation ofg are atomic (discrete)
measures.
In order to formulate the set-membership filtering problem
in a probabilistic framework it is useful to exploit a resultde-
rived by Karr in [39], where it is proven that the set of prob-
ability measuresPX (X) which are feasible for the semi-
infinite linear program problem (7) is convex and compact
with respect to the weak∗ topology. As a result,PX (X) can
be expressed as the convex hull of its extreme points and,
according to Proposition 1, these extreme points are atomic
measures onX , i.e.:

PX (X) ≡ Co {δx̂ : x̂ ∈ X} , (8)

where≡ means equivalent in terms of inferences (expecta-
tions). Summing up what we have obtained so far:

4 An atomic measure inRn is a measure which accepts as an
argument a subsetA of Rn, and returnsδx(A) = 1 if x ∈ A,
zero otherwise.
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(1) the set-membership constraintx ∈ X is equivalent to
(6);

(2) for the inferences,PX (X) is equivalent to the convex
hull of all atomic measures onX , (8).

Hence, we can derive the prediction and updating step
for set-membership estimation by applying the Chapman-
Kolmogorov equation and Bayes’ rule to the set of prob-
ability measures in (8). This means that, by reformulating
set-membership constraints in a probabilistic way, we can
reformulate set-membership estimation in the realm of
stochastic (probabilistic) filtering applied to set of probabil-
ity measures.

3.2 Propagating in time and updating set of distributions

We start by deriving the set-membership filtering prediction
step by applying the Chapman-Kolmogorov equation.

Theorem 1 (Prediction) Consider the system equation in
(1) with w(k − 1) ∈ Wk−1 and assume that the only prob-
abilistic knowledge aboutX(k − 1) is the supportXk−1.
Then it follows that the probability measurePr on the value
x(k) of the state at timek belongs to the set

P̂X̂k
(X(k)) ≡ Co

{

δx̂ : x̂ ∈ X̂k

}

, (9)

with

X̂k =
{

x(k) : x(k) = ad(x(k − 1), k − 1) +w(k − 1)

with x(k − 1) ∈ Xk−1, w(k − 1) ∈ Wk−1

}

,

(10)

or equivalently:

X̂k =
{

x(k) : x(k)− ad(x(k − 1), k − 1) ∈ Wk−1

with x(k − 1) ∈ Xk−1

}

. (11)

Proof: Let us consider the time instantk. From the system
equation in (1),w(k − 1) ∈ Wk−1 and (8), it follows that

P(X(k)|x(k − 1))

≡ Co
{
δad(x(k−1),k−1)+ŵ : ŵ ∈ Wk−1

}
,

this is the conditional set of probability measures for the vari-
ableX(k) given the valuex(k−1) of the variableX(k−1)
Hence, sinceX(k− 1) ∈ Xk−1 and so the set of probability
measures for the variableX(k − 1) is

PXk−1
(X(k − 1)) ≡ Co {δx̂ : x̂ ∈ Xk−1} ,

by applying the Chapman-Kolmogorov equation point-wise
to the probability measuresPr(·|x(k−1)) inP(X(k)|X(k−
1)) and Qr inP(X(k − 1)) we obtain

Pr(x(k)) =

∫

Rn

∫

Rn

Ix(k)(x
′)dP (x′|x(k − 1))dQ(x(k − 1))

=

∫

Rn

∫

Rn

Ix(k)(x
′)δad(x(k−1),k−1)+ŵ(dx′)δx̂(dx(k − 1))

=

∫

Rn

δad(x(k−1),k−1)+ŵ(x(k))δx̂(dx(k − 1))

= δad(x̂,k−1)+ŵ(x(k))

(12)

whereIx(k)(x′) denotes the indicator function5 and with
x̂ ∈ Xk−1 and ŵ ∈ Wk−1 and where we have ex-
ploited the fact that

∫

Rn Ix(k)(x
′)δad(x(k−1),k−1)+ŵ(dx′) =

Ix(k)(ad(x(k−1), k−1)+ŵ) = δad(x(k−1),k−1)+ŵ(x(k)).

From (8), (12) and the definition of̂Xk, the theorem fol-
lows. �

Theorem 1 shows that, by applying the Chapman-
Kolmogorov equation point-wise to the probability mea-
sures inP(X(k)|x(k − 1)) andPXk−1

(X(k − 1)), we can
obtain a set of probability measuresPX̂k

(X(k)), which is
completely defined by its support and whose support coin-
cides with the one obtained in set-membership estimation
after the prediction step.

We now derive a similar result for the updating step.

Theorem 2 (Updating) Consider the measurement equa-
tion in (1) withv(k) ∈ Vk and assume that the only proba-
bilistic knowledge aboutx(k) is described by (9)–(10). Then
it follows that the updated probability measuresP on the
valuex(k) of the state at timek belongs to the set:

PXk
(X(k)) ≡ Co {δx̂ : x̂ ∈ Xk} , (13)

where

Xk = X̂k ∩ Yk, (14)

with

Yk = {x(k) : y(k)− cd(x(k), k) ∈ Vk}. (15)

Proof: Observe that, at each timek,

P(Y(k)|x(k)) ≡ Co
{
δcd(x(k),k)+v̂ : v̂ ∈ Vk

}
.

Then, the updating step consists of applying Bayes’rule
to the probability measuresP(Y(k)|x(k)) and to Q in

5 I
x(k)(x

′) = 1 whenx(k) = x
′ and zero otherwise.
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P̂X̂k
(X(k)):

dP (x(k)|y(k)) =

∫

Rm Iy(k)(y
′)dP (y′|x(k))dQ(x(k))

∫

Rn

∫

Rm Iy(k)(y′)dP (y′|x(k))dQ(x(k))

=
Pr(y(k)|x(k))dQ(x(k))

∫

Rn Pr(y(k)|x(k))dQ(x(k))
,

where we have exploited the fact that

Pr(y(k)|x(k)) =

∫

Rm

Iy(k)(y
′)dP (y′|x(k)).

Note that the probability of a point onRn can be nonzero
sincePr is an atomic measure. In order to apply Bayes’ rule
we need to ensure that the denominator is strictly greater
than zero:

∫

Rn Pr(y(k)|x(k))dQ(x(k))

=
∫

Rn δcd(x(k),k)+v̂(y(k))δx̂(dx(k)) > 0.

Hence, the above inequality holds if and only ifx̂ andv̂ are
chosen, at timek, such that:

cd(x̂, k) + v̂ = y(k). (16)

Bayes’ rule is only defined for those probability measures
for which the denominator is strictly positive, that implies
that the above equality must be satisfied.6 The equality (16)
can be satisfied only if̂x ∈ Yk which, together with the
constraint̂x ∈ X̂k, implies that

x̂ ∈ X̂k ∩ Yk.

Under the constraint (16), it follows thatδcd(x̂,k)+v̂(y(k)) =
1 and, thus, the denominator is equal to one. Hence, we have
that

dP (x(k)|y(k)) =
∫

Rm Iy(k)(y
′)dP (y′|x(k))dQ(x(k))

=
∫

Rm Iy(k)(y
′)δcd(x(k),k)+v̂(y(k))δx̂(dx(k))

= δcd(x(k),k)+v̂(y(k))δx̂(dx(k))

= δcd(x̂,k)+v̂(y(k))δx̂(dx(k))

= δx̂(dx(k))

with x̂ ∈ X̂k ∩ Yk. Hence, the updated probability mea-
sure Pr(·|y(k)) on the values of the state at timek is
Pr(·|y(k)) = δx̂, which proves the theorem. �

From Theorem 2, the support of the updated probability
measurePr on the valuex(k) of the state at timek is given

6 This way of updating set of probability measures has been
proposed by Walley [41, Appendix J] under the name of regular
extension.

by Xk, i.e.,
∫

Xk

dP (x(k)) = 1, (17)

whereXk is given by (14), or equivalently by (6). In other
words, the support of the probability measurePr of the value
of the statex(k) given the output observationy(k) and the
system equations (1) is nothing butXk. This is in accordance
with the set-membership formulation, which claims that
x(k) belongs to state uncertainty setXk defined in (6). Then
we can solve set-membership filtering by applying recur-
sively Theorems 1 and 2, as described in Algorithm 1. The

Algorithm 1: prediction and updating

A1.1 Initialize PX0
(X(0)) ≡ Co {δx̂ : x̂ ∈ X0}.

A1.2 For k = 1, . . . , To:

A1.2.1 P̂X̂k
(X(k)) ≡ Co

{

δx̂ : x̂ ∈ X̂k

}

with X̂k de-

fined in (10);
A1.2.2 PXk

(X(k)) ≡ Co {δx̂ : x̂ ∈ Xk} with Xk de-
fined in (14).

steps A1.2.1 and A1.2.1 are the prediction and the updating
steps, respectively. Note that the set of probability measures
PXk

(X(k)) (or P̂X̂k
(X(k))) is computed by taking into ac-

count all the observationsyk = {y(1),y(2), . . . ,y(k)} (re-
spectivelyyk−1). Hence, it should be more correctly denoted
asPXk

(X(k)|yk) (respectivelyPX̂k
(X(k)|yk−1)). We have

omitted this notation for brevity.

Remark 1 Under the assumptions(2a),(2b)and(5), the set
Xk is a semialgebraic set inRn, described by the intersec-
tions of the semialgebraic setŝXk (Eq. (11)) andYk (Eq.
(15)). Formally,Xk is the projection in the space ofx(k) of
the set

X̃k =
{
x̃ ∈ R

2n : hs(x̃(k)) ≤ 0, s = 1, . . . ,m
}
, (18)

where x̃(k) is the augmented state vector̃x(k) =
[
x⊤(k) x⊤(k − 1)

]⊤
and hs(x̃(k)) (with s = 1, . . . ,m)

are the polynomial functions inx(k) andx(k−1) (or equiv-
alently inx̃(k)) definingX̂k andYk. In the rest of the paper,
we will use the following notation to describe the setXk:

Xk = {x(k) ∈ R
n : hs(x̃(k)) ≤ 0, s = 1, . . . ,m} . (19)

Remark 2 The reformulation of set-membership in the
probabilistic framework is important for two main reasons.
First, it allows us to reinterpret the operations performed
in set-membership estimation and justifies them in terms
of a probabilistic framework. We have just seen the rein-
terpretation of prediction and updating in terms of the
Chapman-Kolmogorov equation and Bayes’ rule. We will
further investigate this interpretation in the next sections.
In particular, in Section 4, we will show that the convex
membership set computed in set-membership estimation can
also be interpreted as the set of posterior means calculated
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with respect to the posterior set of probability measures
PXk

(X(k)) (in the Bayesian setting, we know that the
posterior mean is the optimal estimate with respect to a
quadratic loss function – a similar result holds for the set
of posterior means [42, Sec.5]). This result can also now
be applied to set-membership estimation because, after this
probabilistic interpretation, we are now able to compute
expectations. Moreover, in Section 5 we will also highlight
the connection between set-membership estimation and the
theory of moments (through duality).
Second, we are now potentially able to combine set-
membership and classical probabilistic uncertainty in order
to obtain hybrid filters, i.e., stochastic (probabilistic)fil-
ters that are for instance able to use information about
the bounding region as well as the probabilistic moments
(mean and variance) of the noises or that are able to deal
with a Gaussian measurement noise and a bounded, with
known moments, process noise etc.. A first attempt in this
direction is described in [29] for scalar systems. We plan to
further investigate this direction in future work by using the
theory of SOS polynomial optimization, that we also use in
the next sections.

4 Computing the support as an inference on the set of
probability measures

In the probabilistic formulation of filtering, all the available
information at timek is encoded in the posterior probability
distribution of the statex(k) given all the observationsyk).
In the set-membership setting, this information is encodedin
the updated set of probability measuresPXk

(X(k)). Infer-
ences can then be expressed in terms of expectations com-
puted with respect to this set. The set-membership estima-
tion problem can, for instance, be reformulated as follows:

Ω∗ = arg min
Ω⊆Rn

∫

Ω

dx(k)

s.t.
∫

Ω

dP (x(k)) = 1, ∀P ∈ PXk
(X(k)).

(20)

The solution of (20) is the minimum-volume setΩ ⊆ R
n,

such thatPr(x(k) ∈ Ω) = 1 for all probability measuresPr
in PXk

(X(k)) (i.e., with supportXk). 7 Thus,Ω∗ coincides
with Xk. SinceXk may be not convex, the problem (20) is
in general difficult to solve. However, the problem can be
simplified by restrictingΩ to be convex, thus computing a
convex outer-approximation ofXk.

The following theorem shows that computing the minimum-
volume convex setΩ such thatP (x(k) ∈ Ω) = 1 is
equivalent to obtain the set that includes all the possible
means computed with respect to the probability measure in
PXk

(X(k)).

7 It is thus the union of all the supports of the probability measures
in PXk

(X(k)).

Theorem 3 Assume thatXk is compact and thatΩ1 ⊆ R
n

is a convex set defined as follows:

Ω1 = arg inf
Ω⊆Rn,Ω conv.

∫

Ω

dx(k)

s.t.
∫

Ω

dP (x(k)) = 1, ∀P ∈ PXk
(X(k))

(21)

Then, it results thatΩ1 =M, with

M =







∫

Xk

x(k)dP (x(k)) : P ∈ PXk
(X(k))






. (22)

Proof: From (21) it follows thatΩ1 is the minimum volume
convex set that includesXk. Thus, if Xk is convex, then
Ω1 = Xk. Hence, from (8), the equality

∫

Xk

x(k)δx̂(k)(dx(k)) = x̂(k),

and (22), it immediately follows thatM = Ω1. Conversely
assume thatXk is not convex, thenΩ1 ⊃ Xk. SinceΩ1

is the minimum volume convex set that includesXk, then
Ω1 must be equal to the convex-hull ofXk. This means
that for eachx̂ ∈ Ω1, there existz1, z2 ∈ Xk such that
wz1 + (1−w)z2 = x̂ for somew ∈ [0, 1] (by definition of
convex hull). Then, consider the probability measure

wδz1 + (1− w)δz2 . (23)

Because of (8), it holds:

wδz1 + (1− w)δz2 ∈ PXk
(X(k)), (24)

and
∫

Xk

x(k) (wδz1 (dx(k)) + (1− w)δz2 (dx(k))) = x̂. (25)

Thus,x̂ belongs toM, and vice versa. �

Theorem 3 has the following fundamental implications:

• a convex outer-bounding of the set of all the possible
means computed with respect to the probability measures
in PXk

(X(k)) (i.e., the setM) is also a convex outer-
bounding of the supportXk of the set of probability mea-
suresPXk

(X(k)).
• the tightest convex outer-bounding of the supportXk of

the set of probability distributionsPXk
(X(k)) is the set

of the means computed with respect to the probability
measure inPXk

(X(k)).

7



We can thus useM as an outer-approximation ofXk. Al-
gorithm 1 is therefore modified to include the following ad-
ditional steps.

Refinement of Algorithm 1: outer-approximation step

A1.1.3 Outer-approximateXk withM defined in (22).
A1.1.4 RedefinePXk

(X(k)) ≡ Co {δx̂ : x̂ ∈ M}.

Unfortunately, Theorem 3 does not provide a constructive
way to find the setM. However, by restricting the outer-
approximation of the supportXk to have a simple form (e.g.,
a polytope), Theorem 3 can be still exploited to determine an
outer-bounding set ofXk. The following theorem provides
results to compute an outer-bounding box ofXk.

Theorem 4 (Box approximation) The minimum volume
box that includesXk can be found by solving the following
family of optimization problems

x∗
i (k) = opt

P

∫
xi(k)dP (x(k))

s.t.
∫

Xk

dP (x(k)) = 1.
(26)

for i = 1, . . . , n, where by selecting opt to be min or max
we obtain the half-spaces

∫
xi(k)dP (x(k)) ≥ x∗

i (k) and,
respectively,

∫
xi(k)dP (x(k)) ≤ x∗

i (k) which define the
box.

The proof of Theorem 4 is provided together with the proof
of Theorem 5. Based on Theorem 4, by computing the lower
and upper means of the componentsx1(k), . . . , xn(k) of the
vectorx(k), the tightest box that outer-approximatesXk is
obtained. In the following we will discuss how to efficiently
solve optimization problems similar to (26) and how to find
an outer-approximation ofXk that is less conservative than
a box. For simplicity of notation, in the rest of the paper, the
dependence of the statex(k) and of the setXk on the time
indexk will be dropped, and only used when necessary.

5 Exploiting duality

In this section we discuss how to efficiently solve optimiza-
tion problems similar to (26). In particular, we slightly mod-
ify (26) in order to be able to determine the more general
half-space

H =
{
ρ ∈ R

n : ω⊤ρ ≤ ν
}
, (27)

whereω ∈ R
n, ν ∈ R andρ =

∫
xdP (x). 8

Theorem 5 Let us fix the normal vectorω defining the half-
spaceH in (27). Then, the tightest half-spaceH including

8 The half-spaceH lies on the space of the means.

M (or equivalently, includingX ), is obtained forν = ν∗,
with

ν∗ = max
P

∫
ω

⊤xdP (x)

s.t.
∫

X

dP (x) = 1.
(28)

Proof: Let ρ =
∫
xdP (x) be a point belonging toM. Let

us first prove that ifν ≥ ν∗, thenM⊆H. First, note that:

ω
⊤ρ ≤ ν∗ =sup

P

ω
⊤

∫

xdP (x)

s.t.

∫

X

dP (x) = 1

Therefore, forν ≥ ν∗, ω⊤ρ ≤ ν∗ ≤ ν, which means that
ρ =

∫
xdP (x) also belongs toH for all ρ ∈ M. Thus,H

containsM. By choosingν = ν∗, we obtain the tightest
half-space defined by the normal vectorω that includesM.
�

It can be observed that (28) reduces to (26) whenω = ei
for i = 1, . . . , n, whereei is an element of the natural
basis ofRn. Note that, in Problem (28): (i) the optimization
variables are the amount of non-negative mass assigned to
each pointx inX (i.e., the measurePr(x)); (ii) the objective
function and the constraint are linear in the optimization
variables. Therefore, (28) is a semi-infinite linear program
(i.e., infinite number of decision variables but finite number
of constraints). By exploiting duality of semi-infinite linear
program (see for instance [43]), we can write the dual of
(28), which is defined as:

ν∗ = inf
ν
ν

s.t. ν ≥ ω
⊤x, ∀x ∈ X , (29)

which is also a semi-infinite linear program (i.e., finite num-
ber of decision variables (ν) but infinite number of con-
straints). A solutionν is feasible for Problem (29) provided
that:

ν − ω
⊤x ≥ 0, ∀x ∈ X .

Hence, checking the feasibility ofν is equivalent to check
the non-negativity of the polynomialν −ω

⊤x in the setX .

Remark 3 The probabilistic formulation of the set-
membership estimation described so far is general enough,
and it is valid also when the dynamical system in(1) is
not a polynomial system and when the uncertainty sets
X0,Wk,Vk in (4) are not semialgebraic, but just com-
pact sets. The assumptions of polynomiality are used in
the following to efficiently solve the semi-infinite linear
programming problem(29) through convex optimization.

5.1 Sum-of-squares polynomials

A sufficient condition for a polynomial to be non-negative
over a semialgebraic set is that it can be written in terms of
sum-of-squares(SOS) polynomials (see, e.g., [44]).
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Definition 1 A polynomialσ(x̃), with x̃ ∈ R
2n, of degree

2d is a sum-of-squares polynomial, denoted byσ(x̃) ∈ Σ[x̃],
if and only if it can be written as:

σ(x̃) = qd(x̃)
⊤Qqd(x̃), (30)

whereQ is a real symmetric positive semidefinite matrix
of dimension

(
2n+d

d

)
. The vector of monomialsqd(x̃) is

defined as in(3). The set of SOS polynomials of degree less
then or equal to2d is denoted asΣ2d[x̃].

Then, for a given integerd ≥ 1, a sufficient condition for
ν − ω

⊤x to be non-negative inX is (see for instance [37,
Ch. 4]):

ν − ω
⊤x = σ0(x̃)−

m∑

s=1
σs(x̃)hs(x̃) ∀ x̃ ∈ R

2n

σ0(x̃), σ1(x̃), . . . , σm(x̃) ∈ Σ2d[x̃],
(31)

wherehs(x̃) (with s = 1, . . . ,m) are the polynomial non-
positive inequality constraints defining the semialgebraic set
X . In order to avoid confusion, we would like to stress
that alsoν − ω

⊤x is a polynomial in the variablẽx. In
fact, we remind that the augmented statex̃(k) is defined as:

x̃(k) =
[
x⊤(k) x⊤(k − 1)

]⊤
.

The following (more conservative) optimization problem can
be then solved instead of (29):

ν∗∗ = inf
ν,σs

ν

ν − ω
⊤x = σ0(x̃)−

m∑

s=1

σs(x̃)hs(x̃), ∀ x̃ ∈ R
2n

σ0(x̃), σ1(x̃), . . . , σm(x̃) ∈ Σ2d[x̃].
(32)

Note that, by rewriting the SOS polynomialsσs(x̃) (with
s = 0, . . . ,m) as in (30), Problem (32) can be also rewritten
as:

ν∗∗ = inf
ν,Qs

ν

ν − ω
⊤x =qd(x̃)

⊤Q0qd(x̃)+

−

m∑

s=1

qd(x̃)
⊤Qsqd(x̃)hs(x̃), ∀ x̃ ∈ R

2n

Qs � 0, s = 0, . . . ,m.

(33)

Some remarks:

(1) Problem (33) is asemidefinite programming(SDP)
problem [44,45], thus convex. In fact, checking if the
polynomialν − ω

Tx is equal toqd(x̃)
⊤Q0qd(x̃) −∑m

s=1 qd(x̃)
⊤Qsqd(x̃)hs(x̃) for all x̃ ∈ R

2n leads

to linear equalities inν and in the matrix coeffi-
cientsQs (with s = 1, . . . ,m). Besides, enforcing
σ0(x̃), σ1(x̃), . . . , σm(x̃) to be sum of square poly-
nomials leads tolinear matrix inequality(LMI) con-
straints in the coefficients ofσ0(x̃), σ1(x̃), . . . , σm(x̃)
(i.e.,Qs � 0).

(2) For ν = ν∗∗, the robust constraintν∗∗ − ω
⊤x ≥

0 ∀x ∈ X appearing in Problem (29) is guaranteed to
be satisfied. As matter of fact, for allx̃ ∈ X̃ , hs(x̃) ≤ 0

(with s = 1, . . . ,m) by definition ofX̃ . Furthermore,
the SOS polynomialsσs(x̃) = qd(x̃)

⊤Qsqd(x̃) (with
s = 0, . . . ,m) are always nonnegative overR2n as
Qs � 0. Thus, both the left and the right side of the
equation in Problem (33) are nonnegative for allx̃ ∈ X̃ .

(3) Since the equality constraint in (33) gives only a suffi-
cient condition for the non-negativity ofν − ω

⊤x on
X , it follows thatν∗ ≤ ν∗∗. Therefore, conservative-
ness is introduced in solving (33) instead of (29), as
highlighted in Corollary 1.

(4) However, according to thePutinar’s Positivstellensatz
(see, e.g., [46] and [47, Ch. 3]), a polynomial which is
nonnegative over a compact semialgebraic setX can
exactly always be written as a combination of SOS
polynomials, provided that the degree of the SOS poly-
nomialsσ0(x̃), . . . , σm(x̃) is large enough. In other
words, we can makeν∗∗ close toν∗ by increasing the
degree of the SOS. However, in practice it often hap-
pens that the relaxed solutionν∗∗ and the optimal one
ν∗ coincide with each other for small values of the SOS
degree2d.

Corollary 1 The setM is guaranteed to belong to the half-
spaceH : ω⊤x ≤ ν∗∗, i.e.

M⊆ H. (34)

Proof: The proof straightforwardly follows from Theorem 5
andν∗ ≤ ν∗∗. �

Example 2 Let us consider the discrete-time polynomial
system described by the difference equations:

x1(k)=x1(k−1)x2(k−1)(x1(k−1) + x2(k−1))+w1(k−1),

x2(k)=x1(k−1)x2(k−1)(2x1(k−1) + x2(k−1))+w2(k−1).

(35)
The output equation is given by:y(k) = x1(k) + x2(k) +
v(k). The following conditions are assumed: (i) the ini-
tial statex(0) belongs toX0 = {x(0) : ‖x(0)‖2 ≤ 0.2},
the process noisew(k) = [w1(k) w2(k)]

⊤ is bounded by
‖w(k)‖2 ≤ 0.4, and the measurement noise by‖v(k)‖∞ ≤
0.5. The observed outputy(k) at timek = 1 is y(k) = 0.
We are interested in computing an half-spaceH : ω⊤ρ ≤ ν
containing the state uncertainty setXk (or equivalentlyM)
at time k = 1. The normal vectorω characterizingH is
fixed and it is equal toω = [−1 − 0.5]⊤. In order to com-
pute the constant parameterν definingH, the SDP Problem
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Fig. 1. True state uncertainty setX1 (dark grey region) and half-s-
paceH : −ρ1 − 0.5ρ2 ≤ 0.45 (light gray region).

(33) with x̃(1) = [xT (1) xT (0)]T and

h1(x̃(1)) :x1(0)
2 + x2(0)

2 − 0.22 ≤ 0, (36)

h2(x̃(1)) :(x1(1)−x1(0)x2(0)(x1(0) + x2(0)))
2

︸ ︷︷ ︸

w2

1
(0)

+

(x1(1)−x1(0)x2(0)(2x1(0) + x2(0)))
2

︸ ︷︷ ︸

w2

2
(0)

− 0.42≤0,

h3(x̃(1)) :y(1)− x1(1)− x2(1)
︸ ︷︷ ︸

v(1)

− 0.5 ≤ 0,

h4(x̃(1)) :−

(

y(1)− x1(1)− x2(1)
︸ ︷︷ ︸

)

v(1)

− 0.5 ≤ 0,

(37)

is solved for a SOS degree2d = 4. TheSOStools[48] has
been used to easily handle the SOS polynomials appearing
in (33). The CPU time taken by the solverSeDuMi [49]
to compute a solution of the SDP Problem(33) on a 2.40-
GHz Intel Pentium IV with 3 GB of RAM is 2.1 seconds.
The computed half-spaceH is plotted in Fig. 1, along with
the true state uncertainty setX1. According to Theorem 5
and Corollary 1,X1 is included in the half-spaceH. Note
also that, although the original robust optimization problem
(29)has been replaced with the SDP problem(33), the com-
puted parameterν∗∗ definingH is such that the hyperplane
ω

⊤x = ν∗∗ is “almost” tangent to the setX1. Thus, only a
small level of conservativeness is introduced in using SOS.

6 Computation of the minimum-volume polytope con-
taining M

In the previous section, given the normal vectorω defining
the half-spaceH in (27), we have shown how to compute,
through convex optimization, the constant parameterν such
thatM⊂ H.

Now consider the following family of half-spaces:

Hj =
{
ρ ∈ R

n : ω⊤
j ρ ≤ νj

}
,

for j = 1, . . . , J with J ≥ n+ 1. Our goal is to choose the
normal vectorsωj , along with the constant parametersνj ,
defining the half-spacesHj such that

(1) M⊆ S =
⋂J

j=1Hj ;
(2) the polytopeS has minimum volume.

In other words, now also the normal vectorsωj for j =
1, . . . , J have to be optimized. Then, we can formulate the
problem we aim to solve as:

inf
S

∫

S

dx s.t.M⊆ S, (38)

whereS in (38) is constrained to be a polytope. There are
two main aspects making (38) a challenging problem, i.e.,

(1) the minimum-volume polytope outer-approximating a
generic compact set inRn might not exist. For instance,
if M is an ellipsoid, its convex hull is described by an
infinite number of half-spaces, namely all the support-
ing hyperplanes at every boundary point ofM.

(2) the problem of computing the exact volume
∫

S
dx of

a polytopeS in R
n is #P -hard (see, e.g. [50,51]. The

interested reader is also referred to [52] for details on
#P -hard problems). Although several algorithms have
been proposed in the literature to compute the volume
of a polytopeS through triangulation [53–56], Gram’s
relation [57], Laplace transform [58] or randomized
methods [59–61], all the approaches mentioned above
require an exact description of the polytopeS in terms
of its half-space or vertex representation. However, in
our case, the parametersωj , νj defining the half-spaces
Hj are unknown, as determiningωj , νj is part of the
problem itself.

In the following paragraph we present a greedy algorithm to
evaluate an approximation of the minimum-volume polytope
outer-approximating the setM.

6.1 Approximation of the objective function

As already pointed out in the previous paragraph, one of the
main problems in solving (38) is that an analytical expression
for the computation of the volume of a polytopeS in R

n is
not available and the polytopeS is unknown, as computing
S is part of the problem itself. In order to overcome such
a problem, a Monte Carlo integration approach [62] is used
here to approximate the volume ofS. Specifically, given an
outer-bounding boxB of the setM (which can be computed
as discussed in Theorem 4) and a sequence ofN random
points{pi}Ni=1 independent and uniformly distributed inB,
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the integral
∫

S
dx can be approximated as:

∫

S

dx ≈ V ol(B)
1

N

N∑

i=1

I{S}(pi), (39)

whereV ol(B) is the volume of the boxB andI{S}(pi) is the
indicator function of the (unknown) polytopeS defined as

I{S}(pi) =

{

1 if pi ∈ S

0 otherwise
(40)

Remark 4 It is worth remarking that:

E

[

V ol(B)
1

N

N∑

i=1

I{S}(pi)

]

= V ol(S),

where the expectation is taken with respect to the random
variablepi. Furthermore, because of the strong law of large
numbers,

lim
N→∞

V ol(B)
1

N

N∑

i=1

I{S}(pi) = V ol(S) w.p. 1, (41)

wherew.p.1 is for with probability1. For finite samplesN ,
the level of accuracy of the approximation in(39) depends
on the shape of the setS as well as on the volume of the
outer boxB. The reader is referred to as [62] for details on
Monte Carlo integration methods.

On the basis of (39), the volume minimization of problem
(38) can be then approximated as

min
S∈S

N∑

i=1

I{S}(pi) s.t.M⊆ S (42)

In the following subsection, we describe a greedy procedure
aiming at computing an approximation of the minimization
problem (42).

6.2 A greedy approach for solving(42)

The key steps of the approach proposed in this section to
compute a polytopic outer-approximationS of the setM
are summarized in Algorithm 2.

Algorithm 2 generates a sequence of half-spacesH1, . . . ,HJ

as follows. First, the half-spaceH1 that minimizes an
approximation of the volume of the polytopeB ∩ H1 is
computed. The approximation is due to the fact that the
volume ofB ∩ H1, given by the integral

∫

B∩H1

dx, is ap-

proximated (up to the constantV ol(B)
N

) by
∑N

i=1 I{H1}(pi)

Algorithm 2: Polytopic outer approximationS ofM
[input ] List L = {pi}

N
i=1 of N random points uniformly

distributed in the boxB.
A2.1 Setj = 1.
A2.2 Compute the half-spaceHj , defined asHj : ω⊤

j ρ −
νj ≤ 0 (with ωj 6= 0), that contains the minimum number
of points in the listL and such thatM is included inHj ,
i.e.,

ω
∗
j , ν

∗
j =arg min

ωj∈R
n

νj∈R

N∑

i=1

I{Hj}(pi)

s.t.
ωj 6= 0

M⊆Hj

pi ∈ L, i = 1, . . . , N

(43)

A2.3 Collect all the pointspi ∈ L belonging to the half-
spaceHj (computed through (43)) in a listLj . LetNj be
the number of elements ofLj .

A2.4 If Nj < N , thenL ← Lj , N ← Nj , j ← j + 1 and
go to step A2.2. Otherwise, setJ = j − 1 and go to step
A2.5.

A2.5 Define the polytopeS asS = B ∩
⋂J

j=1Hj .

[output] PolytopeS.

(corresponding to the objective function of problem (43)).
Then, the new half-spaceH2 that minimizes an approxima-
tion of the volume of the polytopeB∩H1∩H2 is generated.
In order to approximate the volume ofB ∩ H1 ∩ H2, all
the pointspi of the list L = {pi}

N
i=1 that do not belong

to the polytopeB ∩ H1 are discarded, and all and only
the points belonging toB ∩ H1 are collected in a new list
L1 = {pi}

N1

i=1 (step A2.3). The volume ofB ∩ H1 ∩ H2

is then approximated by
∑N1

i=1 I{H2}(pi), with pi ∈ L1.
The procedure is repeated untilNJ+1 = NJ (step A2.4),
which means that the number of samplespi belonging to
the polytopeB ∩ H1 ∩ . . . ∩ HJ+1 is equal to the number
of samplespi belonging to the polytopeB∩H1 ∩ . . .∩HJ .
Note that, because of the constraintM ⊆ Hj appearing in
optimization problem (50), the half-spacesH1, . . . ,HJ are
guaranteed to contain the setM, and thusS = B∩

⋂J

j=1Hj

is an outer approximation ofM. Finally, we would like
to remark that, in case we are interested also in bounding
the maximum number of half-spaces defining the polytopic
outer approximationS , Algorithm 2 can be stopped after
an a-priori specified number of iterations.

Example 3 Let us consider again Example 2. The first steps
of Algorithm 2 are visualized in Fig. 2. An outer-bounding
boxB of the true state uncertainty set (dark gray region) is
first computed (Fig. (a)). A set of80 random points (black
dots) uniformly distributed inB is generated (Fig. (b)). The
half-spaceH1 containing the true state uncertainty set and
the minimum number of points is computed. The points which
do not belong toH1 are discarded (gray dots in Fig. (c)). A
new half-spaceH2 containing the true state uncertainty set
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and the minimum number of black dots is computed (Fig.
(d)). Again, the points that do not belong toH1 ∩ H2 are
discarded (gray dots in Fig. (d)). The procedure terminates
when no more black points can be discarded.

(a) (b)

(c) (d)

Fig. 2. First steps of Algorithm 2.

Technical details of step A2.2, which is the core of Algo-
rithm 2, are provided in the following sections.

6.3 Approximation of the indicator functions

Note that the objective function of problem (43) is noncon-
tinuous and nonconvex since it is the sum of the indicator
functionsI{Hj}(pi) defined as

I{Hj}(pi) =

{

1 if ω⊤
j pi − νj ≤ 0,

0 if ω⊤
j pi − νj > 0.

(44)

We then transform it in a convex objective function. Each
indicator functionI{Hj}(pi) is here approximated by the
convex functionR{Hj}(xi) defined as

R{Hj}(pi) =

{

−ω⊤
j pi + νj if ω⊤

j pi − νj ≤ 0,

0 if ω⊤
j pi − νj > 0.

(45)

A plot of the functionsI{Hj}(pi) andR{Hj}(pi) is given in
Fig. 3.

Problem (43) is thus relaxed by replacing the indicator func-

✲

✻

q

❅
❅

❅
❅

❅
❅

❅❅

1IHj
(pi)

RHj
(pi)

ω
⊤
j pi − νj

Fig. 3. Indicator functionIHj
(pi) (black solid line) and approxi-

mate functionR{Hj}(pi) (gray thin line). Whenω⊤
j pi − νj > 0,

I{Hj}(pi) andR{Hj}(pi) are overlapped and they are equal to 0.

tionsI{Hj}(pi) with the convex functionsR{Hj}(pi), i.e.,

ω̃
∗
j , ν̃

∗
j =arg min

ωj∈R
n

νj∈R

N∑

i=1

R{Hj}(pi)

s.t.
ωj 6= 0

M⊆ Hj

pi ∈ L, i = 1, . . . , N.

(46)

Theorem 6 If (i) there exists at least one pointpi in the list

L such thatω̃∗⊤

j pi − ν̃∗j < 0 and (ii) ω̃∗
j , ν̃

∗
j is the optimal

solution of problem(46), then the hyperplanẽω∗⊤

j ρ−ν̃∗j = 0
is a supporting hyperplane for the setM.

Proof: Theorem 6 is proved by contradiction. LetH̃∗
j be the

half-space defined as̃H∗
j : ω̃∗⊤

j ρ− ν̃∗j ≤ 0. Let us suppose
that ω̃∗

j , ν̃
∗
j is a feasible solution of problem (46) such that

ω̃
∗⊤

j ρ− ν̃∗j = 0 is not a supporting hyperplane forM, that

is, for someε > 0, H̃j : ω̃
∗⊤

j ρ− ν̃∗j + ε ≤ 0 for all x ∈ M.
Let us defineν̃j as ν̃j = ν̃∗j − ε. Note that{ω̃∗

j , ν̃j} is

still a feasible solution of problem (46) and̃Hj ⊆ H̃
∗
j . Let

V ∗ =
∑N

i=1 R{H̃∗

j
}(pi) be the value of the cost function of

Problem (46) obtained forω = ω̃
∗
j andν = ν̃∗j . R{H̃∗

j
}(pi)

is then given by

R{H̃∗

j
}(pi) =

{

−ω̃∗⊤

j pi + ν̃∗j if ω̃∗⊤

j pi − ν̃∗j ≤ 0

0 if ω̃∗⊤

j pi − ν̃∗j > 0
(47)

Similarly, let Ṽ =
∑N

i=1 R{H̃j}
(pi) be the value of the

cost function of Problem (46) obtained whenω = ω̃
∗
j and

ν = ν̃j . The termR{H̃j}
(pi) is the given by

R{H̃j}
(pi) =

{

−ω̃∗⊤

j pi + ν̃j if ω̃∗⊤

j pi − ν̃j ≤ 0

0 if ω̃∗⊤

j pi − ν̃j > 0
(48)

SinceH̃j ⊆ H̃
∗
j , then whenR{H̃∗

j
}(pi) = 0, alsoR{H̃j}

(pi)
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is equal to zero. On the other hand, whenR{H̃∗

j
}(pi) =

−ω̃∗⊤

j pi + ν̃∗j > 0, thenR{H̃j}
(pi) can be equal either to

zero or to−ω̃∗⊤

j pi+ν̃j = −ω̃
∗⊤

j pi+ν̃∗j −ε ≤ −ω̃
∗⊤

j pi+ν̃∗j .
On the basis of the above considerations, it follows:







R{H̃∗

j
}(pi) = R{H̃j}

(pi) if ω̃∗⊤

j pi − ν̃∗j ≥ 0

R{H̃∗

j
}(pi) > R{H̃j}

(pi) if ω̃∗⊤

j pi − ν̃∗j < 0
(49)

Since by hypothesis (i) there exists at least one pointpi in

the listL such that̃ω∗⊤

j pi− ν̃∗j < 0, it follows thatV ∗ > Ṽ .
Therefore,ω̃∗

j , ν̃
∗
j is not the optimal solution of problem

(46). This contradicts hypothesis (ii). �

Theorem 6 has the following interpretation. Among all
the half-spaces defined by the normal vectorω̃

∗
j and con-

taining the setM, the optimization problem (46) provides

the half-spaceH∗
j : ω̃∗⊤

j ρ − ν̃∗j ≤ 0 which minimizes the
volume of the polytopeB ∩ H∗

1 ∩ . . . ∩ H∗
j , even if the

integral
∫

B∩H∗

1
∩...H∗

j

dx is approximated (up to a constant)

by
∑N

i=1 I{H∗

j
}(pi) and the indicator functionsI{H∗

j
}(pi)

are replaced by the convex functionsR{H∗

j
}(pi).

6.4 Handling the constraintM⊆Hj

The constraintsM⊆ Hj can be handled through the SOS-
based approach already discussed in Section 5.1. Specifi-
cally, by introducing a SOS relaxation, Problem (46) is re-
placed by:

ω
∗
j , ν

∗
j = arg min

ωj∈R
n

νj∈R

Qs

N∑

i=1

R{Hj}(pi)

s.t.
ωj 6= 0

νj − ωjx = qd(x̃)
⊤Q0qd(x̃)+

−

m∑

s=1

qd(x̃)
⊤Qsqd(x̃)hs(x̃), ∀ x̃ ∈ R

2n

Qs � 0, s = 0, . . . ,m.

pi ∈ L, i = 1, . . . , N

(50)

Note that, as already discussed in Section 5.1, the constraint
νj − ω

⊤
j x ≥ 0 is satisfied for allx ∈ X . Therefore, the

half-space:Hj =
{
ρ ∈ R

n : ω⊤
j ρ ≤ νj

}
is guaranteed to

containX . Thus, also the setM is included inHj . Finally,
note that, in order to deal with the nonconvex constraint
ωj 6= 0 in (50), Problem (50) can be splitted into the two

following SDP problems:

ω
∗
j , ν

∗
j = arg min

ωj∈R
n

νj∈R

Qs

N∑

i=1

R{Hj}(pi)

s.t.
ωj,1 = 1

νj − ωjx = qd(x̃)
⊤Q0qd(x̃)+

−
m∑

s=1

qd(x̃)
⊤Qsqd(x̃)hs(x̃), ∀ x̃ ∈ R

2n

Qs � 0, s = 0, . . . ,m.

pi ∈ L, i = 1, . . . , N

(51a)

ω
∗
j , ν

∗
j = arg min

ωj∈R
n

νj∈R

Qs

N∑

i=1

R{Hj}(pi)

s.t.
ωj,1 = −1

νj − ωjx = qd(x̃)
⊤Q0qd(x̃)+

−

m∑

s=1

qd(x̃)
⊤Qsqd(x̃)hs(x̃), ∀ x̃ ∈ R

2n

Qs � 0, s = 0, . . . ,m.

pi ∈ L, i = 1, . . . , N

(51b)

with ωj,1 denoting the first component of vectorωj . The
optimizer{ω∗

j , ν
∗
j } of Problem (50) is the given by the pair

{ω∗
j , ν

∗
j} or {ω∗

j , ν
∗
j} that provides the minimum value of

the objective function
∑N

i=1 R{Hj}(pi).

Remark 5 For a fixed degree2d of the SOS polynomials,
the number of optimization variables of Problems(51) in-
creases polynomially with the state dimensionn and lin-
early with the numberm of constraintshs(x̃) defining the
setX . Specifically, the number of optimization variables of
Problem(51) is O(mn2d). In fact, the number of free de-
cision variables in the matricesQs (with s = 0, . . . ,m) is
(
2n+d

d

) (

1 +
(
2n+d

d

))

2
= O(n2d). On the other hand, for a

fixedn, the size of the matricesQs increases exponentially
with the degree2d of the SOS polynomials. In order not to
obtain too conservative results, practical experience of the
authors suggests to taked ≥ ⌈d2⌉ + 1, where⌈·⌉ denotes
the ceiling operator. We remind thatd is the degree of the
considered polynomial system in(1). Roughly speaking, be-
cause of memory requirement issues, the relaxed SDP prob-
lems (51) can be solved in commercial workstations and
with general purpose SDP solvers likeSeDuMi in case of
polynomial systems with4 state variables and of degreed
not greater than6. Systems with more state variables can
be considered in case of smaller values ofd. Similarly, sys-
tems of higher degree can be considered in case of a smaller
number of state variables.
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Remark 6 As already discussed, Algorithm 2 computes, at
each iteration, an half-spaceHj : ω

⊤

j x̃−νj ≤ 0 containing
the setX (thus alsoM), i.e.,

ω

⊤

j x̃− νj ≤ 0 ∀ x̃ ∈ X . (52)

The parametersωj and νj are then computed by solving
Problem(50), and replacing the robust constraint(52) with
a SOS constraint (see Problem(50)). Note that the same
principles of Algorithm 2 and of the SOS-based relaxation
discussed in this section can be used to compute, instead of
an half-spaceHj , a more complex semialgebraic set (e.g.,
an ellipsoid) described by the polynomial inequality:

ω
⊤q(x̃) ≤ 0 ∀ x̃ ∈ X , (53)

with q(x̃) being a vector of monomials in the variablex̃. The
parametersω can be then computed by properly modifying
the SOS-relaxed Problem(50). For instance, in case we are
interested in computing an ellipsoidal outer approximation
of X , the functionω⊤q(x̃) should have a quadratic form,
and its Hessian should be enforced to be positive definite.

Example 4 Let us continue with Example 2. Fig. 4 shows
the polytope obtained by applying Algorithm 2 solving Prob-
lems (51) instead of the nonconvex optimization in A2.2.
The SDP Problems(51) are solved for a degree of the SOS
polynomials equal to2d = 4. The solution is a polytope
S that outer-boundsX1. It can be observed that because
of the approximations introduced (SOS and the approxima-
tion of the indicator functions), which are necessary to ef-
ficiently solve the optimizations, the half-spaces bounding
X1 are not tangent to it and the computed regionS still in-
clude two black points. Therefore, the computed polytope is
not the minimum-volume polytope. However, it is already a
very good outer-approximation of it. In the next section, we
describe a further refinement of Algorithm 2 aiming to com-
puting a tighter polytopeS. According to the steps A1.1.3
and A1.1.4 of Algorithm 1, we outer-approximateM (and
so X1) with S. At the next time step (k = 2) of the set-
membership filter, we repeat the procedure to compute a new
polytope outer-boundingX2. The difference is now that in-
stead ofh1(·) in (36), we have the9 linear inequalities that
define the polytope in Fig. 4. This procedure is repeated re-
cursively in time.

6.5 Refinement of the polytopeS

Summarizing, an approximate solution of the robust opti-
mization problem (43) is computed by solving the convex
SDP problems (51), and, on the basis of Algorithm 2, the
polytopic-outer approximationS of the setM is then de-
fined asS = B ∩H1 ∩ . . . ∩HJ .
Note that, in solving (51) instead of (43), two different
sources of approximation are introduced:

• Approximation of the indicator functionsI{Hj}(pi) with
the convex functionsR{Hj}(pi) (see Fig. 3);

Fig. 4. Final polytope after running Algorithm 2.

• Approximation of the robust constraintν − ω
⊤x ≥

0 ∀x ∈ X with the convex conservative constraint
ν − ω

⊤x = σ0(x̃)−
∑m

s=1 σs(x̃)hs(x̃).

The latter source of approximation can be reduced by in-
creasing the degree2d of the SOS polynomials. In fact,
as already discussed in Section 5.1, according to thePuti-
nar’s Positivstellensatzeach functionν − ω

⊤x such that
ν − ω

⊤x ≥ 0 ∀x ∈ X can be written asν − ω
⊤x =

σ0(x̃) −
∑m

s=1 σs(x̃)hs(x̃) provided that the degree of the
SOS polynomialsσ0, σ1, . . . , σm is large enough. On the
other hand, there is no theoretical result concerning the ac-
curacy of the approximation of the indicator functions in
Problem (43) with the convex functionsR{Hj}(pi) appear-
ing in Problem (51). Because of that, the polytopeS obtained
by solving convex problems (51) (forj = 1, . . . , J) is not
guaranteed to minimize the original nonconvex optimization
problem (42). Algorithm 3 can then be used to refine the
polytopic outer approximationS provided by Algorithm 2.

The main principle of Algorithm 3 is to process, one by one,
all the points belonging to the polytopic outer-approximation
S initially given by Algorithm 2. For each of such points
pi, an half-spaceHi : ω∗⊤

i x̃ − ν∗i ≤ 0 including the set
X (i.e.,X ⊆ Hi) and at the same not containing the point
pi (i.e., pi 6∈ Hi, or equivalently−ω∗⊤

i pi + ν∗i < 0) is
seeked. In this way, all the pointspi which do not belong to
the minimum volume polytopic outer approximation ofX
are discarded. Thus, a tighter (but more complex) polytopic
outer approximation ofX is obtained.

An important feature enjoyed by the refined polytopeS∗ is
given by the following theorem.

Theorem 7 The polytopeS∗ computed with Algorithm 3 is
a global minimizer of problem(42).

Proof: Let S̃ be a polytope belonging to the set of feasibility
of problem (42) (i.e.,M ⊆ S̃) which does not minimize

(42). This means that there exists a polytope˜̃S such that

M ⊆ ˜̃S ⊆ S̃ and a pointp̄ given as input of Algorithm 2
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Algorithm 3: Refinement of the polytopeS
[input] Sequence of the random pointspi provided as input
of Algorithm 2 and such thatpi ∈ S. Let Ñ be the number
of pointspi belonging toS.
A3.1 S∗ ← S

A3.2 for i = 1 : Ñ

A3.2.1 Compute the solution of the following optimiza-
tion problem

ω
∗
i , ν

∗
i =arg min

ω ∈ R
n

ν ∈ R

−ω⊤pi + ν

s.t.
ω 6= 0

ν − ω
⊤x ≥ 0 ∀x ∈ X .

(54)

A3.2.2 S∗ ← S∗ ∩Hi.
[output] PolytopeS∗.

such that:p̄ ∈ S̃ and p̄ 6∈ ˜̃S. Thus, forpi = p̄, the optimal
solution{ω∗

i , ν
∗
i } of Problem (54) is such thatω∗⊤

i pi−ν
∗
i >

0. LetHi be the half-space defined asHi : ω
∗⊤

i x− ν∗i ≤ 0.
Obviously,p̄ 6∈ Hi. Besides, the outputS∗ of Algorithm 3
is contained in the hyperspaceHi. Therefore, sincēp 6∈ Hi

andS∗ ⊆ Hi, it follows that the pointp̄ 6∈ S∗. Then, a
polytopeS̃ that does not minimize the optimization problem
(42) can not be the output of Algorithm 3. �

Theorem 7 mainly says that there exists no polytope includ-
ing M and containing less randomly generated pointspi
thanS∗. However, it is worth remarking that only an ap-
proximated solution of Problem (54) can be computed, as
the robust constraintν − ω

⊤x ≥ 0 ∀x ∈ X appearing in
(54) has to be handled with the SOS-based techniques de-
scribed in the previous section. Thus, conservativeness could
be added at this step. Therefore, the main interpretation to
be given to Theorem 7 is that Algorithm 3 cancels the effect
of approximating the indicator functionI{Hj}(pi) with the
convex functionR{Hj}(pi).

Example 5 Let us continue with Example 2. Fig. 5 shows
the computed polytopeS∗1 , along with the true state uncer-
tainty setX1. The CPU taken by the proposed algorithm to
compute the54 hyper-spaces that define the polytopeS∗1 is
about830 seconds. However, only80 out of 830 seconds
are spent by the solverSeDuMi to solve108 (i.e., 54 × 2)
SDP problems of the type(51). The other750 seconds are
required by theSOStoolsinterface to formulate,108 times,
the SDP problems(51)in the format used by SeDuMi. There-
fore, the computational time required to compute the poly-
topeS∗1 can be drastically reduced not only by using more
efficient SDP solvers, but also directly formulating the SDP

Fig. 5. Exampe 1: hyperplanes defining the polytopeS∗
1 (black

lines) and true state uncertainty setX1 (gray region).

problems(51) in the format required by the used SDP solver.

7 Numerical examples

Let us consider the discrete-time Lotka Volterra prey-
predator model [63] described by the difference equations:

x1(k)=x1(k−1)(r+1−rx1(k−1)−bx2(k−1))+w1(k−1),

x2(k)=cx1(k−1)x2(k−1) + (1 − d)x2(k−1)+w2(k−1),

(55)
wherex1(k) andx2(k) denote the prey and the predator

population size, respectively. In the example, the following
values of the parameters are considered:r = 0.25, b = 0.95,
c = 1.1 andd = 0.55. The observed output is the sum of
the population of the prey and predator densities, i.e.,

y(k) = x1(k) + x2(k) + v(k), (56)

where the measurement noisev(k) is bounded and such that
‖v(k)‖∞ ≤ 0.05. The initial prey and predator sizesx(0) =
[x1(0) x2(0)]

⊤ are known to belong to the boxX0 =
[0.28 0.32] × [0.78 0.82] and the noise processw(k) =
[w1(k) w2(k)]

⊤ is bounded by‖w(k)‖∞ ≤ 0.001. The
data are obtained by simulating the model with initial con-
ditions x1(0) = 0.8 and x2(0) = 0.3, and by corrupting
the output observations with a random noisev(k) uniformly
distributed within the interval[−0.05 0.05].

Polytopic outer approximationsS∗k of the state uncertainty
setsXk (with k = 1, . . . , 40) are computed through Algo-
rithm 2.N = 20 random points are used to approximate the
volume of the polytopeS∗k (as described in Section 6.1). In
order to limit the complexity in the description of the poly-
topesS∗k , the maximum number of halfspaces describingS∗k
is set to8. This means that Algorithm 2 is stopped after at
most4 iterations (we remind that the initial outer-bounding
box Bk is already described by4 half-spaces). When the
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Fig. 6. Example 2: outer-bounding polytopes (gray) and truestate
trajectory (black dots).

output of Algorithm 2 is a polytopeS∗k described by less
than8 half-spaces, Algorithms 3 is used to refine the poly-
topic outer approximationS∗k . Fig. 6 shows the computed
polytopesS∗k outer approximating the state uncertainty sets
Xk (with k = 1, . . . , 40), along with the true state trajectory.
The Hybrid toolbox [64] has been used to plot the poly-
topes in Fig. 6. The average CPU time required to compute
a polytopeS∗k is 28 seconds (not including the time required
by the SOStoolsinterface to formulate the SDP problems
(51) in the format used by the solverSeDuMi). For the sake
of comparison, Fig. 7 shows the outer-bounding approxima-
tions of the state uncertainty setsXk when boxes, instead of
polytopes, are propagated over time. For a better compari-
son, in Fig. 8 the bounds on the time-trajectory of each state
variable obtained by propagating boxes and polytopes are
plotted. The obtained results show that, as expected, propa-
gating polytopic uncertainty sets instead of boxes provides
a more accurate state estimation. Finally, we would like to
remark that a small uncertainty on the noise process is as-
sumed (i.e.,‖w(k)‖∞ ≤ 0.001) since, for larger bounds on
‖w(k)‖∞, it would not be possible to clearly visualize the
uncertainty boxes in Fig. 7.

8 Conclusions

In this paper we have shown that set-membership estima-
tion can be equivalently formulated in a probabilistic set-
ting by employing sets of probability measures. Inferences
in set-membership estimation are thus carried out by com-
puting expectations with respect to the updated set of proba-
bility measuresP , as in the probabilistic case, and they can
be formulated as a semi-infinite linear programming prob-
lem. We have further shown that, if the nonlinearities in the
measurement and process equations are polynomial and if
the bounding sets for initial state, process and measurement
noises are described by polynomial inequalities, then an ap-
proximation of this semi-infinite linear programming prob-
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Fig. 7. Example 2: outer-bounding boxes (gray) and true state
trajectory (black dots).
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Fig. 8. Example 2: bounds on state trajectories obtained by prop-
agating boxes (black line); bounds on state trajectories obtained
by propagating polytopes (gray line); true state trajectory (black
dots).

lem can be obtained by using the theory of sum-of-squares
polynomial optimization. We have finally derived a proce-
dure to compute a polytopic outer-approximation of the true
membership-set, by computing the minimum-volume poly-
tope that outer-bounds the set that includes all the means
computed with respect toP . It is worth remarking that the
set-membership filtering approach discussed in the paper can
be extended to handle noise-corrupted input signal obser-
vations and uncertainty in the model parameters, provided
that the corresponding state uncertainty setXk remains a
semi-algebraic set. As future works, we aim first to speed up
the proposed state estimation algorithm in order to be able
to use it in real-time applications in systems with fast dy-
namics. To this aim, dedicated numerical algorithms, written
in Fortran and C++, for solving the formulated SDP opti-
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mization problems will be developed. Furthermore, the SDP
problems will be directly formulated in the format required
by the SDP solver, thus avoiding the use of interfaces like
SOStools. An open source toolbox will be then released.
Second, by exploiting the probabilistic interpretation ofset-
membership estimation, we plan to reformulate it using the
theory of moments developed by Lasserre. This will allow
us to ground totally set-membership estimation in the realm
of the probabilistic setting, which will give us the possibility
of combining the two approaches in order to obtain hybrid
filters, i.e., filters that include both classical probabilistic un-
certainties and set-membership uncertainties.
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