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Abstract The objective of uncertainty quantification is to certify that a given
physical, engineering or economic system satisfies multiple safety conditions
with high probability. A more ambitious goal is to actively influence the system
so as to guarantee and maintain its safety, a scenario which can be modeled
through a chance constrained program. In this paper we assume that the pa-
rameters of the system are governed by an ambiguous distribution that is
only known to belong to an ambiguity set characterized through generalized
moment bounds and structural properties such as symmetry, unimodality or
independence patterns. We delineate the watershed between tractability and
intractability in ambiguity-averse uncertainty quantification and chance con-
strained programming. Using tools from distributionally robust optimization,
we derive explicit conic reformulations for tractable problem classes and sug-
gest efficiently computable conservative approximations for intractable ones.

1 Introduction

Consider a physical, engineering or economic system and encode its state
through a parameter vector z ∈ RP . Suppose that the reliable operation of the
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system requires that some safety constraints Sz ≤ t must be satisfied, where
S ∈ RJ×P is termed the technology matrix and t ∈ RJ the right-hand side
vector. Due to measurement errors, limited observability and missing data,
the parameter vector is uncertain for the vast majority of systems of practical
interest and must therefore be modeled as a random variable z̃ governed by a
probability distribution Q. In this situation a problem of great practical im-
portance is to certify that the system is safe with high confidence. Formally,
one should ascertain the satisfaction of the inequality Q[Sz̃ ≤ t] ≥ 1−ε, where
ε ∈ (0, 1) represents a prescribed safety tolerance or violation probability. Ex-
amples of societally relevant safety constraints include the prevention of black-
outs in electricity grids, the containment of inflation in national economies, the
limitation of seismic damages in structural engineering, the assurance of qual-
ity of service standards in telecommunication systems, the limitation of the
likelihood to develop cancer due to the exposure to a substance etc., see [37].

In most real-life applications, evaluating the exact probability of safe oper-
ation is very challenging, if not impossible. On the one hand, the probability
distribution Q is typically unknown as Q may only be indirectly observable
through historical samples, which could be explained by several strikingly dif-
ferent distributions. On the other hand, even if Q was precisely known, the
computation of Q[Sz̃ ≤ t] would require the evaluation of an integral over a
possibly high-dimensional polytope, which is computationally cumbersome.

A remedy for the first difficulty is to adopt a distributionally robust ap-
proach and to embrace the fact that Q is merely known to belong to an ambi-
guity set P. This set is typically defined as the family of all distributions that
share certain known moments (mean, variance, covariances, higher-order mo-
ments, median-absolute deviation etc.) or known structural properties (sym-
metry, unimodality, multimodality, independence patterns, tail behavior etc.)
with the otherwise unknown distribution Q. The ambiguity of Q prompts us
to investigate the uncertainty quantification problem

inf
P∈P

P[Sz̃ ≤ t], (1)

which quantifies the worst-case probability of safe operation with respect to
all distributions P ∈ P. As Q ∈ P by construction, the optimal value of (1)
provides a conservative estimate (lower bound) for Q[Sz̃ ≤ t]. In order to cer-
tify the safety of the system with respect to the true distribution Q, it is thus
sufficient to show that the optimal value of (1) exceeds 1− ε. Maybe surpris-
ingly, the distributionally robust approach can also mitigate the intractability
of evaluating high-dimensional integrals. Using the duality theory for moment
problems in conjunction with the rich arsenal of modern robust optimization
techniques, one can show that worst-case probability problems of the type (1)
are computationally tractable across a wide variety of relevant ambiguity sets.

Rather than passively certifying the safety of a given system, a more ambi-
tious goal would be to actively influence the system so as to maintain its safety.
This scenario can conveniently be captured by a robust chance constrained pro-
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gram, where x ∈ X ⊆ RN represents the vector of design decisions.

minimize c>x
subject to x ∈ X

inf
P∈P

P[S(x)z̃ ≤ t(x)] ≥ 1− ε
(2)

Here, the technology matrix S(x) = (s1(x), . . . , sJ(x))> and the right-hand
side vector t(x) = (t1(x), . . . , tJ(x))> may depend on the design decisions in
an affine fashion, that is, sj(x) = S>j x + sj and tj(x) = t>j x + tj , where

Sj ∈ RN×P , sj ∈ RP , tj ∈ RN and tj ∈ R for all j ∈ J = {1, . . . , J}.
Moreover, c ∈ RN encodes the costs of different design decisions. We assume
that problem (2) is tractable if it is stripped of the probabilistic constraint.
This is the case, for instance, if X is a polytope defined by its facets or vertices.

The choice of the ambiguity set P should be guided by the following prin-
ciples: (i) The set P must contain Q with certainty (or at least with high
confidence). (ii) The structure of P should facilitate a tractable reformulation
(or at least a tractable conservative approximation) of the uncertainty quan-
tification problem (1) and the chance constrained program (2). (iii) Among
all ambiguity sets satisfying the properties (i) and (ii), P should be chosen
as small as possible in the sense of set inclusion. Property (i) enables us to
certify the safety of the system at hand under the unknown distribution Q by
solving the uncertainty quantification problem (1). Moreover, property (ii) en-
sures that (1) and (2) can be solved efficiently, while property (iii) controls the
conservatism of the uncertainty quantification problem (1), thereby limiting
the risk that a safe system is not recognized as such.

After the fundamental papers [44,53], various ambiguity sets have been
studied in the literature on uncertainty quantification [23,37] and distribu-
tionally robust optimization [1]. Ambiguity sets of special interest include the
Markov ambiguity set containing all distributions with known mean and sup-
port [48], the Chebyshev ambiguity set containing all distributions with known
bounds on the first and second-order moments [12,14,22,31,39,46,49,51,52],
the Gauss ambiguity set containing all unimodal distributions from within the
Chebyshev ambiguity set [38,41], various generalized Chebyshev ambiguity
sets that specify asymmetric moments [12,13,35], higher-order moments [7,
30,45] or marginal moments [17,18], the median-absolute deviation ambiguity
set containing all symmetric distributions with known median and mean ab-
solute deviation [24], the Huber ambiguity set containing all distributions with
known upper bound on the expected Huber loss function [15,48], the Wasser-
stein ambiguity set containing all distributions that are close to the empirical
distribution with respect to the Wasserstein metric [19,34,40], the Kullback-
Leibler divergence ambiguity set and likelihood ratio ambiguity set [10,26,27,
31,47] containing all distributions that are sufficiently likely to have generated
a given data set, the Hoeffding ambiguity set containing all component-wise in-
dependent distributions with a box support [3,8,10], the Bernstein ambiguity
set containing all distributions from within the Hoeffding ambiguity set subject
to marginal moment bounds [36], several φ-divergence-based ambiguity sets [2,
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50] containing all discrete distributions close to a given nominal distribution,
goodness-of-fit ambiguity sets containing all distributions that pass prescribed
statistical tests [6] etc. The proposed terminology associates most ambiguity
sets with mathematicians who invented well-known probability inequalities or
statistical indicators related to the respective ambiguity sets.

In this paper we endeavor to

– present a unifying framework for formulating and solving uncertainty quan-
tification problems and robust chance constrained programs;

– demonstrate that many of the ambiguity sets listed above represent special
cases of a canonical ambiguity set underlying our unifying framework;

– delineate the watershed between tractability and intractability in uncer-
tainty quantification and robust chance constrained programming.

In [48] it has been shown that most moment-based ambiguity sets emerge as
special cases of a canonical ambiguity set that contains all distributions under
which the probabilities of some conic-representable confidence sets fall between
prescribed upper and lower bounds, and the mean values of the uncertain pa-
rameters satisfy a linear equality constraint. While [48] describes methods for
computing worst-case expectations of biconvex loss functions, the focus of the
present paper is to compute worst-case probabilities, that is, worst-case ex-
pectations of discontinuous indicator functions. Moreover, while [48] focuses
exclusively on moment-based ambiguity sets, the present paper investigates
a much richer class of ambiguity sets characterized both in terms of moment
constraints and structural information such as symmetry, unimodality, multi-
modality, independence patterns etc. In particular, we also show that several
classical inequalities of probability theory as well as their multidimensional
generalizations emerge as special cases of our unified framework.

The overarching objective of this work is to review broad classes of un-
certainty quantification and chance constrained programming problems that
are computationally tractable. An intimately related secondary objective is to
explore the boundaries of tractability. It is thus natural to focus attention on
linear safety constraints in the probabilistic expressions of (1) and (2). Indeed,
the uncertainty quantification problem (1) becomes intractable already in the
presence a single convex quadratic safety constraint, even if the underlying
ambiguity set contains all distributions supported on a polytope.

Theorem 1 Evaluating the quadratic uncertainty quantification problem

inf
P∈P

P [‖Sz̃‖2 ≤ t] (3)

is strongly NP-hard even if the ambiguity set satisfies

P =
{
P ∈ P0(RP ) : P [Cz̃ ≤ d] = 1

}
,

where P0(RP ) denotes the set of all probability distributions on RP .



Distributionally Robust Uncertainty Quantification and Chance Constraints 5

The remainder of the paper develops as follows. Section 2 discusses the de-
sign of ambiguity sets using moment constraints and structural information.
Sections 3 and 4 provide tractable reformulations and complexity results for
various uncertainty quantification and chance constrained programming prob-
lems, respectively. An efficient approximation algorithm for intractable prob-
lems is reported in Section 5, and a summary of the main results is provided
in Section 6. All proofs are relegated to an accompanying technical report [25].

Notation. A generalized inequality x 4K y with respect to a proper (closed,
convex, pointed, solid) cone K implies that y−x ∈ K. We denote by SP (SP+)
the space (cone) of all symmetric (positive semidefinite) matrices in RP×P
and use X 4 Y as a notational shorthand for the matrix inequality X 4SP+ Y

where X,Y ∈ SP . The cone dual to a proper cone K is denoted as K?. We
use P0(B) to represent the set of all probability distributions supported on a
Borel subset B of RP . If P ∈ P0(RP × RQ) represents the joint distribution
of two random vectors z̃ ∈ RP and ũ ∈ RQ, then Πz̃P ∈ P0(RP ) denotes the
marginal distribution of z̃ under P. We extend this definition to ambiguity
sets P ⊆ P0(RP ×RQ) by setting Πz̃P =

⋃
P∈P{Πz̃P}. For two sets A and B

the relation A b B indicates that A is a subset of the relative interior of B.
For a logical expression E , we define I[E] = 1 if E is true; = 0 otherwise.

2 Ambiguity Sets

We first propose a canonical representation of ambiguity sets as intersections
of moment ambiguity sets (characterizing features of Q such as the mean,
variance or median-absolute deviation) and structural ambiguity sets (describ-
ing symmetry, unimodality or independence properties etc.). We define the
moment and structural ambiguity sets of interest in Sections 2.1 and 2.2, re-
spectively, and we showcase the expressiveness of our framework in Section 2.3.

2.1 Nested Moment Ambiguity Sets

As in [48], we focus on nested moment ambiguity sets of the form

Pn =

{
P ∈ P0(RP × RQ) :

EP [Az̃ +Bũ] = b,

P [(z̃, ũ) ∈ Ci] ∈
[
p
i
, pi

]
∀i ∈ I

}
, (4)

where P is a joint distribution of the random vector z̃ ∈ RP appearing in
the uncertainty quantification and chance constrained programming problems
and some auxiliary random vector ũ ∈ RQ. We assume that A ∈ RK×P ,
B ∈ RK×Q, b ∈ RK and I = {1, . . . , I}, while the confidence sets Ci satisfy

Ci =
{

(z,u) ∈ RP × RQ : Ciz +Diu 4Ki di
}

(5)
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with Ci ∈ RLi×P , Di ∈ RLi×Q, di ∈ RLi and Ki being proper cones. Note
that the inclusion of the auxiliary vector ũ in Pn seems redundant as ũ could
be absorbed in z̃. In the next section, however, we will impose structural re-
quirements on the marginal distribution of z̃ that do not affect ũ. We allow
K or Q to be zero, in which case the expectation condition in (4) is void or
the random vector ũ is absent, respectively. We also assume that Ci is essen-
tially strictly feasible,1 p

i
, pi ∈ [0, 1] and p

i
≤ pi for all i ∈ I. Nested moment

ambiguity sets of the form (4) have been used in [48] to evaluate worst-case
expectations of convex functions. Here, we use them to compute worst-case
probabilities of polytopes. As we will see shortly, allowing for multiple confi-
dence sets Ci enables us to model a rich variety of ambiguity sets. By designing
the confidence sets Ci appropriately, for example, we can prescribe the modal-
ity structure of z̃, or we can specify confidence regions for the moments of z̃
if these moments are estimated from historical samples, see [48].

In the remainder we impose the following regularity conditions.

(B) The confidence set CI has probability one, that is, p
I

= pI = 1, and all
other confidence sets Ci, i = 1, . . . , I − 1, are bounded subsets of CI .

(N) For all i, i′ ∈ I, i 6= i′, we have either Ci b Ci′ , Ci′ b Ci or Ci ∩ Ci′ = ∅.

The boundedness condition (B) implies that the confidence set CI contains
the support of the joint random vector (z̃, ũ). This does not restrict generality
since we are free to choose CI = RP × RQ, but it simplifies some model for-
mulations in later sections. Condition (B) also stipulates that the confidence
sets Ci, i = 1, . . . , I − 1, are bounded. This is necessary to obtain tractable
formulations for the uncertainty quantification and chance constrained pro-
gramming problems. The nesting condition (N) imposes a strict partial order
on the confidence sets Ci with respect to the b-relation, and it also requires
that incomparable sets are disjoint. We remark that for two sets Ci and Ci′ , the
relation Ci b Ci′ can be verified efficiently in many cases, for instance if both
sets are polyhedral. All examples studied in this paper satisfy the nesting con-
dition by construction. The importance of the nesting condition is highlighted
by the following result, which is proven in [48, Theorem 2].

Theorem 2 Verifying whether the nested moment ambiguity set Pn defined
in (4) is empty is strongly NP-hard even if Pn does not involve any expectation
conditions (i.e., K = 0) and there are only two bounded (second-order) conic
representable confidence sets C1, C2 with C1 ⊆ C2 but C1 6b C2.

Theorem 2 implies that if the nesting condition (N) is violated, then the
uncertainty quantification and chance constrained programming problems are
strongly NP-hard. Some results in this paper require that in addition to (N),
any set Ci that contains another set Ci′ , Ci′ b Ci, must have an affine dimension
of at least 2. This dimensionality condition will be satisfied by all examples in
this paper, and it certainly holds for most applications of practical interest.

1 We call Ci essentially strictly feasible if there is (z,u) ∈ Ci that satisfies all non-
polyhedral constraints in (5) strictly, see [4].



Distributionally Robust Uncertainty Quantification and Chance Constraints 7

2.2 Structural Ambiguity Sets

As highlighted in [48], nested moment ambiguity sets of the form (4) allow us
to model an abundance of (generalized) moment conditions. However, they fail
to capture commonly encountered structural properties of the marginal distri-
bution of z̃. In the remainder of the paper, we will thus intersect the nested
moment ambiguity set (4) with various structural ambiguity sets that capture
features such as symmetry, unimodality or independence. We require all struc-
tural ambiguity sets to be convex and weakly closed. For ease of exposition,
we temporarily set Q = 0, thus assuming that there are no auxiliary random
variables ũ, but we will revoke this restriction at the end of this section.

In this work we focus on structural ambiguity sets P ⊆ P0(RP ) that possess
a Choquet representation, whereby every distribution P ∈ P can be written as
a mixture (i.e., an infinite convex combination) of extremal distributions of P.
Thus, for every Borel set B ∈ B(RP ) we require that

P[B] =

∫
V
Vv(B)M(dv), (6)

where Vv, v ∈ V ⊆ RV , represents the family of extremal distributions (ex-
treme points) of P, and M ∈ P0(V) is the mixture distribution generating P.
This implies that the family of extreme points admits a finite-dimensional pa-
rameterization. In distributionally robust optimization such structural ambi-
guity sets were first studied in [41]. We show next that this abstract framework
covers several practically relevant classes of structural ambiguity sets.

Symmetry Let Ps be the set of all point symmetric distributions on RP with
center m. Thus, P ∈ Ps if and only if P[B] = P[2m − B] for all Borel sets
B ∈ B(RP ). The extremal distributions of Ps are

Vv =
1

2
δv +

1

2
δ2m−v for v ∈ RP ,

where δv and δ2m−v denote the Dirac distributions that place all probability
mass on the points v and 2m− v, respectively.

Unimodality A distribution P is called unimodal with center m if P[t(B −
m)]/tP is non-increasing in t > 0 for allB ∈ B(RP ), see e.g. [16]. The definition
implies that if P has a continuous density function ρ(z), then P is unimodal
if and only if ρ(t(z −m)) is non-increasing in t > 0 for any z ∈ RP . The
extreme points of the set of unimodal distributions are the radial distributions
Vv, v ∈ RP , that are supported on line segments from m to v and that satisfy

Vv ([m,m+ t(v −m)]) = tP ∀t ∈ [0, 1].



8 Hanasusanto et al.

α-Unimodality For α > 0, let Pα be the set of α-unimodal distributions with
center m, that is, P ∈ Pα if and only if P[t(B −m)]/tα is non-increasing
in t > 0 for all B ∈ B(RP ), see [16]. Note that an α-unimodal distribution
on RP is unimodal in the usual sense if α = P . Moreover, if an α-unimodal
distribution has a continuous density function ρ(z), then tα−P ρ(t(z −m)) is
non-increasing in t > 0 for any z ∈ RP . The extreme points of Pα are the
radial distributions Vv, v ∈ RP , that are supported on line segments [m,v]
and that satisfy

Vv ([m,m+ t(v −m)]) = tα ∀t ∈ [0, 1].

Multimodality Consider the ambiguity set generated by the convex combina-
tion

∑R
r=1 λrPα(mr) of α-unimodal ambiguity sets Pα(mr) with centers mr,

r = 1, . . . , R and
∑R
r=1 λr = 1. This ambiguity set contains all α-multimodal

distributions with a mode of probability mass λr ≥ 0 centered at mr for
each r = 1, . . . , R. The extremal distributions of this ambiguity set are repre-
sentable as Vv =

∑R
r=1 λrVr,vr for v = (v1, . . . ,vR) ∈ RRP , where Vr,vr for

vr ∈ RP is any extremal distribution of the set Pα(mr), r = 1, . . . , R.

Independence Let Pi be the set of all distributions on RP under which the
components of the random vector z̃ are independent. One readily verifies that
Pi violates our convexity assumption. Indeed, we have δ0, δe ∈ Pi, but the
components of z̃ are perfectly correlated under the mixture distribution 1

2δ0 +
1
2δe. We will show in Section 3 that the uncertainty quantification and chance
constrained programming problems are typically intractable for ambiguity sets
that impose independence among the components of z̃.

Remark 1 In the presence of auxiliary random variables ũ ∈ RQ with Q > 0,
the above structural ambiguity sets are redefined as the families of all distribu-
tions P ∈ P0(PP ×RQ) whose marginal projections Πz̃P display the structural
properties (e.g., symmetry or α-unimodality etc.) outlined above.

2.3 Examples

The ambiguity sets that can be generated by intersecting a nested moment
ambiguity set of the form (4) with a Choquet-representable structural ambi-
guity set display a remarkable diversity. We now show that many ambiguity
sets from the recent literature can be expressed as instances of this class.

Example 1 (Chebyshev Ambiguity Set) Let P be the ambiguity set of all distri-
butions on RP with mean µ ∈ RP whose covariance matrix is bounded above
by Σ ∈ SP+, that is,

P =
{
P ∈ P0(RP ) : EP [z̃] = µ, EP

[
(z̃ − µ) (z̃ − µ)

>
]
4 Σ

}
. (7)
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Consider the following instance of the nested moment ambiguity set (4), which
involves the auxiliary random matrix Ũ ∈ RP×P .

P ′ =

P ∈ P0(RP × RP×P ) :

EP [z̃] = µ, EP

[
Ũ
]

= Σ,

P
[(

1 (z̃ − µ)>

(z̃ − µ) Ũ

)
< 0

]
= 1

 (8)

Since P ′ only contains one confidence set with probability bounds p
1

= p1 = 1,
the boundedness condition (B) and the nesting condition (N) are trivially
satisfied. Moreover, a Schur complement argument implies that Πz̃P ′ = P.
The Chebyshev ambiguity set has been studied extensively in distributionally
robust optimization [14,22,48,51] and can also be generalized to account for
uncertainty in the mean and/or covariance matrix of z̃, see e.g. [14,48].

If we intersect the nested moment ambiguity set from Example 1 with
the structural ambiguity set of all unimodal distributions, then we recover an
ambiguity set that has been studied in [38] and is closely related to a tightened
Chebyshev-type inequality due to Gauss [21].

Example 2 (Gauss Ambiguity Set) Let P be the ambiguity set of all unimodal
distributions on RP with center m ∈ RP and mean µ ∈ RP whose covariance
matrix is bounded above by Σ ∈ SP+, that is,

P =

{
P ∈ P0(RP ) :

P is unimodal with center m,

EP [z̃] = µ, EP

[
(z̃ − µ) (z̃ − µ)

>
]
4 Σ

}
. (9)

In analogy to the previous example, the ambiguity set

P ′ =

P ∈ P0(RP × RP×P ) :

Πz̃P is unimodal with center m,

EP [z̃] = µ, EP

[
Ũ
]

= Σ,

P
[(

1 (z̃ − µ)>

(z̃ − µ) Ũ

)
< 0

]
= 1

 (10)

satisfies (B) and (N) as well as Πz̃P ′ = P.

Examples 1 and 2 rely on classical statistical indicators—the mean and
variance—to characterize the unknown distribution Q. In the next two ex-
amples, we describe Q through location and dispersion measures from robust
statistics, namely the median, the median-absolute deviation and the Huber
loss function. While reminiscent of the mean and variance, these indicators
may be more reliable as they are easier to estimate from data, see [11,48].

Example 3 (Median-Absolute Deviation Ambiguity Set) Let P be the ambigu-
ity set of all symmetric distributions on RP with centerm ∈ RP whose median
absolute deviation is bounded above by f ∈ RP+, that is,

P =

{
P ∈ P0(RP ) :

P is symmetric with center m,
EP [|z̃ −m|] ≤ f

}
, (11)
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where the absolute value is understood to apply component-wise. Note that for
symmetric distributions, the median coincides with the center. Consider the
following instance of (4), which involves the auxiliary random vector ũ ∈ RP .

P ′ =

P ∈ P0(RP × RP ) :
Πz̃P is symmetric with center m,
P [ũ ≥ z̃ −m, ũ ≥m− z̃] = 1,
EP [ũ] = f

 (12)

Since P ′ involves only a single confidence set with probability bounds p
1

=
p1 = 1, the boundedness condition (B) and the nesting condition (N) are
trivially satisfied. Moreover, one readily verifies that Πz̃P ′ = P.

Example 4 (Huber Ambiguity Set) Consider the ambiguity set

P =
{
P ∈ P0(RP ) : EP[z̃] = µ, EP

[
Hβ(f>[z̃ − µ])

]
≤ g
}
,

where µ,f ∈ RP , g ∈ R+ and Hβ(z) is the Huber loss function with prescribed
robustness parameter β > 0, that is, Hβ(z) = 1

2z
2 if |z| ≤ β; = β

(
|z| − 1

2β
)

otherwise, see [28]. The expected Huber loss function represents a robust dis-
persion measure that generalizes the variance (for β → ∞) and the mean
absolute deviation (for β → 0). Consider now the following instance of (4),
which involves the auxiliary random variables ũ, ṽ, w̃ ∈ R+.

P ′ =

P ∈ P0(RP × R3
+) :

EP[z̃] = µ, EP [w̃] = g,

P
[

1

2

(
f>z̃ + ũ− ṽ

)2
+ β(ũ+ ṽ) ≤ w̃

]
= 1


(13)

It has been shown in [48] that P ′ satisfies Πz̃P ′ = P. Since P ′ only involves
a single confidence set with probability bounds p

1
= p1 = 1, the boundedness

condition (B) and the nesting condition (N) are trivially satisfied.

We close this section by reviewing a data-driven ambiguity set that can
be constructed directly from independent samples of the unknown distribu-
tion Q. In contrast to the previous examples, this ambiguity set converges to
the singleton {Q} as the number of available samples tends to infinity. For a
detailed discussion of this ambiguity set we refer to [34].

Example 5 (Wasserstein Ambiguity Set) Suppose that we have observed in-
dependent samples ẑi, i ∈ I = {1, . . . , I}, of an unknown data-generating
distribution Q with bounded support, and assume for ease of exposition that
ẑi 6= ẑj for i, j ∈ I, i 6= j. If we denote by P̂ = 1

I

∑I
i=1 δẑi the empirical

distribution, then the Wasserstein ambiguity set of size r > 0 is defined as

P = {P ∈ P0(RP ) : dwp (P, P̂) ≤ r} (14)

and thus contains all distributions that reside within the ball of radius r around
P̂ with respect to the Wasserstein metric of order p ≥ 1. For any (marginal)
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distributions P1 and P2 of two P -dimensional random vectors z̃1 and z̃2, re-
spectively, the Wasserstein distance dwp (P1,P2) of order p is defined as

dwp (P1,P2) = inf EP[‖z̃1 − z̃2‖p]
s.t. P ∈ P0(RP × RP )

P[z̃1 ∈ B] = P1[z̃1 ∈ B]
P[z̃2 ∈ B] = P2[z̃2 ∈ B]

}
∀B ∈ B(RP ),

(15)

see e.g. [42]. Note that (15) can be viewed as a transportation problem that
minimizes the expectation of ‖z̃1−z̃2‖p over all possible joint distributions P of
z̃1 and z̃2 with marginals P1 and P2, respectively. If u ∈ R+ denotes an upper
bound on the Euclidean diameter of the support of Q, then the ambiguity set

P ′ =

P ∈ P0(RP × RP × R) :
EP[ũ0] = r, P[(z̃, ũ, ũ0) ∈ R2P+1] = 1,

P
[
‖z̃ − ũ‖p ≤ ũ0,
ũ0 ≤ u, ũ = ẑi

]
= 1/I ∀i = 1, . . . , I


(16)

constitutes an instance of (4) that satisfies the boundedness condition (B) and

the nesting condition (N). Moreover, we have ΠũP ′ = {P̂} and Πz̃P ′ = P.

3 Uncertainty Quantification

In this section we develop tractable reformulations for instances of the un-
certainty quantification problem (1) under the premise that P constitutes a
nested ambiguity set of the form (4) or an intersection of (4) with the set
of symmetric or α-unimodal distributions. We also show that the uncertainty
quantification problem is generically intractable for ambiguity sets that im-
pose independence among the components of z̃. The results of this section
generalize the results of [24] to instances of (4) with I > 1 confidence sets.

Our tractability results rely on an interpretation of the uncertainty quan-
tification problem (1) as a generalized moment problem of the type [43, Equa-
tion (3.2)] whose semi-infinite dual [43, Equation (3.4)] lends itself for fur-
ther simplification. Strong duality holds under the Slater condition [43, Equa-
tion (3.12)], which we henceforth abbreviate as (S). For nonempty ambiguity
sets, this condition is non-restrictive and can always be enforced by slightly
perturbing the parameters b, p

i
and pi, but it is cumbersome to state and verify

explicitly for the generic nested ambiguity set (4). Many examples considered
in this paper involve only a single confidence set (I = 1) and no structural in-
formation, in which case the Slater condition (S) simplifies to the requirement
that b belongs to the interior of the convex set {Az +Bu : (z,u) ∈ C1}.

We are now in the position to state our first tractability result.

Theorem 3 (Moment Ambiguity Sets) If P = Pn is an instance of (4)
that satisfies the boundedness condition (B), the nesting condition (N) and
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the Slater condition (S), then the worst-case probability (1) coincides with the
optimal value of the conic optimization problem

sup b>γ +
∑
i∈I

p
i
λi − piκi

s.t. γ ∈ RK , λ,κ ∈ RI+, φi ∈ K?i , i ∈ I
τij ∈ R+, (i, j) ∈ L, ψij ∈ K?i , (i, j) ∈ L∑
i′∈A(i)

(λi′ − κi′) + d>i φi ≤ 1

A>γ = C>i φi, B
>γ = D>i φi

 ∀i ∈ I∑
i′∈A(i)

(λi′ − κi′) + d>i ψij − τijtj ≤ 0

A>γ + τijsj = C>i ψij , B
>γ = D>i ψij

 ∀(i, j) ∈ L,
(17)

where A(i) = {i} ∪ {i′ ∈ I : Ci b Ci′} represents the index set of all supersets
(antecedents) of Ci, while L = {(i, j) ∈ I × J : ∃(z,u) ∈ Ci . s>j z > tj}.

The index set L contains the pair (i, j) ∈ I × J if there are realizations
(z,u) ∈ Ci that violate the j-th constraint in (1). One can verify efficiently
whether (i, j) ∈ L by checking whether the optimal value of the convex opti-
mization problem sup {s>j z : (z,u) ∈ Ci} is strictly larger than tj .

Problem (17) is a conic optimization problem whose size scales polynomi-
ally in the size of S and t in problem (1) as well as the description of the
ambiguity set Pn in (4). Moreover, if all cones Ki are polyhedral, then (17) is
a linear program. We illustrate Theorem 3 with two examples.

Example 6 (Generalized Chebyshev Bounds) Theorem 3 allows us to compute
the worst-case probability of the event Sz̃ ≤ t if the distribution of z̃ is only
known to belong to the Chebyshev ambiguity set (7) from Example 1. Thereby,
we recover a generalized multivariate Chebyshev inequality that was discovered
in [46]. As P = Πz̃P ′, where P ′ is defined in (8), we have infP∈P P [Sz̃ ≤ t] =
infP∈P′ P [Sz̃ ≤ t]. For Σ � 0, P ′ is an instance of (4) that satisfies the
conditions (B), (S) and (N). Thus, we can use Theorem 3 to reformulate the
uncertainty quantification problem as the semidefinite program

sup β − µ>γ − 〈Σ + µµ>,Γ 〉
s.t. β ∈ R, γ ∈ RP , Γ ∈ SP+, τj ∈ R+, j ∈ L(

1− β 1
2γ
>

1
2γ Γ

)
< 0,

(
τjtj − β 1

2 (γ + τjsj)
>

1
2 (γ + τjsj) Γ

)
< 0 ∀j ∈ L,

(18)

where L = {j ∈ J : sj 6= 0 ∨ tj < 0}.

Example 7 (Data-Driven Uncertainty Quantification) Theorem 3 further al-
lows us to compute the worst-case probability of the event Sz̃ ≤ t if the dis-
tribution of z̃ is an element of the Wasserstein ambiguity set (14) from Exam-
ple 5. Thereby we recover a data-driven probability inequality first discovered
in [34]. As P = Πz̃P ′, where P ′ is defined in (16), we have infP∈P P [Sz̃ ≤ t] =
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infP∈P′ P [Sz̃ ≤ t]. Moreover, P ′ is an instance of (4) that satisfies the condi-
tions (B) and (N). Even though P ′ fails to satisfy the Slater condition (S),
one can show that Theorem 3 remains valid [34]. Thus, the uncertainty quan-
tification problem (1) can be reformulated as the convex optimization problem

sup
1

I

I∑
i=1

βi − γr

s.t. β ∈ RI , γ ∈ R+, τ ∈ RI×J+

βi ≤ 1
‖τijsj‖q ≤ γ
βi + τijs

>
j ẑi ≤ τijtj

}
∀j ∈ J

 ∀i = 1, . . . , I,

(19)

where q is defined through 1
p + 1

q = 1. Note that as r → 0, the variable γ can

be driven to infinity at essentially no cost. Thus, the optimal value of (19)
converges to the fraction of the samples ẑi, i = 1, . . . , I, that satisfy Sẑi < t.
Problem (19) reduces to a linear program for p ∈ {1,∞}.

We now consider instances of the uncertainty quantification problem (1)
where P emerges from the intersection of a nested moment ambiguity set Pn of
the form (4) with the set of all symmetric distributions Ps centered around m.
In order to derive a tractable reformulation for this problem class, we require
that Pn satisfies the following technical dimensionality condition:

(D) The ambiguity set satisfies I = 1 (support only), or it satisfies Q > 0 (the
vector ũ is not absent) and all confidence sets Ci, i ∈ I, are bounded.

Moreover, for the multi-indices i = (i+, i−) ∈ I2 ranging over pairs of
confidence sets and j = (j+, j−) ∈ (J ∪ {0})2 indexing pairs of inequalities in
the uncertainty quantification problem, we define the set

Dij =

(z,u+,u−) ∈ RP × RQ × RQ :

(z,u+) ∈ Ci+ , (−z,u−) ∈ Ci−
j+ > 0 =⇒ s>j+z > tj+

j− > 0 =⇒ −s>j−z > tj−

 ,

(20)
and we impose the following feasibility condition.

(F) For any i = (i+, i−) ∈ I2 and j = (j+, j−) ∈ (J ∪ {0})2, if Dij 6= ∅, then
Dij is essentially strictly feasible.

Condition (F) is a mild technical condition that is satisfied, for example, if
the cones Ki, i ∈ I, are polyhedral.

Theorem 4 (Symmetry) Assume that P = Pn ∩ Ps, where Pn is an in-
stance of the nested moment ambiguity set (4) that satisfies the boundedness
condition (B), the nesting condition (N), the dimensionality condition (D)
and the feasibility condition (F), whereas Ps is the set of all distributions
P ∈ P0(RP ×RQ) under which Πz̃P is point symmetric around m = 0. If the
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Slater condition (S) holds, then the worst-case probability (1) coincides with
the optimal value of the conic program

sup b>γ +
∑
i∈I

p
i
λi − piκi

s.t. γ ∈ RK , λ,κ ∈ RI+
ψ+

ij ∈ K?i+ , ψ
−
ij ∈ K?i− , χ

+
ij , χ

−
ij ∈ R+, (i, j) ∈ L∑

i∈A(i+)

(λi − κi) +
∑

i∈A(i−)

(λi − κi)

+d>i+ψ
+
ij + d>i−ψ

−
ij − χ

+
ij tj+ − χ

−
ij tj− ≤ wj

C>i+ψ
+
ij −C>i−ψ

−
ij = χ+

ijsj+ − χ
−
ijsj−

B>γ = D>i+ψ
+
ij = D>i−ψ

−
ij

 ∀(i, j) ∈ L,

(21)

where i = (i+, i−) ∈ I2 and j = (j+, j−) ∈ (J ∪ {0})2 are multi-indices,

L =
{

(i, j) ∈ I2 × (J ∪ {0})2 : Dij 6= ∅
}

with Dij defined in (20), wj = I[j+=0] + I[j−=0], s0 = 0 and t0 = 0.

In analogy to Theorem 3, Theorem 4 provides a reformulation that scales
polynomially in the input data. Note also that (21) reduces to a linear program
whenever the cones Ki for i ∈ I are polyhedral.

We emphasize that in Theorem 4, the center of symmetry is set to 0 merely
to simplify the exposition. This is without loss of generality and can always be
accomplished by a coordinate shift. Moreover, we note that one can efficiently
verify whether (i, j) ∈ L. If j > 0, for example, we have (i, j) ∈ L if and only
if the optimal value of the convex optimization problem

sup min {s>j+z − tj+ ,−s
>
j−z − tj−}

s.t. (z,u+,u−) ∈ RP × RQ × RQ
(z,u+) ∈ Ci+ , (−z,u−) ∈ Ci−

is strictly positive. We illustrate Theorem 4 with two examples.

Example 8 (Uncertainty Quantification with Robust Dispersion Measures) Let
P be the median-absolute deviation ambiguity set (11) from Example 3. Note
that P = Πz̃P ′, where P ′ is defined in (12). Moreover, P ′ can be viewed as the
intersection of a moment ambiguity set Pn of the form (4) with I = 1 and a
structural ambiguity set Ps containing all distributions P ∈ P0(RP×RP ) under
which Πz̃P is symmetric around m. For f > 0, P ′ satisfies the conditions
(B), (N), (D), (F) and (S). Thus, we can employ a coordinate shift and use
Theorem 4 to reformulate the uncertainty quantification problem (1) as the
tractable linear program

sup α− f>γ
s.t. α ∈ R, γ ∈ RK+ , χ+

j , χ
−
j ∈ R+, j ∈ L

2α+ χ+
j (s>j+m− tj+) + χ−j (s>j−m− tj−) ≤ wj

χ+
j sj+ − χ

−
j sj− ≤ 2γ, χ−j sj− − χ

+
j sj+ ≤ 2γ

}
∀j ∈ L,
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where j = (j+, j−) ∈ (J ∪ {0})2 is a multi-index ranging over

L =

{
j ∈ (J ∪ {0})2 :

[
∃z ∈ RP :

j+ > 0 =⇒ s>j+(m+ z) > tj+

j− > 0 =⇒ s>j−(m− z) > tj−

]}
,

wj = I[j+=0] + I[j−=0], s0 = 0 and t0 = 0.

Example 9 (Data-Driven Uncertainty Quantification, cont’d) Let P = P ′∩Ps,
where P ′ is the lifted Wasserstein ambiguity set (16) from Example 5 and Ps
is the set of all distributions P ∈ P0(RP ×RP ×R) with the property that Πz̃P
is point symmetric around m. If u is a strict upper bound on the Euclidean
diameter of the support of Q, then the ambiguity set P ′ satisfies the conditions
(B), (N), (D) and (F). Even though P ′ fails to satisfy (S), it can be shown
that Theorem 4 remains valid if r is sufficiently large. Thus, we can reformulate
the uncertainty quantification problem as the convex optimization problem

sup
1

I

∑
i∈I

βi − γr

s.t. β ∈ RI , γ ∈ R+

χ+
ij , χ

−
ij ∈ R+, ν

+
ij ,ν

−
ij ∈ RP , (i, j) ∈ L

‖ν+
ij ‖q ≤ γ, ‖ν−ij ‖q ≤ γ, ν+

ij + ν−ij = χ+
ijsj+ − χ

−
ijsj−

βi+ + βi− + ν+
ij
>(ẑi+ −m) + ν−ij

>(m− ẑi−)

+χ+
ij (s
>
j+m− tj+) + χ−ij (s

>
j−m− tj−) ≤ wj

 ∀(i, j) ∈ L,

where i = (i+, i−) and j = (j+, j−) are multi-indices ranging over

L =

{
(i, j) ∈ I2 × (J ∪ {0})2 :

[
∃z ∈ RP :

j+ > 0 =⇒ s>j+(m+ z) > tj+

j− > 0 =⇒ s>j−(m− z) > tj−

]}
,

wj = I[j+=0] + I[j−=0], s0 = 0, t0 = 0, and q ≥ 1 is defined through 1
p + 1

q = 1.

Problem (19) is a linear program if we choose p ∈ {1,∞}.

Next, we consider instances of the uncertainty quantification problem (1)
where P emerges from an intersection of the nested moment ambiguity set (4)
with the set of all α-unimodal distributions Pα. In order to facilitate tractable
reformulations, we restrict our attention to the subclass of epigraphic moment
ambiguity sets. An epigraphic moment ambiguity set is an instance of (4) with
I = 1 (i.e., it contains no confidence set other than the support), where the
interaction between z̃ and ũ is captured through the epigraph constraint in

C1 =
{

(z,u) ∈ RP × RQ : C1z 4K1
d1, g(z) 4K2

u
}
, (22)

where C1 ∈ RL1×P , d1 ∈ K1 and K1 ⊆ RL1 , K2 ⊆ RQ are proper cones. We
require that the function g : RP → RQ is K2-convex [9, § 3.6.2] and that the set
{(z,u) ∈ RP × RQ : g(z) 4K2

u} is representable through conic inequalities
and additional auxiliary variables [48]. We remark that any confidence set of
the form (5) can be expressed as an instance of (22) and vice versa. Epigraphic
ambiguity sets become a special case of (4) with I = 1, however, if structural
properties are imposed on the marginal projection Πz̃P.
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Theorem 5 (Unimodality) Assume that P = Pe ∩ Pα where Pe is an
epigraphic moment ambiguity set and Pα is the structural ambiguity set of
all distributions P ∈ P0(RP × RQ) with the property that Πz̃P is α-unimodal
around z = 0. If the Slater condition (S) holds and t ≥ 0, then the uncertainty
quantification problem (1) is equivalent to the semi-infinite program

sup β + b>γ
s.t. β ∈ R, γ ∈ RK , τj ∈ R+, ψ0,ψj ∈ K?1, j ∈ L

−B>γ ∈ K?2

β +

(
α

α+ 1
Az +Bgα(z)

)>
γ + (d1 −C1z)>ψ0 ≤ 1

β +

(
α

α+ 1
Az +Bgα(z)

)>
γ + (d1 −C1z)>ψj

+τjs
>
j z −

(α+1)α+1

αα (τjtj)
α
α+1 ≤ 0 ∀j ∈ L


∀z ∈ RP ,

(23)

where L =
{
j ∈ J : ∃(z,u) ∈ Cα1 . s>j z > 0

}
and gα(z) =

∫ 1

0
g(tz)αtα−1dt.

Unlike the previous results in this section, Theorem 5 does not provide
a tractable reformulation per se. Instead, the tractability of problem (23) is
determined by the properties of the function gα(·) that appears in the semi-
infinite constraints of (23). In the following, we present two examples for which
problem (23) has a tractable reformulation.

Example 10 (Generalized Gauss Bounds) Theorem 5 allows us to compute the
worst-case probability of the event Sz̃ ≤ t if the distribution of z̃ belongs to
the Gauss ambiguity set P defined in equation (9) of Example 2. Since P =
Πz̃P ′ for the ambiguity set P ′ defined in (10), we have infP∈P P [Sz̃ ≤ t] =
infP∈P′ P [Sz̃ ≤ t]. Moreover, the lifted ambiguity set P ′ satisfies the condi-
tions of Theorem 5 if Σ � 0, Sm ≤ t and C1 is defined as

C1 =
{

(z,U) ∈ RP × RP×P : g(z) 4 U
}
,

where g(z) = zz> is SP+-convex. Applying a coordinate shift and employing
Theorem 5 allows us to reformulate the uncertainty quantification problem (1)
over the Gauss ambiguity set as a semi-infinite program. Thereby, we recover
a generalized multivariate Gauss inequality that was discovered in [38]. Since
gα(z) = α

α+2zz
> can be computed explicitly, we may use standard robust

optimization techniques to further simplify this semi-infinite program to the
finite convex program

sup β − (µ−m)>γ − 〈Σ + (µ−m)(µ−m)>,Γ 〉
s.t. β ∈ R, γ ∈ RP , Γ ∈ SP+, τj ∈ R+, j ∈ L(

1− β 1
2

α
α+1γ

>

1
2

α
α+1γ

α
α+2Γ

)
< 0(

(α+1)α+1

αα (τj(tj − s>j m))
α
α+1 − β 1

2 ( α
α+1γ − τjsj)

>

1
2 ( α
α+1γ − τjsj)

α
α+2Γ

)
< 0 ∀j ∈ L,

(24)
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where L = {j ∈ J : sj 6= 0}. Note that (24) is equivalent to a tractable
semidefinite program if α is rational, in which case the nonlinear term in
the second matrix inequality can be linearized by using a well-known conic
expansion of power functions, see e.g. [5, § 2.3.1].

Example 11 (Mean-Absolute Deviation & Unimodality) Let P be the ambigu-
ity set of all distributions on RP that are α-unimodal with mean and center
m and whose mean-absolute deviation is bounded above by f , that is,

P =

{
P ∈ P0(RP ) :

P is α-unimodal with center m
EP [z̃] = m, EP [|z̃ −m|] ≤ f

}
.

Since Πz̃P ′ = P for the ambiguity set P ′ defined as

P ′ =

{
P ∈ P0(RP × RP ) :

Πz̃P is α-unimodal with center m,
EP [z̃] = m, EP [ũ] = f , P [|z̃ −m| ≤ ũ] = 1

}
,

we have infP∈P P [Sz̃ ≤ t] = infP∈P′ P [Sz̃ ≤ t]. Moreover, P ′ satisfies the
conditions of Theorem 5 if we define g(z) = |z−m| and require that Sm ≤ t
and f > 0. Applying a coordinate shift and using Theorem 5 in conjunction
with standard robust optimization techniques, we can thus reformulate the
uncertainty quantification problem (1) as the finite convex program

sup β − f>η
s.t. β ∈ R, θ ∈ RP , η ∈ RP+, τj ∈ R+, j ∈ L

η ≥ θ ≥ −η, β ≤ 1
α

α+ 1
η ≥ α

α+ 1
θ + τjsj ≥ −

α

α+ 1
η

β ≤ (α+ 1)α+1

αα
(τj(tj − s>j m))

α
α+1

 ∀j ∈ L,

(25)

where L = {j ∈ J : sj 6= 0}. Note that (25) can be reformulated as a tractable
second-order cone program if α is rational, see [5, § 2.3.1].

In addition to evaluating the worst-case probability (1), practical appli-
cations often require simulation runs under the distribution that attains the
worst-case probability. We can construct such worst-case distributions from
the dual problems of (17), (21) and (23). In the interest of space, we do not
embark on this pathway and instead refer the interested reader to [24,46].

To conclude this section, we investigate the tractability of the uncertainty
quantification problem (1) when the components of z̃ are mutually indepen-
dent under every distribution within the ambiguity set P.

Theorem 6 (Independence) The uncertainty quantification problem (1)
over the ambiguity set P defined as

P = Pn∩{P ∈ P0(RP×RQ) : the components of z̃ are independent under P},

where Pn is the moment ambiguity set (4), is strongly NP-hard even if (B)
and (N) are satisfied and K = 0 (no expectation constraints).
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One can show that if in addition to the assumptions of Theorem 6, the
ambiguity set Pn satisfies I = 1 (that is, there are no confidence sets other
than the support), then the uncertainty quantification problem (1) reduces to
a robust feasibility problem that can be solved efficiently. Also, if the moment
ambiguity set in Theorem 6 satisfies K > 0 but I = 1 and C1 = RP × RQ,
then problem (1) evaluates to 1 if both S = 0 and t ≥ 0 and to 0 otherwise.

4 Chance Constrained Programming

We now study chance constrained programs of the form (2), where the safety
of the underlying system can be actively enhanced by adjusting the design
decisions x ∈ RN . It turns out that the tractability of (2) is intimately related
to the number of rows J of the technology matrix S(x) and the right-hand
side vector t(x). Hence, Section 4.1 is devoted to individual chance constraints
where J = 1, and Section 4.2 studies joint chance constraints where J > 1.

4.1 Individual Chance Constraints

As J = 1 throughout this section, we can simplify the notation if we denote
the technology matrix by s(x)> and the right-hand side vector by t(x).

We first study instances of the chance constrained program (2) where the
ambiguity set is of the form (4). To derive a tractable reformulation for such
problems, we restrict our attention to the subclass of Markov ambiguity sets,
which are defined as instances of (4) with I = 1 and p

1
= p1 = 1. Note that

these ambiguity sets involve no confidence sets other than the support. We
emphasize that apart from the Wasserstein ambiguity set all other examples of
Section 2.3 constitute either Markov ambiguity sets or result from intersections
of Markov ambiguity sets with structural ambiguity sets. Note that Markov
ambiguity sets satisfy the conditions (B) and (N).

Theorem 7 (Moment Ambiguity Sets) If P is a Markov ambiguity set
satisfying (S) and J = 1, then the chance constraint in (2) is satisfied if and
only if there are β ∈ R, γ ∈ RK , φ,ψ ∈ K?1, τ ∈ R+ such that

β + b>γ ≥ (1− ε)τ, β + d>1 φ ≤ τ, β + d>1 ψ ≤ t(x)
A>γ = C>1 φ, B>γ = D>1 φ
A>γ + s(x) = C>1 ψ, B>γ = D>1 ψ.

(26)

Note that (26) is a system of linear constraints that scales polynomially in
the description of problem (2). The next result shows that the restriction to
Markov ambiguity sets in Theorem 7 is necessary.

Theorem 8 If P is an instance of (4) with I > 1, then the chance constrained
program (2) is strongly NP-hard even if J = 1, K = 0 (no expectation con-
straints) and the boundedness condition (B) as well as the nesting condition
(N) are satisfied, while X is a polyhedron.
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We illustrate the tractable reformulation of Theorem 7 with two examples.

Example 12 (Chebyshev Ambiguity Set) We can use Theorem 7 to derive a
tractable reformulation for individual chance constraints over the Chebyshev
ambiguity set P defined in Example 1 with Σ � 0. We have P = Πz̃P ′ for
the Markov ambiguity set P ′ defined in (8). Theorem 7 thus implies that the
individual chance constraint infP∈P P

[
s(x)>z̃ ≤ t(x)

]
is satisfied if and only

if there exist β ∈ R, γ ∈ RP , Γ ∈ SP+ and τ ∈ R+ with

β − µ>γ − 〈Σ + µµ>,Γ 〉 ≥ (1− ε)τ(
τ − β 1

2γ
>

1
2γ Γ

)
< 0(

t1(x)− β 1
2 (γ − s(x))>

1
2 (γ − s(x)) Γ

)
< 0.

Moreover, one can show that this constraint system is satisfied if and only if√
1− ε
ε
‖Σ 1

2 s(x)‖2 + µ>s(x) ≤ t(x),

which is a second-order cone constraint, see [22].

Example 13 (Huber Ambiguity Set) Theorem 7 allows us to derive a tractable
reformulation for individual chance constraints over the Huber ambiguity set P
defined in Example 4, assuming that f>µ < g. We have P = Πz̃P ′ for the
Markov ambiguity set P ′ defined in (13). Theorem 7 thus implies that the
individual chance constraint infP∈P P

[
s(x)>z̃ ≤ t(x)

]
is satisfied if and only

if there are α, ν0, ν1 ∈ R, ψ ∈ RP and τ, φ, λ0, λ1 ∈ R+ that satisfy the
following semi-definite constraints.

α− φg ≥ (1− ε)τ(
λ0 ν0
ν0

1
2φ

)
< 0,

(
λ1 ν1
ν1

1
2φ

)
< 0

α+ λ0 ≤ τ, ψ = 2ν0f , −βφ ≤ 2ν0 ≤ βφ
α+ λ1 − t(x) + s(x)>µ ≤ 0, ψ + s(x) = 2ν1f , −βφ ≤ 2ν1 ≤ βφ

We now consider instances of the chance constrained program (2) where
P is generated by intersecting a Markov ambiguity set with the set of all
symmetric distributions Ps.

Theorem 9 (Symmetry) Assume that P = Pm∩Ps, where Pm is a Markov
ambiguity set that satisfies the dimensionality condition (D) as well as the
feasibility condition (F), and Ps is the set of all distributions P ∈ P0(RP×RQ)
with the property that Πz̃P is point symmetric around m = 0. If the Slater
condition (S) holds, then the chance constraint in (2) with J = 1 and ε ∈
(0, 1/2) is satisfied if and only if there are β ∈ R, γ ∈ RK , φ,ψ+,ψ− ∈ K?1
and τ ∈ R+ such that

β + b>γ ≥ (1− ε)τ, β + d>1 φ ≤ τ
2β + d>1 (ψ+ +ψ−)− t(x) ≤ τ, C>1 (ψ+ −ψ−) = s(x)
B>γ = D>1 ψ

+ = D>1 ψ
− = D>1 φ.

(27)
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In analogy to Theorem 7, Theorem 9 reexpresses the individual chance
constraint as a finite set of tractable constraints. One can show that a Markov
ambiguity set Pm satisfies the feasibility condition (F) whenever the projected
support {z ∈ RP : ∃u ∈ RQ . (z,u) ∈ C1} is point symmetric around m = 0.
The restriction to Markov ambiguity sets in Theorem 9 is again necessary.

Theorem 10 If P = Pn ∩Ps where Pn is an instance of (4) with I > 1 and
Ps is the set of all distributions P ∈ P0(RP ×RQ) with the property that Πz̃P
is point symmetric around m = 0, then the chance constrained program (2) is
strongly NP-hard even if J = 1, K = 0 (no expectation constraints) and the
conditions (B), (N), (D) and (F) are satisfied, while X is a polyhedron.

We illustrate the tractable reformulation of Theorem 9 with an example.

Example 14 (Median-Absolute Deviation & Symmetry) We can use Theorem 9
to derive a tractable reformulation for individual chance constraints over the
median-absolute deviation ambiguity set P defined in Example 3 with f > 0.
Note that we have P = Πz̃P ′ for P ′ defined in (12). If we assume that ε ∈
(0, 1/2) and apply a coordinate shift, then all conditions of Theorem 9 are met
and the chance constraint in (2) is satisfied if and only if

1

2ε
f>|s(x)|+m>s(x) ≤ t(x),

which can be expressed by a system of 2P + 1 linear inequalities.

Next, we consider instances of the chance constrained program (2) where
the ambiguity set P emerges from the intersection of an epigraphic moment
ambiguity set with the set of all unimodal distributions Pα.

Theorem 11 (Unimodality) Assume that P = Pe ∩ Pα where Pe is an
epigraphic moment ambiguity set, whereas Pα, α > 1, is the set of all distri-
butions P ∈ P0(RP × RQ) with the property that Πz̃P is α-unimodal around
z = 0. If the Slater condition (S) holds, J = 1 and t(x) ≥ 0 for all x ∈ X ,
then the chance constraint in (2) is satisfied if and only if there are β ∈ R,
γ ∈ RK , τ ∈ R+, φ,ψ ∈ K?1 such that

β + b>γ ≥ (1− ε)τ, −B>γ ∈ K?2

β +

(
α

α+ 1
Az +Bgα(z)

)>
γ + (d1 −C1z)>φ ≤ τ

β +

(
α

α+ 1
Az +Bgα(z)

)>
γ + (d1 −C1z)>ψ

+s(x)>z − (α+1)α+1

αα τ
1

α+1 t(x)
α
α+1 ≤ 0


∀z ∈ RP . (28)

We remark that the term −τ
1

α+1 t(x)
α
α+1 is convex on {(τ,x) ∈ R+ × X}

since α > 0 and t(x) ≥ 0 for all x ∈ X . If α is a rational number exceeding 1,
that is, if α = p/q for some p, q ∈ N with p ≥ q, then the epigraph of this term
can be expressed through O(p) second-order conic constraints, see e.g. [38,
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Lemma 4.2]. In analogy to the formulation (23) of Theorem 5, the tractability
of (28) depends on the functional form of gα(·). We close this section with an
example for which the constraint system (28) has a tractable reformulation.

Example 15 (Gauss Ambiguity Set) Theorem 11 allows us to derive a tractable
reformulation for individual chance constraints over the Gauss ambiguity set P
defined in Example 2 whenever Σ � 0. Since P = Πz̃P ′ for P ′ defined in (10),
we can replace P in the chance constrained program (2) with P ′. The lifted
ambiguity set P ′ satisfies the conditions of Theorem 11 if we set

C1 =
{

(z,U) ∈ RP × RP×P : g(z) 4 U
}
,

where g(z) = zz> is SP+-convex, and require that the mode m satisfies
s(x)>m ≤ t(x) for all x ∈ X . Applying a coordinate shift, using Theorem 11
and employing standard robust optimization techniques allows us to conclude
that the chance constraint in (2) is satisfied if and only if there exist β ∈ R,
γ ∈ RP , Γ ∈ SP+ and τ ∈ R+ such that

β − (µ−m)>γ − 〈Σ + (µ−m)(µ−m)>,Γ 〉 ≥ 1− ε(
τ − β 1

2
α
α+1γ

>

1
2

α
α+1γ

α
α+2Γ

)
< 0(

(α+1)α+1

αα τ
1

α+1 (t(x)− s(x)>m)
α
α+1 − β 1

2 ( α
α+1γ − s(x))>

1
2 ( α
α+1γ − s(x)) α

α+2Γ

)
< 0.

4.2 Joint Chance Constraints

We now study joint chance constrained programs of the form (2) where J > 1.
Until recently, such problems were suspected to be generically intractable,
and the majority of the literature focused on conservative approximations via
Bonferroni’s inequality [36], distributionally robust conditional value-at-risk
constraints [12,51] and component-wise quasi-concave functions [33]. In the
following, we present an exact tractable reformulation of problem (2) for a
specific class of ambiguity sets, and we argue that this tractability result is
unlikely to extend to more general settings. The results of this section originate
from [24], and thus we do not repeat the proofs here.

We first consider instances of (2) where the ambiguity set is of the form (4).
To obtain tractable reformulations for such problems, we restrict our atten-
tion to conic moment ambiguity sets, which we define as Markov ambiguity
sets with d1 = 0. Conic moment ambiguity sets form a strict subclass of
the epigraphic moment ambiguity sets introduced in Section 3. Nevertheless,
they are expressive enough to capture moment constraints involving many in-
teresting dispersion measures such as the mean-absolute deviation E |·|, the
mean-semideviation E [·]+ and the mean-maximum deviation E ‖·‖∞.

Theorem 12 Assume that the technology matrix of the chance constraint
in (2) is fixed, that is, S(x) = S. Let P be a conic moment ambiguity set
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satisfying (S), and assume that (sj ,0) /∈ pol(C1) for all j ∈ J , where pol(C1)
denotes the polar cone of C1. Then the chance constraint in (2) is satisfied if
and only if there exist γ ∈ RK , φ ∈ K?1, τj ∈ R+ and ψj ∈ K?1, j ∈ J , with

1 + b>γ ≥ 1− ε, A>γ = C>1 φ, B
>γ = D>1 φ

A>γ + τjsj = C>1 ψj , B
>γ = D>1 ψj∥∥∥∥[ 2

τj − tj(x)

]∥∥∥∥
2

≤ τj + tj(x)

 ∀j ∈ J , (29)

where sj, j = 1, . . . , J , denotes the j-th row of S as a column vector.

Note that (29) is a system of conic-quadratic constraints that scales polyno-
mially with the description of the chance constraint (2). In contrast to all other
results in this paper, joint chance constraints thus require a conic-quadratic
reformulation even for ambiguity sets with a polyhedral support.

The following two results show that both the restriction to conic moment
ambiguity sets and to fixed technology matrices is critical in Theorem 12.

Theorem 13 The joint chance constrained program (2) is strongly NP-hard
even if S(x) = S and P is an epigraphic moment ambiguity set whose support
C1 represents a hypercube.

Theorem 14 If the technology matrix S(x) depends on x, then the joint
chance constrained program (2) is strongly NP-hard even if P constitutes a
conic moment ambiguity set.

Chance constraints with fixed technology matrices arise naturally, for ex-
ample, in inventory control, cash matching, unit commitment or airline revenue
management problems etc. We illustrate the tractable reformulation offered by
Theorem 12 with two examples.

Example 16 (Mean-Absolute Deviation) Theorem 12 allows us to derive a
tractable reformulation of joint chance constraints over mean-absolute devia-
tion ambiguity sets P of the form

P =
{
P ∈ P0(RP ) : EP [z̃] = µ, EP [|z̃ − µ|] ≤ f

}
,

where the absolute value is understood to apply component-wise and f > 0.
Consider now an instance of (4) involving the auxiliary random vector ũ ∈ RP .

P ′ =

{
P ∈ P0(RP × RP ) :

EP [z̃] = µ, EP [ũ] = f ,
P [ũ ≥ z̃ − µ, ũ ≥ µ− z̃] = 1

}
One readily verifies that P = Πz̃P ′ and the lifted ambiguity set P ′ satisfies the
conditions of Theorem 12. We thus conclude that the joint chance constraint
in (2) is satisfied if and only if there exist γ,β ∈ RP and τj ∈ R+, j ∈ L, with

1 + f>γ ≥ 1− ε, −γ ≥ β ≥ γ
−γ ≥ β + τjsj ≥ γ∥∥∥∥[ 2
τj − tj(x) + s>j µ

]∥∥∥∥ ≤ τj + tj(x)− s>j µ

 ∀j ∈ J .
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Example 17 (Mean Semi-Deviation) Theorem 12 also allows us to derive a
tractable reformulation of joint chance constraints over more general mean
semi-deviation ambiguity sets P of the form

P =
{
P ∈ P0(RP ) : EP [z̃] = µ, EP [z̃ − µ]+ ≤ f

+, EP [µ− z̃]+ ≤ f
−} ,

where the operator [·]+ = max{·, 0} applies component-wise and f+, f− > 0.
Consider the following instance of (4), which involves the auxiliary random
vectors ũ+, ũ− ∈ RP .

P ′ =

P ∈ P0(RP × RP × RP ) :
EP [z̃] = µ, P [ũ+, ũ− ≥ 0] = 1,
EP [ũ+] = f+, EP [ũ−] = f−,
P [ũ+ ≥ z̃ − µ, ũ− ≥ µ− z̃] = 1


One readily verifies that P = Πz̃P ′ and the lifted ambiguity set P ′ satisfies the
conditions of Theorem 12. We thus conclude that the joint chance constraint
in (2) is satisfied if and only if there exist β,γ+,γ− ∈ RP , θj ,ηj ∈ RP+,
j ∈ J ∪ {0}, and τj ∈ R+, j ∈ J , with

1 + (f+)>γ+ + (f−)>γ− ≥ 1− ε
β = θ0 − η0, γ+ ≤ −θ0, γ− ≤ −η0
β + τjsj = θj − ηj , γ+ ≤ −θj , γ− ≤ −ηj∥∥∥∥[ 2
τj − tj(x) + s>j µ

]∥∥∥∥ ≤ τj + tj(x)− s>j µ

 ∀j ∈ J .

If the ambiguity set of Theorem 12 is restricted to distributions P ∈ P with
point symmetric marginalsΠz̃P, then the joint chance constrained program (2)
is strongly NP-hard even if the support set C1 is a cone.

Theorem 15 If the ambiguity set P satisfies P = Pc∩Ps where Pc is a conic
moment ambiguity set and Ps is the set of all distributions P ∈ P0(RP ×RQ)
with the property that Πz̃P is point symmetric around m = 0, then the joint
chance constrained program (2) is strongly NP-hard even if S(x) = S.

Finally, if the ambiguity set P in Theorem 12 is restricted to contain only
distributions P ∈ P under which Πz̃P is α-unimodal, then the intractabil-
ity results of Theorems 13 and 14 remain valid since any distribution can be
approximated arbitrarily well—in the weak sense—by an α-unimodal distri-
bution with sufficiently large α > 0, see e.g. [38]. To our best knowledge, the
complexity of the joint chance constrained program (2) has not been settled
for S(x) = S and for P generated by the intersection of a conic moment am-
biguity set and the structural ambiguity set Pα of all unimodal distributions.

5 Approximation Algorithm

While the uncertainty quantification problem (1) can be solved efficiently for
a broad range of ambiguity sets (see Section 3), the associated chance con-
strained programs (2) frequently become intractable (see Section 4). In this
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Ambiguity set Coupled decisions χ Uncoupled decisions ρ

Moment information (Theorem 3) ({τij}ij) (γ,λ,κ, {φi}i, {ψij}ij)

Moments + symmetry (Theorem 4) ({χ+
ij}ij, {χ

−
ij }ij) (γ,λ,κ, {ψ+

ij }ij, {ψ
−
ij }ij)

Moments + unimodality (Example 10) ({τj}j) (β, γ,Γ )

Moments + unimodality (Example 11) ({τj}j) (β, θ,η)

Table 1 Definitions of χ and ρ for some of the ambiguity sets studied in this paper.

section, we therefore report a heuristic for chance constrained programs that
determines ‘good’ but in general suboptimal decisions even if the associated
instance of (2) is intractable. The key idea is to decompose problem (2) into an
uncertainty quantification problem that evaluates the worst-case probability of
the chance constraint in (2) for a fixed decision x and a policy improvement
problem that aims to improve the current decision x.

To this end, we introduce a unified notation for the uncertainty quantifi-
cation problems (17), (21) and (23). We denote the objective function of the
unified uncertainty quantification problem by Q(ψ), where we combine all de-
cision variables to a single vector ψ. Likewise, we represent the constraints of
the unified uncertainty quantification problem as ψ ∈ Q(x), where we replace
the coefficient matrix S = (s1, . . . , sJ)> with S(x) = (s1(x), . . . , sJ(x))> and
the right-hand side vector t with t(x) = (t1(x), . . . , tJ(x))>. Thus, a decision
x ∈ X is feasible in the chance constrained program (2) if and only if there
is ψ ∈ Q(x) such that Q(ψ) ≥ 1 − ε. This chance constrained program is
nonconvex in general as the constraint system ψ ∈ Q(x) may involve bilinear
couplings between x and some components of ψ. We thus decompose ψ into
a subvector χ that contains all variables which are coupled with x and the
subvector ρ that contains the remaining variables. The chance constrained
program (2) can then be formulated as follows.

minimize c>x
subject to x ∈ X , (χ,ρ) ∈ Q(x)

Q(χ,ρ) ≥ 1− ε
(30)

Table 1 exemplifies the definitions of χ and ρ for some popular ambiguity
sets, and Fig. 1 presents a block coordinate descent algorithm for solving (30).
The algorithm requires a feasible point x0 as input. Note that the optimization
problems solved in Steps 2 and 3 of the algorithm are convex and can thus
be solved efficiently. For any threshold δ > 0, the algorithm terminates after
finitely many iterations to a partial optimum of the chance constrained pro-
gram (30), that is, a feasible point (x?,χ?,ρ?) where (x?,ρ?) maximizes (30)
for fixed χ? and Q(χ?,ρ?) represents the worst-case probability that the sys-
tem is safe under the fixed decision x?. For a convergence proof we refer to [32].
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Block Coordinate Descent Algorithm.

1. Initialization. For a given initial feasible solution x0, set the objec-
tive value to f0 ← c>x0 and the iteration counter to t← 1.

2. Uncertainty Quantification. Let (χ?,ρ?) be an optimal solution to

sup
χ,ρ

{
Q(χ,ρ) : (χ,ρ) ∈ Q(xt−1)

}
and set χt ← χ?.

3. Policy Improvement. Let (x?,ρ?) be an optimal solution to

inf
x,ρ

{
c>x : x ∈ X , Q(χt,ρ) ≥ 1− ε, (χt,ρ) ∈ Q(x)

}
and set xt ← x?, ρt ← ρ? and f t ← c>x?.

4. Termination Criterion. If |f t − f t−1| ≤ δ, where δ > 0 is a small
convergence threshold, then terminate with the solution xt. Otherwise,
set t← t+ 1 and go to Step 2.

Fig. 1 Block coordinate descent algorithm for problem (30).

6 Summary

Table 2 summarizes the results of this paper. We reiterate that conic moment
ambiguity sets form a strict subclass of epigraphic moment ambiguity sets
and the class of epigraphic moment ambiguity sets coincides with the class of
Markov ambiguity sets. Neither statement is true, however, if the correspond-
ing moment ambiguity set is intersected with a structural ambiguity set.
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Table 2 Summary of the results in this paper. Checks (4) and crosses (6) highlight
tractable reformulations and intractability results, respectively.
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