809 research outputs found

    Contextual awareness, messaging and communication in nomadic audio environments

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1998.Includes bibliographical references (p. 119-122).Nitin Sawhney.M.S

    MANETs: Internet Connectivity and Transport Protocols

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected together over a wireless medium, which self-organize into an autonomous multi-hop wireless network. This kind of networks allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking is not a new concept, having been around in various forms for over 20 years. However, in the past only tactical networks followed the ad hoc networking paradigm. Recently, the introduction of new technologies such as IEEE 802.11, are moved the application field of MANETs to a more commercial field. These evolutions have been generating a renewed and growing interest in the research and development of MANETs. It is widely recognized that a prerequisite for the commercial penetration of the ad hoc networking technologies is the integration with existing wired/wireless infrastructure-based networks to provide an easy and transparent access to the Internet and its services. However, most of the existing solutions for enabling the interconnection between MANETs and the Internet are based on complex and inefficient mechanisms, as Mobile-IP and IP tunnelling. This thesis describes an alternative approach to build multi-hop and heterogeneous proactive ad hoc networks, which can be used as flexible and low-cost extensions of traditional wired LANs. The proposed architecture provides transparent global Internet connectivity and address autocofiguration capabilities to mobile nodes without requiring configuration changes in the pre-existing wired LAN, and relying on basic layer-2 functionalities. This thesis also includes an experimental evaluation of the proposed architecture and a comparison between this architecture with a well-known alternative NAT-based solution. The experimental outcomes confirm that the proposed technique ensures higher per-connection throughputs than the NAT-based solution. This thesis also examines the problems encountered by TCP over multi-hop ad hoc networks. Research on efficient transport protocols for ad hoc networks is one of the most active topics in the MANET community. Such a great interest is basically motivated by numerous observations showing that, in general, TCP is not able to efficiently deal with the unstable and very dynamic environment provided by multi-hop ad hoc networks. This is because some assumptions, in TCP design, are clearly inspired by the characteristics of wired networks dominant at the time when it was conceived. More specifically, TCP implicitly assumes that packet loss is almost always due to congestion phenomena causing buffer overflows at intermediate routers. Furthermore, it also assumes that nodes are static (i.e., they do not change their position over time). Unfortunately, these assumptions do not hold in MANETs, since in this kind of networks packet losses due to interference and link-layer contentions are largely predominant, and nodes may be mobile. The typical approach to solve these problems is patching TCP to fix its inefficiencies while preserving compatibility with the original protocol. This thesis explores a different approach. Specifically, this thesis presents a new transport protocol (TPA) designed from scratch, and address TCP interoperability at a late design stage. In this way, TPA can include all desired features in a neat and coherent way. This thesis also includes an experimental, as well as, a simulative evaluation of TPA, and a comparison between TCP and TPA performance (in terms of throughput, number of unnecessary transmissions and fairness). The presented analysis considers several of possible configurations of the protocols parameters, different routing protocols, and various networking scenarios. In all the cases taken into consideration TPA significantly outperforms TCP

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    Automotive Cognitive Access: Towards customized vehicular communication system

    Get PDF
    The evolution of Software Defined Networking (SDN) and Virtualization of mobile Network Functions (NFV) have enabled the new ways of managing mobile access systems and are seen as a major technological foundation of the Fifth Generation (5G) of mobile networks. With the appearance of 5G specifications, the mobile system architecture has the transition from a network of entities to a network of functions. This paradigm shift led to new possibilities and challenges. Existing mobile communication systems rely on closed and inflexible hardware-based architectures both at the access and core network. It implies significant challenges in implementing new techniques to maximize the network capacity, scalability and increasing performance for diverse data services. This work focuses preliminary on the architectural evolutions needed to solve challenges perceived for the next generation of mobile networks. I consider Software defined plus Virtualization featured Mobile Network (S+ MN) architecture as a baseline reference model, aiming at the further improvements to support the access requirements for diverse user groups. I consider an important class of things, vehicles, which needs efficient mobile internet access at both the system and application levels. I identify and describe key requirements of emerging vehicular communications and assess existing standards to determine their limitations. To provide optimized wireless communications for the specific user group, the 5G systems come up with network slicing as a potential solution to create customized networks. Network slicing has the capability to facilitates dynamic and efficient allocation of network resources and support diverse service scenarios and services. A network slice can be broadly defined as an end-to-end logically isolated network that includes end devices as well as access and core network functions. To this effect, I describe the enhanced behaviour of S+ MN architecture for the collection of network resources and details the potential functional grouping provided by S+ MN architecture that paves the way to support automotive slicing. The proposed enhancements support seamless connection mobility addressing the automotive access use case highly mobile environment. I follow the distribution of gateway functions to solve the problem of unnecessary long routes and delays. Exploiting the open SDN capabilities, the proposed S+ NC is able to parallelize the execution of certain control plane messages thus enabling the signalling optimisation. Furthermore, it enables the (Re)selection of efficient data plane paths with implied upper-layer service continuity mechanisms that remove the chains of IP address preservation for session continuity during IP anchor relocation. An implementation setup validates the proposed evolutions, including its core functionalities implemented using the ns-3 network simulator. The proposed slicing scheme has been evaluated through a number of scenarios such as numbers of signalling messages processed by control entities for an intersystem handover procedure relative to current mobile network architecture. I also perform the performance improvement analysis based on simulation results. Furthermore, I experimentally prove the feasibility of using Multipath TCP for connection mobility in intersystem handover scenario. The experiments run over the Linux Kernel implementation of Multipath TCP developed over the last years. I extend the Multipath TCP path management to delegates the management of the data paths according to the application needs. The implementation results have shown that the proposed S+ MN slicing architecture and enhancements achieve benefits in multiple areas, for example improving the mobility control and management, maintaining QoS, smooth handover, session continuity and efficient slice management and orchestration

    Cross-layer Assisted TCP Algorithms for Vertical Handoff

    Get PDF
    The ever expanding growth of the wireless access to the Internet in recent years has led to the proliferation of wireless and mobile devices to connect to the Internet. This has created the possibility of mobile devices equipped with multiple radio interfaces to connect to the Internet using any of several wireless access network technologies such as GPRS, WLAN and WiMAX in order to get the connectivity best suited for the application. These access networks are highly heterogeneous and they vary widely in their characteristics such as bandwidth, propagation delay and geographical coverage. The mechanism by which a mobile device switches between these access networks during an ongoing connection is referred to as vertical handoff and it often results in an abrupt and significant change in the access link characteristics. The most common Internet applications such as Web browsing and e-mail make use of the Transmission Control Protocol (TCP) as their transport protocol and the behaviour of TCP depends on the end-to-end path characteristics such as bandwidth and round-trip time (RTT). As the wireless access link is most likely the bottleneck of a TCP end-to-end path, the abrupt changes in the link characteristics due to a vertical handoff may affect TCP behaviour adversely degrading the performance of the application. The focus of this thesis is to study the effect of a vertical handoff on TCP behaviour and to propose algorithms that improve the handoff behaviour of TCP using cross-layer information about the changes in the access link characteristics. We begin this study by identifying the various problems of TCP due to a vertical handoff based on extensive simulation experiments. We use this study as a basis to develop cross-layer assisted TCP algorithms in handoff scenarios involving GPRS and WLAN access networks. We then extend the scope of the study by developing cross-layer assisted TCP algorithms in a broader context applicable to a wide range of bandwidth and delay changes during a handoff. And finally, the algorithms developed here are shown to be easily extendable to the multiple-TCP flow scenario. We evaluate the proposed algorithms by comparison with standard TCP (TCP SACK) and show that the proposed algorithms are effective in improving TCP behavior in vertical handoff involving a wide range of bandwidth and delay of the access networks. Our algorithms are easy to implement in real systems and they involve modifications to the TCP sender algorithm only. The proposed algorithms are conservative in nature and they do not adversely affect the performance of TCP in the absence of cross-layer information.KÀytÀmme enenevissÀ mÀÀrin kannettavia pÀÀtelaitteita (esim. matkapuhelin, kannettava tietokone) erilaisiin sovelluksiin kuten sÀhköpostin lukemiseen, verkon selaamiseen, musiikin lataamiseen ja kuuntelemiseen, pelien pelaamiseen ja laskujen maksamiseen riippumatta olinpaikastamme tai liikkuvuudestamme. Pystymme yhdistÀmÀÀn laitteemme Internetiin milloin tahansa missÀ tahansa. Langattomat verkot, jotka mahdollistavat laitteen kytkemisen Internetiin radion kautta kÀyttÀvÀt moninaisia teknologioita ja eroavat laajalti ominaisuuksiltaan. Esimerkiksi langaton lÀhiverkko (WLAN), jota voidaan kÀyttÀÀ rakennuksen sisÀllÀ, on matkapuhelinverkkoa (esim. GPRS) nopeampi verkko, kun taas GPRS-kenttÀ voi ulottua kokonaisen kaupungin tai maan alueelle ja laajemmallekin. Kannettava pÀÀtelaite, jossa on monia radioliittymiÀ, voi siirtyÀ kÀyttÀmÀÀn mitÀ tahansa monista saatavilla olevistaverkoista riippuen olinpaikasta tai kÀytettÀvÀn sovelluksen tarpeista. Verkonvaihto viittaa tÀhÀn verkosta toiseen siirtymiseen, ja se tunnetaan vertikaalisena verkonvaihtona, kun siirtymisen kohteena olevien verkkojen teknologia eroaa toisistaan. TCP on tietoliikenneohjelmisto, jota sekÀ tiedon lÀhettÀjÀ ettÀ vastaanottaja kÀyttÀvÀt kuljettamaan sovelluksen tiedon luotettavasti. TCP sÀÀtelee tiedon lÀhetysnopeutta riippuen Internetin resurssien saatavuudesta. TCP:n kÀyttÀytyminen riippuu pÀÀstÀ-pÀÀhÀn polun ominaisuuksista ja erityisesti pullonkaulayhteydestÀ, siitÀ yhteydestÀ, jolla on minimikapasiteetti polulla. Langaton yhteys, joka yhdistÀÀ kannettavan laitteen Internetiin on usein pullonkaulayhteys, ja Àkillinen muutos sen ominaisuuksissa vertikaalisen siirtymÀn aikana vaikuttaa merkittÀvÀsti TCP:n suorituskykyyn ja siten koko sovelluksen laatuun. TÀmÀ työssÀ on keskitytty tutkimaan TCP:n toimintaa vertikaalisessa verkonvaihdon yhteydessÀ ja suunnittelemaan algoritmeja, jotka parantavat sen suorituskykyÀ vertikaalisen verkonvaihdon yhteydessÀ. Suunnitellut algoritmit kÀyttÀvÀt hyvÀksi tietoa vertikaaliseen verkonvaihtoon liittyvien langattomien yhteyksien ominaisuuksista. EnsimmÀinen tapaustutkimuskohde liittyy WLAN-GPRS -ympÀristöön, jossa TCP saa minimimÀÀrÀn tietoa verkonvaihtoon liittyen. Tulokset nÀyttÀvÀt, ettÀ TCP:n suorituskykyÀ voidaan parantaa huomattavasti. Tutkimusta on laajennettu kattamaan verkonvaihto yleisemmÀssÀ tapauksessa kÀyttÀen karkeita arvioita ko. verkkojen ominaisuuksista. Kehitettyjen algoritmien toiminnallisuus on evaluoitu simulaatiokokeilla kattaen laajan joukon ominaisuuksiltaan erilaisia verkkoja. Tulokset osoittavat, ettÀ TCP-suorituskykyÀ voidaan parantaa vertikaalisen verkonvaihdon yhteydessÀ huomattavasti tÀtÀ lÀhestymistapaa kÀyttÀen. Kehitetyt algoritmit voivat olla hyödyksi etsiessÀmme ratkaisuja kannettavien laitteiden todellisen kÀytön tarpeisiin

    (VANET IR-CAS): Utilizing IR Techniques in Building Context Aware Systems for VANET

    Get PDF
    Most of the available context aware dissemination systems for the Vehicular Ad hoc Network (VANET) are centralized systems with low level of user privacy and preciseness. In addition, the absence of common assessment models deprives researchers from having fair evaluation of their proposed systems and unbiased comparison with other systems. Due to the importance of the commercial, safety and convenience services, three IR-CAS systems are developed to improve three applications of these services: the safety Automatic Crash Notification (ACN), the convenience Congested Road Notification (CRN) and the commercial Service Announcement (SA). The proposed systems are context aware systems that utilize the information retrieval (IR) techniques in the context aware information dissemination. The dispatched information is improved by deploying the vector space model for estimating the relevance or severity by calculating the Manhattan distance between the current situation context and the severest context vectors. The IR-CAS systems outperform current systems that use machine learning, fuzzy logic and binary models in decentralization, effectiveness by binary and non-binary measures, exploitation of vehicle processing power, dissemination of informative notifications with certainty degrees and partial rather than binary or graded notifications that are insensitive to differences in severity within grades, and protection of privacy which achieves user satisfaction. In addition, the visual-manual and speech-visual dual-mode user interface is designed to improve user safety by minimizing distraction. An evaluation model containing ACN and CRN test collections, with around 500,000 North American test cases each, is created to enable fair effectiveness comparisons among VANET context aware systems. Hence, the novelty of VANET IR-CAS systems is: First, providing scalable abstract context model with IR based processing that raises the notification relevance and precision. Second, increasing decentralization, user privacy, and safety with the least distracting user interface. Third, designing unbiased performance evaluation as a ground for distinguishing significantly effective VANET context aware systems

    Adaptive delay-constrained internet media transport

    Get PDF
    Reliable transport layer Internet protocols do not satisfy the requirements of packetized, real-time multimedia streams. The available thesis motivates and defines predictable reliability as a novel, capacity-approaching transport paradigm, supporting an application-specific level of reliability under a strict delay constraint. This paradigm is being implemented into a new protocol design -- the Predictably Reliable Real-time Transport protocol (PRRT). In order to predictably achieve the desired level of reliability, proactive and reactive error control must be optimized under the application\u27s delay constraint. Hence, predictably reliable error control relies on stochastic modeling of the protocol response to the modeled packet loss behavior of the network path. The result of the joined modeling is periodically evaluated by a reliability control policy that validates the protocol configuration under the application constraints and under consideration of the available network bandwidth. The adaptation of the protocol parameters is formulated into a combinatorial optimization problem that is solved by a fast search algorithm incorporating explicit knowledge about the search space. Experimental evaluation of PRRT in real Internet scenarios demonstrates that predictably reliable transport meets the strict QoS constraints of high-quality, audio-visual streaming applications.ZuverlĂ€ssige Internet-Protokolle auf Transport-Layer erfĂŒllen nicht die Anforderungen paketierter Echtzeit-Multimediaströme. Die vorliegende Arbeit motiviert und definiert Predictable Reliability als ein neuartiges, kapazitĂ€terreichendes Transport-Paradigma, das einen anwendungsspezifischen Grad an ZuverlĂ€ssigkeit unter strikter Zeitbegrenzung unterstĂŒtzt. Dieses Paradigma wird in ein neues Protokoll-Design implementiert -- das Predictably Reliable Real-time Transport Protokoll (PRRT). Um prĂ€dizierbar einen gewĂŒnschten Grad an ZuverlĂ€ssigkeit zu erreichen, mĂŒssen proaktive und reaktive Maßnahmen zum Fehlerschutz unter der Zeitbegrenzung der Anwendung optimiert werden. Daher beruht Fehlerschutz mit Predictable Reliability auf der stochastischen Modellierung des Protokoll-Verhaltens unter modelliertem Paketverlust-Verhalten des Netzwerkpfades. Das Ergebnis der kombinierten Modellierung wird periodisch durch eine Reliability Control Strategie ausgewertet, die die Konfiguration des Protokolls unter den Begrenzungen der Anwendung und unter BerĂŒcksichtigung der verfĂŒgbaren Netzwerkbandbreite validiert. Die Adaption der Protokoll-Parameter wird durch ein kombinatorisches Optimierungsproblem formuliert, welches von einem schnellen Suchalgorithmus gelöst wird, der explizites Wissen ĂŒber den Suchraum einbezieht. Experimentelle Auswertung von PRRT in realen Internet-Szenarien demonstriert, dass Transport mit Predictable Reliability die strikten Auflagen hochqualitativer, audiovisueller Streaming-Anwendungen erfĂŒllt

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions
    • 

    corecore