32,152 research outputs found

    Blockwise Subspace Identification for Active Noise Control

    Get PDF
    In this paper, a subspace identification solution is provided for active noise control (ANC) problems. The solution is related to so-called block updating methods, where instead of updating the (feedforward) controller on a sample by sample base, it is updated each time based on a block of N samples. The use of the subspace identification based ANC methods enables non-iterative derivation and updating of MIMO compact state space models for the controller. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The design of a feedforward controller via the proposed approach is illustrated for an acoustic duct benchmark problem, supplied by TNO Institute of Applied Physics (TNO-TPD), the Netherlands. We also show how to cope with intrinsic feedback. A comparison study with various ANC schemes, such as block filtered-U, demonstrates the increased robustness of a subspace derived controlle

    A new coupling solution for G3-PLC employment in MV smart grids

    Get PDF
    This paper proposes a new coupling solution for transmitting narrowband multicarrier power line communication (PLC) signals over medium voltage (MV) power lines. The proposed system is based on an innovative PLC coupling principle, patented by the authors, which exploits the capacitive divider embedded in voltage detecting systems (VDS) already installed inside the MV switchboard. Thus, no dedicated couplers have to be installed and no switchboard modifications or energy interruptions are needed. This allows a significant cost reduction of MV PLC implementation. A first prototype of the proposed coupling system was presented in previous papers: it had a 15 kHz bandwidth useful to couple single carrier PSK modulated PLC signals with a center frequency from 50–200 kHz. In this paper, a new prototype is developed with a larger bandwidth, up to 164 kHz, thus allowing to couple multicarrier G3-PLC signals using orthogonal frequency division multiplexing (OFDM) digital modulation. This modulation ensures a more robust communication even in harsh power line channels. In the paper, the new coupling system design is described in detail. A new procedure is presented for tuning the coupling system parameters at first installation in a generic MV switchboard. Finally, laboratory and in-field experimental test results are reported and discussed. The coupling performances are evaluated measuring the throughput and success rate in the case of both 18 and 36 subcarriers, in one of the different tone masks standardized for the FCC-above CENELEC band (that is, from 154.6875–487.5 kHz). The experimental results show an efficient behavior of the proposed coupler allowing a two-way communication of G3-PLC OFDM signals on MV networks

    Identification of Bare-Airframe Dynamics from Closed-Loop Data Using Multisine Inputs and Frequency Responses

    Get PDF
    Amethod is presented for computing multiple-input multiple-output frequency responses of bare-airframe dynamics for systems excited using orthogonal phase-optimized multisines and including correlated data arising from control mixing or feedback control. The estimation was posed as the solution to an underdetermined system of linear equations, for which additional information was supplied using interpolation of the frequency responses. A simulation model of the NASA T-2 aircraft having two inputs and two outputs was used to investigate the method in the open-loop configuration and under closed-loop control. The method was also applied to flight test data from the X-56A aeroelastic demonstrator having five inputs and ten outputs and flying under closed-loop control with additional control allocation mixing. Results demonstrated that the proposed method accurately estimates the bare airframe frequency responses in the presence of correlated data from control mixing and feedback control. Results also agreed with estimates obtained using different methods that are less sensitive to correlated inputs

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Networking strategies in streptomyces coelicolor

    Get PDF
    We are interested the soil dwelling bacteria Streptomyces coelicolor because its cells grow end to end in a line. New branches have the potential to extend from any point along this line and the result is a network of branches and connections. This is a novel form of colonisation in the bacterial world and it is advantageous for spreading through an environment resourcefully. Networking protocols for communication technologies have similar pressures to be resourceful in terms of time, computing power, and energy. In this preliminary investigation we design a computer model of the biological system to understand its limitations and strategies for survival. The decentralised capacity for organisation of both the bacterial system and the model reflects well on the now-popular conventions for path finding and ad hoc network building in human technologies. The project will ultimately become a comparison of strategies between nature and the man-made

    Longitudinal flying qualities criteria for single-pilot instrument flight operations

    Get PDF
    Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria

    Design of Power Receiving Units for 6.78MHz Wireless Power Transfer Systems

    Get PDF
    In the last decade, the wireless power transfer (WPT) technology has been a popular topic in power electronics research and increasingly adopted by consumers. The AirFuel WPT standard utilizes resonant coils to transfer energy at 6.78 MHz, introducing many benefits such as longer charging distance, multi-device charging, and high tolerance of the coil misalignment. However, variations in coil coupling due to the change in receiving coil positions alter the equivalent load reactance, degrading efficiency. In recent studies, active full-bridge rectifiers are employed on WPT receivers because of their superior efficiency, controllability, and ability to compensate for detuned WPT networks. In order to take advantage of those characteristics, the rectifier switching actions must be synchronized with the magnetic field. In the literature, existing solutions for synchronizing the active rectifier in WPT systems are mostly not reliable and bulky, which is not suitable for small receivers. Therefore, a frequency synchronous rectifier with compact on-board control is proposed in this thesis. The rectifier power stage is designed to deliver 40 W to the load while achieving full zero-voltage switching to minimize the loss. The inherent feedback from the power stage dynamics to the sensed signal is analyzed to design stable and robust synchronization control, even at a low power of 0.02 W. The control system is accomplished using commercial components, including a low-cost microcontroller, which eliminates the need for bulky control and external sensing hardware. This high power density design allows the receiver to be integrated into daily consumer electronics such as laptops and monitors. Finally, a wide-range and high v resolution control scheme of the rectifier input phase is proposed to enable the dynamic impedance matching capability, maintaining high system efficiency over wide loading conditions. In addition, to increase the WPT technology adoption to low-power consumer electronics, a small wireless receiver replacing conventional AA batteries is developed. This receiver can supply power to existing AA battery-powered devices while providing the benefit of WPT technologies to consumers

    A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier

    Get PDF
    Concentric distributed active transformers (DAT) are used to implement a fully-integrated quad-band power amplifier (PA) in a standard 130 nm CMOS process. The DAT enables the power amplifier to integrate the input and output matching networks on the same silicon die. The PA integrates on-chip closed-loop power control and operates under supply voltages from 2.9 V to 5.5 V in a standard micro-lead-frame package. It shows no oscillations, degradation, or failures for over 2000 hours of operation with a supply of 6 V at 135° under a VSWR of 15:1 at all phase angles and has also been tested for more than 2 million device-hours (with ongoing reliability monitoring) without a single failure under nominal operation conditions. It produces up to +35 dBm of RF power with power-added efficiency of 51%

    An Efficient & Less Complex Solution to Mitigate Impulsive Noise in Multi-Channel Feed-Forward ANC System with Online Secondary Path Modeling (OSPM)

    Get PDF
    This paper deals with impulsive noise (IN) in multichannel (MC) Active Noise Control (ANC) Systems with Online Secondary Path Modelling (OSPM) employing adaptive algorithms for the first time. It compares performance of various existing techniques belonging to varied computational complexity range and proposes four new methods, namely: FxRLS-VSSLMS, VSSLMS-VSSLMS, FxLMAT-VSSLMS and NSS MFxLMAT-VSSLMS to deal with modest to very high impulsive noise (IN). Simulation results show that these proposed methods demonstrated improved performance in terms of fast convergence speed, lowest steady state error, robustness and stability under impulsive environment in addition to modelling accuracy for stationary as well as non-stationary environment besides reducing computational complexity many folds
    corecore