10,691 research outputs found

    Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity

    Full text link
    We preset a computational study of bending models for the curvature elasticity of lipid bilayer membranes that are relevant for simulations of vesicles and red blood cells. We compute bending energy and forces on triangulated meshes and evaluate and extend four well established schemes for their approximation: Kantor and Nelson 1987, Phys. Rev. A 36, 4020, J\"ulicher 1996, J. Phys. II France 6, 1797, Gompper and Kroll 1996, J. Phys. I France 6, 1305, and Meyer et. al. 2003 in Visualization and Mathematics III, Springer, p35, termed A, B, C, D. We present a comparative study of these four schemes on the minimal bending model and propose extensions for schemes B, C and D. These extensions incorporate the reference state and non-local energy to account for the spontaneous curvature, bilayer coupling, and area-difference elasticity models. Our results indicate that the proposed extensions enhance the models to account for shape transformation including budding/vesiculation as well as for non-axisymmetric shapes. We find that the extended scheme B is superior to the rest in terms of accuracy, and robustness as well as simplicity of implementation. We demonstrate the capabilities of this scheme on several benchmark problems including the budding-vesiculating process and the reproduction of the phase diagram of vesicles

    Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics

    Full text link
    As two-dimensional fluid shells, lipid bilayer membranes resist bending and stretching but are unable to sustain shear stresses. This property gives membranes the ability to adopt dramatic shape changes. In this paper, a finite element model is developed to study static equilibrium mechanics of membranes. In particular, a viscous regularization method is proposed to stabilize tangential mesh deformations and improve the convergence rate of nonlinear solvers. The Augmented Lagrangian method is used to enforce global constraints on area and volume during membrane deformations. As a validation of the method, equilibrium shapes for a shape-phase diagram of lipid bilayer vesicle are calculated. These numerical techniques are also shown to be useful for simulations of three-dimensional large-deformation problems: the formation of tethers (long tube-like exetensions); and Ginzburg-Landau phase separation of a two-lipid-component vesicle. To deal with the large mesh distortions of the two-phase model, modification of vicous regularization is explored to achieve r-adaptive mesh optimization

    Global Energy Matching Method for Atomistic-to-Continuum Modeling of Self-Assembling Biopolymer Aggregates

    Get PDF
    This paper studies mathematical models of biopolymer supramolecular aggregates that are formed by the self-assembly of single monomers. We develop a new multiscale numerical approach to model the structural properties of such aggregates. This theoretical approach establishes micro-macro relations between the geometrical and mechanical properties of the monomers and supramolecular aggregates. Most atomistic-to-continuum methods are constrained by a crystalline order or a periodic setting and therefore cannot be directly applied to modeling of soft matter. By contrast, the energy matching method developed in this paper does not require crystalline order and, therefore, can be applied to general microstructures with strongly variable spatial correlations. In this paper we use this method to compute the shape and the bending stiffness of their supramolecular aggregates from known chiral and amphiphilic properties of the short chain peptide monomers. Numerical implementation of our approach demonstrates consistency with results obtained by molecular dynamics simulations

    Dynamic analysis of flexible mechanical systems using LATDYN

    Get PDF
    A 3-D, finite element based simulation tool for flexible multibody systems is presented. Hinge degrees-of-freedom is built into equations of motion to reduce geometric constraints. The approach avoids the difficulty in selecting deformation modes for flexible components by using assumed mode method. The tool is applied to simulate a practical space structure deployment problem. Results of examples demonstrate the capability of the code and approach
    • ā€¦
    corecore