8,378 research outputs found

    A firefly-inspired scheme for energy-efficient transmission scheduling using a self-organizing method in a wireless sensor network

    Get PDF
    Various types of natural phenomena are regarded as primary sources of information for artificial occurrences that involve spontaneous synchronization. Among the artificial occurrences that mimic natural phenomena are Wireless Sensor Networks (WSNs) and the Pulse Coupled Oscillator (PCO), which utilizes firefly synchronization for attracting mating partners. However, the PCO model was not appropriate for wireless sensor networks because sensor nodes are typically not capable to collect sensor data packets during transmission (because of packet collision and deafness). To avert these limitations, this study proposed a self-organizing time synchronization algorithm that was adapted from the traditional PCO model of fireflies flashing synchronization. Energy consumption and transmission delay will be reduced by using this method. Using the proposed model, a simulation exercise was performed and a significant improvement in energy efficiency was observed, as reflected by an improved transmission scheduling and a coordinated duty cycling and data gathering ratio. Therefore, the energy-efficient data gathering is enhanced in the proposed model than in the original PCO-based wave-traveling model. The battery lifetime of the Sensor Nodes (SNs) was also extended by using the proposed model

    Data Aggregation Scheduling in Wireless Networks

    Get PDF
    Data aggregation is one of the most essential data gathering operations in wireless networks. It is an efficient strategy to alleviate energy consumption and reduce medium access contention. In this dissertation, the data aggregation scheduling problem in different wireless networks is investigated. Since Wireless Sensor Networks (WSNs) are one of the most important types of wireless networks and data aggregation plays a vital role in WSNs, the minimum latency data aggregation scheduling problem for multi-regional queries in WSNs is first studied. A scheduling algorithm is proposed with comprehensive theoretical and simulation analysis regarding time efficiency. Second, with the increasing popularity of Cognitive Radio Networks (CRNs), data aggregation scheduling in CRNs is studied. Considering the precious spectrum opportunity in CRNs, a routing hierarchy, which allows a secondary user to seek a transmission opportunity among a group of receivers, is introduced. Several scheduling algorithms are proposed for both the Unit Disk Graph (UDG) interference model and the Physical Interference Model (PhIM), followed by performance evaluation through simulations. Third, the data aggregation scheduling problem in wireless networks with cognitive radio capability is investigated. Under the defined network model, besides a default working spectrum, users can access extra available spectrum through a cognitive radio. The problem is formalized as an Integer Linear Programming (ILP) problem and solved through an optimization method in the beginning. The simulation results show that the ILP based method has a good performance. However, it is difficult to evaluate the solution theoretically. A heuristic scheduling algorithm with guaranteed latency bound is presented in our further investigation. Finally, we investigate how to make use of cognitive radio capability to accelerate data aggregation in probabilistic wireless networks with lossy links. A two-phase scheduling algorithm is proposed, and the effectiveness of the algorithm is verified through both theoretical analysis and numerical simulations

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    A Data Transmission Protocol for Wireless Sensor Networks: A Priority Approach

    Get PDF
    Recent development in the field of a wireless sensor network has shown the significant improvement and has emerged as a new energy efficient wireless technology for low data rate applications. Handling different types of event data altogether is a crucial task in the sensor networks. This paper presents the solution to the problem of heterogeneous data transmission of long distance prioritised nodes in low data rate wireless sensor networks (LR-WSNs). The solution comprises three main algorithms, namely data reporting, traffic scheduling, and centralised reporting rate mechanism. The data reporting algorithm reports the demanded data in each specified decision window size with variable reporting rate. The traffic aware packet scheduling algorithm performs the packet reprioritisation and scheduling. The priority assignment is designed based on the data priority and hop count. It serves transient traffic against newly sensed packets, or less hop distance travelled packets. As a result, it minimises the chances of dying earlier than its deadline. The third algorithm presents the flexible data gathering approach based on the level of the buffer either sensed by its own or recently received information from hop node. It uses a decision interval window for managing the frequency of data delivery. This centralised decision approach makes the sink node more adaptive for data gathering and controlling the active source nodes. This multi-tier framework functions over CSMA/CA due to its unique feature of energy saving, especially for LR-WSNs. The reported work is simulated and examined over various scenarios in the multi-hop wireless sensor networks. Moreover, the performance of the scheduler proves better data transmission rate for prioritybased traffic over regular traffic flows; approximately 7% over First-Come-First-Served (FCFS) and 5% against Precedence Control Scheme (PCS) mechanism using theoretical analysis and computer simulations

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Minimizing Flow Time in the Wireless Gathering Problem

    Get PDF
    We address the problem of efficient data gathering in a wireless network through multi-hop communication. We focus on the objective of minimizing the maximum flow time of a data packet. We prove that no polynomial time algorithm for this problem can have approximation ratio less than \Omega(m^{1/3) when mm packets have to be transmitted, unless P=NPP = NP. We then use resource augmentation to assess the performance of a FIFO-like strategy. We prove that this strategy is 5-speed optimal, i.e., its cost remains within the optimal cost if we allow the algorithm to transmit data at a speed 5 times higher than that of the optimal solution we compare to

    Transform-based Distributed Data Gathering

    Full text link
    A general class of unidirectional transforms is presented that can be computed in a distributed manner along an arbitrary routing tree. Additionally, we provide a set of conditions under which these transforms are invertible. These transforms can be computed as data is routed towards the collection (or sink) node in the tree and exploit data correlation between nodes in the tree. Moreover, when used in wireless sensor networks, these transforms can also leverage data received at nodes via broadcast wireless communications. Various constructions of unidirectional transforms are also provided for use in data gathering in wireless sensor networks. New wavelet transforms are also proposed which provide significant improvements over existing unidirectional transforms

    Joint Routing and STDMA-based Scheduling to Minimize Delays in Grid Wireless Sensor Networks

    Get PDF
    In this report, we study the issue of delay optimization and energy efficiency in grid wireless sensor networks (WSNs). We focus on STDMA (Spatial Reuse TDMA)) scheduling, where a predefined cycle is repeated, and where each node has fixed transmission opportunities during specific slots (defined by colors). We assume a STDMA algorithm that takes advantage of the regularity of grid topology to also provide a spatially periodic coloring ("tiling" of the same color pattern). In this setting, the key challenges are: 1) minimizing the average routing delay by ordering the slots in the cycle 2) being energy efficient. Our work follows two directions: first, the baseline performance is evaluated when nothing specific is done and the colors are randomly ordered in the STDMA cycle. Then, we propose a solution, ORCHID that deliberately constructs an efficient STDMA schedule. It proceeds in two steps. In the first step, ORCHID starts form a colored grid and builds a hierarchical routing based on these colors. In the second step, ORCHID builds a color ordering, by considering jointly both routing and scheduling so as to ensure that any node will reach a sink in a single STDMA cycle. We study the performance of these solutions by means of simulations and modeling. Results show the excellent performance of ORCHID in terms of delays and energy compared to a shortest path routing that uses the delay as a heuristic. We also present the adaptation of ORCHID to general networks under the SINR interference model
    corecore