2,128 research outputs found

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    Model-theoretic characterization of predicate intuitionistic formulas

    Full text link
    Notions of asimulation and k-asimulation introduced in [Olkhovikov, 2011] are extended onto the level of predicate logic. We then prove that a first-order formula is equivalent to a standard translation of an intuitionistic predicate formula iff it is invariant with respect to k-asimulations for some k, and then that a first-order formula is equivalent to a standard translation of an intuitionistic predicate formula iff it is invariant with respect to asimulations. Finally, it is proved that a first-order formula is equivalent to a standard translation of an intuitionistic predicate formula over a class of intuitionistic models (intuitionistic models with constant domain) iff it is invariant with respect to asimulations between intuitionistic models (intuitionistic models with constant domain)

    G\"odel's Notre Dame Course

    Full text link
    This is a companion to a paper by the authors entitled "G\"odel's natural deduction", which presented and made comments about the natural deduction system in G\"odel's unpublished notes for the elementary logic course he gave at the University of Notre Dame in 1939. In that earlier paper, which was itself a companion to a paper that examined the links between some philosophical views ascribed to G\"odel and general proof theory, one can find a brief summary of G\"odel's notes for the Notre Dame course. In order to put the earlier paper in proper perspective, a more complete summary of these interesting notes, with comments concerning them, is given here.Comment: 18 pages. minor additions, arXiv admin note: text overlap with arXiv:1604.0307

    Failure of interpolation in the intuitionistic logic of constant domains

    Full text link
    This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.Comment: 13 pages, 0 figures. Overlaps with arXiv 1202.1195 removed, the text thouroughly reworked in terms of notation and style, historical notes as well as some other minor details adde

    Failure of interpolation in the intuitionistic logic of constant domains

    Get PDF
    This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.Comment: 13 pages, 0 figures. Overlaps with arXiv 1202.1195 removed, the text thouroughly reworked in terms of notation and style, historical notes as well as some other minor details adde

    Ecumenical modal logic

    Full text link
    The discussion about how to put together Gentzen's systems for classical and intuitionistic logic in a single unified system is back in fashion. Indeed, recently Prawitz and others have been discussing the so called Ecumenical Systems, where connectives from these logics can co-exist in peace. In Prawitz' system, the classical logician and the intuitionistic logician would share the universal quantifier, conjunction, negation, and the constant for the absurd, but they would each have their own existential quantifier, disjunction, and implication, with different meanings. Prawitz' main idea is that these different meanings are given by a semantical framework that can be accepted by both parties. In a recent work, Ecumenical sequent calculi and a nested system were presented, and some very interesting proof theoretical properties of the systems were established. In this work we extend Prawitz' Ecumenical idea to alethic K-modalities

    Provability Logic and the Completeness Principle

    Full text link
    In this paper, we study the provability logic of intuitionistic theories of arithmetic that prove their own completeness. We prove a completeness theorem for theories equipped with two provability predicates \Box and \triangle that prove the schemes AAA\to\triangle A and SS\Box\triangle S\to\Box S for SΣ1S\in\Sigma_1. Using this theorem, we determine the logic of fast provability for a number of intuitionistic theories. Furthermore, we reprove a theorem previously obtained by M. Ardeshir and S. Mojtaba Mojtahedi determining the Σ1\Sigma_1-provability logic of Heyting Arithmetic
    corecore