13,743 research outputs found

    A Multi-Agent Simulation of Retail Management Practices

    Get PDF
    We apply Agent-Based Modeling and Simulation (ABMS) to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents do offer potential for developing organizational capabilities in the future. Our multi-disciplinary research team has worked with a UK department store to collect data and capture perceptions about operations from actors within departments. Based on this case study work, we have built a simulator that we present in this paper. We then use the simulator to gather empirical evidence regarding two specific management practices: empowerment and employee development

    Detecting and Forecasting Economic Regimes in Multi-Agent Automated Exchanges

    Get PDF
    We show how an autonomous agent can use observable market conditions to characterize the microeconomic situation of the market and predict future market trends. The agent can use this information to make both tactical decisions, such as pricing, and strategic decisions, such as product mix and production planning. We develop methods to learn dominant market conditions, such as over-supply or scarcity, from historical data using Gaussian mixture models to construct price density functions. We discuss how this model can be combined with real-time observable information to identify the current dominant market condition and to forecast market changes over a planning horizon. We forecast market changes via both a Markov correction-prediction process and an exponential smoother. Empirical analysis shows that the exponential smoother yields more accurate predictions for the current and the next day (supporting tactical decisions), while the Markov correction-prediction process is better for longer term predictions (supporting strategic decisions). Our approach offers more flexibility than traditional regression based approaches, since it does not assume a fixed functional relationship between dependent and independent variables. We validate our methods by presenting experimental results in a case study, the Trading Agent Competition for Supply Chain Management.dynamic pricing;machine learning;market forecasting;Trading agents

    A recommendation framework based on automated ranking for selecting negotiation agents. Application to a water market

    Full text link
    This thesis presents an approach which relies on automatic learning and data mining techniques in order to search the best group of items from a set, according to the behaviour observed in previous groups. The approach is applied to a framework of a water market system, which aims to develop negotiation processes, where trading tables are built in order to trade water rights from users. Our task will focus on predicting which agents will show the most appropriate behaviour when are invited to participate in a trading table, with the purpose of achieving the most bene cial agreement. This way, a model is developed and learns from past transactions occurred in the market. Then, when a new trading table is opened in order to trade a water right, the model predicts, taking into account the individual features of the trading table, the behaviour of all the agents that can be invited to join the negotiation, and thus, becoming potential buyers of the water right. Once the model has made the predictions for a trading table, the agents are ranked according to their probability (which has been assigned by the model) of becoming a buyer in that negotiation. Two di erent methods are proposed in the thesis for dealing with the ranked participants. Depending on the method used, from this ranking we can select the desired number of participants for making the group, or choose only the top user of the list and rebuild the model adding some aggregate information in order to throw a more detailed prediction.Dura Garcia, EM. (2011). A recommendation framework based on automated ranking for selecting negotiation agents. Application to a water market. http://hdl.handle.net/10251/15875Archivo delegad

    Real-time Tactical and Strategic Sales Management for Intelligent Agents Guided By Economic Regimes

    Get PDF
    Many enterprises that participate in dynamic markets need to make product pricing and inventory resource utilization decisions in real-time. We describe a family of statistical models that address these needs by combining characterization of the economic environment with the ability to predict future economic conditions to make tactical (short-term) decisions, such as product pricing, and strategic (long-term) decisions, such as level of finished goods inventories. Our models characterize economic conditions, called economic regimes, in the form of recurrent statistical patterns that have clear qualitative interpretations. We show how these models can be used to predict prices, price trends, and the probability of receiving a customer order at a given price. These “regime†models are developed using statistical analysis of historical data, and are used in real-time to characterize observed market conditions and predict the evolution of market conditions over multiple time scales. We evaluate our models using a testbed derived from the Trading Agent Competition for Supply Chain Management (TAC SCM), a supply chain environment characterized by competitive procurement and sales markets, and dynamic pricing. We show how regime models can be used to inform both short-term pricing decisions and longterm resource allocation decisions. Results show that our method outperforms more traditional shortand long-term predictive modeling approaches.dynamic pricing;trading agent competition;agent-mediated electronic commerce;dynamic markets;economic regimes;enabling technologies;price forecasting;supply-chain

    Practical strategies for agent-based negotiation in complex environments

    No full text
    Agent-based negotiation, whereby the negotiation is automated by software programs, can be applied to many different negotiation situations, including negotiations between friends, businesses or countries. A key benefit of agent-based negotiation over human negotiation is that it can be used to negotiate effectively in complex negotiation environments, which consist of multiple negotiation issues, time constraints, and multiple unknown opponents. While automated negotiation has been an active area of research in the past twenty years, existing work has a number of limitations. Specifically, most of the existing literature has considered time constraints in terms of the number of rounds of negotiation that take place. In contrast, in this work we consider time constraints which are based on the amount of time that has elapsed. This requires a different approach, since the time spent computing the next action has an effect on the utility of the outcome, whereas the actual number of offers exchanged does not. In addition to these time constraints, in the complex negotiation environments which we consider, there are multiple negotiation issues, and we assume that the opponents’ preferences over these issues and the behaviour of those opponents are unknown. Finally, in our environment there can be concurrent negotiations between many participants.Against this background, in this thesis we present the design of a range of practical negotiation strategies, the most advanced of which uses Gaussian process regression to coordinate its concession against its various opponents, whilst considering the behaviour of those opponents and the time constraints. In more detail, the strategy uses observations of the offers made by each opponent to predict the future concession of that opponent. By considering the discounting factor, it predicts the future time which maximises the utility of the offers, and we then use this in setting our rate of concession.Furthermore, we evaluate the negotiation agents that we have developed, which use our strategies, and show that, particularly in the more challenging scenarios, our most advanced strategy outperforms other state-of-the-art agents from the Automated Negotiating Agent Competition, which provides an international benchmark for this work. In more detail, our results show that, in one-to-one negotiation, in the highly discounted scenarios, our agent reaches outcomes which, on average, are 2.3% higher than those of the next best agent. Furthermore, using empirical game theoretic analysis we show the robustness of our strategy in a variety of tournament settings. This analysis shows that, in the highly discounted scenarios, no agent can benefit by choosing a different strategy (taken from the top four strategies in that setting) than ours. Finally, in the many-to-many negotiations, we show how our strategy is particularly effective in highly competitive scenarios, where it outperforms the state-of-the-art many-to-many negotiation strategy by up to 45%

    Collaborative and adaptive supply chain planning

    Get PDF
    Dans le contexte industriel d'aujourd'hui, la compétitivité est fortement liée à la performance de la chaîne d'approvisionnement. En d'autres termes, il est essentiel que les unités d'affaires de la chaîne collaborent pour coordonner efficacement leurs activités de production, de façon a produire et livrer les produits à temps, à un coût raisonnable. Pour atteindre cet objectif, nous croyons qu'il est nécessaire que les entreprises adaptent leurs stratégies de planification, que nous appelons comportements, aux différentes situations auxquelles elles font face. En ayant une connaissance de l'impact de leurs comportements de planification sur la performance de la chaîne d'approvisionnement, les entreprises peuvent alors adapter leur comportement plutôt que d'utiliser toujours le même. Cette thèse de doctorat porte sur l'adaptation des comportements de planification des membres d'une même chaîne d'approvisionnement. Chaque membre pouvant choisir un comportement différent et toutes les combinaisons de ces comportements ayant potentiellement un impact sur la performance globale, il est difficile de connaître à l'avance l'ensemble des comportements à adopter pour améliorer cette performance. Il devient alors intéressant de simuler les différentes combinaisons de comportements dans différentes situations et d'évaluer les performances de chacun. Pour permettre l'utilisation de plusieurs comportements dans différentes situations, en utilisant la technologie à base d'agents, nous avons conçu un modèle d'agent à comportements multiples qui a la capacité d'adapter son comportement de planification selon la situation. Les agents planificateurs ont alors la possibilité de se coordonner de façon collaborative pour améliorer leur performance collective. En modélisant les unités d'affaires par des agents, nous avons simulé avec la plateforme de planification à base d'agents de FORAC des agents utilisant différents comportements de planification dits de réaction et de négociation. Cette plateforme, développée par le consortium de recherche FORAC de l'Université Laval, permet de simuler des décisions de planification et de planifier les opérations de la chaîne d'approvisionnement. Ces comportements de planification sont des métaheurisciques organisationnelles qui permettent aux agents de générer des plans de production différents. La simulation est basée sur un cas illustrant la chaîne d'approvisionnement de l'industrie du bois d'œuvre. Les résultats obtenus par l'utilisation de multiples comportements de réaction et de négociation montrent que les systèmes de planification avancée peuvent tirer avantage de disposer de plusieurs comportements de planification, en raIson du contexte dynamique des chaînes d'approvisionnement. La pertinence des résultats de cette thèse dépend de la prémisse que les entreprises qui adapteront leurs comportements de planification aux autres et à leur environnement auront un avantage concurrentiel important sur leurs adversaires
    corecore