1,038 research outputs found

    Essays on urban bus transport optimization

    Get PDF
    Nesta tese, nós apresentamos uma compilação de três artigos de otimização aplicados no contexto de transporte urbano de ônibus. O principal objetivo foi estudar e implementar heurísticas com base em Pesquisa Operacional para otimizar problemas de (re)escalonamento de veículos off-line e on-line considerando várias garagens e frota heterogênea. No primeiro artigo, foi proposta uma abordagem heurística para o problema de escalonamento de veículos múltiplas garagens. Acreditamos que as principais contribuições são o método de geração de colunas para grandes instâncias e as técnicas de redução do espaço de estados para acelerar as soluções. No segundo artigo, adicionamos complexidade ao considerar a frota heterogênea, denotada como multiple depot vehicle type scheduling problem (MDVTSP). Embora a importância e a aplicabilidade do MDVTSP, formulações matemáticas e métodos de solução para isso ainda sejam relativamente inexplorados. A principal contribuição desse trabalho foi o método de geração de colunas para o problema com frota heterogênea, já que nenhuma outra proposta na literatura foi identificada no momento pelos autores. Na terceira parte desta tese, no entanto, nos concentramos no reescalonamento em tempo real para o caso de quebras definitivas de veículos. A principal contribuição é a abordagem eficiente do reescalonamento sob uma quebra. A abordagem com redução de espaço de estados, solução inicial e método de geração de colunas possibilitou uma ação realmente em tempo real. Em menos de cinco minutos, reescalonando todas as viagens restantes.In this dissetation we presented a three articles compilation in urban bus transportation optimization. The main objective was to study and implement heuristic solutions method based on Operations Research to optimizing offline and online vehicle (re)scheduling problems considering multiple depots and heterogeneous fleet. In the first paper, a fast heuristic approach to deal with the multiple depot vehicle scheduling problem was proposed. We think the main contributions are the column generation framework for large instances and the state-space reduction techniques for accelerating the solutions. In the second paper, we added complexity when considering the heterogeneous fleet, denoted as "the multiple-depot vehicle-type scheduling problem" (MDVTSP). Although the MDVTSP importance and applicability, mathematical formulations and solution methods for it are still relatively unexplored. We think the main contribution is the column generation framework for instances with heterogeneous fleet since no other proposal in the literature has been identified at moment by the authors. In the third part of this dissertation, however, we focused on the real-time schedule recovery for the case of serious vehicle failures. Such vehicle breakdowns require that the remaining passengers from the disabled vehicle, and those expected to become part of the trip, to be picked up. In addition, since the disabled vehicle may have future trips assigned to it, the given schedule may be deteriorated to the extent where the fleet plan may need to be adjusted in real-time depending on the current state of what is certainly a dynamic system. Usually, without the help of a rescheduling algorithm, the dispatcher either cancels the trips that are initially scheduled to be implemented by the disabled vehicle (when there are upcoming future trips planned that could soon serve the expected demand for the canceled trips), or simply dispatches an available vehicle from a depot. In both cases, there may be considerable delays introduced. This manual approach may result in a poor solution. The implementation of new technologies (e.g., automatic vehicle locators, the global positioning system, geographical information systems, and wireless communication) in public transit systems makes it possible to implement real-time vehicle rescheduling algorithms at low cost. The main contribution is the efficient approach to rescheduling under a disruption. The approach with integrated state-space reduction, initial solution, and column generation framework enable a really real-time action. In less than five minutes rescheduling all trips remaining

    Essays on urban bus transport optimization

    Get PDF
    Nesta tese, nós apresentamos uma compilação de três artigos de otimização aplicados no contexto de transporte urbano de ônibus. O principal objetivo foi estudar e implementar heurísticas com base em Pesquisa Operacional para otimizar problemas de (re)escalonamento de veículos off-line e on-line considerando várias garagens e frota heterogênea. No primeiro artigo, foi proposta uma abordagem heurística para o problema de escalonamento de veículos múltiplas garagens. Acreditamos que as principais contribuições são o método de geração de colunas para grandes instâncias e as técnicas de redução do espaço de estados para acelerar as soluções. No segundo artigo, adicionamos complexidade ao considerar a frota heterogênea, denotada como multiple depot vehicle type scheduling problem (MDVTSP). Embora a importância e a aplicabilidade do MDVTSP, formulações matemáticas e métodos de solução para isso ainda sejam relativamente inexplorados. A principal contribuição desse trabalho foi o método de geração de colunas para o problema com frota heterogênea, já que nenhuma outra proposta na literatura foi identificada no momento pelos autores. Na terceira parte desta tese, no entanto, nos concentramos no reescalonamento em tempo real para o caso de quebras definitivas de veículos. A principal contribuição é a abordagem eficiente do reescalonamento sob uma quebra. A abordagem com redução de espaço de estados, solução inicial e método de geração de colunas possibilitou uma ação realmente em tempo real. Em menos de cinco minutos, reescalonando todas as viagens restantes.In this dissetation we presented a three articles compilation in urban bus transportation optimization. The main objective was to study and implement heuristic solutions method based on Operations Research to optimizing offline and online vehicle (re)scheduling problems considering multiple depots and heterogeneous fleet. In the first paper, a fast heuristic approach to deal with the multiple depot vehicle scheduling problem was proposed. We think the main contributions are the column generation framework for large instances and the state-space reduction techniques for accelerating the solutions. In the second paper, we added complexity when considering the heterogeneous fleet, denoted as "the multiple-depot vehicle-type scheduling problem" (MDVTSP). Although the MDVTSP importance and applicability, mathematical formulations and solution methods for it are still relatively unexplored. We think the main contribution is the column generation framework for instances with heterogeneous fleet since no other proposal in the literature has been identified at moment by the authors. In the third part of this dissertation, however, we focused on the real-time schedule recovery for the case of serious vehicle failures. Such vehicle breakdowns require that the remaining passengers from the disabled vehicle, and those expected to become part of the trip, to be picked up. In addition, since the disabled vehicle may have future trips assigned to it, the given schedule may be deteriorated to the extent where the fleet plan may need to be adjusted in real-time depending on the current state of what is certainly a dynamic system. Usually, without the help of a rescheduling algorithm, the dispatcher either cancels the trips that are initially scheduled to be implemented by the disabled vehicle (when there are upcoming future trips planned that could soon serve the expected demand for the canceled trips), or simply dispatches an available vehicle from a depot. In both cases, there may be considerable delays introduced. This manual approach may result in a poor solution. The implementation of new technologies (e.g., automatic vehicle locators, the global positioning system, geographical information systems, and wireless communication) in public transit systems makes it possible to implement real-time vehicle rescheduling algorithms at low cost. The main contribution is the efficient approach to rescheduling under a disruption. The approach with integrated state-space reduction, initial solution, and column generation framework enable a really real-time action. In less than five minutes rescheduling all trips remaining

    Solution Approaches for Vehicle and Crew Scheduling with Electric Buses

    Get PDF
    The use of electric buses is expected to rise due to its environmental benefits. However, electric vehicles are less exible than conventional diesel buses due to their limited driving range and longer recharging times. Therefore, scheduling electric vehicles adds further operational dificulties. Additionally, various labor regulations challenge public transport companies to find a cost-effcient crew schedule. Vehicle and crew scheduling problems essentially define the cost of operations. In practice, these two problems are often solved sequentially. In this paper, we introduce the integrated electric vehicle and crew scheduling problem (E-VCSP). Given a set of timetabled trips and recharging stations, the E-VCSP is concerned with finding vehicle and crew schedules that cover the timetabled trips and satisfy operational constraints, such as limited driving range of electric vehicles and labor regulations for the crew while minimizing total operational cost. An adaptive large neighborhood search that utilizes branch-and-price heuristics is proposed to tackle the E-VCSP. The proposed method is tested on real-life instances from public transport companies in Denmark and Sweden that contain up to 1,109 timetabled trips. The heuristic approach provides evidence of improving efficiency of transport systems when the electric vehicle and crew scheduling aspects are considered simultaneously. By comparing to the traditional sequential approach, the heuristic finds improvements in the range of 1.17-4.37% on average. A sensitivity analysis of the electric bus technology is carried out to indicate its implications for the crew schedule and the total operational cost. The analysis shows that the operational cost decreases with increasing driving range (120 to 250 kilometers) of electric vehicles

    Combining Column Generation and Lagrangian Relaxation

    Get PDF
    Although the possibility to combine column generation and Lagrangian relaxation has been known for quite some time, it has only recently been exploited in algorithms. In this paper, we discuss ways of combining these techniques. We focus on solving the LP relaxation of the Dantzig-Wolfe master problem. In a first approach we apply Lagrangian relaxation directly to this extended formulation, i.e. no simplex method is used. In a second one, we use Lagrangian relaxation to generate new columns, that is Lagrangian relaxation is applied to the compact for-mulation. We will illustrate the ideas behind these algorithms with an application in Lot-sizing. To show the wide applicability of these techniques, we also discuss applications in integrated vehicle and crew scheduling, plant location and cutting stock problems.column generation;Lagrangean relaxation;cutting stock problem;lotsizing;vehicle and crew scheduling

    Modeling and Solving of Railway Optimization Problems

    Get PDF
    The main aim of this work is to provide decision makers suitable approaches for solving two crucial planning problems in the railway industry: the locomotive assignment problem and the crew scheduling problem with attendance rates. On the one hand, the focus is on practical usability and the necessary integration and consideration of real-life requirements in the planning process. On the other hand, solution approaches are to be developed, which can provide solutions of sufficiently good quality within a reasonable time by taking all these requirements into account
    corecore