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Place de L’Université 16, 1348 Louvain-La-Neuve, Belgium

Marc.Peeters2@electrabel.com

Albert P.M. Wagelmans
Erasmus Center for Optimization in Public Transport (ECOPT) and
Econometric Institute, Erasmus University Rotterdam,
P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands

wagelmans@few.eur.nl

Abstract Although the possibility to combine column generation and Lagrangian
relaxation has been known for quite some time, it has only recently
been exploited in algorithms. In this paper, we discuss ways of com-
bining these techniques. We focus on solving the LP relaxation of the
Dantzig-Wolfe master problem. In a first approach we apply Lagrangian
relaxation directly to this extended formulation, i.e. no simplex method
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is used. In a second one, we use Lagrangian relaxation to generate new
columns, that is Lagrangian relaxation is applied to the compact for-
mulation. We will illustrate the ideas behind these algorithms with
an application in Lot-sizing. To show the wide applicability of these
techniques, we also discuss applications in integrated vehicle and crew
scheduling, plant location and cutting stock problems.

1. Introduction

In this chapter we consider (Mixed) Integer Programming problems
in minimization form. Obviously, lower bounds for such problems can be
computed through straightforward LP relaxation. Dantzig-Wolfe decom-
position and Lagrangian relaxation are alternative methods for obtain-
ing tighter lower bounds. The key idea of Dantzig-Wolfe decomposition
(Dantzig and Wolfe (1960)) is to reformulate the problem by substi-
tuting the original variables with a convex combination of the extreme
points of a substructure of the formulation. This results in the mas-
ter or extended formulation, which contains the linking constraints from
the original compact formulation and additional convexity constraints.
When solving the LP relaxation of the master problem, column gener-
ation is used to deal with the large number of variables. Starting with
a restricted master which contains only a small subset of all columns,
we generate the other columns when they are needed. This is done by
solving a so called pricing problem in which one or more variables with
negative reduced costs are determined. After each execution of the pric-
ing procedure, we calculate the optimal value of the LP relaxation of the
restricted master, vRDW . This provides an upper bound on the optimal
value of the Dantzig-Wolfe relaxation, vDW , which itself is a lower bound
for the optimal IP value vP . When a simplex algorithm is used to solve
the restricted master, we obtain optimal values of the dual variables cor-
responding to the linking and convexity constraints. These values are
used in the pricing problem to check if we can generate new columns
with negative reduced cost. If we find such columns, we add them to
the relaxed master and reoptimize, otherwise we have found the optimal
Dantzig-Wolfe relaxation vDW . This value will usually be tighter than
vP , the value of the LP relaxation of the original compact formulation.

In Lagrangian relaxation, the complicating constraints are dualized
into the objective function. Given a specific vector of positive multipli-
ers u, the Lagrangian relaxation problem always gives a lower bound,
vLR(u), on the optimal IP value vP . The Lagrangian Dual problem con-
sists of finding the maximum lower bound: vLD = maxu≥0 vLR(u). Typ-
ically, the latter problem is solved using an iterative procedure, where in
subsequent iterations, the Lagrangian multiplier vector u is updated and
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we solve a new Lagrangian problem with these updated multipliers. In
this chapter we focus on the subgradient method (e.g. Fisher (1985)) for
approximating the optimal multipliers, although more advanced meth-
ods such as the bundle method (e.g. Lemaréchal, Nemirovskii and Nes-
terov (1995)) or the volume algorithm (Barahona and Anbil (2000))
exist.

There exists a strong relationship between Dantzig-Wolfe decompo-
sition and Lagrangian relaxation. It is well known that when the La-
grangian relaxation is obtained by dualizing exactly those constraints
that are the linking constraints in the Dantzig-Wolfe reformulation, the
optimal values of the Lagrangian Dual, vLD, and the LP relaxation
of the Dantzig-Wolfe reformulation, vDW , are the same. In fact, one
formulation is the dual of the other (Geoffrion (1974), Fisher (1981)).
Furthermore, the optimal dual variables µ for the linking constraints
in the master correspond to optimal multipliers u for the dualized con-
straints in the Lagrangian relaxation (Magnanti, Shapiro and Wagner
(1976)). Moreover, the subproblem that we need to solve in the column
generation procedure is the same as the one we have to solve for the La-
grangian relaxation except for a constant in the objective function. In
the column generation procedure, the values for the dual variables are
obtained by solving the LP relaxation of the restricted master, whereas
in the Lagrangian relaxation, the Lagrangian multipliers are updated by
subgradient optimization.

Both approaches have advantages and disadvantages. Lagrangian re-
laxation provides a lower bound on the optimal IP value vP , but no
primal solution is available. In addition, there are problems with the con-
vergence of the subgradient algorithm. Usually the procedure is stopped
after a fixed number of iterations, without the guarantee of having found
the optimal value vLD (Fisher (1985)). However, the subgradient op-
timization for updating the Lagrangian multipliers is computationally
inexpensive and easy to implement. Column generation for solving the
Dantzig-Wolfe reformulation, on the other hand, provides a primal solu-
tion at each iteration, which can be used to construct feasible solutions
for the (M)IP in a rounding heuristic. However, simplex optimization of
the master is computationally expensive and a tailing-off effect, i.e. slow
convergence towards the optimum in the final phase of the algorithm,
is generally observed (Barnhart et al. (1998), Vanderbeck and Wolsey
(1996)).

In this chapter we will discuss how the relationship between Dantzig-
Wolfe decomposition and Lagrangian relaxation can be exploited to de-
velop improved algorithms combining the strengths of both methods.
We discuss two ways in which the two techniques can be combined effi-
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ciently. To be more specific, Lagrangian relaxation can be applied to the
master problem to approximate optimal values of the dual variables or it
can be used on the original compact formulation of the problem to gen-
erate good columns. However, notice that we will only discuss column
generation within the framework of DW decomposition, but it can also
be considered as a general LP pricing technique. For the combination
of column generation and Lagrangian relaxation within this framework,
we refer to Löbel (1998) and Fischetti and Toth (1997). In order to ex-
plain the general principles within the framework of DW decomposition
in Section 1.2, we use the example of Capacitated Lot-sizing. In Sec-
tions 1.3-1.5, other applications and their specific implementation issues
are discussed.

2. Theoretical framework and basic approaches

2.1 Preliminaries

We will illustrate the basic approaches for combining column genera-
tion and Lagrangian relaxation using the Capacitated Lot-sizing Prob-
lem (CLSP). In this problem we determine the timing and level of pro-
duction for several items on a single machine with limited capacity over
a discrete and finite horizon. Let P be the set of products {1, ..., n} with
index i and T the set of time periods {1, ..., m} with index t. We have
the following parameters: dit is the demand of product i in period t;
sci, vci and hci are the set up cost, variable production cost and holding
cost for product i, respectively; vti is the variable production time for
product i and capt is the capacity in period t. There are three decision
variables: xit is the amount of production of product i in period t; sit is
the inventory level of product i at the end of period t; yit = 1 if there is
a set up for product i in period t, yit = 0 otherwise. The mathematical
formulation of the CLSP is then as follows:

min
∑

i∈P

∑

t∈T

(sciyit + vcixit + hcisit) (1.1)

si,t−1 + xit = dit + sit ∀i ∈ P, ∀t ∈ T, (1.2)

xit ≤ Myit ∀i ∈ P, ∀t ∈ T, (1.3)
∑

i∈P

vtixit ≤ capt ∀t ∈ T, (1.4)

yit ∈ {0, 1}, xit ≥ 0, sit ≥ 0, si,0 = 0 ∀i ∈ P, ∀t ∈ T. (1.5)

The objective function (1.1) minimizes the total costs, consisting of
the set up cost, the variable production cost and the inventory holding
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cost. Constraints (1.2) are the inventory balancing constraints: inven-
tory left over from the previous period plus current production can be
used to satisfy current demand or build up more inventory. Constraints
(1.3) are the set up forcing constraints: if there is any positive produc-
tion in period t, a set up is enforced. In order to make the formula-
tion stronger, the ‘big M ’ is usually set to the minimum of the sum of
the remaining demand over the horizon and the total production which
is possible with the available capacity. Next, there is a constraint on
the available capacity in each period (1.4). Finally, there are the non-
negativity and integrality constraints (1.5). We let vLS and vLS denote
the optimal objective value for problem (1.1)-(1.5) and its LP relaxation,
respectively.

Decomposition approaches for this problem hinge on the observation
that when we disregard the capacity constraints (1.4), the problem de-
composes into an uncapacitated lot-sizing problem for each item i. Let S i

be the set of feasible solution for subproblem i: Si = {(xit, yit, sit)|(1.2),
(1.3), (1.5)} and S =

⋃
i∈P Si. In the Dantzig-Wolfe decomposition, we

keep the capacity constraints in the master and add a convexity con-
straint for each item (Manne (1958), Dzielinski and Gomory (1965)).
The new columns represent a production plan for a specific item over
the full time horizon. Let Qi be the set of all extreme point production
plans for item i; zij is the new variable representing production plan j

for item i; cij is the total cost of set up, production and inventory for
production plan j for item i and rijt is the capacity usage of the pro-
duction in period t according to plan j for item i. The LP relaxation of
a restricted master problem then looks as follows:

vRDWLS = min
∑

i∈P

∑

j∈Q̃i

cijzij (1.6)

∑

i∈P

∑

j∈Q̃i

rijtzij ≤ capt ∀t ∈ T, (1.7)

∑

j∈Q̃i

zij = 1 ∀i ∈ P, (1.8)

zij ≥ 0 ∀i ∈ P, ∀j ∈ Q̃i. (1.9)

where Q̃i is a subset of Qi. Additional columns (variables) are gen-
erated when they are needed, using the information of the optimal dual
variables µt and πi of the capacity and convexity constraints, respec-
tively. In the pricing problem, we check for each item i if we can generate
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a new column by solving the following subproblem:

rc∗i (µ, π) = min
(x,y,s)∈Si

∑

t∈T

(sciyit+vcixit+hcisit)+
∑

t∈T

vtixitµt−πi. (1.10)

If such a column with negative reduced cost is found, we add it to the
restricted master, reoptimize this problem and perform another pricing
iteration; otherwise we have found the optimal Dantzig-Wolfe bound,
vDWLS .

In Lagrangian relaxation, the capacity constraint (1.4) is dualized in
the objective function with non-negative multipliers u = {u1, u2, ..., um}:

vLRLS(u) = min
(x,y,s)∈S

∑

i∈P

∑

t∈T

(sciyit+vcixit+hcisit)−
∑

t∈T

ut(capt−
∑

i∈P

vtixit).

(1.11)
The Lagrangian problem also decomposes into single item uncapac-

itated lot-sizing problems. For each item i we have the following sub-
problem:

vLRLS,i(u) = min
(x,y,s)∈Si

∑

t∈T

(sciyit + vcixit + hcisit) +
∑

t∈T

vtixitut. (1.12)

We see that the subproblem of calculating the minimum reduced cost
(1.10) in the Dantzig-Wolfe decomposition and the subproblem in the
Lagrangian relaxation (1.12) are identical, except for a constant in the
objective function. Solution of the Lagrangian Dual problem gives the
maximum lower bound vLDLS = maxu≥0 vLRLS(u). In iterative steps,
the multipliers are updated in order to attain this Lagrangian Dual
bound. Let x∗ = (x∗

11, x
∗
12, ..., x

∗
1m, ..., x∗

n1, x
∗
n2, ..., x

∗
nm) be the optimal

production quantities for the Lagrangian problem (1.11) with multipli-
ers uk at iteration k, then the following standard subgradient update
formulas (Fisher (1981)) result in a new set of multipliers uk+1:

uk+1
t = max(0, uk

t − λk(capt −
∑

i∈P

vtix
∗
it)) t = 1, ..., m, (1.13)

λk = α
(ub − vLRLS(uk))∑

t∈T (capt −
∑

i∈P vtix
∗
it)

2
. (1.14)

Equation (1.14) determines the step-size, where 0 < α ≤ 2 and the
value ub is an upper bound on vLS .

During column generation, the value of the restricted master vRDWLS

provides an upper bound on the value of the optimal Dantzig-Wolfe
relaxation vDWLS . However, a lower bound can be easily calculated as
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well. Let rc∗i (µ, π) be the minimum reduced cost for subproblem i with
the current optimal dual variables π and µ, then

∑

i∈P

rc∗i (µ, π) + vRDWLS ≤ vDWLS ≤ vRDWLS . (1.15)

This lower bound is actually equal to the Lagrangian lower bound
using the current optimal dual variables µ as multipliers:

vLRLS(µ) =
∑

i∈P

vLRLS,i(µ) −
∑

t∈T

µtcapt

=
∑

i∈P

vLRLS,i(µ) −
∑

i∈P

πi +
∑

i∈P

πi −
∑

t∈T

µtcapt

=
∑

i∈P

rc∗i (µ, π) + vRDWLS ,

where in the final step, equivalence between
∑

i∈P πi −
∑

t∈T µtcapt

and vRDWLS follows from LP duality. This lower bound was already
proposed by Lasdon and Terjung (1971) who used column generation
to solve a large production scheduling problem. It has also been dis-
cussed for other specific problems such as discrete Lot-sizing and schedul-
ing (Jans and Degraeve (2004)), machine scheduling (Van den Akker,
Hurkens and Savelsbergh (2000)), vehicle routing (Sol (1994)), a multi-
commodity network-flow problem (Holmberg and Yuan (2003)) and the
cutting stock problem (Vanderbeck (1999)). A general discussion can
be found in Wolsey (1998) and Martin (1999). Vanderbeck and Wolsey
(1996) provide a slight strengthening of this bound. The bound can be
used for early termination of the column generation procedure, reducing
the tailing-off effect. For IP problems with an integer objective function
value, we can also stop if the value of this lower bound rounded up is
equal to the value of the restricted master rounded up.

2.2 Using Lagrangian relaxation on the
extended formulation

Instead of using the simplex algorithm to obtain the optimal dual
variables of the (restricted) master problem, one can also use Lagrangian
relaxation to approximate these values. Cattrysse et al. (1993) and Jans
and Degraeve (2004) apply this technique for solving a variant of the
Capacitated Lot-Sizing Problem. A similar integration of Dantzig-Wolfe
decomposition and Lagrangian relaxation is also used for the generalized
assignment problem (Cattrysse, Salomon and Van Wassenhove (1994)),
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and integrated vehicle and crew scheduling which is the topic of Section
1.3.

In order to approximately solve the LP relaxation of the restricted
master (1.6)-(1.9), we dualize the capacity constraint (1.7) into the ob-
jective function (1.6):

vLR−RDW (u) = min
∑

i∈P

∑

j∈Q̃i

cijzij −
∑

t∈T

ut(capt −
∑

i∈P

∑

j∈Q̃i

rijtzij)

(1.16)
∑

j∈Q̃i

zij = 1 ∀i ∈ P, (1.17)

zij ≥ 0 ∀i ∈ P, ∀j ∈ Q̃i. (1.18)

The problem decomposes into subproblems per item that are easy to
solve, because taking the column with the lowest total cost for each item
results in the optimal solution. The optimal Lagrangian multipliers are
iteratively approximated via a standard subgradient optimization proce-
dure. At the end of a subgradient phase, the Lagrangian multipliers ut

are an approximation of the optimal dual variables µt. Next, the optimal
dual variable of the convexity constraint for item i can be approximated
as follows:

pi = min
j∈Q̃i

(cij +
∑

t∈T

utrijt). (1.19)

These Lagrangian multipliers can be used to generate new columns
in the pricing subproblem (1.10). The new columns are added to the
restricted master and in a subsequent step the optimal dual variables
µ and π for the updated restricted master are again approximated by
Lagrangian relaxation.

Given the Lagrangian multipliers ut and pi, we can still compute a
lower bound:

∑

i∈P

rc∗i (u, p) + vLR−RDW (u) ≤ vDWLS . (1.20)
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This can again be proven by starting from the Lagrangian relaxation
vLRLS(u) (1.11), which gives a valid lower bound for any u ≥ 0:

vLRLS(u) =
∑

i∈P

vLRLS,i(u) −
∑

i∈P

pi +
∑

i∈P

pi −
∑

t∈T

utcapt

=
∑

i∈P

rc∗i (u, p) +
∑

i∈P

pi −
∑

t∈T

utcapt

=
∑

i∈P

rc∗i (u, p) +
∑

i∈P

min
j∈Q̃i

(cij +
∑

t∈T

utrijt) −
∑

t∈T

utcapt

=
∑

i∈P

rc∗i (u, p) + vLR−RDW (u).

What are the advantages of approximating the optimal dual variables
by Lagrangian relaxation instead of computing them exactly with a sim-
plex algorithm? Bixby et al. (1992) and Barnhart et al. (1998) note that
in case of alternative dual solutions, column generation algorithms seem
to work better with dual variables produced by interior point methods
than with dual variables computed with simplex algorithms. The latter
give a vertex of the face of solutions whereas interior point algorithms
give a point in the center of the face, providing a better representation
of it. From that perspective, Lagrangian multipliers may also provide a
better representation and speed up convergence. Computational exper-
iments from Jans and Degraeve (2004) indicate that using Lagrangian
multipliers indeed speeds up convergence and decreases the problem of
degeneracy. Lagrangian relaxation has the additional advantage that
during the subgradient phase possibly feasible solutions are generated.
The subgradient updating is also fast and easy to implement. Finally,
this procedure eliminates the need for a commercial LP optimizer.

2.3 Using Lagrangian relaxation on the compact
formulation

This approach is based on the observation that when the Lagrangian
relaxation is obtained by dualizing exactly those constraints that are
the linking constraints in the Dantzig-Wolfe reformulation, the same
subproblem results. Consequently, the solutions generated by the La-
grangian subproblems can also be added as new columns to the mas-
ter. This was first proposed by Barahona and Jensen (1998) for a plant
location problem and by Degraeve and Peeters (2003) for the cutting
stock problem. These applications are discussed in Sections 1.4 and 1.5,
respectively. It has also been applied successfully to the Capacitated
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Lot-sizing Problem (Degraeve and Jans (2003)), that is used again to
illustrate the technique. The procedure essentially consists of a nested
double loop. In the outer loop, optimal dual variables for the restricted
master problem (1.6)-(1.9) are obtained by the simplex method. In
the inner loop, the Lagrangian subproblem of the compact formulation
(1.11) is solved during several iterations, each time with dual variables
which are updated with a subgradient optimization procedure. A generic
procedure is depicted in Figure 1.1.

3. Compute Lagrangian

Bound:

4. Update

Lagrangian multipliers u6. Add new

columns

5. Solve Lagrangian problem

YES

1. Solve Master:

2. Get Dual Variables m:

Solve pricing problem

NO

< 0 ?< 0 ?

close toclose to

?

YES

NO

STOP Inner

Loop?

STOP Inner

Loop?

NO

YES

NO

LB foundLB found

InitializationInitialization

close to

?

close to

?

YES

)(uv
LR

RDW
n

*rc

RDW

)(uv
LR

)(uv
LR

RDW
v

v

Figure 1.1. Outline of algorithm

After initialization, the LP relaxation of the restricted master (1.6)-
(1.9) is solved (Box 1). Next the optimal dual variables µ and π are
passed to the pricing problem (1.10), which is then solved to find a new
column (Box 2). If the reduced cost is non-negative for each subproblem,
then the Dantzig-Wolfe bound vDW is found. Otherwise, the inner loop
starts (Box 3), where in the first iteration the Lagrangian bound vLR(µ)
(1.11) is computed, using the optimal dual variables of the restricted
master. This bound is then compared with the objective value of the
restricted master vRDW . For a pure integer programming problem with
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integer coefficients in the objective function, the procedure terminates if
both values rounded up are equal, and the Dantzig-Wolfe bound equals
dvRDW e = dvLR(u)e. For a mixed integer programming problem, the
algorithm may be terminated, if the difference between both values is
smaller than a pre-specified percentage. Other stopping criteria could
also be checked. For instance, Barahona and Jensen (1998) stop the
inner loop after a fixed number of iterations. If no stopping criteria are
satisfied, then the Lagrangian multipliers are updated using subgradient
optimization (Box 4). The value ub in (1.14) is an upper bound on
vLD, and therefore, ub can be set equal to the LP bound of the last
solved restricted master vRDW , since vRDW ≥ vDW = vLD. Next the
algorithm proceeds with solving a new Lagrangian problem, with the
updated multipliers (Box 5). The Lagrangian bound is computed again
and the inner loop continues, until a stopping criterion is met. Next,
we switch back to the outer loop. We add to the restricted master the
columns, which were generated in the inner loop if they are not yet
present (Box 6).

The main advantage of this procedure is that the LP relaxation of
the master problem does not need to be solved each time to get new
dual variables necessary for pricing out a new column. Solving the LP
relaxation to optimality is computationally much more expensive than
performing an iteration of the subgradient optimization procedure. At
each subgradient iteration, a new column is found and these columns
are expected to be “good” because the Lagrangian multipliers prices
converge towards the optimal dual variables of the LP relaxation of the
restricted master. A second advantage is that we can stop the column
generation short of proving LP optimality of the master, because the
Lagrangian relaxation provides lower bounds on the optimal LP value.
Barahona and Jensen (1998) mention this fact as the main motivation
for performing a number of subgradient iterations between two consecu-
tive outer loop iterations. This procedure tries to combine the speed of
subgradient optimization with the exactness of the Dantzig-Wolfe algo-
rithm. In addition, the procedure provides a primal solution on which
branching decisions or rounding heuristics can be based, which is not
case if only subgradient optimization is used. Computational results
from Degraeve and Jans (2003) indicate that this method speeds up
the column generation procedure. With this hybrid method, it takes
about half the time to find the lower bound compared to the traditional
method.
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3. Application 1: Integrated Vehicle and Crew
Scheduling

In this section we discuss the application of a combined column gen-
eration/Lagrangian relaxation algorithm to the integrated vehicle and
crew scheduling problem. Vehicle and crew scheduling are two of the
most important planning problems in a bus company. Since this is the
topic of Chapter ?? by Borndörfer et al., we will not discuss these prob-
lems themselves in detail. Here we only present a formulation for the
integrated problem (in case of multiple-depots) to which we apply the
approach outlined in Subsection 1.2.2. Some interesting, recent refer-
ences on the integrated problem are Freling (1997), Haase, Desaulniers
and Desrosiers (2001) and Freling, Huisman and Wagelmans (2003) for
the single-depot case, and Gaffi and Nonato (1999) and Huisman, Freling
and Wagelmans (2003) for the multiple-depot case.

3.1 Mathematical Formulation

Let N = {1, 2, ..., n} be the set of trips, numbered according to in-
creasing starting time. Define D as the set of depots and let sd and td

both represent depot d. Furthermore, for the crew we distinguish two
types of tasks, viz., trip tasks corresponding to trips, and dh-tasks cor-
responding to deadheading. A deadhead is defined as a period that a
vehicle is moving in time or space without passengers. Ed is the set of
deadheads between two trips i and j.

We define the vehicle scheduling network Gd = (V d, Ad), which is
an acyclic directed network with nodes V d = Nd ∪ {sd, td}, and arcs
Ad = Ed ∪ (sd × Nd) ∪ (Nd × td). Note that Nd is the part of N

corresponding to depot d, since it is not necessary that all trips can be
served from each depot. Let cd

ij be the vehicle cost of arc (i, j) ∈ Ad.

Furthermore, let Kd denote the set of duties corresponding to depot
d and fd

k denote the crew cost of duty k ∈ Kd, respectively. Moreover,
Kd(i) denotes the set of duties covering the trip task corresponding
to trip i ∈ Nd, which means that we assume that a trip corresponds
to exactly one task. Kd(i, j) denotes the set of duties covering the
dh-tasks corresponding to deadhead (i, j) ∈ Ad. Decision variable yd

ij

indicates whether an arc (i, j) is used and assigned to depot d or not,
while xd

k indicates whether duty k corresponding to depot d is selected
in the solution or not. The multiple-depot vehicle and crew scheduling
problem (MD-VCSP) can be formulated as follows.
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min
∑

d∈D

∑

(i,j)∈Ad

cd
ijy

d
ij +

∑

d∈D

∑

k∈Kd

fd
k xd

k (1.21)

∑

d∈D

∑

j:(i,j)∈Ad

yd
ij = 1 ∀i ∈ N, (1.22)

∑

d∈D

∑

i:(i,j)∈Ad

yd
ij = 1 ∀j ∈ N, (1.23)

∑

i:(i,j)∈Ad

yd
ij −

∑

i:(j,i)∈Ad

yd
ji = 0 ∀d ∈ D, ∀j ∈ Nd, (1.24)

∑

k∈Kd(i)

xd
k −

∑

j:(i,j)∈Ad

yd
ij = 0 ∀d ∈ D, ∀i ∈ Nd, (1.25)

∑

k∈Kd(i,j)

xd
k − yd

ij = 0 ∀d ∈ D, ∀(i, j) ∈ Ad, (1.26)

xd
k ∈ {0, 1} ∀d ∈ D, ∀k ∈ Kd, (1.27)

yd
ij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ Ad. (1.28)

The objective is to minimize the sum of vehicle and crew costs. The
first three sets of constraints, (1.22)-(1.24), correspond to the formula-
tion of the vehicle scheduling problem. Constraints (1.25) assure that
each trip task will be covered by a duty from a depot if and only if the
corresponding trip is assigned to this depot. Furthermore, constraints
(1.26) guarantee the link between vehicles and crews. That is, a vehi-
cle performs deadhead (i, j) if and only if the corresponding dh-task is
assigned to a driver from the same depot.

Notice that this formulation is already an extended one. We would
obtain a similar formulation, if we would apply Dantzig-Wolfe decom-
position on a compact formulation of this problem (see e.g. Desrosiers
et al. (1995) how this transformation can be applied on the multicom-
modity flow problem with resource constraints, which has as special case
all kind of vehicle and crew scheduling problems).

3.2 Algorithm

Below we first give a schematic overview of a combined column gen-
eration/Lagrangian relaxation algorithm to solve the MD-VCSP. After-
wards, we discuss the steps related to Lagrangian relaxation (1, 2 and 4)
in more detail. For details about the other steps, we refer to Huisman,
Freling and Wagelmans (2003).
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Step 0. Find an initial feasible solution and take as initial set of columns
the duties in that solution.

Step 1. Solve a Lagrangian dual problem with the current set of columns
approximately, i.e. perform some subgradient optimization steps
to update the multipliers. This gives a lower bound for the current
restricted master.

Step 2. Modify multipliers to prevent that columns are generated twice.

Step 3. Generate columns (duties) with negative reduced cost and up-
date the set of columns.

Step 4. Compute an estimate of a lower bound for the (full) master
problem. If the gap between this estimate and the lower bound
found in Step 1 is small enough (or another termination criterion
is satisfied), go to Step 5; otherwise, return to Step 1.

Step 5. Construct feasible solutions by applying a Lagrangian heuristic.

To approximate the optimal value of the restricted master problem
in Step 1, we use the relaxation of model MD-VCSP, where the equal-
ity signs in the constraints (1.24)-(1.26) are first replaced by “greater-
than-or-equal” signs. These constraints are subsequently relaxed in a
Lagrangian way. That is, we associate non-negative Lagrangian mul-
tipliers κd

j , λd
i , µd

ij with constraints (1.24), (1.25), (1.26), respectively.
Then the optimal solution of the remaining Lagrangian subproblem can
be obtained by inspection for the x variables and by solving a large
single-depot vehicle scheduling problem (SDVSP) for the y variables.

The values of the Lagrangian multipliers obtained after applying a
subgradient algorithm can be used to generate new columns. However,
to assure that all columns in the current restricted master problem have
non-negative reduced costs such that the corresponding duties will not
be generated again in the pricing problem, we use an additional pro-
cedure (Step 2) to update the Lagrangian multipliers after solving the
Lagrangian relaxation. This can be done with a greedy heuristic, that
modifies these multipliers in such a way that columns in the current
restricted master problem K̃d have non-negative reduced costs and the

value of the Lagrangian function does not decrease. We denote f
d

k as
the reduced costs of column k ∈ Kd, which is equal to

fd
k −

∑

i∈N(k,d)

λd
i −

∑

(i,j)∈A(k,d)

µd
ij , (1.29)
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where N(k, d) and A(k, d) are the set of trip tasks and dh-tasks in
duty k from depot d, respectively. The heuristic is described below (see
also Freling (1997) and Carraresi, Girardi and Nonato (1995)):

greedy

{

for each column k ∈ K̃d with f
d

k < 0
{

δ := f
d

k

|N(k,d)|+|A(k,d)| ;

for each trip task i ∈ N(k, d): λd
i := λd

i + δ;
for each dh-task (i, j) ∈ A(k, d): µd

ij := µd
ij + δ;

update the reduced costs for all columns l ∈ K̃d and l > k;
}

}

Finally, we will discuss Step 4, where we compute an estimate of a
lower bound for the master problem given a lower bound for the current
restricted master. The latter bound, denoted by Φ′(κ, λ, µ), is obtained
in Step 1. Then the expression:

Φ′(κ, λ, µ) +
∑

d∈D

∑

k∈Kd\K̃d

min(f
d

k, 0) (1.30)

is a lower bound for the (full) master problem for each vector (κ, λ, µ).
This can be proven in a similar way as in Subsection 1.2.2. Therefore,
we will skip this proof here.

Notice, however, that we do not calculate this lower bound in each
iteration, since for generating new columns it is not necessary to calculate
the reduced costs for all of them. Therefore, we estimate this bound
in each iteration by taking only into account the reduced costs of the
columns that we actually add to the master problem. This estimate
can be used to stop the column generation part of the algorithm earlier
without exactly obtaining a lower bound.

3.3 Some results

The algorithm presented in the previous subsection has been used
to solve several problem instances arising from real-world applications
as well as randomly generated instances. In Table 1.1 we summarize
some of the results for randomly generated instances with two depots
(see Huisman, Freling and Wagelmans (2003)). We denote the average
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number of iterations of the column generation algorithm, and the av-
erage computation times for the master problem (cpu m.) and pricing
problem (cpu p.), respectively. Furthermore, we give the total average
computation time for computing the lower bound (cpu t.). These aver-
ages are computed over the instances for which a lower bound is found
within 3 hours of cpu time on a Pentium III 450MHz personal computer
(128MB RAM). Therefore, we also denote the number of instances (out
of 10) for which we actually found a lower bound. In the remainder
of the table, we denote the average gaps between the lower and upper
bounds.

Table 1.1. Computational Results MD-VCSP.

# trips 80 100 160 200

# iter. 17.4 25.2 36.8 39.5
cpu m. 154.7 403.9 982.8 1641.5
cpu p. 148.7 510.7 3529.8 4769.5
cpu t. 317.5 942.3 4721.3 6675.0

# found 10 10 4 2

gap (%) 5.37 5.31 5.75 6.52

In Table 1.1, we only provide results for instances up to 200 trips,
since for larger instances we were not able to compute a lower bound
within 3 hours computation time. The average gaps between the fea-
sible solutions and the lower bound are about 5% for those instances.
However, for large instances we can still use the suggested algorithm to
compute feasible solutions by terminating the lower bound phase after a
maximum computation time and then continue with Step 5. In practice,
this is already quite satisfactory. Therefore, these types of algorithms
can be used to solve practical problem instances in an integrated way.

4. Application 2: Plant Location

Barahona and Jensen (1998) apply the procedure described in Subsec-
tion 1.2.3 to a plant location problem with minimum inventory. Given a
set N of customers, each requiring a set of parts Di ⊂ P, i ∈ N , where P

denotes the set of all parts, and a set of M possible locations, the objec-
tive is to minimize the total costs such that every customer is served, a
bound on the total number of warehouses is not exceeded and a service
criterion is met. The total costs consist of a fixed costs fj , for j ∈ M , if a
warehouse is opened at location j, a transportation cost cij if customer i

is served from warehouse j, and an inventory cost hjk, if part k is stored
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in warehouse j. A part must be stored in a warehouse if a customer,
requiring that part, is assigned to the warehouse. The service criterion
implies that a given percentage of the total demand must be delivered
within a certain time limit. Let yj be 1, if warehouse j is opened, and
0 otherwise, let xij be 1 if customer i is assigned to warehouse j, and 0
otherwise, and let zjk be 1, if part k must be stored in warehouse j, and
0 otherwise, then the model can be stated as follows.

min
∑

j∈M

fjyj +
∑

i∈N

∑

j∈M

cijxij +
∑

j∈M

∑

k∈P

hjkzjk (1.31)

∑

j∈M

xij = 1 ∀i ∈ N, (1.32)

∑

i∈N

∑

j∈M

dijxij ≥ t, (1.33)

∑

j∈M

yj ≤ L, (1.34)

xij ≤ yj ∀i ∈ N, ∀j ∈ M, (1.35)

xij ≤ zjk ∀i ∈ N, ∀j ∈ M, ∀k ∈ Di, (1.36)

xij , yj , zjk ∈ {0, 1} ∀i ∈ N, ∀j ∈ M, ∀k ∈ P, (1.37)

Constraints (1.32) impose that every customer must be assigned to
one location. Constraint (1.33) is the service criterion, i.e. suppose that
the company would like that 95% of the demand can be served within
two hours, then t equals 95% of the total demand and dij is equal to
the demand of customer i, if the travel time between i and j is less
than two hours, and 0 otherwise. Constraint (1.34) implies that at most
L locations can be opened. Constraints (1.35) and (1.36) define the
relations between the variables, i.e. a customer can only be assigned
to a warehouse, if the warehouse is open (1.35), and, if customer i is
assigned to a warehouse, then all parts Di of customer i must be present
in the warehouse (1.36).

The Dantzig-Wolfe reformulation consists of implicitly considering ev-
ery possible assignment of customers to locations. Hence, the objective
function and constraints of (the LP relaxation of) the master problem
correspond to (1.31)-(1.34) and the original variables are replaced by a
convex combination of the extreme points of the polytope defined by
(1.35)-(1.37). Barahona and Jensen (1998) show the pricing problem
is equivalent to a minimum cut problem. They observed that the con-
vergence of the Dantzig-Wolfe algorithm is very slow for this problem
and that the lower bound obtained by adding the reduced cost of the
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columns that price out to the value of the current restricted master,
is very poor in the first iterations of the Dantzig-Wolfe algorithm and
improves only slowly. After solving the LP relaxation of the current re-
stricted master, they perform a fixed number of subgradient iterations on
the original problem to improve the bound, using the masters’ optimal
dual variables as starting values for the subgradient procedure. Next, all
columns are added to the LP relaxation of the restricted master, which
is then re-optimized. If the new optimal objective value and the La-
grangian lower bound are close to each other, then a heuristic is applied
to obtain an integer solution. They are able to obtain good solutions for
problems with about 200 locations, 200 parts and 200 customers within
about one hour of computation time on a RS6000-410, using OSL (IBM
Corp. (1995)) to solve the LPs.

5. Application 3: Cutting Stock

Degraeve and Peeters (2000) use a combination of the simplex method
and subgradient optimization to speed up the convergence of the col-
umn generation algorithm of Gilmore and Gomory (1961) for the one-
dimensional cutting stock problem (CSP). This procedure is used to
compute the LP relaxation at every node of the branch-and-price tree
of the algorithm described in Degraeve and Peeters (2003). The CSP
can be defined as follows. Given an unlimited stock of a raw material
type of length c and a set of n items with widths w1, ..., wn and de-
mands d1, ..., dn, cut as few raw material types as possible, such that
the demand is satisfied and the total width of the items cut from a raw
material type does not exceed its length c. Let P be the set of all feasible
cutting patterns, or

P = {p ∈ Z
n
+ :

n∑

i=1

wipi ≤ c}. (1.38)

Let zp be the number of times pattern p is selected in the solution,
then the Gilmore and Gomory formulation can be stated as follows:

min
∑

p∈P

zp (1.39)

∑

p∈P

pizp ≥ di ∀i ∈ 1, ..., n, (1.40)

zp ∈ {0, 1, 2, ...} ∀p ∈ P. (1.41)

The objective function (1.39) minimizes the total number of cut raw
material, whereas constraints (1.40) are the demand constraints and
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constraints (1.41) the integrality and non-negativity restrictions. The LP
relaxation of (1.39)-(1.41) can be solved by column generation, where
the pricing problem is a bounded knapsack problem, if one does not
allow that the number of items present in a cutting pattern exceeds the
demand, i.e. pi ≤ di.

Using the procedure described in Subsection 1.2.3, Degraeve and Peeters
(2000) are able to achieve a substantial reduction in required CPU time
to solve the LP relaxation of (1.39)-(1.41). Like Barahona and Jensen
(1998), they use a limit on the number of subgradient iterations in the
inner loop of Figure 1.1, but, in addition, the inner loop is interrupted, if
a new column has non-negative reduced cost, or if the Lagrangian bound
rounded up equals the master objective value rounded up, as explained
earlier in Figure 1.1. If this last condition holds, the Dantzig-Wolfe lower
bound is found. Otherwise, all different columns generated in the inner
loop are added to the restricted master. First it is checked if the value
of the best Lagrangian lower bound rounded up is equal to the value
of the new restricted master rounded up. Then, the algorithm can be
terminated, otherwise the next iteration of the outer loop continues.

Table 1.2 presents the results for cutting stock instances with 50,
75 and 100 items for 4 different width intervals given in the first row,
in which the item widths are uniformly distributed. The demand is
uniformly distributed with an average of 50 and the raw material length
equals 10000. The experiments were run on a Dell Pentium Pro 200Mhz
PC (Dell Dimension XPS Pro 200n) using the Windows95 operating
system, the computation times are averages over 20 randomly drawn
instances and given in seconds. The LPs are solved using the industrial
LINDO optimization library version 5.3 (Schrage (1995)). The columns
labelled “DW” present the traditional Dantzig-Wolfe algorithm and the
columns labelled “CP” present the results of the combined procedure of
Figure 1.1. We observe that the reduction in CPU time is higher, when
the number of items is higher, and can be as high as a factor 8.

Table 1.2. Computational results, Cutting Stock Problem.

int [1,2500] [1,5000] [1,7500] [1,10000]
n DW CP DW CP DW CP DW CP

50 0.44 0.21 1.47 0.52 0.67 0.46 0.14 0.10
75 1.14 0.47 4.82 1.12 4.26 1.14 0.53 0.27
100 3.19 0.84 15.96 2.05 14.78 3.99 1.65 0.73
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6. Conclusion

We discussed two ways to combine Lagrangian relaxation and column
generation. Since this combination has not been used quite often, there
are many interesting research questions open. For example, should we
use another method to approximate the Lagrangian Dual, e.g. a multi-
plier adjustment method? Furthermore, when implementing such algo-
rithms one has to make decisions with respect to issues such as column
management.

In the first method, we used Lagrangian relaxation to solve the ex-
tended formulation. Therefore, no simplex method was necessary any-
more, which has several advantages. First of all, it decreases the prob-
lem of degeneracy and speeds up the convergence. Furthermore, master
problems with a larger number of constraints are most often faster solved
with Lagrangian relaxation than with a LP solver. We showed this by
solving the multiple-depot vehicle and crew scheduling problem.

In the second method, Lagrangian relaxation was used to generate
new columns. It is an effective method to speed up convergence of the
Dantzig-Wolfe column generation algorithm. The method seems to be
quite robust, since it gives good results on three totally different prob-
lems, and this without much fine-tuning of the parameters. Several
issues can be further investigated. For example, how many subgradient
iterations do we allow in the inner loop of Figure 1.1? This is also related
to the number of columns that we want to add in an inner loop: all new
columns, the ones with negative reduced cost or only the ones with the
most negative reduced cost? Adding more columns leads possibly to a
faster convergence, but larger restricted masters are also more difficult
to solve. Do we initialize the multipliers in the Lagrangian relaxation
part with the best Lagrangian multipliers of the previous step, with the
optimal dual variables provided by the simplex algorithm for the current
restricted master, or some combination? Clearly, there are ample oppor-
tunities for research into the effective combination of column generation
and Lagrangian relaxation.
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