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Abstract: Efficient operation is an important question for public transport companies, and 

that can most easily be achieved by reducing their operational costs. This can also be 

facilitated by the optimized scheduling of vehicles and the work of the drivers. Such an 

optimization task can be very complex. Due to the dramatically increased processing 

capabilities today, it can be performed using advanced optimization methods. Automation 

aims to reduce the time-consuming manual activities, thus increase efficiency and provide 

prompt opportunities of scenario planning for operational cost analysis purposes. In this 

paper, a case study is presented to solve the combined vehicle and driver scheduling 

problem. The applied mathematical model is discussed and the calculation results for 

practical examples are presented 

Keywords: optimization; mathematical model; vehicle, crew and driver scheduling 
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1 Introduction 

Operational costs represent a large part of the expenses of public transport service 

companies. Their most important parts are vehicle fleet costs, fueling, and 

maintenance costs In addition, to driver salaries. Consequently, the budget can be 

improved significantly by decreasing these costs. The most commonly used 

technique to reduce these costs is the usage of a powerful, computer-aided 

information system. Due to the ICT (Information and Communication 
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Technology) development today almost every public transportation company has 

its own information system. In addition to the business applications, such as 

accounting, these systems may also contain modules such as 

• scheduling vehicles and drivers for the company-served lines, 

• monitoring the work of the vehicle fleet during the day, 

• notifying the dispatcher of the unusual events (malfunctions, delays, etc.), 

• tracking the status of the vehicles in the fleet, 

and similar other functions. The ICT environment outlined above is often the 

organized backbone of efficient logistics management (see, for example, [1], but 

there is a next step in the process, which is to find the parts of the organization and 

operation that can be reduced in terms of operational costs. Strategic planning is 

used to determine the route of the buses. Elements of strategic planning are 

described by Desaulniers and Hickman in their review paper [2]. It discusses 

network planning, route planning, and passenger assignment based on expected 

travel needs. Tactical planning is used when the goal is to create an optimal 

schedule, and the planning can include scheduling the frequency of the trips. In 

addition, the fulfillment of requirements such as the capacity of the lines or the 

types of vehicles (e.g. on which line the low-floor vehicles should run) may also 

be addressed here. In the case of  operational planning, buses and drivers are 

scheduled to provide the service. A number of solutions have been investigated to 

solve operational planning issues. Examining the problems from a theoretical 

point of view, most of them are NP-complete, which makes it difficult to find 

exact or near-exact solutions to problems that occur in practice. Even in cities with 

hundreds of thousands of citizens, the task is complex, if legislation, individual 

needs, and employee interests are taken into consideration. Such restrictive 

conditions may include vehicle characteristics, requirements relating to working 

time, driving time. and breaks for drivers, but in some cases. the constraints of the 

stations must also be considered. One of the major directions in the development 

of decision support systems over the past decades has been the development of 

software packages that provide a comprehensive solution to the various 

optimization tasks. However, practice shows that there are a number of company-

specific expectations and constraints due to the specific situation of businesses on 

the application side, that are important to transport companies and can not be 

handled in a uniform way by the general systems developed. In this article, a 

decision support system developed for the Budapest Transport Corporation is 

presented. The purpose of the research was to integrate a module for solving a 

vehicle and driver scheduling task into the company’s information system. The 

method is based on an existing mathematical model, supplemented by special 

conditions required by the company. The article is structured as follows: In 

Section 2 a literature review on mathematical models is given for the driver and 

vehicle scheduling problem, then the problem and the solution method is 

introduced. In Section 3 the mathematical model is presented, then in Section 4. 
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the most important computational results are summarized. Finally, in Section 5 

concluding remarks are given. 

2 Materials and Methods 

2.1 Literature Review 

The scheduling problems of public transport are very complex. When looking at 

the problem from an operational research perspective, a global optimum is 

expected that minimizes the cost of both vehicle-related tasks and driver 

scheduling. A comprehensive survey of routing and scheduling problems of 

vehicles as well as crews is provided in [3]. It includes classification and 

categorization of routing and scheduling problems, a review of algorithmic 

techniques and solution methodologies. The solutions for the problems are, 

however mainly theoretical. Effective algorithms exist only for some of the tasks 

while for others the algorithmic capabilities described remain at low-level. 

Especially in case of bus public transport companies when the vehicle scheduling 

problem covers a given set of timetabled trips with consideration of practical 

requirements. The proposed modeling approaches in [3] are unable to solve real-

world problem instances with thousands of scheduled trips by direct application of 

standard optimization software. The time-space network model is often used to 

reduce the number of variables in the exact optimization model. This model is 

discussed in [4] that uses a time-space-based network flow model instead of 

connection-based network model. It involves multiple depots for vehicles and 

different vehicle types for bus scheduling problem. This approach leads to size 

reduction of the corresponding mathematical models compared to connection-

based network flow. The model size has been substantially reduced through the 

aggregation of incoming and outgoing arcs. The optimal solution could not be 

resulted by any of the above exact approaches. A combination of the methods 

should be able to solve the large amount of problems of practical interest in 

acceptable running times. Integer linear programming approach using 

combinatorial optimization can be seen in [5]. In the most widely used models 

today, the vehicle scheduling problem is formulated as an integer multicommodity 

network flow problem. In this model, optimal scheduling can be calculated as a 

solution to an integer linear programming problem. The methods apply branch and 

cut and branch and cut and price respectively. The column generation techniques 

seem indispensable for both approaches. Column generation is developed to make 

it possible to solve the huge linear programs with up to million integer variables. 

These rules for selecting new columns are based on Lagrangean relaxations and 

therefore called Lagrangean pricing. Other models also exist to solve this problem. 

The problem can also be formulated as a set partition problem with side 

constraints, whose continuous relaxation can be solved by column generation. (see 
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for example [6]). A relationship is established between the bounds obtained by the 

assignment relaxation, the shortest path relaxation, the additive technique, 

Lagrangian decomposition, and column generation. It is shown that the additive 

bound technique cannot provide tighter bounds than those obtained by Lagrangian 

decomposition and not better than the linear programming bound. As in [7] the 

introduction of variable fixing, cutting planes, and the mixed branch-and-bound 

algorithm and the best-then-depth strategy leads to substantial improvements in 

the performance of a column generation algorithm to solve the scheduling 

problem. Dávid and Krész proposed a heuristic method [8]. The disadvantage of 

the models discussed and used in the literature in a specific, practical situation is 

that it only takes into account the rules relating to timetabled and overhead trips, 

bus types, and capacities required for them. However, it is not possible to include 

specific conditions that come from a real application environment. When planning 

the operational tasks of public transport, such typical vehicle-specific conditions 

are fuel consumption rules, various maintenance requirements (weekly, monthly, 

etc.), and parking rules. Parking rules may apply to both daytime and nighttime 

parking: where to park, what capacity the parking places have, etc. The length of 

the parking period may influence where in which geographical location it may be 

performed. The literature discusses several different versions of the vehicle 

scheduling problem, usually by the number of device types and the number of 

depots. The simplest version is the Single Depot Vehicle Scheduling Problem 

(SDVSP), where the vehicles belong to a single-vehicle type and are located in the 

same physical location. The first solution to the SDVSP problem was published by 

Saha [9]. The most commonly used model for solving a vehicle scheduling 

problem is the so-called Multiple Depot Vehicle Scheduling Problem (MDVSP). 

This case, which is more general than the single depot one, reflects the fact that in 

real life, different scheduled trips (their vehicles) may have different special 

needs. The vehicles are divided into different depots based on different vehicle 

types and the location of the vehicles. The MDVSP was defined by Bodin et al. 

and Bertossi et al. They showed that it is an NP-hard problem [11]. Tasks for 

vehicle-specific activities should also be taken into account, which requires a 

general framework for the integrated vehicle scheduling and assignment. A set 

partitioning-based mathematical model, where most vehicle-specific activities can 

be integrated based on the desired constraints is presented in [10]. This model is 

then solved using a column generation approach. The solution time can be reduced 

by the parallelization of the column generation process. If the transport company 

also uses alternative fuel vehicles in its fleet, the scheduling of these should take 

into account the number of kilometers per refueling, which may be much less than 

the mileage of conventional fuel vehicles. Alternative-fuel vehicles are getting 

more popular, and research is being done on how current infrastructure can serve 

them. The problem of vehicle scheduling consists of assigning a fleet of vehicles 

to service a given set of trips with start and end times. [12] presents the 

alternative-fuel multiple depot vehicle scheduling problem, a modification of the 

standard multiple depot vehicle scheduling problem where there is a given set of 
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fueling stations, and a fuel capacity for the vehicles. The problem is formulated as 

a binary integer program, and exact column generation algorithm and a heuristic 

algorithm to solve the problem. [13] proposes a model for electric transit buses 

with either battery swapping or fast charging at a battery station, and a vehicle-

scheduling model with the maximum route distance constraint for compressed 

natural gas, diesel, or hybrid-diesel buses. Both of these scheduling models are 

NP-hard. An important topic is to study the location problem of battery service 

stations. In [14] the developments of battery-electric buses are reviewed. A 

qualitative analysis on the strengths and weaknesses of each range method is 

conducted as well as costs and emissions of transit buses powered by different 

sources. Buses using alternative energy sources to reduce emissions, including 

some toxic air pollutants and carbon dioxide are studied in [15]. Life cycle 

comparison between buses fueled by different kinds of alternative energy is 

discussed in [16] to serve as an input to cost-benefit analysis. 

Recently some other papers discussed the practical issues of vehicle scheduling. 

Dávid and Krész studied the handling possibilities of parking and maintenance 

constraints [17], and rescheduling possibilities in case of disruptions [18]. Parking 

and maintenance activities are handled in [19] as well. 

Another important problem discussed in the literature is the Crew Scheduling 

Problem (CSP), also known as Driver Scheduling Problem or Duty Scheduling 

Problem. There are many CSP solution methods and applications in the literature. 

One of the best known is the so-called Generate and Select technology. The 

method can be summarized as follows: in the first step, generate a large number of 

regular shifts, and then in the selection step, look for a subset of them that is 

optimal in cost and covers the trips. Phase one requires significant computation 

time. The amount of calculation depends greatly on the number of trips and the 

complexity of the rules. In addition, the computational complexity of the rules 

greatly influences the complexity of this phase, and thus the whole problem. The 

problem can be defined as a set covering or set partitioning task. The partitioning 

model is a constrained version of the covering problem where no overlap is 

possible. This corresponds exactly to the real problem, but in this case, the 

existence of a feasible solution is not guaranteed. Note that both tasks have been 

shown to be NP-hard [23]. There are many ways to solve this problem. A hybrid 

approach incorporating a genetic algorithm is presented in [20]. It derives a small 

selection of good shifts to seed a greedy schedule construction heuristic. A group 

of shifts called a relief chain and used by the genetic algorithm for schedule 

construction. [21] simulates the self-adjusting process for driver scheduling. It 

incorporates the idea of fuzzy evaluation into a self-adjusting process, combining 

the features of iterative improvement and constructive perturbation, to explore 

solution space effectively and obtain superior schedules. A flexible system for 

scheduling driver applying integer programming methods are used in [22] and 

heuristic solution techniques are used in [24, 25]. 
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According to the conventional approach, driver scheduling is performed after the 

phase of vehicle scheduling. Therefore, this is also called a sequential method. 

However, if the vehicle schedules are too dense, for example, there is not enough 

time to change drivers, then the problem can be infeasible in the driver scheduling 

phase. For this reason, the simultaneous optimization of the vehicle and driver 

scheduling may be reasonable. This problem is called Vehicle and Crew 

Scheduling Problem (VCSP). In 1999 Haase and Friberg published the first 

algorithm providing the exact solution for the single-depot case [26]. In their 

model, an integrated mathematical formulation was given in such a way that both 

sub-tasks were defined as set partition problems. The vehicle scheduling part is 

based on the model given by Ribeiro and Soumis [27], while the driver scheduling 

part uses the ideas of Desrochers and Soumis [28]. In the multi-depot case, first 

Gaffi et al. [29] discussed the integrated problem, using a heuristic method. In 

2005, Huisman et al. [30] successfully extended the former models and algorithms 

of the single-depot case to the multi-depot version. This was the first general 

mathematical formulation of the multi-depot problem. Huisman in [31] also 

discusses the corresponding Lagrangian relaxations and Lagrangian heuristics. To 

solve the Lagrangian relaxations, column generation is applied to set partitioning 

type models. Haase [32] presents an exact approach for solving the simultaneous 

vehicle and crew scheduling problem in urban mass transit systems. This approach 

relies on a set partitioning formulation for the driver scheduling problem that 

incorporates side constraints for the bus itineraries. The proposed solution 

approach consists of a column generation process integrated into a branch-and-

bound scheme. In 2008, Mesquita and Paias [33] also provided two mathematical 

formulations for this problem. In 2019 Horváth and Kis [33] proposed a novel 

mathematical programming formulation that combined ideas from known models 

and presented a solution methodology based on branch-and-price. In 2010 

Steinzen et al. [34] gave another fully integrated VCSP approach, where the 

underlying vehicle scheduling model was based on the time-space network 

technique. 

2.2 Problem Definition and Requirements 

The problem is to automatically calculate optimal or approximately optimal 

vehicle and driver schedules for a given list of trips based on the master data and 

the company specific requirements and parameters in compliance with labor 

regulations. The optimality is measured by a given objective function and the aim 

of the optimization is to increase economy and efficiency. The developed model 

should take into consideration the following characteristics of the schedule 

planning for city buses: 

• the problems are given by packages, 

• the trips of a package can belong to a single line or a group of lines, 

• the trips of a package can overlap 2 days, 
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• different day types are possible (e.g. working weekday, feast day, school 

day, etc.), 

• deadhead trips from or to the depots can be possible from each end station, 

• the maximum number of depots in a package is 5, 

• the maximum number of vehicles that can be used in the solution of a 

package is 30, 

• the maximum number of vehicle types in a package is 4, 

• the type of vehicle can determine the fuel consumption, which should be 

taken into consideration in the schedule, 

• breaks with a standoff or driver change are possible, 

• standoff or parking is possible on more end stations or depots, 

• parking place capacities are given for end stations in 5 minute intervals, 

• driver change can be possible on given end stations, 

• the labor regulations can be defined by several parameters. 

The packages contain the following information: 

• the lines and their parameters, 

• the end stations, the depots, and their parameters, 

• the trips, 

• the parameters of the labor regulations and break rules. 

The solution of the problem given by a package must satisfy the following 

requirements: 

• each trip should be assigned to exactly one vehicle and driver schedule, 

• the solution cannot use more vehicles than the number of available vehicles 

given in the package, 

• the vehicle and driver schedules should be designed properly, adding the 

necessary activities (e.g. deadhead trips, breaks, maintenance, etc.) 

• only such route can be set up for the vehicle (including deadhead trips to 

the depot) that can still be completed in terms of fuel consumption, 

• between two passenger trips at least the required technological and 

compensatory time given for the line must be completed, 

• drivers have rest periods while on duty, breaks with astandoff, vehicle 

change or both can be used based on the given parameters, 

• driver change is possible if it is allowed for the given line on the given end 

station, 

• in the case of a standoff, the parking space capacity should be checked, 
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• there is a possibility for divided working time, when the daily work of the 

driver is divided into 2 separated parts with a longer break between them, 

• the generated driver schedules must comply with all work and rest 

regulations, 

• the objective of the optimization process is to minimize the total net 

working time of the drivers, but if possible, the average of the drivers’ net 

working times should be between 7 and 9 hours. 

There are many conditions that are determined by the applicable legislation and 

the rules and regulations applicable to the employees of a given transport 

company. These include maximum working times, sufficient breaks after a given 

driving time, mandatory rest periods between two work periods, etc. In addition to 

scheduled and deadhead trips, there is a variety of technical and administrative 

tasks with well-defined timescales. These include passengers get on and get off 

times at end stations, vehicle pick-up, stopping, parking and various technological 

times, etc. In the following there is an overview of the most important working 

rules that are applicable to the drivers employed by the Budapest Transport 

Corporation. The default time values can be given as parameters. 

1) The minimal length of a daily schedule (the minimal working time) is 4 

hours without breaks. 

2) The maximal length of a daily schedule (the maximal working time) is 

10:30 hours with breaks. 

3) The driving time cannot be longer than 9 hours in a schedule. 

4) Vehicle oriented working times: 

a) depot release time: 25 minutes, 

b) end station release time: 20 minutes, 

c) release time of the vehicle stopped by the same driver: 10 minutes, 

d) vehicle change: 25 minutes, 

e) driver change on a vehicle: 5 minutes, 

f) stopping time at an end station: 5 minutes, 

g) stopping time at a depot: 20 minutes. 

5) Rules for divided work (the driver schedule is divided into two periods, 

usually morning and afternoon periods). 

a) The break between the two parts cannot be shorter than 2 hours or 

longer than 6 hours. 

b) The total length of the two parts cannot be longer than 10:30 hours. 

c) The total length of the two parts with the break cannot be longer 

than 14 hours. 

d) The working time of each part cannot be shorter than 2 hours. 
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6) Break rules 

a) No break is necessary for a schedule shorter than 6 hours. 

b) 30 minutes break is necessary for a schedule longer than 6 hours 

and shorter than 9 hours. 

c) For a schedule longer than 9 hours at least 40 minutes break is 

necessary, which can be divided into 2 parts (20+20 minutes). 

d) A break must not be given in the first or last hour of a schedule. 

e) The continuous working time cannot be longer than 6 hours in a 

schedule. 

f) A break is not part of the working time. 

3 The Mathematical Model 

A combined vehicle and driver scheduling optimization model is used to solve the 

problem described in the previous chapter. Several versions of this are known in 

the literature. The mathematical formalization is a modified version of the model 

described in the paper published by Huisman et al. [30]. 

The most important components of the model are the set of timetabled trips and 

the available vehicles. Timetabled trips are all trips where vehicles carry 

passengers. Each such trip is determined by the departure and arrival times, the 

departure and arrival stations, and the distance between them. The vehicles are 

divided into (physical) depots based on their location. This may be the garage, 

parking space or site where the vehicle is parked. Vehicles can also have various 

important features that allow us to group them further. Based on physical 

(geographical) locations and features, vehicles are classified into disjoint subsets. 

The subsets thus formed are called depots. In addition to timetabled trips, vehicles 

must also carry out other types of drivings. These are called overhead trips. For 

example, for the first trip of the day the vehicle must leave the night parking lot 

and return after the last trip of the day. Such deadhead trips can occur during the 

day, e.g. for longer breaks. Typical additional overhead trips are when a vehicle 

goes to another station after completing a trip to make another trip from there. It 

also needs to allow these in order to get an effective schedule. For each timetabled 

trip, the user can specify the depots from which the trip can be served. In practice, 

this might mean, for example, that certain lines may be served by given type of 

buses or from given locations. These requirements may be determined by the 

location of the station and the characteristics of the traffic. It can define certain 

relationships between timetabled trips. Two trips are said to be compatible if after 

finishing the first trip the vehicle is able to arrive at the place of departure of the 

second trip in time. If the first trip arrives at the destination location of the second 

trip, the only condition is that the first trip arrives earlier as the second trip. If the 
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arrival station of the first trip is not the same as the departure station of the second 

trip, the overhead time between the stations must be taken into account. There 

may be rules that include mandatory technological time between two trips, which 

should be taken into account when examining compatibility. The network is 

described by a directed graph. The nodes represent the trips, to which the 

departure and arrival depot nodes are added. Because multiple depots problem is 

handled, more depot nodes are possible. This corresponds to the usual technique. 

Two nodes of the graph are connected by a directed arc if the trips representing 

them are compatible. The arc length always represents the net working time of the 

driver, which corresponds to the objective function. It connects the depot nodes to 

the appropriate trip nodes, which can be accessed from that depot. Huisman et al. 

classifies the arcs into two main groups, namely short and long ones. Short arcs 

always represent the shorter events when the driver remains with the vehicle, 

while the long arcs represent the events when the driver stops the vehicle in the 

parking space and it remains unattended. Such a graph is built, which better 

represents the real situation, see Figure 1. 

The following node types are introduced: 

• source_depot: nodes representing the source depots, 

• sink_depot: nodes representing the sink depots, 

• trip: nodes representing timetabled trips. 

There are 11 types of arcs in the model: 

• start_of_schedule: arc representing the sign-on event with the first 

deadhead trip to the location of the first timetabled trip of a schedule, 

• end_of_schedule: arc representing the last deadhead trip of a schedule to 

the location of the depot with the sign-off event, 

• short_wait: arc representing a short wait after completing a timetabled trip, 

when the driver remains with the vehicle, 

• short_break_endstation: arc representing a break of the driver spent at an 

end station after completing a timetabled trip, 

• short_break_depot: arc representing a break of the driver spent in a depot 

after completing a timetabled trip, 

• short_driverchange_endstation: arc representing a driver change event at an 

end station after completing a timetabled trip, 

• short_driverchange_depot: arc representing a driver change event in a 

depot after completing a timetabled trip, 

• long_stop_endstation: arc representing a driver change with a long parking 

of the vehicle at an end station without attendance, 

• long_stop_depot: arc representing a driver change with a long parking of 

the vehicle in a depot without attendance, 
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• long_dividedstop_endstation: arc representing a long parking of the vehicle 

at the end station while the driver works in a divided schedule, 

• long_dividedstop_depot: arc representing a long parking of the vehicle in 

the depot while the driver works in a divided schedule. 

 

Figure 1 

Part of the network 

3.1 The Main Steps of the Calculation Process 

1) In the first phase of the calculation, the appropriate input data and parameters 

are read and the graph is created. Here, the technological and compensatory 

times are taken into account, as well as certain rules regarding the duration of 

the waits or breaks. These can also be controlled by parameters. This means, 

for example, that if two trips are too close in time, those will not be 

connected, which means that those will not be executed one after the other by 

the same vehicle or driver. The first step in generating a graph is to create 

nodes based on the timetabled trips, location information, and vehicle types 

received. Then. add the above-listed arcs, also taking into account the 

parameters and labor rules. There may be different types of parallel arcs that 

have different weight values. For example, the driver may take a break at the 

end station or in a depot, depending on parking possibilities and station 

capabilities. However, these mean different working times, so if a model is to 

reflect the real situation fairly well, it needs to include both options. This 
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increases the number of arcs, which itself would not necessarily be a problem 

in the size of the optimization model, but practical experience has shown that 

the number of possible driver schedules can be critically large in some cases 

and this must be handled in some way. 

2) In Phase 2, if possible, all regular driver schedules are generated. There is 

already a check that takes into account all the rules specified in the 

specification. The generating process is done systematically by traversing the 

base graph with depth-first search. However, every vertex is checked on the 

fly, and if the subschedule already formed does not conform to any rule, then 

this branch is cut off. When a complete schedule is done during the 

generation, a final check runs, which only accepts the schedule if it is found 

regular. The generated driver schedules are stored. If too many schedules are 

generated, the process is stopped and a heuristic method is executed, to 

decrease the size of the problem. This method will be described later. 

Parameters can also be used to limit the number of schedules. 

3) In Phase 3, the mathematical model is constructed, which is essentially an 

extended version of the already mentioned VCSP model described in detail in 

[18]. The model includes constraints on fuel consumption, parking places and 

manages different vehicle types and locations. 

3.2 The Formal Description of the Model 

The set of timetabled trips are denoted by 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛}. Let D be the set of 

depots, and 𝐷𝑢 ⊆ 𝐷 the depot set of trip u: this includes those depots, from which 

u can be served. Note that in this case, a depot can represent a combination of 

physical locations and vehicle types. Denote 𝑈𝑑 ⊆ 𝑈 the set of those trips that can 

be served from depot 𝑑. For every 𝑑 ∈ 𝐷 two nodes are defined 𝑑𝑡(𝑑) and 𝑎𝑡(𝑑) 

representing that a vehicle starts at depot 𝑑 and goes back there. The set of 𝑁 is 

then defined as follows 

𝑁 = {𝑢 ∈ 𝑈} ∪ {𝑑𝑡(𝑑)|𝑑 ∈ 𝐷} ∪ {𝑎𝑡(𝑑)|𝑑 ∈ 𝐷}. 

To give the arcs of a network, the following notations are introduced. 

𝐵𝑑 = {(𝑢, 𝑢′)|u, u′ ∈ Ud are compatible trips}, ∀𝑑 ∈ 𝐷. 

Other deadhead trips corresponding to depot 𝑑 are the first and the last trips of the 

vehicle from the depot or to the depot. 

𝑅𝑑 = {(𝑑𝑡(𝑑), 𝑢), (𝑢, 𝑎𝑡(𝑑))|𝑢 ∈ 𝑈𝑑}, ∀𝑑 ∈ 𝐷. 

This way the set of arcs can be defined belonging to depot 𝑑 in the network: 

𝐴𝑑 = 𝐵𝑑 ∪ 𝑅𝑑 , ∀𝑑 ∈ 𝐷, 

and the set of all arcs of the graph is 

𝐴 =∪𝑑∈𝐷 𝐴𝑑. 
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After these preparations, it is ready to define the VCSP problem on the network 

𝐺 = (𝑁, 𝐴). For this it is necessary to define an integer vector 𝑥, which can be 

considered as a multicommodity flow. The dimension of the vector is equal to the 

number of arcs in the network. If the arc 𝑒 belongs to the depot 𝑑 (𝑒 ∈ 𝐴𝑑), then 

the component of the vector corresponding to the arc 𝑒 ∈ 𝐸 is denoted by 𝑥𝑒
𝑑. The 

value of 𝑥𝑒
𝑑 will be 1 if the given arc is included in the schedule, otherwise, it will 

be 0. The first condition ensures that every timetabled trip is scheduled exactly 

once. 

∑  𝑑∈𝐷𝑢,𝑒∈𝑢𝑑
+ 𝑥𝑒

𝑑 = 1,    ∀𝑢 ∈ 𝑈.                    (1) 

where 𝑢𝑑
+ denotes the set of those outgoing arcs of the vertex 𝑢 which belong to 

𝐴𝑑. It ensures that all vehicles return to a depot by the end of the scheduling 

period. In other words, if a vehicle belonging to a particular depot arrives at an 

end station, it must leave it. 

∑  𝑒∈𝑢𝑑
+ 𝑥𝑒

𝑑 − ∑  𝑒∈𝑢𝑑
− 𝑥𝑒

𝑑 = 0,    ∀𝑢 ∈ 𝑈𝑑 , ∀𝑑 ∈ 𝐷,              (2) 

where 𝑢𝑑
− denotes the set of those incoming arcs of the vertex 𝑢 which belong to 

𝐴𝑑. When defining fuel conditions, it considers the distance in km that can be 

covered by a single refueling. This requires to sum up the distance traveled by the 

vehicles and then limit it by the values given in the parameters. First, assign new 

variables to each vertex of 𝑁, excluding the set {𝑎𝑡(𝑑)|𝑑 ∈ 𝐷}. It is denoted this 

vector by 𝑡. The component of 𝑡 belonging to vertex 𝑣 will be denoted by 𝑡𝑣. The 

inequality that calculates the running distance up to a given node can be given as 

follows: 

𝑡𝑣′ ≥ 𝑥𝑒
𝑑(𝑡𝑣 + 𝛿𝑒),    ∀𝑣 ∈ 𝑁\{𝑎𝑡(𝑑)|𝑑 ∈ 𝐷}, ∀𝑒 ∈ 𝑣+, 

where 𝛿𝑒 is the distance represented by arc 𝑒, 𝑣′ is its tail vertex and 𝑣+ is the set 

of all outgoing arcs of vertex 𝑣. Note that these constraints are nonlinear, but those 

can be easily linearized using the following form: 

𝑡𝑣′ ≥ 𝑡𝑣 + 𝛿𝑒 − (1 − 𝑥𝑒
𝑑)𝐿,    ∀𝑣 ∈ 𝑁\{𝑎𝑡(𝑑)|𝑑 ∈ 𝐷}, ∀𝑒 ∈ 𝑣+,        (3) 

where 𝐿 is a constant larger than the longest possible distance in the system. 

Further constraints are necessary to check if a running distance of a vehicle 

remains under its maximal possible value. 

𝑡𝑣′ + 𝛿𝑒 + 𝑥𝑒
𝑑𝐿 ≤ 𝑟𝑑 + 𝐿    ∀𝑣 ∈ {𝑎𝑡(𝑑)|𝑑 ∈ 𝐷}, ∀𝑒 ∈ 𝑣−,             (4) 

where 𝐿 is a constant larger than the longest possible distance in the system, 𝛿𝑒 is 

the distance represented by arc 𝑒, 𝑣′ is its head vertex, 𝑟𝑑 is the maximal possible 

running distance allowed for the vehicles in depot 𝑑 and 𝑣− is the set of all 

incoming arcs of vertex 𝑣. The next constraints ensure that the capacity of the 

depots is not violated. 

∑  𝑒∈𝑎𝑡(𝑑)− 𝑥𝑒
𝑑 ≤ 𝑘𝑑,    ∀𝑑 ∈ 𝐷,                                           (5) 
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where 𝑘𝑑 is the number of vehicles available in depot 𝑑. In the following, it 

presents the conditions for the driver schedules. The set of valid driver schedules 

generated in Phase 2 for depot 𝑑 is denoted by 𝑆𝑑. It assigns a vector of variables 

𝑦 to the schedules, where the component 𝑦𝑠
𝑑 = 1 if 𝑠 ∈ 𝑆𝑑 is included in the 

solution and 𝑦𝑠
𝑑 = 0 otherwise. 𝑆𝑑(𝑢) ⊆ 𝑆𝑑 denotes the set of those driver 

schedules which contain the vertex 𝑢 ∈ 𝑈𝑑. Similarly 𝑆𝑑(𝑒) ⊆ 𝑆𝑑 denote the set of 

those driver schedules that contain the arc 𝑒 ∈ 𝐴𝑑. Similarly to the vehicle part, 

the first equality ensures that each trip is included in exactly one driver schedule. 

∑  𝑠∈𝑆𝑑(𝑢) 𝑦𝑠
𝑑 − ∑  𝑒∈𝑢𝑑

+ 𝑥𝑒
𝑑 = 0,    ∀𝑢 ∈ 𝑈𝑑 , ∀𝑑 ∈ 𝐷.            (6) 

During the daily work, certain events require a driver to attend the vehicle, while 

others do not require this. This can be modeled in such a way that certain types of 

arcs should be covered by both vehicle and driver schedules, while others are 

covered only by vehicle schedule. 

It is denoted by 𝐴𝑞
𝑑 the set of arcs of type short_wait, short_break_endstation, 

short_break_depot, long_dividedstop_endstation, and long_dividedstop_depot. 

The arcs of 𝐴𝑞
𝑑 should be covered by both vehicle and driver schedules. This can 

be expressed by the following equality: 

∑  𝑠∈𝑆𝑑(𝑒) 𝑦𝑠
𝑑 − 𝑥𝑒

𝑑 = 0,    ∀𝑒 ∈ 𝐴𝑞
𝑑 , ∀𝑑 ∈ 𝐷.                               (7) 

Note that if short breaks with vehicle changes are allowed, then these conditions 

can be changed to 0 ≤ ∑  𝑠∈𝑆𝑑(𝑒) 𝑦𝑠
𝑑 − 𝑥𝑒

𝑑 ≤ 1 for short break type arcs 𝑒. Similar 

links can be given between the deadhead trips from or to the depots and the driver 

schedules containing them. 

0 ≤ ∑  𝑠∈𝑆𝑑(𝑒) 𝑦𝑠
𝑑 − 𝑥𝑒

𝑑 ≤ 1,    ∀𝑒 ∈ 𝑑𝑡(𝑑)+, ∀𝑑 ∈ 𝐷,                       (8) 

0 ≤ ∑  𝑠∈𝑆𝑑(𝑒) 𝑦𝑠
𝑑 − 𝑥𝑒

𝑑 ≤ 1,    ∀𝑒 ∈ 𝑎𝑡(𝑑)−, ∀𝑑 ∈ 𝐷.                       (9) 

Let 𝑇1, . . . , 𝑇𝑚 be the possible time slots for which parking capacities should be 

checked. Furthermore, denote 𝑃 the set of those stations and parking locations that 

can be used by the vehicles and 𝐴𝑙
𝑑(𝑇) the set of those arcs of 𝐴𝑑 that covers time 

slot 𝑇 at location 𝑙. Denote the parking capacity of location 𝑙 in time slot 𝑇 for 

vehicles of depot 𝑑 by 𝑐𝑙
𝑑(𝑇). The parking constraints look like this 

∑  𝑒∈𝐴𝑙
𝑑(𝑇) 𝑥𝑒

𝑑 ≤ 𝑐𝑙
𝑑(𝑇),    𝑇 = 𝑇1, . . . , 𝑇𝑚 , ∀𝑙 ∈ 𝑃, ∀𝑑 ∈ 𝐷.        (10) 

The constraints for the average working time can be given as follows: 

∑  𝑑∈𝐷 ∑  𝑠∈𝑆𝑑
(𝑤𝑠

𝑑 − 𝑤𝑚𝑎𝑥)𝑦𝑠
𝑑 ≤ 0,                                     (11) 

∑  𝑑∈𝐷 ∑  𝑠∈𝑆𝑑
(𝑤𝑠

𝑑 − 𝑤𝑚𝑖𝑛)𝑦𝑠
𝑑 ≥ 0,                                     (12) 

where 𝑤𝑠
𝑑 is the net working time of schedule 𝑠 ∈ 𝑆𝑑 and 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛  are the 

given maximal and minimal average net working times resp. 



Acta Polytechnica Hungarica Vol. 17, No. 7, 2020 

 – 59 – 

Furthermore, assume the followings: 

 𝑥𝑒
𝑑 , 𝑦𝑠

𝑑 ∈ {0,1}, 𝑡𝑖 ≥ 0,    ∀𝑒 ∈ 𝐴𝑑, ∀𝑠 ∈ 𝑆𝑑 , ∀𝑑 ∈ 𝐷, ∀𝑖 ∈ 𝑁\{𝑎𝑡(𝑑)|𝑑 ∈ 𝐷}.    (13) 

After these preparations, it is are ready to give the mathematical programming 

formulation of the problem. 

minimize    ∑  

𝑑∈𝐷

∑  

𝑠∈𝑆𝑑

𝑤𝑠
𝑑𝑦𝑠

𝑑

subject to    (1). . . (13)

 

As mentioned in the description of Phase 2 the main difficulty of the model is that 

in some cases the number of possible driver schedules can be extremely large. 

Usually, the theoretical models in the literature use column generation to find the 

exact optimum. However the company’s main aim was not getting an optimal 

solution, rather a feasible solution that can be calculated in a relatively short time 

and which is good enough to be used in practice. This means that it should satisfy 

all the constraints and it should not be far from the optimum. The experiments 

showed that in the case of practical instances it is not always easy to find a 

feasible initial solution by a simple heuristic. A trip contraction procedure is 

applied to handle this situation. This method decreases the number of vertices and 

arcs of the graph, so the number of possible driver schedules is also decreased. 

The following greedy trip grouper algorithm is developed, see Figure 2. The 

number of trips that will be collected in a group is given by a parameter 𝑛. The 

procedure will create a new set containing the trip groups. 

Algorithm 1 Greedy Trip Grouper 

1: procedure groupTrips(n:Integer, S : Set of Trips) 

 2: for all T ∈ S do 

3: Next(T) ← The closest compatible trip to T 

4: for all T ∈ S do 

5: if Merged(T) = false then 

6: actTrip ← T 

7: MList ← ∅ 

8: for i ← 1,n do 

9: Merged(actTrip) ← true 

10: MList ← MList ∪ actTrip 

11: if Next(actTrip) = null then 

12: actTrip ← Next(actTrip) 

13: else 

14: Exit for 

15: Add MList to the output 

Figure 2 

Greedy Trip Grouper 
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4 Discussion 

Several real problems were solved by the method. There was parts of the tasks that 

arose during the daily work of the company. The problems were selected by 

experts to represent the various cases that can happen in practice. The 

mathematical models were generated by the system and these were solved by an 

optimization solver. The following tables present the most important 

characteristics of the inputs and the results of the computations. Table 1 shows the 

most important characteristics of the problems, the number of trips, vehicles, 

vehicle types, and depots. Table 2 presents information about the models, the sizes 

of the graphs, and IP models and the number of valid driver schedules. Finally, 

Table 3 gives the details of the solutions. In some cases, the trip grouper heuristic 

was used to get a solution. The number of trips in a group is given in the table. 

There were two possibilities to stop the optimization process. If optimal solution 

had been received, then the solver finished normally. If the solution was not 

improving for a longer duration, then the solution process was stopped. The 

running times are also displayed in the table. These change on a large scale, from 

a couple of seconds to hours depending on the problems. 

Based on the results, this method can automate manual vehicle and driver 

scheduling in large part. The size of the problem highly depends on the 

characteristics of the input, such as the number of trips, vehicle types and depots, 

and the average length of trips. In some cases; the number of valid driver 

schedules was too large to solve the original problem. The trip grouper heuristic 

was able to handle this situation in most of the cases. The running times are very 

diverse, but 14 of the 20 problems were solved in 30 minutes and 5 of them in 1 

minute. These times include all phases, i.e. the graph and the driver schedule 

generation and the solution of the mathematical program. 12 problems were 

solved to optimality, without using the heuristic method, or optimization process 

stopping. 

4.1 Computational Results 

Table 1 

Properties of the problems solved 

Number Number of trips Number of vehicles Vehicle types Depots 

1 162 10 1 1 

2 193 10 2 2 

3 87 6 2 1 

4 444 11 1 1 

5 95 3 1 1 

6 201 7 2 2 

7 329 21 5 2 
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8 134 6 2 2 

9 229 6 2 1 

10 116 5 1 1 

11 134 6 2 2 

12 167 9 5 1 

13 196 15 2 4 

14 98 7 1 2 

15 245 9 1 1 

16 811 20 2 2 

17 123 5 1 1 

18 811 20 1 1 

19 162 10 1 1 

20 149 7 1 1 

 

Table 2 

Properties of the models (* = Trip grouper is used) 

 Graph IP Model 

Problem Vertices Arcs Driver schedules Columns Rows 

1 164 3698 6448 10394 5720 

2 108* 11023 127432 138947 27977 

3 91 4164 46608 51038 9595 

4 157* 4427 1053086 1057822 10600 

5 99 1604 46947 48701 3978 

6 209 22850 510926 534540 57263 

7 349 10459 85869 97909 26709 

8 142 5808 11495 17712 14249 

9 233 8330 502702 511724 20834 

10 118 781 91756 92720 1997 

11 142 5808 11495 17712 14249 

12 177 4309 57875 62791 10771 

13 212 22612 19337 42940 48478 

14 102 9836 119306 129443 24910 

15 247 4374 160352 165221 9488 

16 216* 12734 264298 278084 29791 

17 133 9032 279244 288527 21386 

18 216* 12499 369327 382253 31219 

19 166 3763 27973 32065 9869 

20 153 6440 91561 98304 16010 
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Table 3 

Properties of the solutions 

Problem Solution status Running time (sec) Trip grouper 

1 Optimal 8 No 

2 Optimal 998 Yes (2) 

3 Optimal 138 No 

4 Optimal 11364 Yes (3) 

5 Optimal 543 No 

6 Optimal 5199 No 

7 Optimal 49 No 

8 Optimal 134 No 

9 Optimal 4467 No 

10 Optimal 42 No 

11 Optimal 27 No 

12 Optimal 35 No 

13 Optimal 679 No 

14 Optimal 1212 No 

15 Stopped 6432 No 

16 Optimal 17570 Yes (4) 

17 Stopped 1506 No 

18 Stopped 25170 Yes (4) 

19 Stopped 1512 No 

20 Stopped 1531 No 

Conclusion 

In this paper, the use of a combined vehicle and driver scheduling model is studied 

for practical problems. First, a literature review on mathematical models for the 

vehicle and driver scheduling problems are briefly reviewed, then the scheduling 

problems and the solution methodology are discussed. A real problem is presented 

in a case study. The mathematical model is described and the most important 

calculation results are summarized. Based on the experience during the case study, 

these kinds of methods can help the planning process of transport companies with 

the existing constraints. Research on advanced scheduling models for public 

transport management systems is proven to be a relevant area of further 

examinations. The expected results hold out a promise to improve the operative 

planning activities of public transport. 
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