11,066 research outputs found

    An innovative EEG-based emotion recognition using a single channel-specific feature from the brain rhythm code method

    Get PDF
    IntroductionEfficiently recognizing emotions is a critical pursuit in brain–computer interface (BCI), as it has many applications for intelligent healthcare services. In this work, an innovative approach inspired by the genetic code in bioinformatics, which utilizes brain rhythm code features consisting of δ, θ, α, β, or γ, is proposed for electroencephalography (EEG)-based emotion recognition.MethodsThese features are first extracted from the sequencing technique. After evaluating them using four conventional machine learning classifiers, an optimal channel-specific feature that produces the highest accuracy in each emotional case is identified, so emotion recognition through minimal data is realized. By doing so, the complexity of emotion recognition can be significantly reduced, making it more achievable for practical hardware setups.ResultsThe best classification accuracies achieved for the DEAP and MAHNOB datasets range from 83–92%, and for the SEED dataset, it is 78%. The experimental results are impressive, considering the minimal data employed. Further investigation of the optimal features shows that their representative channels are primarily on the frontal region, and associated rhythmic characteristics are typical of multiple kinds. Additionally, individual differences are found, as the optimal feature varies with subjects.DiscussionCompared to previous studies, this work provides insights into designing portable devices, as only one electrode is appropriate to generate satisfactory performances. Consequently, it would advance the understanding of brain rhythms, which offers an innovative solution for classifying EEG signals in diverse BCI applications, including emotion recognition

    Improving diagnostic procedures for epilepsy through automated recording and analysis of patients’ history

    Get PDF
    Transient loss of consciousness (TLOC) is a time-limited state of profound cognitive impairment characterised by amnesia, abnormal motor control, loss of responsiveness, a short duration and complete recovery. Most instances of TLOC are caused by one of three health conditions: epilepsy, functional (dissociative) seizures (FDS), or syncope. There is often a delay before the correct diagnosis is made and 10-20% of individuals initially receive an incorrect diagnosis. Clinical decision tools based on the endorsement of TLOC symptom lists have been limited to distinguishing between two causes of TLOC. The Initial Paroxysmal Event Profile (iPEP) has shown promise but was demonstrated to have greater accuracy in distinguishing between syncope and epilepsy or FDS than between epilepsy and FDS. The objective of this thesis was to investigate whether interactional, linguistic, and communicative differences in how people with epilepsy and people with FDS describe their experiences of TLOC can improve the predictive performance of the iPEP. An online web application was designed that collected information about TLOC symptoms and medical history from patients and witnesses using a binary questionnaire and verbal interaction with a virtual agent. We explored potential methods of automatically detecting these communicative differences, whether the differences were present during an interaction with a VA, to what extent these automatically detectable communicative differences improve the performance of the iPEP, and the acceptability of the application from the perspective of patients and witnesses. The two feature sets that were applied to previous doctor-patient interactions, features designed to measure formulation effort or detect semantic differences between the two groups, were able to predict the diagnosis with an accuracy of 71% and 81%, respectively. Individuals with epilepsy or FDS provided descriptions of TLOC to the VA that were qualitatively like those observed in previous research. Both feature sets were effective predictors of the diagnosis when applied to the web application recordings (85.7% and 85.7%). Overall, the accuracy of machine learning models trained for the threeway classification between epilepsy, FDS, and syncope using the iPEP responses from patients that were collected through the web application was worse than the performance observed in previous research (65.8% vs 78.3%), but the performance was increased by the inclusion of features extracted from the spoken descriptions on TLOC (85.5%). Finally, most participants who provided feedback reported that the online application was acceptable. These findings suggest that it is feasible to differentiate between people with epilepsy and people with FDS using an automated analysis of spoken seizure descriptions. Furthermore, incorporating these features into a clinical decision tool for TLOC can improve the predictive performance by improving the differential diagnosis between these two health conditions. Future research should use the feedback to improve the design of the application and increase perceived acceptability of the approach

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Data Processing Scheme for Laser Spot Thermography Applied for Nondestructive Testing of Composite Laminates

    Get PDF
    This paper proposes a data processing scheme for laser spot thermography (LST) applied for nondestructive testing (NDT) of composite laminates. The LST involves recording multiple thermographic sequences, resulting in large amounts of data that have to be processed cumulatively to evaluate the diagnostic information. This paper demonstrates a new data processing scheme based on parameterization and machine learning. The approach allows to overcome some of the major difficulties in LST signal processing and deliver valuable diagnostic information. The effectiveness of the proposed approach is demonstrated on an experimental dataset acquired for a laminated composite sample with multiple simulated delaminations. The paper discusses the theoretical aspects of the proposed signal processing and inference algorithms as well as the experimental arrangements necessary to collect the input data

    Fairness Testing: A Comprehensive Survey and Analysis of Trends

    Full text link
    Unfair behaviors of Machine Learning (ML) software have garnered increasing attention and concern among software engineers. To tackle this issue, extensive research has been dedicated to conducting fairness testing of ML software, and this paper offers a comprehensive survey of existing studies in this field. We collect 100 papers and organize them based on the testing workflow (i.e., how to test) and testing components (i.e., what to test). Furthermore, we analyze the research focus, trends, and promising directions in the realm of fairness testing. We also identify widely-adopted datasets and open-source tools for fairness testing

    Runway Safety Improvements Through a Data Driven Approach for Risk Flight Prediction and Simulation

    Get PDF
    Runway overrun is one of the most frequently occurring flight accident types threatening the safety of aviation. Sensors have been improved with recent technological advancements and allow data collection during flights. The recorded data helps to better identify the characteristics of runway overruns. The improved technological capabilities and the growing air traffic led to increased momentum for reducing flight risk using artificial intelligence. Discussions on incorporating artificial intelligence to enhance flight safety are timely and critical. Using artificial intelligence, we may be able to develop the tools we need to better identify runway overrun risk and increase awareness of runway overruns. This work seeks to increase attitude, skill, and knowledge (ASK) of runway overrun risks by predicting the flight states near touchdown and simulating the flight exposed to runway overrun precursors. To achieve this, the methodology develops a prediction model and a simulation model. During the flight training process, the prediction model is used in flight to identify potential risks and the simulation model is used post-flight to review the flight behavior. The prediction model identifies potential risks by predicting flight parameters that best characterize the landing performance during the final approach phase. The predicted flight parameters are used to alert the pilots for any runway overrun precursors that may pose a threat. The predictions and alerts are made when thresholds of various flight parameters are exceeded. The flight simulation model simulates the final approach trajectory with an emphasis on capturing the effect wind has on the aircraft. The focus is on the wind since the wind is a relatively significant factor during the final approach; typically, the aircraft is stabilized during the final approach. The flight simulation is used to quickly assess the differences between fight patterns that have triggered overrun precursors and normal flights with no abnormalities. The differences are crucial in learning how to mitigate adverse flight conditions. Both of the models are created with neural network models. The main challenges of developing a neural network model are the unique assignment of each model design space and the size of a model design space. A model design space is unique to each problem and cannot accommodate multiple problems. A model design space can also be significantly large depending on the depth of the model. Therefore, a hyperparameter optimization algorithm is investigated and used to design the data and model structures to best characterize the aircraft behavior during the final approach. A series of experiments are performed to observe how the model accuracy change with different data pre-processing methods for the prediction model and different neural network models for the simulation model. The data pre-processing methods include indexing the data by different frequencies, by different window sizes, and data clustering. The neural network models include simple Recurrent Neural Networks, Gated Recurrent Units, Long Short Term Memory, and Neural Network Autoregressive with Exogenous Input. Another series of experiments are performed to evaluate the robustness of these models to adverse wind and flare. This is because different wind conditions and flares represent controls that the models need to map to the predicted flight states. The most robust models are then used to identify significant features for the prediction model and the feasible control space for the simulation model. The outcomes of the most robust models are also mapped to the required landing distance metric so that the results of the prediction and simulation are easily read. Then, the methodology is demonstrated with a sample flight exposed to an overrun precursor, and high approach speed, to show how the models can potentially increase attitude, skill, and knowledge of runway overrun risk. The main contribution of this work is on evaluating the accuracy and robustness of prediction and simulation models trained using Flight Operational Quality Assurance (FOQA) data. Unlike many studies that focused on optimizing the model structures to create the two models, this work optimized both data and model structures to ensure that the data well capture the dynamics of the aircraft it represents. To achieve this, this work introduced a hybrid genetic algorithm that combines the benefits of conventional and quantum-inspired genetic algorithms to quickly converge to an optimal configuration while exploring the design space. With the optimized model, this work identified the data features, from the final approach, with a higher contribution to predicting airspeed, vertical speed, and pitch angle near touchdown. The top contributing features are altitude, angle of attack, core rpm, and air speeds. For both the prediction and the simulation models, this study goes through the impact of various data preprocessing methods on the accuracy of the two models. The results may help future studies identify the right data preprocessing methods for their work. Another contribution from this work is on evaluating how flight control and wind affect both the prediction and the simulation models. This is achieved by mapping the model accuracy at various levels of control surface deflection, wind speeds, and wind direction change. The results saw fairly consistent prediction and simulation accuracy at different levels of control surface deflection and wind conditions. This showed that the neural network-based models are effective in creating robust prediction and simulation models of aircraft during the final approach. The results also showed that data frequency has a significant impact on the prediction and simulation accuracy so it is important to have sufficient data to train the models in the condition that the models will be used. The final contribution of this work is on demonstrating how the prediction and the simulation models can be used to increase awareness of runway overrun.Ph.D

    Fuzzy Natural Logic in IFSA-EUSFLAT 2021

    Get PDF
    The present book contains five papers accepted and published in the Special Issue, “Fuzzy Natural Logic in IFSA-EUSFLAT 2021”, of the journal Mathematics (MDPI). These papers are extended versions of the contributions presented in the conference “The 19th World Congress of the International Fuzzy Systems Association and the 12th Conference of the European Society for Fuzzy Logic and Technology jointly with the AGOP, IJCRS, and FQAS conferences”, which took place in Bratislava (Slovakia) from September 19 to September 24, 2021. Fuzzy Natural Logic (FNL) is a system of mathematical fuzzy logic theories that enables us to model natural language terms and rules while accounting for their inherent vagueness and allows us to reason and argue using the tools developed in them. FNL includes, among others, the theory of evaluative linguistic expressions (e.g., small, very large, etc.), the theory of fuzzy and intermediate quantifiers (e.g., most, few, many, etc.), and the theory of fuzzy/linguistic IF–THEN rules and logical inference. The papers in this Special Issue use the various aspects and concepts of FNL mentioned above and apply them to a wide range of problems both theoretically and practically oriented. This book will be of interest for researchers working in the areas of fuzzy logic, applied linguistics, generalized quantifiers, and their applications

    A Novel Patent Similarity Measurement Methodology: Semantic Distance and Technological Distance

    Full text link
    Measuring similarity between patents is an essential step to ensure novelty of innovation. However, a large number of methods of measuring the similarity between patents still rely on manual classification of patents by experts. Another body of research has proposed automated methods; nevertheless, most of it solely focuses on the semantic similarity of patents. In order to tackle these limitations, we propose a hybrid method for automatically measuring the similarity between patents, considering both semantic and technological similarities. We measure the semantic similarity based on patent texts using BERT, calculate the technological similarity with IPC codes using Jaccard similarity, and perform hybridization by assigning weights to the two similarity methods. Our evaluation result demonstrates that the proposed method outperforms the baseline that considers the semantic similarity only

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports
    • …
    corecore