8 research outputs found

    A three-level BDDC algorithm for mortar discretizations

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1137/07069081X.In this paper, a three-level balancing domain decomposition by constraints (BDDC) algorithm is developed for the solutions of large sparse algebraic linear systems arising from the mortar discretization of elliptic boundary value problems. The mortar discretization is considered on geometrically nonconforming subdomain partitions. In two-level BDDC algorithms, the coarse problem needs to be solved exactly. However, its size will increase with the increase of the number of the subdomains. To overcome this limitation, the three-level algorithm solves the coarse problem inexactly while a good rate of convergence is maintained. This is an extension of previous work: the three-level BDDC algorithms for standard finite element discretization. Estimates of the condition numbers are provided for the three-level BDDC method, and numerical experiments are also discussed

    Isogeometric BDDC Preconditioning with Deluxe Scaling

    Get PDF
    A balancing domain decomposition by constraints (BDDC) preconditioner with a novel scaling, introduced by Dohrmann for problems with more than one variable coefficient and here denoted as deluxe scaling, is extended to isogeometric analysis of scalar elliptic problems. This new scaling turns out to be more powerful than the standard ?- and stiffness scalings considered in a previous isogeometric BDDC study. Our h-analysis shows that the condition number of the resulting deluxe BDDC preconditioner is scalable with a quasi-optimal polylogarithmic bound which is also independent of coefficient discontinuities across subdomain interfaces. Extensive numerical experiments support the theory and show that the deluxe scaling yields a remarkable improvement over the older scalings, in particular for large isogeometric polynomial degree and high regularity

    Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations

    Get PDF
    Hybridizable Discontinuous Galerkin (HDG) is an important family of methods, which combine the advantages of both Discontinuous Galerkin in terms of flexibility and standard finite elements in terms of accuracy and efficiency. The impact of this method is partly evidenced by the prolificacy of research work in this area. Weak Galerkin (WG) is a relatively newly proposed method by introducing weak functions and generalizing the differential operator for them. This method has also drawn remarkable interests from both numerical practitioners and analysts recently. HDG and WG are different but closely related. BDDC algorithms are developed for numerical solution of elliptic problems with both methods. We prove that the optimal condition number estimate for BDDC operators with standard finite element methods can be extended to the counterparts arising from the HDG and WG methods, which are nonconforming finite element methods. Numerical experiments are conducted to verify the theoretical analysis. Further, we propose BDDC algorithms for the saddle point system arising from the Stokes equations using both HDG and WG methods. By design of the preconditioner, the iterations are restricted to a benign subspace, which makes the BDDC operator effectively positive definite thus solvable by the conjugate gradient method. We prove that the algorithm is scalable in the number of subdomains with convergence rate only dependent on subdomain problem size. The condition number bound for the BDDC preconditioned Stokes system is the same as the optimal bound for the elliptic case. Numerical results confirm the theoretical analysis

    A three-level BDDC algorithm for Mortar discretizations

    No full text

    A Three-Level BDDC Algorithm for Mortar Discretizations

    No full text
    corecore