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A THREE-LEVEL BDDC ALGORITHM FOR MORTAR DISCRETIZATIONS *
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Abstract. In this paper, a three-level BDDC algorithm is developedtffier solutions of large sparse algebraic
linear systems arising from the mortar discretization tp#t boundary value problems. The mortar discretization
is considered on geometrically non-conforming subdomairtitons. In two-level BDDC algorithms, the coarse
problem needs to be solved exactly. However, its size wilidase with the increase of the number of the subdo-
mains. To overcome this limitation, the three-level algon solves the coarse problem inexactly while a good rate
of convergence is maintained. This is an extension of pusigork, the three-level BDDC algorithms for standard
finite element discretization. Estimates of the conditiambers are provided for the three-level BDDC method and
numerical experiments are also discussed.
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1. Introduction. Mortar methods were introduced by Bernardi, Maday, andrR483
to couple different approximations in different subdonsago as to obtain a good global
approximate solution. They are useful for modeling multispics, adaptivity, problems with
joints, and mesh generation for three dimensional compiextsires. The coupling between
different subdomains in mortar methods is done by enforcértpin constraints on solutions
across the subdomain interface using Lagrange multipligvs call these constraints the
mortar matching conditions.

BDDC (Balancing Domain Decomposition by Constraints) mdtwere introduced and
analyzedin [9, 22, 23] for elliptic problems with standardt& element discretizations. These
iterative methods are new versions of the balancing NeupNsumann algorithms with a
coarse problem given in terms of a set of primal constraiffizo-level BDDC methods
have been extended to saddle point problems in [21, 10, 28in8@finite problems in [18],
nonsymmetric problems in [33], and the problems with mdiitséite element discretization
in [14, 13]. The complicated geometrically non-conformgupdomain partition leads to a
much larger coarse problem than that of the standard dizatien. In the two-level BDDC
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algorithms, the coarse problems are generated and fadigrdidect solvers at the beginning
of the computation. The coarse components can be a botkefabe algorithms if the
number of the subdomains is large.

Recently, there are several papers about inexact solveBEXDC algorithms with stan-
dard finite element discretization. In [32, 31], two thregdl BDDC algorithms are intro-
duced which solve the coarse problems inexactly by introduan additional level. Inexact
local solvers based on multigrid methods were introduc@®. In [11], several inexact
solvers for both the coarse and local components are corsiddn inexact FETI-DP algo-
rithm is also introduced in [15]. Connection between FE'R-Bnd BDDC algorithms has
been discussed in [24, 19, 6, 5].

In this paper, we extend the algorithms in [32] to mortar &relement discretization
with quite general subdomain partitions. We solve the eareblem approximately, by
introducing an additional level and using the BDDC algaritrecursively. We decompose
the whole domain into subdomains and then group severabsohits to subregions to obtain
a subregion partition. The subdomain partition can be géacaly nonconforming (it does
not need form a triangulation of the original domain), and fubregions usually will be
irregular (they may not have uniformly Lipschitz continsdoundaries). We assume that our
subregions are uniform domains and apply the results deedlfor such irregular domainsin
[16]to our analysis. See [16] and the references thereithéodefinition of uniform domains.

We provide estimates of the condition number bounds of tegeaywith the new precon-
ditioners and show that a good rate of convergence still hatained. We note that we have
to choose the edge average primal constraints in the masenetization due to the mortar
matching conditions. The resulting coarse problems aferdifit from the ones in [32], where
the vertex primal constraints are used. This differenceth@deometrically non-conforming
subdomain partition need a more complicated analysis ®ctmdition number bound. We
also note that this analysis can be used for the three-l@Bi®algorithms for standard finite
element discretization with edge primal constraints chdeetwo dimensions.

The rest of the paper is organized as follows. We first reviéwaalevel BDDC method
for mortar discretization briefly in Section 2. A three-le®DDC method and the corre-
sponding preconditionefvf—1 are introduced in Section 3. We give some auxiliary results i
Section 4. In Section 5, we provide an estimate of the cayditumber bound for the sys-
tem with the preconditione¥/ ~! which is of the formC(1 + log(H /H))?(1 + log(H/h))2,
whereH, H, andh are typical diameters of the subregions, subdomains, andesits, re-
spectively; see Section 3 for the definitions of subregiam$ subdomains. Finally, some
numerical experiments are discussed in Section 6.

Throughout the pape€; denotes a generic positive constant that does not depend/on a
mesh parameters and the problem coefficients.
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2. Atwo-level BDDC algorithm for mortar discretizations.

2.1. A model problem and the mortar discretizations. We will consider a second
order scalar elliptic problem in a two dimensional regferfind v € H{ (€2), such that

(2.1) /qu-Vvd:c:/fvd:z: Yo € Hi (),
Q Q

wherep(z) > 0 forallz € Qandf € L?(Q).

We decomposé into N nonoverlapping subdomaing; with diametersH; and set
H = max; H;. We make the following assumption for our subdomain partiti

ASSUMPTIONZ2.1. Subdomains are polygons and each subdomain has compaiable d
ameter to its neighbors.

The partition can be geometrically non-conforming, whenga& of subdomains can
intersect only a part of a subdomain edge. In other wordspé#ntition does not need form
a triangulation of2. In the following, we will regard the edges as the interfaeéneen
subdomains. We then define the interface of the subdomadiitigaby

I'= UFU \ 09,
ij

where
Fij = 09 () 09;.

A quasi—uniform triangulation is given for each subdomaitie introduceW ), the
standard finite element space of continuous, piecewisarlifugctions associated with the
given triangulation inQ2;. In addition, the functions iW () vanish ondQ. We define the
product space of subdomain finite element spaces by

W:H“M.

Functions inW can be discontinuous across the subdomain intefface

The mortar methods are nonconforming finite element methbmfnd a good approxi-
mate solution, the mortar matching condition is enforcedumttions in the spac#/ across
the subdomain interface by using suitable Lagrange midtgl Optimal order of approxima-
tion has been proved for the elliptic problems in both two #tmde dimensions; see [3, 2, 1].
In [3], the error estimate for the mortar approximation west foroved for both geometrically
conforming and non-conforming partitions.

To introduce Lagrange multiplier spaces, we first selecinmamtar and mortar parts of
the interface. Among the subdomain edges, we can selecs é{dbat provide a disjoint
covering of the interfacg, see [26, Section 4.1],

UE:i FINE,=0,1+#k.
l
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EachF; is a full edge of a subdomain. We call these edges the nonneattges. Since the
subdomain partition can be geometrically non-conformmgingle nonmortar edgg, C
02; may intersect several subdomain boundaries. This provigesth a partition

Fl = UFZ'J', Fij = 891 N 8QJ
J

We call theseF;;, the mortar edges, which are oppositeHoand can be only a part of a
subdomain edge.

A dual or a standard Lagrange multiplier sp&d&F;) is given for each nonmortar edge
F, C 99;. We define a space,

W(F) = W95 N H)(F),

that is the restriction of the finite element functions to tteamortar edges and vanish on
the boundary of these edges. We require that the spaEE ) has the same dimension as
the spaca?v(Fl) and that it contains the constant functions. Constructidissich Lagrange
multiplier spaces were first given in [2, 3] for standard Laagge multiplier spaces and in
[34, 35] for dual Lagrange multiplier spaces; see also [Y#. note that the basis functions
{1}, of the Lagrange multiplier spad¥ (F;) satisfy

(2.2) > e =1.
k

For (w1, -+ ,wy) € W, we definep € L?(F;) by ¢ = w; onF;; C F;. The mortar
matching condition in the geometrically non-conformingtjtieon is then given by

(2.3) /F (w; — $)Ads =0, YA € M(F), VE.

We further define the following two product spaces of M¢F;) andvov(ﬂ), respectively,
(2.4) M = [[M(#) and W, = [ W(F).
l l
The mortar discretization for problem (2.1) is to approxienthe solution by Galerkin’s
method in the mortar finite element space,

W = {w € W : w satisfies the mortar matching condition (2.3)

2.2. Atwo-level BDDC algorithm. In this subsection, we construct a two—level BDDC
algorithm for the mortar discretization, as in [14]. We fidgrive the primal form of the
mortar discretization and then introduce a BDDC precoodéi for the primal form.

We divide unknowns in the subdomain finite element spAE€ into subdomain interior
and interface parts. We then select primal unknowns amoagntierface unknowns and
further decompose the interface unknowns into the primétha rest, called dual unknowns,

(2.5) WO =W x W and WP =w@ x W@,
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wherel, T', II, andA denote the interior, interface, primal, and dual unknowespectively.
The primal unknowns are related to certain primal constsasplected from the mortar
matching condition (2.3) and they result in a coarse compboiethe BDDC preconditioner.
A proper selection of such constraints is important to abéescalable BDDC algorithm. We
consider{t;; x }x, the basis functions iVI(F}) that are supported iff;;, and introduce

(2.6) Vij = Z"/’ij,k-
p

ASSUMPTION2.2. There is at least one basis functigr; , whose support belongs to
Fij-
We introduce the trace space®f on the subdomain boundaries,

N
wr = [[WY.
=1
We select the primal constraints far,, - - - ,wx) € Wr over each interfacé;; to satisfy
(27) / (wi — wj)wij ds = 0.
Fi'

In more detail, the primal unknowns associated to thesetints will be defined by

g, wibigds [ wit ds
o Jpyiads [ vids

In the case of a geometrically conforming partition, i.ehen £; is a full edge of two

Um

subdomains, the above constraints are the regular edgagaveratching condition because
1;; = 1, the sum of all Lagrange multiplier basis functiof;; 1.}, provided forF;;, see
(2.6) and (2.2).

We make the primal constraints explicit by a change of véemlsee [17, Sec 6.2], [19,
Sec 2.3], and [14, Sec. 2.2]. We then separate the unknowihe spacéV () as described
in (2.5). We will also assume that all the matrices and vecdoe written in terms of the new
unknowns.

Throughout this paper, we use the notatMrfor the product space of local finite ele-
ment space¥ (V). In addition, we use the notatiovi for a subspace oV satisfying mortar
matching condition (or point-wise continuity conditiorgrass the subdomain interface and
the notationV for a subspace oV satisfying only the primal constraints. For example, we
can represent the space

(2.8) Wr = {w € Wr : w satisfies the primal constraints (2}7)
in the following way,

WFZWA XWH.
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We further decompose the dual unknowns into the unknownsamonmortar part and the
rest,

WA = WA,n X WA,m,

wheren andm denote unknowns at each parts, respectively.
The matrix representation of the mortar matching condif@:3) on functions in the
spaceWp can be written as

(2.9) B,w, + Bw,, + Bnwn = 0.

Here we enforced the mortar matching condition using a redil@grange multiplier space,
since the functions in the spa&?p satisfy the primal constraints selected from the mortar
matching condition (2.3). The reduced Lagrange multigpace is obtained after eliminating
one basis function amonfy;; . }» for eachF;; C F; so that the matrixB,, in (2.9) is
invertible. The unknowns,, are then determined by the other unknowas, , wrr), which

are called the genuine unknowns. We define the space of genakmowns by

Wg =Wa o, X Wi
and define the mortar map,
-B;'B,, —B;'Bn
(2.10) Rr = I 0 :
0 I
that maps the genuine unknownswig into the unknowns iV which satisfy the mortar
matching condition (2.9). In the following, we will regaM¥ ¢; as the spacﬁ/\\/p and regard
ﬁp as an extension frorﬁ/Vp to the spacéAN/fp to be consistent with notations of the three-
level algorithm.

To derive the linear system of the mortar discretization,intedduce several matrices.
The matrixSéi) is the local Schur complement matrix obtained by elimirgthe subdomain
interior unknowns,

S0 = K- K ",

whereK () s the local stiffness matrix ordered as follows:
KO g Kj) KX K
KO — 11 m) _ | g @ g
K(z) K(z) AT AA AIl
r1 NN K(’L) K(’L) K(’L)
17 IIA IIIT

We define extensionép and Rr by

Wr—SWr—5Wr,
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whereRr is the mortar map in (2.10) an@r is the product of restriction maps,
Rg) : WF — Wg).

We next introduce the matricég andSr, the block diagonal matrix and the partially assem-
bled matrix at the primal unknowns, respectively, as

St = dlagl(Sg)) and §F = R%SFRP

The linear system of the mortar discretization is then emitas: findug € Wp such
that

(2.11) REYSrRruc = Rge,
wheregg € W‘p is the part of genuine unknowns gf € Wr andgr is given by

grloo, = &t = £ — K{(K}) 7',
o (1
wheref() = I(Z.)
fF
In the two—level BDDC algorithm in [14], we solve (2.11) ugia preconditionef/ !
of the form,

) , the local load vector.

(2.12) M~'=R} S Rpr,

where the weighted extension operaltys 1 is given by

D, 0 0
(213) Rpr=DRr=|0 D, o0 |E, D,=0D,=IDy=L
0 0 Dp

We call A/ ~! the Neumann-Dirichlet preconditioner. The weight fackbis determined to
be zero at the nonmortar interfaces and to be one otherwisge type of weight was shown
to be the most efficient for the elliptic problems with jumpefficientsp; when the part with
smallerp; is selected to be the nonmortar part, see [7].

AssUMPTION 2.3. We select the nonmortar and mortar parts of the interfate(=
0Q; () 012;) to satisfy

Pi < Py

wheref?; is the nonmortar part an€l; is the mortar part.
Using a block Cholesky factorization, we obtain

N ONEPOR
~ NT K
(2.14) Sp' =Rl [ D (o RY ) < o )

0
/ : Rra+®Sg'o7,
= KN K2 < )

RY
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where the restriction8ra andRX) are defined by
Rra : WF — Wa and RX) :Wa — WX).

Here® is the matrix whose columns are the coarse basis functicdchaminimal energy,

N

(i) @ \ ! (07T
o-rw-m Y (ong) (6 KB ) ()
1=1 KAZI KAZA KI(Il)A

whereRrn ande({) are the restrictions,
Rro: WF — WH and Rl('}) : WH — Wl('})

The coarse level problem matrbs; is determined by
(2.15)
N O ) ) o o Kl K] R (i)
sn=Sl RSk - (K0 K)o . Ry,
14t III1 7 A K(A)I K(A)A K(z)T il
which is obtained by assembling subdomain matrices; foitiaddl details, see [9, 19, 22].
Therefore, the preconditiondf —! contains local components and a coarse component that
involve solving the Neumann problems in each subdomain ahding the coarse problem
with the matrixSty, respectively.
From [14, Theorem 4.7], we know that for any € \/A\/‘p,

(2.16) u?Mup < u?ﬁggpﬁpup <C(1+ 1og(H/h))2 uleup.

3. A three-level BDDC method. In the three-level algorithms, as in [32, 31], we will
not factor the coarse problem mat¥ defined in (2.15) by a direct solver. Instead, we will
introduce another level and solve the coarse problem appet&ly on this level by using
ideas similar to those for the two-level preconditioners.

Let subregior)’ be a union ofN; subdomaing2 with diametersHi(j) and then we
obtain a subregion partitiomj}j\’;l. We make the following assumption on our subregions,
see [16] and the references therein for the definition ofarnifdomains:

AssuMPTION3.1. The subregions are uniform domains.

We denote byl (/) the diameter of the subregid’. Let H = max; H) andH =
max;_; Hi(j). Then N, the total number of subdomains, can be writtenNas= N; +
-+ + Ny.. An example of a subregion partition, that is obtained frogeametrically
non-conforming subdomain partition, is shown in Figure t.tHe following, we will use
a superscript for the subregion index and a subscript fostibelomain index, for example,
Q7 and$); for subregions and subdomains, respectively. For subdmirathe subregiof¥?,
we use the notatiof/.

In the subregion partition, we define edges as the intemsedt two subregions and
vertices as the intersection of more than two subregiongijagi to [27, Definition 4.1]. In
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FIG. 1. A subregion partition (left) and unknowns at a subregiogtt) whenﬁ/H = 4 ; small rectangles
are subdomains, the white nodes designate primal unknotvitie anterior of the subregion, and the black nodes
designate primal unknowns on the subregion boundary.

addition, the finite element spaces for the subregions aendiy the primal unknowns of
the two—level algorithm so that the subregion partitiongsipped with a conforming finite
element space, for which the unknowns match across thegiohrimterface. On this new
level, the mortar discretization is no longer relevant. Vde then develop the theory and
algorithm for the subregion partition as in the standard BDdlgorithm for conforming finite
element discretizations. However, we need to construatgmpiate finite element spaces for
the subregions equipped with the primal unknowns to prothdecondition number bound.

We obtain the subregion matr&g) by assembling the coarse problem matrices of the
subdomaing c Q7

N; ) @\ gOT
: N - - K9 K K -
s =Som - (st k) (1 8 ) () e
Ui S w )l

whereRg) : /V[7n|gj — /V[7r(f) is the restriction of primal unknowns in the subregi®hto the
subdomairﬂ{. We note that the global coarse problem maffixcan be assembled from the
Sl({) of each subregions.

We will build a BDDC preconditioner for the problesj; following the same construc-
tion as in the two—level algorithm for standard conformingté element discretizations. In
the following, we introduce the same finite element spaceés te previous section except
that they are based on the subregion partition and the siebragknowns. We will use the
subscriptc to denote those unknowns, function spaces, and matricgsddio the subregion
level. For exampIeWEj) denotes the discrete space for the subregjionlt consists of the
primal unknowns of the two—level algorithm contained in siubsregiort)’.

Let I'. be the interface between the subregions Bpd- I". We then decompose the
subregion unknowns into subregion interior and interfadenowns, and further decompose
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the interface unknowns into primal and dual unknowns,
W =WP x W and Wi =w{) x W

Here, the average constraints on subregion edges havedieeted as the primal constraints
and we have changed the variables to make the primal camstrexplicit. Similarly, we
define the product spaddr_, its subspaceﬁ\VFC andeC, and the extensions,

—~ R
We note that\/ifpc is the space of vectors of unknowns that have the same vatwiessa
the subregion interface, arfdv/pc is the space of vectors of unknowns that have the same
values at the subregional primal unknowns and can haveeliff@alues at the other interface

unknowns.
We define our three-level preconditionl%??‘1 by
(3.2)
N () g\
K K 0 ~
RT )" II IA 15T
RE - ;(OR ) < KO g, ) < RY ) Rra + ®M;'07 § Rpr,

whereMgl is an approximation of;'; see (2.14). In other words, for a givan < Wc,
we computez = M ' ¥ instead ofy = S;' .

We now introduce the approximati(Mﬁ1 in detail. We first order the unknowns €
Wc into subregion interior and interface unknowns,

T
y:(ygl)a"'aygN)ach) .
We then write the problerfipy = ¥ as
(3.3)
(1) MW" pA) 1 1
SHICIC 0 0 SHI‘CIC RFc ygc) ‘I’(IC)
0 0 : : _ :
Ne Ne Ne) Ne Ne ’
0 o s SR | | e
Rélc) SI(Ilr)CIC T Zj e Sgl\f ZC SHFCFC yr. \Ich

WhereR?g is the restriction and,. .. is the fully assembled matrix at the subregion inter-
face,

R(ch) . Wr, —>W(ch) and Sp, ., = ZRF HJF . (FJ)
Here we solve foy

IcIe r

o
(3.4) v = st (v - s{), RPyr)
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and obtain the interface problem,

. N—1 T .
(3.5) ZR(J) W —sy) 89 sP YRY | yr. =hr,
where

N
(3.6) . =Yr, ZR a Sl(_IJI2 e 1('131) 10‘1’51)'

We denote by'") the Schur complement &,

T(j) — Sl('ljg I S(j) (S(j) )71(5*(.7') )T

Orro \W 1,1, Orer./ 2

and define the block diagonal matrix,

T = diag,(T).
We then introduce the partially assembled matrix and tHg &dsembled matrix,
(3.7) T =RETRr, and T = RE TRy,

using the extensionBr, andﬁpc defined in (3.1). The reduced subregional interface prob-
lem (3.5) is then written as: fingr, € \/A\Ipc such that

(38) E%“CTEFCYFC = hpc.

When using the three-level preconditiodgrl, we do not solve (3.8) exactly. Instead,
we replaceyr, by zr,, where

(39) Zr, = Eg_]rcfilﬁl)ypchpc.

HereRp r, is the scaled extension such thas r. = DRr_. The three-level coarse problem
appearing in the computation @t is solved quite cheaply compared to that of the two-
level algorithm, since its size is much smaller than thathaf two-level algorithm. The
weight factorD has the value 1 as its diagonal components correspondihg tddbal primal
unknowns inW‘HC and the following values for the other diagonal components:

pi(x) ®)
(3.10) 6l (1) = =2 zen(WP),
I = @) (Wa.)
wherey € [1/2, 0) andn(W(AjZ) denotes the set of nodes in the finite element sp&é@
In addition,V, is the set of the subregion indiceésuch that: € n(WXZ) andp;(z) is the
coefficient of (2.1) atr in the subregio2’. In our theory,; () is a positive constant in the
subregior()?.
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ASSUMPTION3.2. p; () is a positive constant in each subregigh

We then computegi) fromzp, asin (3.4),

_ - _ _ :

311) 2 = i) (W) - sf), Rar).

As a result, we obtaia = Mgl\Il, the solution of the inexact coarse problem for a givden
Let (u, v) denote thé2-inner product for vectors andv. We summarize our three-level

algorithm equipped with the preconditionl&*1 in (3.2) as follows:
Let A = RTSpRr, b = RLge, andT'OL be given.

Step 1. Start with initiak, compute residualy = b — Axg, and set = 0.

Step 2. while(||r|| /|70l > TOL)
Step 2.1z, = M1,
Step2.2k =k+1
Step 2.3if & > 2)
Br = (zk—1,Tk—1)/(Zh—2, Th—2)
dy = zg—1 + Brdr—1
else
pr=0, di = 29
end if
Step 2.4y = (2p—1,7%—1)/(Adg, di)
Step 2.5 Computey = xx—1 + ady
Step 2.6 Compute, = b — Axy,
end while

Step 3.z = x is the required solution.

In the two-level aIgorithm]T/[:1 in Step 2.1 is replaced by the two level preconditioner
M~!, see (2.12). From (2.12) and (2.14), we know that we needlt@ smbdomain local
problems and one coarse problem exactly when we ajty to a vector in Step 2.1. When
we use our three-level precondition?ﬂefr‘1 in Step 2.1, we solve the subdomain local prob-
lems exactly as in the two-level algorithm, see (3.2). We dbsolve the coarse problem
exactly. Instead, we apply the standard two-level BDDC @nédioner to solve the coarse
problem. In other words, we use (3.9) and (3.11), which vakd to solve a subregion coarse
problem and subregion local problems exactly. We note tiesize of the subregion coarse
problem is much smaller than that of the two-level coarsélera.

4. Some auxiliary results. In this section, we will collect a number of results which are
needed in our theory.

In the following, the notatiorf = O(g) means that there exist positive constanénd
C, independent off andh, such that

cg < f<Cg.
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Let £ be an edge of a subdomdd;. We introduce a Sobolev spae%éQ(E) as
HY*(B) = {U cL¥E):Te Hl/2(6ﬂi)} .

Herev is the zero extension afto the subdomain boundary. The norm is given by

- 2 v\r
12(p) = Vlanre) +/E diste, 08) @)

[y
HO

where

2 _ |U
[0/271/2 ) = / / |x_y|2 P ds(w) sty

LEMMA 4.1.Given a functiory(z) = z(H — z) defined or{0, H], we consider a nodal
interpolantg” (z) = I"(x(H — x)) to the finite element space equipped with a quasi—uniform
triangulation given orj0, H]. Then we have

- / £ de = O(H).  [lg"(@)l 0.y = OCH).

for sufficiently smalh.
Proof: We can obtain these results by a direct calculatioryfor

H/ z)de = O(H),  N9@@) /20 4y = OH")

and interpolation results fay".
a
In the BDDC algorithm, we use the Lagrange multiplier fuanti);; across the subdo-
main interfacd’;; = 99;N0S; to enforce the primal constraint, see (2.7). We note¢hais
the sum of Lagrange multiplier basis functions supporteHin We introduce a subinterval
Ef;) of F;; such that

(4.1) B = {supre!”) : suprio”) C supduy,) },
1
whereqbl(i) are the nodal basis functions in the finite element spéé,@. Similarly we
introduceE,! using the nodal basis functions W7’
We select such intervals on the boundar§fand denote them b{E}. } . and call them
reduced edges ¢1;. We define our edge average as

f vy ds
fF Vij ds’
whereF}; is the interface containing, andy;; is the Lagrange multiplier function used for

the primal constraint oi;;. We use the notationig,, for the average value rather thap,
for a simple presentation of the proof in Lemma 4.2.
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Tl

FiIG. 2. An example of the functiog;; with the standard Lagrange multiplier basis in a geometticaon-
conforming partition:©2; is the nonmortar part of’; ;, the big white nodes designate the dofs of Lagrange meltipli
basis{%;; , }» supported inF;;, andy;; = 3, Yij k-

For areduced edgg;, = EZ(;) C F;; C 09, defined in (4.1), we may considéj;, as a
straight line with its lengthi;, (< H;). Using Lemma 4.1, we construct such a functjérin
the interval0, H}] and obtain a functiop; (s) defined onE}, using an appropriate translation
and rotation. We exteng (s) by zero toF;;. For the functioryy, we can prove

wa Gk pij ds

(4.2) Tkp, = fp o ds
iJ

= OH}), Ngell o2, = OCHD),

see Lemma 4.1. HerH,, is the length off.. In the geometrically non-conforming partition,
whenF;; is a part of the subdomain edgé,; may not be the constant function with the value
one onfkj;, see Fig 2. However we can see tgag, with suchy;; is similar to the regular
average ofy, that is used in the conforming finite element case,

_ fFij g ds
Gk =
fFij 1ds

We note that (4.2) also holds for the case when the lengti;ofs comparable to the mesh
sizeh;. This can be shown by a direct calculation.

LEMMA 4.2. Let {Q}; be the subdomains in a subregién and let{E;}, be the
reduced edges (SE; For given valuegmy }, let u be the minimal energy extension to the
subdomain finite element spatz’zéj with its average valuegg, = my, on eachEy. We then
have

Chlulf (g < > s, — g < Colulfn gy
Tl

Proof. We consider a function in Vlhj defined as

v(z) = ! (Up, —Up,)or(2) +UE, ,

% JkE,
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wheregy, is the discrete harmonic extensiongfto V;"J Hereg; (z) is the function which
satisfies (4.2) ot and is zero omm;'- \ Ej. We can see easily that

'UE;C = uEk.
Sincew is the minimal energy extension with the average vaiugs= my, we have

2 2
[l sy < 10l i)

We consider

IN

2 2
|U|H1(Q;ﬁ) |U|H1(Q;ﬁ)

> : (g, — U, )Pk(x) +Un,

% JkE,

H(Q1)
2

> ! (g, — g, )dr(7)

5 JkE,

H(Q})

1 _ _
< CZ —(ug, — UE1)2|¢k|§11(szi)
Ik E, ’

1
<C — _ = 2 2
B ijg_k%k (= lon g,

where we use [27, Lemma 4.10] or [29, Lemma 2.4] for the lasgjirality. Applying (4.2) to
the above equation, we obtain

(4.3) |U|§11(Q;’.) < CZ(ﬂEk — )%
k
We now prove the other bound as follows:

(4.4) Z(EE)@ - HEl)2 = Z((u - EEl)Ek)2

k

k

1 —

<C Z m”u—uElH%z(pij)uwijuiz(ﬂj)
Fij DBk, k W Fig 7Y

< O|U|§11(Q;ﬁ)-
Here we have used the facts that

[¥ijllL2(myy < CHY?, ; Vi = O(H),
ij

the Poincaré inequality
1 —
ﬁ”u —up ||2L2(Fij) < C|u|§11/2(pw)a
and the trace inequality for the discrete harmonic function
|u|§11/2(Fw) = C|u|§{1(9§).

Here H stands for the diameter @f;;.
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V3
Vi ‘ i v vyl
§ QI ) . QlG i P
4 : Q 6
p P,
Ve QJ' 3 Vv — V% b L=
i p2 i p4 VG‘Q—
_ Ps
Q'l : itV; :
Vg vt
P7 4
vy [N

FIG. 3. Left: subregionQ?(= U}il Qj) with irregular boundary;v are subregion vertices and the nodes
at black dots are unknowns at the subregion boundary. Rigltttangulation for the subregiof®; p,, are primal
nodesc is the center of the primal nodespk}gzl, vy, are the subregion vertices, and the nodes at white circles
are the subdomain vertices.

O

Since each subregion is a union of subdomains, we might hadbregions with ir-
regular boundaries as in Figure 3. We introduce a new meshacm subregior)’. The
purpose of introducing this new mesh is to relate the quadi@im in Lemma 4.2 to one for
a conventional finite element space. Here, we follow [8, 25].

We construct a triangulation 6¥ with its node set containing the primal nodes and the
subdomain vertices. The vertices of the subdorfigiare the end points df;;, = (25NQ),
whereQ; are neighbors o&‘l; We note that we have one primal unknown for each interface
F}.. We locate the node corresponding to the primal unknowneatrtiolpoint of the two end
points of F;;,.. We call these nodes primal nodes. After introducing thenplinodes in the
subdomairﬂé, we consider the center point of all these primal nodes gazh component of
the center points is the average of each component of theapriodes. We then connect all
primal nodes and vertices to the center point and obtairaagtilation on;'- as in Figure 3.
Finally the union of such triangulations 6f; gives a triangulation of the subregién. The
corresponding finite element space is denote@hy").

We note that the subregid® is equipped with the triangulation whose nodes consist
of the primal nodes, vertices, and the center points of ilmiemainsﬂ;l, see Figure 3. We
call the nodes other than the primal nodes the secondarsnédeong the secondary nodes,
we call those at the interior of the subregi@hthe interior secondary nodes and those at the
boundary of the subregidd’ the boundary secondary nodes. In addition, we call two nodes
in a triangulation adjacent if they are connected througbdge of the triangulation.
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For a functionp! (z) € Up (), we define an interpoladf} ¢! (z) to Uy (Q2') by
¢! (x), if = is a primal node/¥ ¢’ (p) = &' (px),

the average of the values at all adjacent primal nodes orsaaf@¥,
I ¢'(z) = { if  is a boundary secondary nod&, ¢’ (v1) = L(¢' (pr) + &' (ps)),

the average of the values at all adjacent primal nodes
if  is an interior secondary nod&; ¢’ (c) = 1 20 _, ¢ (pr).

Here we presented the specific values(ﬁ}ifgzsl (z) for the case in Fig 3.

We recall thatWﬁi) is the discrete space of values at the primal nodes in theegidor
9% andW(Fij is its trace space on the subregion boundary. All these nomtesspond to the
primal unknowns of the subdomain partition. Given ahy Wéi), we can find a function
¢! € Uy () with the values at the primal nodes equaling to the compsneid that
correspond to the primal unknowns associated with thosesioBor such) € Wﬁi), we
define a similar interpolant toz () by

IF ¢ = I ¢ (2).

We note that the functios’ is not unique buf}}%(z) will be determined uniquely since the
interpolation[}}i depends only on the values at the primal nodes.

We now define a mappin@giqb from W(FZ) to the spacé/ (092¢), the trace space of
Un (), by

I ¢ = (I de)| o

Here ¢, is any function inWﬁi) such thaip.|sn: = ¢. The map is well defined, since the
values Oflﬁiqbe on the subregion boundary only depend on the values. @t the primal
nodes on the subregion boundary.

We introduce the range spac‘éﬁ (Wéi)) andlgm (W(Fic)), and denote them by

Su () = I (WD) and Sy (897) := I5Y (W),

We note thatSy (1) andSy (09°) are the subspaces by (Q2¢) andUy (0Q°), respectively.
In order to prove Lemma 4.5, which plays an important role um condition number
estimate, we need to establish the equivalence betwedih'trerm of the discrete harmonic
extensions in the spacss; () andUy () for any¢ € Sg (992°).
LEMMA 4.3. There exists a constant > 0, independent off and |2?|, the volume of
¢, but dependent on the shape regularity of the triangulatitf?, such that

|Ig¢|H1(Qi) < Clélgi(oiy and Hfgfbnp(m) < OlgllL2iy, Vo € Un ().

Proof: See [8, Lemma 6.1].
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LEMMA 4.4.For ¢ € Sg(09QY),

nf ]l & iy

v A i
| HHI(Ql) vEUH (21),v]50i =0

inf
vESH(Q),v]5qi =¢

and

vesH(QliI)l,fv\m:(p ol ) ~
Here Sy (%) is a subspace dfiy (Q°).
Proof: For the first equivalence, sinég, (?) is a subspace df ; (%), we only need to
prove that

inf |’U|H1 Qi) -
UEUH(Qi),v|aQ¢:¢ )

inf v N < C inf v 0.
veSH(Qi),v\mi:aﬁH |10ty < UEUH(Qi);UlaQi:(i’H |z (0

Given any functiony € Ug () with v = ¢ on 9, letw = I2'v € Sy (). Since
¢ € Sy (99 and by the definitions off) and %', we havew = ¢ on 9. Moreover, by
Lemma 4.3, we haviw| g1 (i) = |15 v
v = ¢ on 9§ and we proved the first equivalence. The second equivalercbe obtained
similarly.

|H1(Qi) < CHU”Hl(Qi) for anyv UH(Ql) with

O
We note that the hidden constants in the equivalences in laedndndepend on the shape
regularity of the partition of the subregidif by the subdomain@§. The constants in the
following Lemmas 4.5, 4.7, 4.8, and 5.1 and Theorem 5.2 véltehthe same dependence.
For a discussion of the shape regularity of a partition, dge [
LEMMA 4.5. There exist constants; andCs > 0, independentoﬁ, H, h,andp; such
that for all w; € W(FZ)

; 2 7 . 2
Cyp; inf ol an < (TDw,, w;) < Cap; inf  vlEn i),
VEUH (Q),0] i =I5 wi vEUR ()] 51 =15 w;

where(T Dw;, w;) = w?T(i)wi = |w;|5.q and7(® = Sﬁi . —Sgi , (S(i) )_I(S(i) )T,

|7
T Mr.1. Mr.1.

Proof: By the definition ofT'*), we have

(TDw;, w;) = inf v

'er(ci) 7”‘391’ =w;

N;

vewﬁ”,v\mi:wi j=1 ot =v, B COQ;

N;
inf piz Z T

vEW wlogi=wi 51 by ky

2
(i)
St

Q

~ ; 72 _ ; 10y[2

~ (i)mf pille vl i) = ~inf ) Pilv] i)
vEW ] pqi =w; VESH (Q),v]pqi =TF wi

~ : 2

~ inf . Pi|V] a1 (i) -
UEUH(Q"),UIOQ»L:I?IQ w;



A THREE-LEVEL BDDC FOR MORTAR DISCRETIZATIONS 19

We use Lemma 4.2 for the third bound, the definitionﬁgffandlgﬂi for the fourth and fifth
bounds, and Lemma 4.4 for the final one. Herestands for the value of Wéi) at the
primal node corresponding to the reduced efigef the subdomaim;'-.
m|

Next we refer to Lemma 4.2 in [16] for subdomains with irregqdoundary. We rewrite
this lemma for our subregions with irregular boundary.

LEMMA 4.6. Let F/ be an edge common to the boundarieXfand Q7. For all
w; € U (') andw; € Uy (£27), which have the same edge average over the common edge
F, we have

[H (0 s (w; — wj))@p(szi) <C(1+ 1Og(ﬁi/Hi))2|wi|%Il(Qi)
+C (1 + log(H; /Hy))*[w; 311 0y,

wheredr:; is the discrete harmonic extension Iﬁ“i (Cpis) to U (QF) and (i has its
value one at the nodes iR/ and zero at the other part. Her#; and flj are subregion
diameters, andi; and H; are the element size of finite element spdcg$Q’) andUy (27),

respectively. In additiont’(v) denotes the discrete harmonic extension eéstricted on
the boundary of2? to Uy (°).

We define the interface average operafds. on Wrc asEp, = Epcﬁf,cﬂrc,which
computes the averages across the subregion inteffaead then distributes the averages
to the unknowns at the subregion boundaries. The interfeeege operatoEp, has the
following property:

LEMMA 4.7.

~\ 2
H
|Ep,wr, |3 < C <1 + log ﬁ) lwr,|%,

for any wr, € W‘pc, whereC' is a positive constant independentﬁf, H, h, and the
coefficients of (2.1), and is defined in (3.7).
Proof: We can follow the proof of [30, Lemma 5]. Given amy-_ € VVFC, we have

|Ep,wr,|%

<2 (|WFC|§- + |wr, — EDCWFC|2T)

<2 (|Wrc|?; + |Rr, (wr, — Ep,wr,) |%)

N.
(4.5) =2 <|Wrc|?; +Y_|(wr, — Ep,wr,), |§<n> ;

i=1
where(wr, — Ep,wr,), is the restriction ofwr, — Ep_wr, to the subregiof2’. Also let
w; be the restriction ofvr, to the subregiof2’ and set

(4.6)  vi(x) = (wr, = Ep.wr,)i(#) = Y 6] ;(wi(2) —w;(x)), = e€dNT..
JEN



20 KIM AND TU

Here\, is the set of indices of the subregions that hawan their boundaries. We recall the
definition for ; in (3.10). It satisfies

4.7) pi(6] ) < min(ps, py).

Let (r be unknowns |riW(Fl) with its values 1 at the nodes ifi and zero at the other

nodes. We also need a function in the spagg?), denoted by, which is the discrete
harmonic extension oﬁgﬁi (Cr) to Ur (QF). We note thatr in (4.6) are from the subdomain
primal unknowns; they belong to exactly two subregions &3g3. So that we have

(4.8) |vil30) < C Z |Cris Vil
Fi1CoQ?

whereF is the common interface of the subregidgisand(/.
We then obtain

|Crisvil o)

< COp; inf |’U|%11(Qi)

VEUH ()] 5oyt =192 (Cpigvi)
= Cpiéfj“—li (Iz‘?zﬂi (Cry (wi — wj))) H ()
= Cpidl M (5 (Cry (187 (wi) = 15 () Bracar
< cpiafju;?’ (Hi (ﬁFi]‘ (Hi (Igm (wz‘)) —H (Igrm ('U]j))))) o)
49) < Cpiol I (9, (W (15 (wi) =10 (157 (w9) ) By
Here H!(v) is the discrete harmonic extension ofrestricted on the boundary ¢t to
Un (92), and Lemma 4.5 and Lemma 4.3 are used for the first and lastatiggs, respec-

tively.
We can estimate the term in (4.9) by Lemma 4.6 to obtain

~\ 2
2 H k
[Crivilf < Cpidl <1+logﬁ> S (I () B,
k=i,j

wherew; andw; have the same edge averagefon.
Combing the above inequality with (4.7) and Lemma 4.5, weaiobt

~

2
H
[Cpisvil e < C (1 + log ﬁ) (lwil3 + lwj|7)) -

From (4.5), (4.6), (4.8), and the above inequality, ther@elsbound then follows,

~\ 2
H
|EDCWFC|2~ <C (1 + 10g ﬁ) |WFC|§;.
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a
Using Lemma 4.7, we can prove the following result, see [&nma 4.6] or [31, Lemma
4.77:
LEMMA 4.8.Given anyur € Wi, let & — &7 Rp rur. We have,

~

2
H
TS < e MG'w < C (1 + logﬁ> i

5. Condition number estimate for the new preconditioner. In order to estimate the
condition number for the system with the new preconditioﬂ@Tl, we compare it to the
system with the preconditiondr —! by using Lemma 4.8.

LEMMA 5.1.Given anyur € W‘p,

~

2
—~ H
(5.2) u?MﬁluF < u?MﬁluF <C <1 + log E) u%MfluF.

Proof: See [32, Lemma 5.1] or [31, Lemma 5.1].
m|

THEOREM5.2. The condition number for the system with the three-levelqditioner
M~ is bounded by’(1 + log(H/H))2(1 + log(H/h))>.

Proof: Combining the condition number bound in (2.16) for the tweel BDDC method
and Lemma 5.1, we find that the condition number for the theeel method is bounded by
C(1 +log(H/H))2(1 + log(H/h))2.

a

6. Numerical experiments. In this section, we present numerical results for the sug-
gested algorithm. We consider the elliptic problem in thi¢ rgetangular domaif® = [0, 1]2,

=V (p(z,y)Vu(z,y)) = f(z,y), (z,y) €,
u(z,y) =0, (x,y)€ 09,

where f(x,y) is given in L2(Q2). In our experiments, we performed the CG (Conjugate
Gradient) iterations up to the relative residual norm rediigy a factor oft 06.

We test our algorithm by two sets of the numerical experimein the first set of the
experiments, we take(z,y) = 1 everywhere in the domain. While in the second set of the
experiments, we take(x, y) to be constants in each subregion but to have large jumpssacro
the subregion boundaries. In each experiment set, we pegfbthe computations for both
geometrically conforming and non-conforming subdomairtifians, and used the Lagrange
multiplier space with dual basis. All these numerical resate consistent with our theory.

The geometrically conforming partitions are obtained frbra uniform rectangles of
lengthl/N, whereN denotes the number of subdomains in eac@ndy-directional edges
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of Q. For a givenN, we obtainN2 uniform rectangular subdomains. Each subdomain is
equipped with finite elements, that can be non-matchingsadtee subdomain interface. In
the three-level algorithm, we group subdomains to obtaimifoum rectangular subregion
partition. Each subregion haé subdomains in its: andy-directional edges.

To obtain a geometrically non-conforming subdomain gartitwe first partitior2 into
N uniformly vertical strips in the:-direction and then divide each strip inddor NV + 1 rect-
angles successively. We group subdomains to obtain a sohrpartition with N = ﬁ/H,
the number of subdomains across an edge of a subregion.eMgsiows a geometrically
conforming subdomain partition, a geometrically non-aonfing subdomain partition, and
their subregion partitions wheN = 16 andN = 4.
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FiG. 4. Examples of subdomain and subregion partitions: smalletaregles are subdomains and each sub-
region (with thick boundary) is a group of subdomains. Leftgeometrically conforming subdomain partition of
162 subdomaing N = 16) and its subregion partition with 4 subdomain@(: 4) across each subregion (the
number of subregions ar€?). Right: a geometrically non-conforming subdomain pintitof 162 + 8 subdomains
(N = 16) and its subregion partition with 4 subdomairﬁ'(: 4) across each subregion (the number of subregions
are4? + 2).

In the first set of the experiments, we $€t,y) = 1. We perform the exact two-level
BDDC algorithm and the inexact three-level BDDC algorittorsee the scalability in terms
of the number of subdomains and the number of subregiongsectgely. Tables 1 and 2
show the condition numbers and the number of iterations anggtrically conforming and
non-conforming partitions, respectively. Hekg and N. denote the number of subdomains
and the number of subregions, respectively. In the inexas®,cthe subdomain problem size
and the subregion problem size are fixed and in the exact bassubdomain problem size
is fixed. Both cases show a good scalability. In Tables 1 aneh2h row corresponds to
the same subdomain partition, i.e., the same coarse profieim (2.15). The inexact case
solves the coarse problem approximately by applying a BDBgEgnditioner to solve the
coarse problensy;. We can observe that when using the inexact coarse probemg are
only slight increases in the condition numbers and the nurobigerations compared to the
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Exact Inexact
Ny || Cond| Iter || N, || Cond | Iter
162 || 9.18 | 18 | 42 9.67 | 19
322 || 9.26 | 17 || 8% || 10.11| 21
642 || 9.28 | 17 | 162 || 10.13| 20
802 || 9.29 | 17 || 20% || 10.13| 20

TABLE 1
Geometrically conforming subdomain partitions (Left tnowlumns : scalability as the increase of the number
of subdomains)V4, for the BDDC algorithm with the exact coarse problem whenghbdomain problem sizes are
fixed with(H/h) = 5 or 4, Right three columns : scalability as the increase efriamber of subregionsy,, for
the BDDC algorithm with an inexact coarse problem when th@egion problem sizedy = (ﬁ/H) = 4, and the
subdomain problem sizeH /h) =5 or 4, are fixed.)

Exact Inexact
Ny Cond | lter N, Cond | Iter
162+ 8 || 12.36| 23 42 +2 12.70| 26
322416 || 12.37| 24 82 +4 12.79| 27
642432 || 12.40| 24 || 16248 || 12.81| 29

802 +40 || 12.41| 25 || 202 +10 || 12.82| 29
TABLE 2
Geometrically non-conforming partitions (Left three awolos : scalability as the increase of the number of
subdomains N, for the BDDC algorithm with the exact coarse problem whesn shbdomain problem sizes are
fixed with(H/h) =6,8, or 10, Right three columns : scalability as the increaééhe number of subregionsV.,
for the BDDC algorithm with an inexact coarse problem whemghbregion problem sizeB] = (ﬁ/H) =4, and
the subdomain problem sizé${/h) =6,8, or 10, are fixed.)

exact coarse problem. However, the coarse problem is sojuiéd cheaply in the inexact
case.

Tables 3 and 4 present the results of the three level algotiyhchanging the subregion
problem size and the subdomain problem size. Table 3 ané Zladole for geometrically con-
forming and non-conforming subdomain partitions, respelt Both results are consistent
with our theory.

In our second set of the numerical experiments, we test gorithm with discontinuous
coefficientsp(z,y). The values(z,y) are selected among 1, 10, 100, and 1000. They are
constants in each subregion but they can have jump acrossgéoib boundaries.

As before, we compare the two-level and the three-leverdlgos with the same coarse
problem size on the geometrically conforming and non-confng subdomain partitions.
The results are reported in Tables 5 and 6. The three-legelitim gives slightly more
iterations due to solving the coarse problem inexactly. el@v, the computation cost is
reduced for each iteration resulting faster computing tinaa the two-level algorithm.
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ubregionsp fixed || 4 x 4 subregionsﬁ fixed

4x4s
N:% Cond| lter || n=2Z | Cond| Iter

4 9.67 | 19 (5.4) || 9.67 | 19
8 10.57| 20 || (10,8) || 13.23| 23
16 11.73| 24 || (20,16)|| 17.20| 26
20 12.16| 25 (25,20) || 18.56 26
TABLE 3

Geometrically conforming subdomain partitions with« 4 subregions (Left three columns : scalability as the
increase of the subregion problem siZé, when the subdomain problem sizes are fixed witk: (H/h) =5o0r
6, Right three columns : scalability as the increase of tHedsmain problem sizey, when the subregion problem
sizes are fixed wittV = (H/H) = 4.)

42 + 2 subregionsy. fixed || 42 + 2 subregionsN fixed
N= Z 1 Cond| lter n=4%4 Cond | Iter

4 12.70| 26 (6,8,10) || 12.70| 26
8 13.11| 28 (8,10,12) || 14.12| 27
16 13.77| 29 (18,20,22)|| 18.39| 30
20 14.01| 30 (24,26,28)|| 20.05| 30
TABLE 4

Geometrically non-conforming subdomain partitions with+ 2 subregions (Left three columns : scalability
as the increase of the subregion problem si¥ewhen the subdomain problem sizes are fixed with (H/h) =
6,8, or 10, Right three columns : scalability as the increaséhe subdomain problem size, when the subregion
problem sizes are fixed witN = (H/H) = 4.)

Tables 7 and 8 show the number of iterations and conditionbeusnof the three-level
algorithm regarding to the subregion problem size and thel@ain problem size with the
other mesh parameters fixed. We observe the theoreticadheustill valid for the discon-
tinuous coefficients in both the geometrically conformimgl amon-conforming subdomain
partitions.
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the number of subregion®/., for the BDDC algorithm with an inexact coarse problem whas $ubregion problem
sizes,N = (ﬁ/H) = 4, and the subdomain problem sizé&[/h) =5 or 4, are fixed.)
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