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Abstract

Hybridizable Discontinuous Galerkin (HDG) is an important family of methods,
which combine the advantages of both Discontinuous Galerkin in terms of flex-
ibility and standard finite elements in terms of accuracy and efficiency. The
impact of this method is partly evidenced by the prolificacy of research work
in this area. Weak Galerkin (WG) is a relatively newly proposed method by
introducing weak functions and generalizing the differential operator for them.
This method has also drawn remarkable interests from both numerical practi-
tioners and analysts recently. HDG and WG are different but closely related.
BDDC algorithms are developed for numerical solution of elliptic problems with
both methods. We prove that the optimal condition number estimate for BDDC
operators with standard finite element methods can be extended to the counter-
parts arising from the HDG and WG methods, which are nonconforming finite
element methods. Numerical experiments are conducted to verify the theoreti-
cal analysis. Further, we propose BDDC algorithms for the saddle point system
arising from the Stokes equations using both HDG and WG methods. By design
of the preconditioner, the iterations are restricted to a benign subspace, which
makes the BDDC operator effectively positive definite thus solvable by the conju-
gate gradient method. We prove that the algorithm is scalable in the number of
subdomains with convergence rate only dependent on subdomain problem size.
The condition number bound for the BDDC preconditioned Stokes system is the
same as the optimal bound for the elliptic case. Numerical results confirm the

theoretical analysis.
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Chapter 1

Introduction

1.1 Overview

Numerical simulation of partial differential equations (PDEs) of practical interest usually
lead to large scale linear systems with high condition number, and the solution of which can
be a challenging task. Direct methods for such systems can be prohibitively expensive, if not
impossible. Iterative methods, such as Krylov subspace methods, can be regarded as slow,
as the number of iterations needed for convergence depends on the condition number. The
construction of preconditioner is usually necessary to accelerate the convergence. Domain
decomposition techniques provide powerful tools to construct preconditioners for large scale
linear algebraic system obtained from the discretization of PDEs. In solving a boundary
value problem, this type of methods divide the original problem into a number of smaller
size problems over the subdomains, which are easier to solve. The convergence is achieved
by iterating the subdomain local problems and/or a globally posed coarse problem.

Based on the degree of overlapping among subdomains, domain decomposition methods
can be categorized as overlapping and non-overlapping domain decomposition methods. The
former case is also referred to as Schwarz alternating method. In each Krylov iteration, the
classical one-level method solve a local problem on each subdomain. The number of iterations

are dependent on the number of subdomains. An advancement of this method is achieved by



introducing a second coarse level to the algorithm. The condition number of the two-level
methods can be of the order O(%), where H and ¢ stand for the subdomain size and the
size of the overlapping between subdomains, respectively. For a general introduction of the
abstract theory of Schwarz methods, see (Toselli & Widlund, 2005, Chapter 2, 3).

The non-overlapping domain decomposition method is also called the iterative substruc-
turing method. We can think of this class of methods as eliminating the interior variables
of elements to some stage and solving the reduced linear system by a preconditioned Krylov
subspace method(Toselli & Widlund, 2005). Two important families of the domain decom-
position algorithms are the Neumann-Neumann and finite element tearing and intercon-
necting(FETI) methods. The Balancing Domain Decomposition by Constraints (BDDC)
algorithm, introduced by Dohrmann for second order elliptic problem (Dohrmann, 2003),
is a variant of the balancing Neumann-Neumann (BNN) algorithm, similarly as the dual-
primal FETI (FETI-DP) to the FETI method. In the BDDC algorithm, the coarse problems
are formed by a set of primal constraints on the interface. It has been proved for elliptic
problem that the preconditioned operators for BDDC and FETI-DP have identical spectra
except possibly at 0 and 1(Mandel et al., 2005; Li & Widlund, 2006b).

It is worth noting that the design of the efficient preconditioners are dependent both
on the problem and the numerical discretization method. Different numerical methods will
generate matrices of different properties such as sparsity patterns, which can be exploited
in the design of efficient solution strategies of the linear system. The BDDC is one of the
most advanced pre-conditioners in the field of domain decomposition. One advantage of
the BDDC pre-conditioner over the more generic pre-conditioners such as incomplete LU
(ILU) is that it does not require ad-hoc parameter tuning, as it is tailored to the discretized
system by design. Extensive research has been conducted on BDDC for elliptic and Stokes
problem solved using standard finite element methods, but relatively few has studied BDDC
for non-conforming finite element. In this work, we will design BDDC pre-conditioners for

the Poisson and Stokes problem discretized using the hybridizable discontinuous Galerkin



(HDG) and weak Galerkin (WG) methods, which are recently proposed non-conforming

methods.

1.2 Functional Analysis Tools

1.2.1 Sobolev Spaces

We assume 2 € R" is a bounded open set with Lipschitz continuous boundary. Thus the
outward normal can be defined almost everywhere on 0f2.

We start from the space of square integrable functions on €2, i.e.,

LZ(Q):{u:QHR\/\ude<oo},
Q

and define the subspace of L?(£2) with zero mean to be

L3(Q) = {u e L*(Q) | /Quda; = o}.

Recall that Hilbert space is a vector space with topology defined by an inner product.

L?(Q) is a Hilbert space with inner product and induced norm given by:

(u,v)Lz(Q):/uvd:B; ||u|]%2(9)=/ |u|da.
Q Q

We introduce the multi-index notation for derivatives

alely

D% =0 ... 9%y =
L1 In 80113;1 e aanxn

The Sobolev space H*(Q) for any integer k > 1 is defined as the functional space such



that for each u € H¥(Q), there exists u, € L?(Q2) such that

(D%, ) = /Quagzﬁdx, o e Cy° ()

for every multi-index «, with o < k.

It is a Hilbert space with inner product

(u,0) gy = D (D%, D)2,

|a|<k

an induced norm ||-[| (g

||U||§{k(§z) = (w,w) ey = > [ [D%uf*dz,
la| <k’

and a semi-norm

2
ulgey = > [ |Duf*de.
=k

We define HE(Q) as the closure of C§°(Q) in H*(Q).

Let Hq be the diameter of 2. We have the following scaled norm for the Sobolev space

HY(Q):
lal2n gy = g Nl + gy = g ltlZogen + | [Vul?d
u Hl(Q)_ ng u Lz(Q) UHl(Q)— ng u Lz(Q) 0 u X,
with
0 0
p— d: —_— . e . — .
vV =gra <8x1’ ’axn)

The space H (div;<) is the square integral vector-valued functions such that their diver-

gence is also square integrable; i.e.,

H(div;Q) = {u: Q= R"u e [LX(Q)]",V-u e L}(Q)},



with

d' g . —
wu=V-u Z-:Z:la%‘

where u; is the i-th component of u.
This is a Hilbert space with inner product and scaled graph norm defined by

. . 2 1 2 2
w-vdr+ /Q divadivvdz, |[ul3ginn) = 7 [l + 19l

(u7V>H(div;Q) = / Hg%

Q

1.2.2 Trace Spaces

In domain decomposition methods, we frequently need to work with some Sobolev spaces on

a set I' C 9Q. The trace space H'/2(9Q) consists of functions on dQ such that

2 1 2 2
[ullzr/200) = Hoo lullz2(a0) + [ulFi/290) < o0

with the seminorm

9 u(z) —u(y)|?
(rey :/ / —————dzxdy,
el YO0 o Jaa |z —y[™

where Hyg is the diameter of 9€). These definitions can be generalized to a proper subset
[’ C 09 with positive (n —1)-dimensional measure and which is relatively open with respect
to 09.

The space Hé/ 2((‘3(2) is defined as the closure of the space of C§°(0f2). Note that
Hé/Q(aQ), H&ﬂ(F) coincides with H/2(9Q), H'/2(I"), respectively. We also define a proper

subspace of H'/2(T") as
Hy*(T) = {u e HY*(T)|€u € H'2(00)},

where Eu is the extension by zero of u to 92. The norm of H&éQ(F) can be defined as

2
2 . u”() 2
lalzgzy = /F d(z. o) H el

5



where d(z,dT) is the distance from x to the boundary of I'. For u € H/2(9Q) which vanishes

almost everywhere on OQ\T, [|ul| g1/2( o) and [[ull 172 are equivalent norms.
00

)

Note that the Green’s formula can be generalized to functions in [H!(£2)]™.

Lemma 1.2.1. For u € [HY(Q)]" and v € HY(Q), we have

/Q(V.u)vda:ju/gu.vvdx:/m<u.n)vd5_

1.2.3 Extension and Trace Theorems

We collect a few results on extension and trace theorems(Widlund, 2011; Tu, 2006).

For any Lipschitz domain €, there is a bounded extension operator
Eq : WH(Q) — WER™),

such that

1€aullyy s mny < Callullyrq)-

Here the spaces Wlf are Sobolev spaces based on LP. For H*({2) function with s < 1/2, the
extension by zero from € to R" defines a bounded operator. Similarly, extension of H*(T'),
' C 092 by zero to 0\ I also defines a bounded operator only for s < 1/2.

For a Lipschitz domain, it is easy to define the trace yyu of a smooth function u on the
boundary dQ. 7o can be extended to all of H'(€2) and the range of this mapping is H'/2(9Q).
The |'|H1/2(E)Q) of an element g, e.g., Dirichlet data given on all of 92, can be defined by

Hy]| m1(q), where H is the harmonic extension into 2.

Lemma 1.2.2 (Trace theorem). Let Q be a Lipschitz domain. There exists a bounded linear

operator ~o : H(Q) — HY2(0Q) such that you = u |pq if u is continuous in Q.

Lemma 1.2.3 (Extension theorem). Let 2 be a Lipschitz domain. There exists a continuous

lifting operator Lo : HY?(0Q) — HY(Q) such that ~o(Lou) = u, for ue HY?(09Q).

6



1.2.4 Poincaré and Friedrichs Type Inequalities

Poincaré and Friedrichs type inequalities are important tools for the analysis of domain
decomposition methods. We collect some results as related to this study. For details, refer

0 (Toselli & Widlund, 2005).

Lemma 1.2.4 (Poincaré Inequality). Let u € H'(Q). Then, there exist constants, depending

only on €2, such that

2
HUHL2 <Ch ‘U’Hl —|—02 (/ udx) .
Q

Lemma 1.2.5 (Friedrichs Inequality). Let I' C 02 have nonvanishing n — 1-dimensional

measure. Then, there exist constants, depending only on Q and T', such that, for u € H' (),
el 720y < C1 lulz @) +Co lullz2qr)
In particular, if u vanishes on T,
el 72y < Ciluli g

and thus
[ul 1) < llullfq) < (C1+1) lulf g

The following corollary can be obtained by simple scaling arguments.

Corollary 1.2.5.1. Let € be Lipschitz continuous with diameter H. Then, there exists a

constant C, that depends only on the shape of €2 but not on its size, such that
2 < é« H2
[ul|Z2(q) < C1H |u| g1(q)

for u € HY(Q) with vanishing mean value on Q. Similarly, if T C OS2 is defined as in Lemma



1.2.5 and has a diameter of order H, then
2 A 2 A 2
lull2 0y < Col2 [uf31 gy + CsH lul 22

foru e HY(Q).

In the analysis of iterative substructuring methods, we need some inequalities involving
functions on the boundary. The following results can be proved using the operators g and

Ly of Lemmas 1.2.2 and 1.2.3.

Lemma 1.2.6. Let Q C R3 be a Lipschitz continuous polyhedron. If u € HY2(9Q) either has
a vanishing mean value on O or belongs to the closure of the space of C°°(0S2) functions
that vanish on a face of ), there exists a constant Cy, that depends only on the shape of )

but not on its size, such that

2 A 2
lullz290) < CaH [ulgi o) -

Similarly, if F C 0 is one of the faces of Q) of diameter H and u € Hl/z(]:) either has

vanishing mean value on F or belongs to H&éz(}"), then there exists a constant 05, that

depends only on the shape of F but not on its size, such that
2 A 2
||u||L2(}‘) < C5H|U|H1/2(]_—).

1.3 Positive Definite Problems

Let V be a Hilbert space, a(-,-): V xV — R a bounded, V-elliptic bilinear form and [: V' — R
a bounded linear functional. The variational formulation for this elliptic problem is to find
u € V such that

a(u,v) =1(v) = (l,v), veV. (1.1)

Definition 1.3.1. Bounded bilinear forms



A bilinear form a(-,-): V. xV — R is said to be bounded, if there exists a constant C' >0
such that

a(w o) < Cllully Joly, — wveV. (1.2)

Definition 1.3.2. V-elliptic bilinear forms
A bilinear form a(-,-): V. xV — R is called V-elliptic (or, equivalently, coercive), if there

exists a constant o > 0 such that
la(u,u)| > alull,,  uweV. (1.3)

The Lax-Milgram Lemma ensures the existence and uniqueness of the solution of (1.1).

Theorem 1.3.1. Laz-Milgram Lemma Let V' be a Hilbert space with dual V* and assume
that a(-,-): VxV — R is a symmetric, bounded, and V-elliptic bilinear form and | € V*.

Then, the variational equation (1.1) has a unique solution, satisfying

1
[Jull, < EHZHV”

where o is the coercivity constant.

1.4 Saddle Point Problems

Let V and @ be Hilbert spaces with inner products (-,-)y, (-,)g, and associated norms
Il I/l and assume that a(-,-): V' xV —Rand b(-,-): V' x Q — R are continuous bilinear
forms. We denote by V* and Q* the dual spaces, and bounded linear functionals f € V* and
g € Q*. Consider the problem: find (u,p) € V x @, such that
a(u,v) +b(v,p) = (f,v)v+v, vev, (1.4
b(u,q) = (9,9)¢¢; q€Q.

We can associate continuous linear operators A: V — V* and B: V — Q* with the bilinear



forms a(-,-) and b(+,-), respectively, such that
(Au,v)y+ v = alu,v), u,v €V,

<BU7Q>Q*7Q = b(v7q)7 v e V7q € Q

Thus the saddle point problem (1.4) can be rewritten as a system of operator equations as

below

Au+B*p = [ in V¥,
(1.5)
Bu = g in Q.
Theorem 1.4.1. Existence and Uniqueness
The saddle point problem (1.4) admits a solution (u,p) € V X Q, where u € V' is uniquely

determined and p € Q is unique up to an element of Ker(B*), if the following conditions

hold for any f € V* and g € Im(B):

o The bilinear form a(-,-) is Ker(B)-elliptic, i.e., there exists a constant o> 0 such that

a(vg,vo) ZOéHUOH%/, vg € Ker(B);

o The bilinear form b(-,-) satisfies the Brezzi condition

inf  sup b(v,q) >[3>0.

geQ\Ker(B*)ueV [Vl llall o\ ger(m+)

The Brezzi condition is also known as inf-sup condition.

1.5 Finite Element Methods

The finite element method is a general technique to build finite-dimensional subspaces of a

Hilbert space V' in order to apply the Ritz-Galerkin method to a variational problem. The

10



test functions in the approximation subspace are usually chosen to be piecewise polynomials.
Based on the inclusion property of the approximation subspaces, finite element methods
subdivide into conforming or nonconforming methods (Brezzi & Fortin, 1991).

With respect to a triangulation 7y, of the computational domain Q C R?, conforming finite
elements are methods such that the resulting globally defined function obtained by summa-
tion of locally defined function over elements K € 7T, belongs to the underlying function
space V for the variational formulation of the original partial differential equation(Brezzi &
Fortin, 1991; Hoppe, 2016). In this context, the Ritz-Galerkin method seeks an approximate

solution uy, in a suitable finite dimensional subspace V}, of V, i.e., up € V}, such that
a(up,vp) =U(vy), vy € Vi (1.6)

We recall some results from standard finite element methods (Brezzi & Fortin, 1991;

Malek & Strakos, 2015; Hoppe, 2016).

1.5.1 Approximation of Elliptic Problems

If a(-,-) is a bounded, V-elliptic bilinear form, then by the Lax-Milgram Lemma (1.3.1),
eqn. (1.6) admits a unique solution uy. This solution is as good as the best approximation
of uw €V by a function in V3, and the discretization error u — uy, is bounded by the best

approximation of solution u € V' by functions in V},, as given below.

Theorem 1.5.1. Céa’s Lemma
Under the assumptions of the Laz-Milgram lemma, let uw € V and uy, € V}, be the unique

solutions of (1.1) and (1.6), respectively. Then, there holds
fu—wlly <5 inf o (1)
uU—1u — inf ||u—wply - .
hllv: = v eV rllv
Céa’s Lemma can be proved based on V-ellipticity and boundedness of a(-,-), and the
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following a-orthogonality property of the Galerkin method:

a(u—up,vp) =0, vp € V.

1.5.2 Approximation of Saddle Point Problems

We consider the approximation of (1.4) by finite dimensional subspaces V}, C V and Qp C Q:

Find (up,pp) € Vi X Qp, such that

a(up,vp) +b(vp,pn) = (fion)v=v, vp, € Vi, 1)

b(un qn) = (9,)Q",Q: an € Q.-

We denote by Ap: Vj, = V¥ and By,: Vj, — Qj, the operators associated with a(-,-) |v, xv;,
and b(-,-) [v;, x@,- In contrast to the positive definite problem considered in (1.1), the exis-
tence and uniqueness of the discrete problem (1.8) does not follow from the result for the
infinite dimensional problem (1.4). The reason is that in general the operator By does not
correspond to the restriction of the operator B to V}, i.e., BV}, ¢ Q. Therefore, a proper
balancing of the subspaces V}, and @)}, is required to ensure the existence and uniqueness of

the solution of (1.8).

Theorem 1.5.2. Existence and Uniqueness
The saddle point problem (1.8) admits a solution (up,pp) € Vi X Qp, where up € Vy, is
uniquely determined and pp, € Qy, is unique up to an element of Ker(Bj), if the following

conditions hold for any f € V* and g € Im(B):

o The bilinear form a(-,-) |v, xv, is Ker(By)-elliptic, i.e., there exists a constant oy, >0

such that

2
a(vho, o) = o |lvnolly vpo € Ker(By);
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o The bilinear form b(-,-) |v, xq, satisfies the Ladyzhenskaya-Babuska-Brezzi condition

it b(vh,qn)

su > By, > 0.
an€Qn\Ker (B} )v, eV, ||Uh||vh ||Qh||Qh\Ker(B;)

The Ladyzhenskaya-Babuska-Brezzi condition is also known as discrete inf-sup condition.

1.5.3 Trace and Inverse Inequalities

For triangular tessellation, under the shape regularity assumption of the mesh, as given in

Appendix A, we have the following lemmas; see (Wang & Ye, 2014) for details.

Lemma 1.5.3. (Trace Inequality) There exists a constant C' such that
1612 < (" 017+ b |VO|Z), YT ETh, € F,

where € HY(T).

Lemma 1.5.4. (Inverse Inequality) There exists a constant C = C(k) such that
IVelly < Chztllely, YT ET,

for any piecewise polynomial p of degree k on T,

These inequalities are critical to the desired approximation properties of the hybridizable
discontinuous Galerkin (HDG) and weak Galerkin (WG) finite element methods, which will
be the main focus of this study. And we will use them in our analysis of the BDDC operator

designed for these methods.

1.6 Preconditioned Conjugate Gradient Method

Many practical engineering problems can be described by elliptic partial differential equa-

tions, the discretization of which by the finite element methods leads to large scale sparse
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linear system. Direct solvers of such system usually become prohibitively expensive, if not
impossible. A useful alternative is the iterative method based on Krylov subspaces.

Conjugate gradient (CG) method is a prototypical Krylov subspace method designed
for symmetric positive definite system. But it is able to reach solution for a number of
indefinite cases, although it may fail in general. The convergence rate of CG deteriorates
with increasing condition number of the linear system. Thus, it is often desirable to design
a suitable pre-conditioner for the original system so that preconditioned CG method can be
applied, as it can be less computationally expensive, in terms of memory and computational
time, compared with using other more robust iterative methods such as MINRES, BiCG, or
GMRES (Sistek et al., 2011).

We furnish the relevant results of the CG methods here following (Toselli & Widlund,
2005). Let A be symmetric and positive definite. In the conjugate gradient method, the

search directions p¥ are chosen as conjugate with respect to A4, i.e.,

These vectors p¥ are linear independent and provide a basis for the Krylov spaces K =
Ki(rg, A) = span{Ar°, i=0,1,---  k—1}.

We write the algorithm as below:

Algorithm 1 Unpreconditioned conjugate gradient

1: Initialize: 0 =b— Au?
2: Iterate k=1,2,--- until convergence

B = (PR rE1) (k2 ko) (g =
ok = pk=1y ghpk=1 ! =79
Q@

Convergence of the unpreconditioned Conjugate Gradient depends on the condition num-

ber of A. We have the following result.

14



Lemma 1.6.1. Let A be symmetric and positive definite. Then, the Conjugate Gradient

method satisfies the error bound
€. < 20",

where the convergence factor is

\VE(A)—1

naA = )
k(A)+1

where K(A), the condition number of A, is the ratio of the largest and smallest eigenvalues

of A.

The conjugate gradient iteration provides an estimate of the eigenvalues of the matrix A
(and thus of k(A)). Let Ry =[ro/||roll, - ,7k—1/[rk—1ll]]. One can prove that the restriction
of A to Kg(ro,A)

T, = RF AR,

is a symmetric, tridiagonal matrix, the entries of which can be constructed from the coef-
ficients of the conjugate gradient iteration. By calculating the eigenvalues of T}, one can
easily obtain estimates of the largest and smallest eigenvalues of A.

When k(A) is large, preconditioning is necessary. Given a symmetric, positive definite

matrix M, we can consider the modified linear system
MY2AM 2y = M=%y, v = MY,

Note that M~Y2AM1/2 ig symmetric and positive definite. We can then consider M
as a preconditioner for A and apply Algorithm 1 to this modified system. After some
manipulations, we have the following algorithm.

For the preconditioned system, we have the following result.

Lemma 1.6.2. Let A and M be symmetric and positive definite. Then, the preconditioned
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Algorithm 2 Preconditioned conjugate gradient

1: Initialize: 0 = b— Au®
2: Iterate k =1,2,--- until convergence
Precondition: zF=1 = p—1pk—1
BF = (k) (A2 k) gl = 0]

S
|
N
|
N
P
@
ol
T

Conjugate Gradient method satisfies the same error bound as in Lemma 1.6.1, with

K(M—TA)—1
k(M-TA)+1

NA =

Eigenvalues of M ~1A can also be obtained using the coefficients o/ and ¢ in Algorithm

1.7 Organization of the Dissertation

The remainder of this dissertation is organized as follows. We review the mixed and noncon-
forming finite elements methods relevant to this study in Chapter 2, and discuss the iterative
substructuring methods in Chapter 3. In Chapter 4 and 5, we present BDDC algorithms
for elliptic and Stokes problems, respectively. Both hybridizable discontinuous Galerkin and
weak Galerkin methods are used to discretize the model problems. In Chapter 6, we draw

conclusions from this study.
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Chapter 2

Mixed and Non-conforming Finite

Element Methods

Conforming methods are natural finite element methods in the sense that they approximate
the function space underlying the variational formulation of the partial differential equations
by its finite dimensional subspaces(Brezzi & Fortin, 1991). However, conforming elements
are not always efficient, or even practical, for example, for partial differential equations with
variable coefficients or over domain with curved boundaries(Tu, 2002). The nonconforming
finite elements may become necessary in these cases. The term “non-conforming” refers to
that the test functions do not form a subspace of the corresponding variational function
space(Babuska & Zlamal, 1973).

In this section, we cast several methods relevant to this study within a single framework
as applied to elliptic problems, aiming to reveal the connections among them. For the sake

of simplicity, we restrict ourselves to the following model problem:
—Au=f inQ, u=0 onod, (2.1)

where ) is polygonal domain and f a given function € L?(Q).

To obtain the weak formulation, we introduce an auxiliary variable and rewrite the above
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problem as follows:

g=—-Vu, V-g=f inQ, u=0 ondf. (2.2)

Let
V = H(div;Q) = {v e (L*(Q)" | V-v e L*(Q),n=2,3}, (2.3)
W = L*(Q). (2.4)

Then in the mixed form, equation (2.2) is formulated as follows for the pair (¢,u) € V x W:

(¢,7)=(u,V-7), VTEV, (2.5a)

(V-q,v)=(f,v), YvoeW. (2.5Db)

Let 73 be a shape-regular tessellation of €2 with polygons in 2D and polyhedra in 3D.
We denote the element in 7, by K, the diameter of K by hg, and the area/volume of K by
|K|. The mesh size is characterized by h :=max kT, hic. Define Fj, be the set of edges/faces
of elements K € Ty, ,ZL and ]-',? are subsets of Fj,, which consists of domain interior and
boundary edges, respectively. We denote by |e| the length/area of e and h. the diameter of
the edge/face in F,.

2.1 Mixed Finite Element

Some useful mixed finite element spaces introduced to approximate H(div) include but
not limited to, Raviart-Thomas(RT)(Raviart & Thomas, 1977) and Brezzi-Douglas-Marini

(BDM)(Brezzi et al., 1985) elements. Here, we briefly introduce the RT elements for simpli-
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cial triangulation 7 of Q(Hoppe, 2016). For K € Tj,, we set
Ry(0K) = {p € L*(0K) | ¢ |c€ Pr(e), e € Fr(K)},

where Py (e) is the set of polynomials defined on e with degree at most k.

Define
RT,(K) = (Py(K))"+xP,(K), k>0, (2.6)

where @ is the position vector, Py(K) is the set of polynomials defined on K with degree at
most k, n is the dimension of K, and ﬁk(K ) is the set of homogeneous polynomials defined
on K with degree at most k.

The Raviart-Thomas finite element space RT}(€2;7},) is given by
RT(%Th) = {g € [L2(D)" | q|x€ RTL(K), K € T},

It is a finite dimensional subspace of H (div;2).

For u € RTy(K), the degrees of freedom are given by

/ q-npi, pi € RL(0K),
oK

/K(I'th Pi—1 € [Pp—1(K)]".
We have
k+1)(k+3) (n=2
dim RT(K) = ( )( ) ) :
S+ 1)(k+2)(k+4) (n=3)
The mixed method leads to a saddle point problem to be solved. The finite element space

pair Vj, x W, are finite dimensional subspaces of Hy(div; ) x L3(92), and is subject to the

inf-sup stability(Brezzi & Fortin, 1991).
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The bilinear form can be written as follows: to find (g, up) € RT(£2;Ty) x Wy, such that:

(Qh,T) - Z (Uh,v 'T>K = 07 VT e RTk'<QJ77’L)7 (278‘)
KeTy
> (Veanv)k = (fv), Yo € W. (2.7h)
KeTy

2.2 Hybridized Mixed Finite Element

The standard mixed finite element spaces V, x Wj, C V' x W are finite dimensional and defined
locally on each element. Denote V}, |g by Vi (K) and Wj, |g by Wj(K). The constraint
Vi, C V requires the normal component of the members of V), to be continuous across the
interior element boundaries fﬁ(Chen, 1994). We relax this continuity constraint on V}, by

defining the space

Vi ={ve (L))" |v|g€ Vi(K) foreach K €T}

Then, we introduce Lagrange multipliers to enforce the required continuity on V3., and define

My ={pec L*(Fy) | p)e€ (Vi-n)|e foreach e€ Fpl,
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where n is the outward normal direction of the edge. The hybrid form of the mixed method

is to find (g, up, \p) € Vi, X Wi, x My, such that

(qn,7)— > (up,V-T)k+ > (Ap,7-n)e =0, V1 eV, (2.8a)
KeTh e€F}
Z (V 'Qh,U)K = (fav>7 Yu € VV, (28b)
KeTy,
> (g n.pe =0, Vi € My, (2.8¢)
ee]:ﬁ

In fact, due to the continuity constraint (2.12c), the numerical solution g, € V3. The
equivalence between the hybridized mixed form and standard mixed form for certain finite
element spaces can be proved following (Arnold & Brezzi, 1985; Brenner, 1992).

Equations (2.8) can be algebraically condensed to a symmetric positive definite system

for Ay (Chen, 1994).

2.3 Discontinuous Galerkin Methods

Discontinuous Galerkin(DG) method was first introduced by Reed and Hill for hyperbolic
equations in 1973(Reed & Hill, 1973). Since then, this has been an active research area
by both analysts and practitioners(Arnold et al., 2000). Independent development for the
elliptic and parabolic equations using discontinuous finite elements was also proposed in the
1970’s. These early works are generally referred to as interior penalty (IP) methods. It
was later discovered that the DG methods bear remarkable similarities to the classical TP
methods, and they can be cast in the same general framework.

If we multiply equation (2.2) by test function and integrate over each element K, we get

(¢, ")k = (u,V-T)g —(u,n-T)yx, (2.9a)

—(q,V’U)K + <q ’ nav>aK = (f?U)Kv (29b)
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where n is the outward normal unit vector to 90K.
Set

Sp={r€[L*(Q)]"| 7 |g€ [P(K)]" VK €eT,}.
Vi ={veL*Q)| v|ge P(K) YK e€T,}

We consider the following general weak formulation: find (qp, up) € Xp X V3, such that,

for each K € Tj,, we have

(qn )k — (up, V- + 3 @ n-m)e =0 Vre S, (K), (2.10a)
eCOK
(g, VO g+ S (@ n0)e = —(f,0)g Yo Vi(K), (2.10Db)
eCOK

where n is the outward normal unit vector to 0K.

The test function spaces consist of generally piecewise continuous functions. For example,
for triangular elements, the V3, (K) can be the set of all polynomials of degree p <1 and ¥ (K)
can be all polynomial vector fields of degree p—1 or p. The constitutive relations defining the
numerical fluxes (i.e.,ﬂe’K and g&& ) are crucial to the stability and accuracy of the method,
as well as the sparsity and symmetry of the stiffness matrix (Arnold et al., 2000). Different

choices will lead to different variant of the method.

2.4 Hybridizable Discontinuous Galerkin Methods

The interaction between ideas of DG and of the standard finite elements leads to the in-
troduction of the Hybridizable Discontinuous Galerkin (HDG) Methods. The apparent ad-
vantage of the DG methods is their suitability for adaptation due to their flexibility with
variable-degree polynomials and hanging nodes. The DG method was criticized for having
too many degrees of freedoms and not easy to implement compared with the continuous
Galerkin (CG) method; and for less accurate and less efficient in implementation compared

with the mixed methods(Cockburn, 2010). It is in this historical context that HDG methods
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were introduced for diffusion problems(Cockburn et al., 2009a).
The essence of HDG methods lies in the clever definition of the numerical trace so that
the global coupled system can be reduced to edge variables only. Specifically, the numerical

trace @y - n is assumed to have the following form:

gn-n=qp-n+7(up—1u,) ondkK.

In this way, the function u is determined by enforcing weakly the single-valuedness
of the normal component of the numerical trace g, and by the Dirichlet boundary condi-

tion(Cockburn, 2010). Thus, for each edge e € F},, we require that

<:u> [[Z]\'TL]])e:O VUEM(G)v (2.11&)

i, =0 ifeeFy, (2.11b)

where [¢-n] :=¢"-nt+§ -n~, and M(e) is the space of approximate trace, which can be

defined as a polynomial space of degree at most k with support on the edge e.

With this construction, we can determine (gp,,up,) in terms of (U, f) as the solution of the
weak form (2.10). The discrete problem resulting from HDG discretization can be written

as: to find (qn,up,tup) € Xp X Vi X My, such that

(qns7) = > (up, V-T)g+ > (G, 7 n)e =0, V7 € Ty, (2.12a)
KeTh 66.7:2
S —(an, Vo)g+ X (G@h-n,v)e = (f0), Vo € Vi, (2.12b)
KeTh ee]:}'l
> (Gn-m,p)e =0, Vi € My, (2.12¢)
66.7:2

It can be proved that the HDG method is well defined if (i) 7 > 0 on Fy, and if (ii) for
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any element K € Ty, Vw € 3, (K) for all w € V,,(K); see Proposition 3.1. in (Cockburn,
2010).

2.5 Weak Galerkin Methods

The idea of weak Galerkin finite element scheme is to substitute the standard function and
differential operators with the weakly defined counterparts. A weak function over the domain
D is defined as v = {vg, vy} such that vy € L2 (D) and v, € H'/2(8D). The vy part represents
the value of v in the interior of D, while the v, part represents the value of v on the boundary
of D. Note that v, does not bind itself with vy from the definition. In essence, weak functions
relax the continuity property of the standard functions, thus to offer more flexibility in terms
of variable representation. We denote by W (D) the space of weak functions over the domain

D as below

W(D) = {v={vo, v} : vo € L*(D), v, € H'/*(OD)},

and the corresponding vectorized weak function spaces by

WD) ={v={vo.vs}: vo€ [L2(D)]", vy € [H'/?(0D)]"}.

The space of weak gradient or divergence operators will be defined as the dual space of
appropriate Hilbert space, in similar manner as the dual of L? (D) can be identified with

itself by using the L? inner product as the action of the linear functionals.

Definition 2.5.1. For any v € W (D), the weak gradient of v is defined as the linear func-
tional Vv in the dual space of H(div; D) whose action on each q € H (div; D) is given
by

(vaa q)D - - (UO,V’Q)D+ <Ub7q'n>8D7

where n 1s the outward normal direction to Of).
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Definition 2.5.2. For any v € [W (D)]", the weak divergence of v is defined as the linear

functional V., -v in the dual space of H'(D) whose action on each o € H' (D) is given by

(Vw -V, SO)D = (V()?VQO)D—F <Vb'n7¢>8D7

where n s the outward normal direction to Of).

Now, we are in a position to introduce the weak Galerkin finite element algorithm. For
any domain D, let Py (D) be the space of polynomials of degree <k on D. Define the weak

Galerkin finite element spaces for the velocity variable associated with 7Tj, as follows:

Vi = {v={vo,u5} : {v0, 00} lic € [P (B)]" x [Pocy (¢)]", VK € Ty e COK }.
Note that a function v € V}, has a single value v, on each edge e € Fj. The subspace of
V. with vanishing boundary values on 0f2 is denoted by
Vko = {’U = {’UQ,’Ub} eV.:v,=00n 89}

For the pressure variable, define the following finite element space

Wi-1= {qi ¢ € L§(Q), dlx GPk—l(K)}-

Denote the discrete weak gradient operator by V,, ;_1, and the discrete weak divergence
operator by (mG_l-), respectively. They are defined on the finite element space Vj as
follows: for v = {vg,vp} € V}, on each element K € Tj,, V10 |k € [Pr—1 (K)]" and V1 -

v | g€ Pr_1 (K) are the unique solutions of the following equations, respectively,

(Vw,k—lv e Q)K =— (UO,KaV'Q)K+ <Ub,K,Q'H>aK7 Vq € [Py (K)]",

(vw,kfl v |k, SO)K =— (UO,K,V90>K + <Ub,K ' n’90>aK’ Vo € P (K),
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where vy i and v, g are the restrictions of vg and vy, to K, respectively, (u, w) - = fK uwdzx,
and (u,w)yx = [ ax vwds. To simplify the notation, we shall drop the subscript k£ —1 in
the notation V, ;_1 and (Vw,kf1-> for the discrete weak gradient and the discrete weak
divergence operator. We denote the L? inner product over the triangulation as a summation
over each element of the triangulation, for example,(Vyu, Vyw)r =Y ger, (Vuu, Vo),
(Vi -0, Q)Th =Y ke, Vu v, q)g-

Denote by Qg the L? projection from L?(K) onto Py (K), and denote by @ the L?
projection from L2 (e) onto Py_q (e), for e € Fj, . And we write the correponding projection
operator for the weak function as Qp = {Qo, Qp}-

The discrete problem resulting from the WG discretization can then be written as: find

up = {ug, up} € Vko such that

(Vawtun, Vavn)r + D b (Qyuo — s, Quvo — o) g5 = (f, v0), Yo = {vo, v} € V. (2.13)
KeTy

In this study, we will focus on HDG and WG methods. We used the Lagrange triangle
in the simulation. The nodal basis functions for the linear and quadratic elements are given

in Appendix B.
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Chapter 3

Iterative Substructuring Methods

3.1 Introduction

The basic idea of domain decomposition is quite natural and simple, as the name suggests
itself. Based on the partition of the domain on which the original problem is defined,
it can be categorized as overlapping domain decomposition and non-overlapping domain
decomposition method. The latter is also called iterative substructuring methods, and this is
an important family of domain decomposition methods. We can think of this class of methods
as eliminating the interior variables of elements to some stage and solving the reduced linear
system by a preconditioned Krylov subspace method(Toselli & Widlund, 2005). An iterative
sub-structuring method can be further classified as either of primal type or of dual type. It is
of primal type if the reduced linear system is given in terms of a subset of the original finite
element degrees of freedom on the union of the interfaces between the substructures; it is of
dual type if the principal unknowns of the iteration are Lagrange multipliers which enforce
the continuity constraints of the solution across subdomain interfaces(Toselli & Widlund,
2005). The following definitions (Toselli & Widlund, 2005) are cited, as they are frequently

used to measure the performance of BDDC algorithms.

Definition 3.1.1 (Optimality). An iterative method for the solution of a linear system is
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89, 29,

Figure 3.1: Partition into two non-overlapping subdomains.

said to be optimal, if its rate of convergence to the exact solution is independent of the size

of the system.

Definition 3.1.2 (Scalability). A domain decomposition iterative method for the solution
of a linear system is said to be scalable, if its rate of convergence does not deteriorate when
the number of subdomains grows. This typically means that convergence does not deteriorate

when H, the typical subdomain size, becomes small.

3.1.1 Problem Setting

We consider a domain () subdivided into two non-overlapping subdomains §2; and 29. The
interface in between is denoted by I'. A schematic diagram is illustrated in Fig. 3.1.

Consider a finite element approximation of a Poisson problem on (2.

—Au=f in €,
u=0 on 01,

Set up a load vector and a stiffness matrix for each subdomain

(4) (@) 4@
I L DU B N
it Ay Afy

In practice, we also need to decompose the whole domain into multi-subdomains. We
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decompose §2 into N non overlapping subdomain €2; with diameters H;, 1 =1,..., N, and
set H = max; H;. We assume that each subdomain is a union of shape-regular coarse trian-
gles and that the number of such elements forming an individual subdomain is uniformly
bounded. We define edges/faces as open sets shared by two subdomains. Two nodes be-
long to the same face when they are associated with the same pair of subdomains. Let I’
be the interface between the subdomains. The set of the interface nodes I}, is defined as
Iy = (UZ-#j@Qi’hﬂ@Qj,h) \ 0Qy,, where 0€); 1, is the set of nodes on 9€; and 0€2, is that of
0f). We assume the triangulation of each subdomain is quasi-uniform.

Let V® be the finite element space over ;. Each V® can be decomposed into a sub-
domain interior part Vj(i) and a subdomain interface part Vlgi). The subdomain interface
part Vr(i) can be further decomposed into a primal subspace Véi) and a dual subspace VA(i).

Namely, we have
VO -V B VO DU BV

The corresponding spaces over the domain €2 will be

V=VilbWr =ViEPVuPVa,

with V =TIV, V@, vy =TIV, Vv v =11, i, v =11, VY, and Va =11V, V7. In
general, the functions in the space V1 are discontinuous across the interface. The standard
finite element space are continuous across the interface, and we denote this continuous sub-
space of Vp by Vi. An intermediate space, which is continuous at the primal variables and
generally discontinuous at the dual variables, is referred to as Vp.

We introduce several restriction, extension, and scaling operators between different spaces.
E%i ) TV — Vp(i) restricts functions in the space Vi to the components Vr(i) of the subdomain
Q. Rr: Vp — Vp is the direct sum of E(Fi). RX) : ‘A/p — VA(i) maps the functions from ‘71“ to
VA(i), its dual subdomain components. Rpyy : Vp — VH is a restriction operator from ‘A/p to

its subspace VH. Rp : Vp — Vp is the direct sum of Rpy and RX). We define the positive
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scaling factor (57;T (x) as follows:

1
)= —— Q. NI,
; () card ()’ xr €08 NI,

where Z,, is the set of indices of the subdomains that have z on their boundaries, and card (Z,)
counts the number of the subdomain boundaries to which = belongs. It is clear that 53 (x)’s
provide a partition of unity, i.e., Y ez, 5; (x) =1, for any x € I',. We note that (SiT (x) is

constant on each edge. Multiplying each row of RX) with the scaling factor gives us Rg) A

The scaled operators ED,F is the direct sum of Rppp and R%) A

3.1.2 Schur Complement Systems

If we use exact solvers for the subdomain problems, we can often reduce our discussion to
one about Schur complement(Widlund, 2011). Schur complement with respect to unknowns

at interface I' is defined as

; i IO RNC
S0 = Af} — Af)AT) AR (3.2)

The corresponding condensed load vector is
‘ : 8=l
g = O — AQ AT fO. (3.3)

In practice, we don’t form the Schur complement explicitly, but realize its action by block-
Gaussian elimination. The reduced subdomain interface problem, obtained by assembling
the Schur complement from each subdomain, has a reduction in dimension of the Krylov
space vectors, and, even better, the condition number of this reduced system will be smaller
than the original linear system for a symmetric positive definite problem. Therefore, using
iterative substructuring method, the Schur complement system usually converges much faster
than the original system. Once the interface values are obtained, we can calculate the values

in the interiors by solving a Dirichlet problem for each subdomain(Widlund, 2011).
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3.1.3 Discrete Harmonic Extensions

Let A® be the discrete form of the harmonic operator. A function u is defined to be
discrete harmonic if it is the solution of the linear system A®) with a right-hand side of the
form (0, f£)T. The second part of the solution equals to S(i)ilfp(Widlund, 2011). This u is
A —orthogonal to any v which vanishes on I', and provides the minimal energy extension for
given values on I'. Therefore, the discrete harmonic function space has direct correspondence

with the Schur complement and the node values at the interface I'. Specifically, we have
(1), (1) (1), (4)
In what follows, we use H; (ug)) to denote the discrete harmonic extension operator over
the domain €;, and H (ur) to denote the piecewise discrete harmonic extension operator
over the domain (2.
For completeness of discussion, we cite the following lemmas to establish the equivalence

between discrete harmonic extension over the domain €2 and the trace function defined over

the relevant domain interface boundaries 9€2; NT" (Toselli & Widlund, 2005; Tu, 2006).

Lemma 3.1.1. Let u%i) be the restriction of a finite element function to 0Q; NT'. Then, the
(1)

discrete harmonic extension u() = H; <Ur ) of u(ri) into Q) satisfies

a; (u(i),u(i)) = min
’U(l) |6QZQF:u

; (00,69)

a
(%)

T
and

ufTSOuD = 4, (u®, 0

Analogously, if ur is the restriction of a finite element function to I', the piecewise discrete

harmonic extension u = H (ur) of up into the interior of the subdomains satisfies

a(u,u) = U|Il'1‘/l:i%,]_“a (v,0)
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and

urTSur = a(u,u).

This lemma says that we can work with functions defined on the interface I' and the
corresponding discrete harmonic extension interchangeably. The next lemma will establish

the equivalence of norms between these two types of functions.

Lemma 3.1.2. For floating subdomains, let u be discrete harmonic. Then, there exist posi-

tive constants ¢ and C', independent of h and H, such that
ellur e oaunry < lellfn o) < Clerllznz@a,nr

|UF|Hl/2 o0;nr) = |U|H1 Q) = C|“F|H1/2 8, -
Consequently,
(i), (i)

2 ()7 2
cpi[ur|i/za0,nr) < up’ S up” < Cpilur /2 90,qar)

with ug) the restriction of u to 02; NT' and the constants independent of h, H, and the p;.
For subdomains intersecting with the boundary, i.e., ;N OS2 has a non-vanishing mea-

sure, we have similar results

2
ellur 2 oy < Ielfrniey < Cllurl a0, oy

Further by Friedrichs inequality, the H' seminorm is equivalent to the H' norm for

functions defined over this type of subdomains. Thus, the result for the seminorm follows
|UF| 1/2(89 Ar) = |U’|H1 < C|UI‘| 1/2 (09,;1T) °
Consequently,

2 )T o), (@ 2
pillur iz oo,y < w8Vt < Cpillur I oo, o)
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Next, we will largely follow the developments in (Toselli & Widlund, 2005; Li & Widlund,

2006b; Tu, 2006) to introduce the BBDC algorithm and its earlier versions.

3.2 The Neumann-Neumann Methods

For simplicity, we start from the two subdomain case. In terms of differential operator, the

basis Neumann-Neumann algorithm can be written as follows, for n > 0:

—Au?+1/2 = f in €,
(Dy) W20 on 9O\T, [, i=12,
U?H/Q = up on I
—AYPtt = 0 in €,
(N;) Yt = 0 on OQ\TI, ¢, t=12 (3.4)
g:ﬁ:nﬂ _ %ﬁnﬂm %n+1/2 on T,

utl = up -0 PR on T

with a suitable 6 € (0,0,,q42). If we define the vectors of the interior degrees of freedom as

(4)

v; =u;’ and w; = zﬁy), we have the following matrix form

(D) AW 2 4 AQan — ¢ D 5 9,

A(l) A(Z) wn+1 0
(V) ff) (T o= L i=1,2, (3.5)
App App 77?“ T

uptt = ut — Oty
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where the residual r is defined as
1) n+1/2 1 2) n+1/2 2 2
re = (AR 4 AR — £+ (AR 03T+ AR — 1),

We eliminate v;’ /2 and w™ from (3.5). The preconditioned matrix of this system can

be written as
FS= (SO 4@ g — (571 L g@ 750 4 g2,

the action of which to a vector involves the solution of two Dirichlet problems and two
problems with Neumann data on I". For a full development, refer to (Toselli & Widlund,
2005, Chapter 1).

This algorithm can be easily extended to multi-subdomains. In this case, we solve the

interface Schur complement problem: find ur € Vp, such that

N N T o
Svur =Y R g1, (3.6)
=1

where gl(j) is the subdomain interface load vector as defined in (3.3), and Sp is the interface
Schur complement operator defined on the space Vr. In particular, gp can be represented as

o._ pT _ N 0T o) pld) _ ) "
St =Rt SrRr =YL (R’ S'WRp’). The one-level Neumann-Neumann preconditioner can

be written as (Li & Widlund, 2006b)

N @) T oyt ol
My =Y Rp)y SO'RE). (3.7)
=1

The disadvantages of this algorithm is that it needs to deal with singular subdomain
Schur complement, and that the convergence rate will deteriorate with increasing number of

subdomains. See (Li & Widlund, 2006b) for details.
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3.3 Balancing Neumann-Neumann Methods

Two-level balancing Neumann-Neumann method has been proposed to improve the conver-
gence performance of the one-level methods. This type of method introduces a coarse space
Vb to the algorithm. For example, we can choose a minimal coarse space as

Vo= spalrl{erpéJ-r 9Q;NIN =0}

1 )

The balancing Neumann-Neumann preconditioner applicable to the interface system (3.6)

can be written as follows:

Mgk = BES5  Ro+ (I B S5 RoSo) (30 Ry SO R ) (1 - ScRE S5 R,
=1
where Sy = Rongg.

This preconditioner can be recast in the abstract Schwarz framework. It is a hybrid
Schwarz method with a minimal coarse space designed to make all local Neumann prob-
lems solvable. The convergence rate of these algorithms are independent of the number of
subdomains, and poly-logarithmically dependent on the subdomain problem size. A consid-
erable improvement was later made to this method, and termed as the Balancing Domain
Decomposition by Constraints (BDDC) methods(Dohrmann, 2003), as will be introduced

below.

3.4 BDDC Methods

The main idea of the BDDC pre-conditioner is to construct a partially assembled finite

element space Vi such that

VFC‘N/FCVF.

We can define a partially assembled Schur complement Sr on Vp, and obtain the fully
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assembled Schur complement gp by §p = erg[‘.ér Therefore, the reduced interface problem

can be written as: find ur € 17p such that
RESr Rrur = gr.
The preconditioned BDDC method is of the form
MgppeSrur = Mgppedr,

where the preconditioner is defined as follows

Mghpe=RhrSr' Rpr, (3.8)
with
N PICIPTON B
F=REA [0 g o o| | Fira+esyte” (3.92)
=1 A R
AI AA A

—1
A0 401 [q0r]
II IA 117 Rl('}) (3.9b)

1 1 )T
AL AR [ AR

N
(I) RPH RP Z
=1

~1
i i 0T
A AR |AR

N , . . Z_
Su=Y Ry | Al - {Aﬁ} A(ﬁ)A] R (3.9¢)

‘ 7 7 )T
AD, AL Al

In the BDDC preconditioner, the coarse problem is proposed across the interface formed
by parts of the boundaries of at least two subdomains to enforce the continuity constraints at
the primal variables. One advantage with such designed coarse problem is that the resultant
Schur complements are invertible. Similar poly-logarithmic condition number estimate as for
the balancing Neumann-Neumann methods can be achieved. For more detailed discussions,

see (Toselli & Widlund, 2005).
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Chapter 4

BDDC Algorithms for Elliptic
Problem

The main results from the first section were published in (Tu & Wang, 2016); those from

the second section were published in (Tu & Wang, 2017c).

4.1 BDDC for Elliptic Problem with HDG Method

4.1.1 Introduction

In this work, a Balancing Domain Decomposition by Constraints (BDDC) algorithm is de-
veloped for the hybridizable discontinuous Galerkin (HDG) method. General HDG methods
were introduced by Cockburn and his collaborators in (Cockburn et al., 2009a) and the spe-
cific HDG method we consider here is often called LDG-H method, which is constructed by
using the local discontinuous Galerkin method on each element. One distinct feature of the
HDG method is that the only global coupled degrees of freedom are a scalar variable, called
“numerical traces”. Therefore the resulting global system from the HDG is much smaller
than other traditional DG methods. The superconvergence of HDG methods have also been

studied in (Cockburn et al., 2008, 2009b). Recently, in (Cockburn et al., 2014), the condition
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number of the linear system, arising from the HDG (LDG-H) discretization of a second order
elliptic problem, has been shown to grow like O(h~2) if 7h < C. Here 7 is the typical penalty
constant, h is the typical mesh size, and C' is a constant. For so-called “super-penalized”
cases where 7 is chosen to be O(h%) with @ > 1, the condition number grows even faster.
Therefore efficient fast solvers for the linear system are necessary.

There are many fast solvers for DG methods and their variants such as multigrid and
domain decomposition methods. Geometric Multigrid methods for the interior penalty DG
were studied in (Gopalakrishnan & Kanschat, 2003b) and extended to other DG methods
in (Gopalakrishnan & Kanschat, 2003a) using the unified analysis of (Arnold et al., 2002).
Algebraic multigrid methods have been studied in (Kraus & Tomar, 2008a,b). In (Feng &
Karakashian, 2001, 2005), two-level additive Schwarz methods were developed for second
order elliptic problems and two-level non-overlapping Schwarz methods were studied for four
order biharmonic equations, respectively. Overlapping Schwarz preconditioners were devel-
oped for advection-diffusion problems in (Lasser & Toselli, 2003). In (Antonietti & Ayuso,
2007, 2008, 2009; Ayuso de Dios & Zikatanov, 2009), a class of of Schwarz preconditioners
were studied for different problems. Several nonoverlapping domain decomposition methods
are developed, in (Dryja et al., 2007, 2012, 2013), for the discretization using a conforming
finite element inside each subdomain and a discontinuous Galerkin method across subdomain
boundary. An overlapping Schwarz and a nonoverlapping (BDDC) domain decomposition
methods are studied in (Barker et al., 2011; Brenner et al., 2013) for a weakly over-penalized
symmetric interior penalty method. Similar algorithms have been developed for a class of
staggered discontinuous Galerkin methods in (Chung et al., 2013; Kim et al., 2014). A
BDDC algorithm is studied for more general DG methods in (Diosady & Darmofal, 2012)
based on the unified analysis of (Arnold et al., 2002).

However, there are relatively fewer fast solvers for the HDG methods. A multigrid V-
cycle was used as a linear solver for the HDG in (Cockburn et al., 2014). Both overlapping

and nonoverlapping domain decomposition methods are studied for high order HDG method
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in (Schoberl & Lehrenfeld, 2013), where the domain decomposition algorithms are applied
on the element level (namely one element is considered as a subdomain).

The BDDC algorithms, introduced by Dohrmann for second order elliptic problem in
(Dohrmann, 2003), see also (Mandel & Dohrmann, 2003; Mandel et al., 2005), are nonover-
lapping domain decomposition methods, which are similar to the balancing Neumann-Neumann
(BNN) algorithms. In BDDC, the coarse problems are given in terms of a set of primal con-
straints. An important advantage with such a coarse problem is that the Schur complements
that arise in the computation will all be invertible. The BDDC algorithms have been ex-
tended to the second order elliptic problem with mixed and hybrid formulations in (Tu, 2005,
2007a) and the Stokes problem (Li & Widlund, 2006a).

In this work, we consider the BDDC algorithm for the linear system arising from the
HDG method. The close relationship between HDG and the classical hybrizied Raviart-
Thomas (RT) and Brezzi-Douglas-Marini (BDM) methods was highlighted in (Cockburn
et al., 2009a). In (Cockburn et al., 2008), it has been shown that a specific HDG method
has an exactly same stiffness matrix as the hybridized RT and BDM methods. In (Cockburn
et al., 2014), an important spectral relation between the bilinear form resulting from the
HDG and hybridized RT method is established. As a result, the previous developed precon-
ditioners for the hybrid RT methods can be applied to the HDG, such as the overlapping
Schwarz preconditioner in (Gopalakrishnan, 2003), multigrid preconditioner in (Gopalakr-
ishnan & Tan, 2009), and the BDDC preconditioner in (Tu, 2007a). Here, we apply the
BDDC preconditioner directly to the HDG bilinear form and estimate the condition number
bound of the resulting preconditioned operator using its spectral relation with hybridized
RT method. Compared to the multigrid algorithms studied in (Cockburn et al., 2014), the
BDDC algorithm is applied directly to the system arising from the HDG method. In (Tu,
2007a), only the lowest order Raviart-Thomas finite element method is considered. Here,
in our analysis, we also include high order elements. For the dependence of the condition

number bound on the order of the element, we need to examine such dependence in sev-
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eral norms including those derived from the bilinear forms of the HDG and hybridized RT
methods. Refined analysis of the condition number bound is needed for this dependence and

will be given in future study. For some results related to this issue, see (Bica, 1997, 1998;

Schoberl & Lehrenfeld, 2013).

4.1.2 An elliptic problem and HDG discretization

We consider the following elliptic problem on a bounded polygonal domain €2, in two/three

dimensions, with a Dirichlet boundary condition:

—V-(aVu)=f in Q,

(4.1)
u=gq on 01,
where a is a positive definite matrix function with the entries in L°((2) satisfying
a(x)e > o)), forae zeQ, (4.2)

for some positive constant o. f € L?(Q) and g € H'/?(Q). Without loss of generality, we
assume that g = 0. The equation (4.1) has a unique solution u € H?(Q); see (Braess, 2007).

We then introduce a new variable gq:

q=aVu. (4.3)

and let p=a~'. We obtain the following system for q and u as

—pq=—Vu in

—V-q=f in Q, (4.4)
u=>0 in  0Q.
We decompose 2 into N nonoverlapping subdomains €2; with diameters H;, i =1,---, N,
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and set H = max; H;. We assume that each subdomain is a union of shape-regular coarse
triangles and that the number of such triangles forming an individual subdomain is uniformly
bounded. We also assume a(x), the coefficient of (4.1), is constant in each subdomain. Let
Tr, be a shape-regular and quasi-uniform triangulation of 2 with charateristic element size
h and the element in 7}, denoted by k. Define € to be the union of edges of elements . &°
and €7 are the sets of the domain interior and boundary edges, respectively.

Let P*(D) be the space pf polynomials of order at most k& on D and We set P*(D) =

[P¥(D)]? and define the following finite element spaces:

VF = {v, € [L2(Q)]?: vp|. € PF(k) VreQ},
Wk = {wy, € L*(Q) : wy|. € PH(r) Ve e Q},

M* = {u, € L2(E) - pp|e € PF(e) Vee &L

Let AF = {peM k:pu=0on 0Q2}. To make our notations simple, we drop the superscript k
from now on.

For each k, we find (qp,up) € (V(k),W(k)) such that for all k € T,

—(pan; Vi) — (un, V- Vi) e+ (Up, vy -m),, = 0 Vvy, € V(k), (45)

(qhavwh)lﬁ - <61h : n7wh>8n = (f7 wh)lﬁ vwh S W("{%

where (-,-) = [_and (-,-)5,. = [,,. G and @ are the numerical traces which approximate
up, and qp, on Ok respectively.

Let A\j, € A and the numerical trace u, = \,. The numerical flux q-n is more complicated
and takes the form:

an-n=qp-n+7(up—Ap), on 0k, (4.6)

where 7 is a local stabilization parameter, see (Cockburn et al., 2008) for details.

With the definitions of numerical trace A\ and the numerical flux q-n, this discrete
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problem resulting from HDG discretization can be written as: to find (qp,up, A\p) € VW x A

such that for all (vp,wp,pup) € VW x A

—(pan: Vi), = (U, V- Vi) 7, + Ao Vi), = 0
(cn, Vo) 7, = (@ mwn) g, = (frwn)a (4.7)
TR = 0,

where (" )7—h = ZKE’E(U ')fi and <'7 ')87’,1 = ZNEE <'7 '>8/<;'

Correspondingly, the matrix form of (4.7) is

Agqa Aqu Agr q 0
AL, Aww A || u |=| B0 | (4.8)

where we use q, u, and A to denote the unknowns associated with qy, up, and Ap, respectively.
In each k, given the value of A on Jk, qp and uy, can be uniquely determined; see (Cock-
burn et al., 2009a). Namely, given Ay, the solution (qp,up) of (4.5) is uniquely determined.
In the matrix form, we note that
Agq Aqu
AL, Aw,
is block diagonal, each block is nonsingular and corresponding to one element k. Therefore,
we can easily eliminate q and w in each element independently from (4.8) and obtain the

system for A\ only

AN =D, (4.9)
where .
A Aqu A
A=A —[AL AL T °
Agu Auu Au)\
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and

Agq Aqu 0
b= 1A%, AT |
AT A, £,

Once the solution of (4.9) is obtained, the solution of (4.8) can be completed by computing
q and u in each element with given \.
By (Cockburn et al., 2009a, Theorem 2.1), the system (4.9) can be considered as the

matrix form of the following problem: to find A € A such that

ap(A,p) =bp(p), YV peA. (4.10)

Here

ap(n,p) = Xker, ax(n, 1) =X ket (pLn, Qu) i + (TUN—n), Up— 1)) oxc » (4.11)

bn(p) = Xker, bx(n 1) = Xker, (fr,Un)k,

where Qu and Uy are the unique solution (Qu = qp,Up = uyp) of the local element problem
(4.5) with A = p.

In (Cockburn et al., 2014, Theorem 3.6), the bilinear form ay(+,-) has been proved to be
positive definite. More properties of ap(-,-) will be studied in Subsection 4.1.5.

In next two subsections, we consider to solve the system of the numerical trace A (4.9)

by a BDDC algorithm.

4.1.3 Reduced Subdomain Interface Problem

We decompose €2 into N nonoverlapping subdomain €2; with diameters H;, : =1,..., N, and
set H = max; H; . We assume that each subdomain is a union of shape-regular coarse
rectangles/hexahedra and the numbers of such elements in the corresponding sudomains
are uniformly bounded. We note that the algorithm can be extended to different types of

subdomains. Also, we assume a(x), the coefficient of (4.1), is constant in each subdomain.
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We define edges/faces as open sets shared by two subdomains. Two nodes belong to the same
face when they are associated with the same pair of subdomains. We then introduce quasi-
uniform triangulation of each subdomain. Let I' be the interface between the subdomains.
And let the set of interface nodes be denoted by I'}, := (UZ@QM) \ 09y, where 0€); j, is the
set of nodes on 0€); and 0€)}, is that of 0f2.

We can decompose A into the subdomain interior and interface parts as below:

A=Ar@Ar,

where Aj is the product space of subdomain interior degrees of freedom, ie., A =
Hi]ilAgj), and Ap denotes the set of interface degrees of freedom associated with finite element
solutions which are continuous across the subdomain interface.

The global trace problem is to find (Ar,Ar) € (A ],Ap), such that

Arr A [ A1 _|br (4.12)

AL Arr| [Ar br

(4)

We denote the subdomain interface numerical trace space Ap’, and the associated product
space by Ap = HZ-]L A(Fi ). We define the restriction operators R(Fi ). Ar — A(Fi ) to be an operator
which maps functions in the continuous global interface numerical trace space Ar to the

subdomain component space Ag ). Also, Rr: Ar = Ar is the direct sum of R(Fi ).

The global problem (4.12) is assembled from subdomain problems

where

(4) (4) (4) (2) (4)
AIF APF /\1“ AF bF
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We can eliminate the subdomain interior variables )\gi) in each subdomain independently
and define the subdomain Schur complement Sl(ﬂi) by: given )\(Fi) € Ag), determine Séi) u(ri)
such that

Ay g ] [ o

OO NCI P ONCIE 19
AIF AFF )‘F SF )‘F

We denote the direct sum of the Sl(ﬂi) by Sr, i.e.,
1
st

Sp =
s

The global interface problem is assembled from the subdomain interface problems, and

can be written as: find \p € Ap,such that

SrAr = b, (4.14)

where bp = Zfil R(Fi)Tb(Fi),and Sp = R%SFRP = Zfil Rg)TSgi)R(Fi). Here, Sp is a symmet-
ric, positive definite operator defined on the interface space /A\p. We will propose a BDDC

preconditioner for solving (4.14) with a preconditioned conjugate gradient method.

4.1.4 The BDDC Preconditioner

We introduce a partially assembled interface space Ar by

N
Ar=Ap@As=Ago J[AY.
=1

Here, /A\H is the coarse level, primal interface space which is spanned by subdomain interface
edge/face basis functions with constant values at the nodes of the edge/face for two/three

dimensions. We change the variables so that the degree of freedom(dof) of each primal
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constraint is explicit; see (Li & Widlund, 2006b; Klawonn & Widlund, 2006). The space A
is the direct sum of the A(Ai), which are spanned by the dual interface dofs with zero average
over each edge/face. In the space Ar, we relax continuity constraints on the dual variables
but retain all primal continuity constraints, which makes all the linear systems nonsigular.
Before discussing the BDDC preconditioner, we first introduce several restriction, ex-
tension, and scaling operators between different spaces. Specifically, ﬁ(ri ) : Ar — Ag ), which
restricts functions in the space Ar to the components Ag ). Rr:Ar— Ar, which is the direct
sum of E(Fi ). RX) : Ap— Ag), which maps functions from Ar to AX). Ry : /AXF — /A\H, which
is a restriction operator from K[‘ to its subspace /A\H. Rl(-? : /A\H — Ag), which maps vectors

in /A\H into their components in A(ri). Rp: /AXF — 7\{‘, which is the direct sum of Rprp and RX).

We define the positive scaling factor 5;[ (z) as follows: for v € [%, oo),

v
5 () = P SN(Z Gy TEOAND,
where p; (x) =1/a(x), a(zx) is the entry of a(x) in the ith subdomain, and N, is the set of
indices j of the subdomains such that x € 0€2;. Since p; () is constant in each subdomain,
thus 5; () is constant on each edge/face. We are now ready to define scaled operators.

(2)

Rg) A can be obtained by multiplying each row of R Ai with the scaling operator 53 (x). The

scaled operator ED,F is the direct sum of Rpp and the R%{ A~ Furthermore, }?{X) : /~Xp — AX),
Rrir: Ar — Aq.

We define the partial assembled interface Schur complement Sr by Sp = EI?SFEF. Note
that we can obtain the fully assembled Schur complement Sr by a further assembly, i.e.,

§p = é%gf‘é[‘ Therefore, the reduced interface problem can be written as: find Ap € WF

such that
RLSrRpAr = br.
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The preconditioned BDDC method is of the form

-1 Q _ as—1
MBDDCSFAF - MBDDCbP’

where the preconditioner is defined as:

1 3T 15
Mgppe=RprSr Rpr.

Note that the inverse of the partial assembled Schur complement operator gf !

space Ap can be calculated explicitely by linear algebra as below:

Ay AR

N
= RL, Zlo RA A Z_ Rpa + 0SS o7,
=1 Apnr Apa Rx
where
N a4 4 | qer]
)T 17 IA 111 7
& =R, — R, Z[o RY O o RW
=1 Anr Apa Aa
and

~1
v A0 01 [q0rT)

B OT | ) ; ; 11 AIA 17 0
St = ZRH At — {A%)I A%I)A} i) ,0) ()T Hir-
i=1 Anr Aaa Apia

(4.15)

(4.16)

on the

Here, subscripts I, A\, and II indicates the interior, dual, and primal variables, respec-

tively. For details, refer to (Tu, 2006).
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4.1.5 Some Auxiliary Results

In this section, we collect a number of results that are needed in our condition number

estimate of the preconditioned system (4.15). We define

= 1 h 4.17
Yhr [f(ng;i{ +Trhi}, (4.17)

where 7 and hg are the stabilized parameter and diameter of the element K, respectively.
We use ¢ and C' to denote constants that are independent of h, H, 7 and the coefficient p
of (4.4).

We first introduce several useful norms, which are defined in (Cockburn et al., 2014;
Gopalakrishnan, 2003). For any domain D, we denote the L?(D) norm by |[|-|| 5. For any

numerical trace A € A (D), define

[

Z A —mg ()‘)H%?(a}() (4.18)
KeT,,KCD

SRS

1A =

where my, is the average of the trace defined by mpg (\) = ﬁ Joi Ads, and |0K] is the
measure (the length for 2D and area for 3D) of the boundary of K. We note that when
D is strictly contained Q, [|A[|}, is a semi-norm. When D = ), we use the simple notation
AT for [[AllG: AT is an H'-like norm, since the functions in A having zero boundary
conditions on 0f).

We recall the bilinear form ap(n, ) in (4.11) and define the norm

N4 =an (M A), VAEA.

(4)

Given a subdomain €;, let a;’(-,-) be the restriction of ap(-,-) to €, and we can define

similar norms. Let
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The global norm |A|4 can be assembled from the subdomain norms as

2
A

N
RFEDIEN
1=1

where A()) = R%i ))\, i.e., the restriction of A\ to the subdomain €2;. The following lemma is in

(Cockburn et al., 2014, Theorem 3.9) applied to each subdomain ;.

Lemma 4.1.1. For any \() € AW,
2 2 2
cpill Al < 1AL < Cpimnr NI

where 7y, » is defined in (4.17).

Given )\ij) € Ag), we can define a harmonic extension H (¥ ()\(Fi)) A 5 A a9

OO0 e w0 19
ADeA® AD =2 on o0,

By the definition of #(?) and (4.13), we have
(i) 2 " )\ _ /010y 2
| Ar Sﬁ“:: </\F ) SpoAr” =l HY (A7) [y -

The bilinear form ap(-,-) defined in (4.11) is closely related to the bilinear form of the
Lagrange multiplier of the hybridized mixed finite element, (Cockburn et al., 2014; Gopalakr-
ishnan, 2003). Here we denote the corresponding bilinear form and norms with a superscript
RT, referring to the Raviart-Thomas finite element of the same order of the HDG method.

We list some results which are useful in our analysis. The following lemma is in (Gopalakr-

ishnan, 2003, Theorem 2.2) applied to each subdomain €;:

Lemma 4.1.2. For any A € A,

,2 2
cpillMlg; <IA rr< Cpill Mg,
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Given )\(Pi ) e A(Pi ), we can similarly define a harmonic extension ’HRT(i) ()\(FZ )> : A 5 A0

as

@ () : o)
| 1T <AF ) | )= min | A ] )
AT\ 0eA® A =2Don g, AT

and have

7 7 i (4)
M | = J(60) " SN 1T (D) -

Let A%® be the zero-order numerical trace space in €; and Qy be the LZ—orthogonal
projection from A® into A% (®). By a scaling argument, see (Gopalakrishnan, 2003, (4.9) and

(4.10)), we have the following lemma:

Lemma 4.1.3. For any A\() € A®,

Jana], <@

(4.20)

and

> HA( — QoA

KeTy, KQQ(l)

*,2
o) < OMIIE (4.21)

Given a subdomain €;, we define partition of unity functions associated with its edges/-
faces. An edge/face in the interface I' only belongs to exactly two subdomains. We denote
the face shared by ; and €; by F' . Let Cpij be the characteristic function of F*/, i.e., the
function that is identically one on F; éj and zero on OO\ F, "/ where F }ij contains the degrees

of freedom of QF on F% C 99;. We clearly have

S i) =1, A= S (G ()N,

Fiico, Fii CoQ;

for any )\(i) € Ag), the numerical trace space on 0f);.

(4)

Let AY) 1} Fig A )dx the average of /\F over F. Particularly, we have the following

Fii = \FU|
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lemma for the Lagrange multiplier of the zero-order hybridized mixed finite element, which

can be proved using (Tu, 2005, Lemmas 5.4 and 5.5).

Lemma 4.1.4. For any )\1(1, U) e AIOJ U) e have

2
.'.2
0

) o H\?2
e (WO <01t 0

Sﬁ SﬁTU)

We define the interface averaging operator Ep by
Ep=RrRp 1,

which computes a weighted average across the subdomain interface I' and then distributes
the averages to the degrees of freedom on the boundary of the subdomain. The interface

averaging operator Ep satisfies the following bound:

. 2

Lemma 4.1.5. For any A\pr € Ar, | EpAr % < Cyp,r (1—1—[09%) | A\r % where vy,  is de-
I8 I

fined in (4.17).

Proof. Given any Ar € Ar, we have

2 2 2
| EpAr |5, <[ Arlg, +[Ar—EpAr (g
=[Ar [§ +1Br(\r — EpAr) [§,

N ,
= A 3+ 1B (= Epar) P
=1 r

Let v; := E(Fi ) (Ar — EpAr), which indicates the restriction of A\p — EpAr to the subdomain

;. It follows that

Crirti = (Ar — EpAr) |pu= Cri A — Coig EpAr = Cri (A{f) —oiAl - 5}%5’)

— (sl (A(F“ —)\(Fj)),
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where A\Y = RYAp and AP = RY AL

2 2
Also, | v; 2= Zpiscon, Crivi] g < Srican, [Gpuvilyo -
r r r
2 . .
We want to show that | (zijv; |2 < Cp, 7 <1+log%) (| )\(FZ) g + 1 )\g) |S(j)).
Sp r r

Let A0 = () (A}“) and AU) = H0) (Agﬁ). Then it follows that

@ _ ]\ () — [\
‘)‘F s Ay and ‘/\F s A
We note that the simple inequality
pidl? < min (p;, p;) (4.22)

holds for v € [1/2, 00) (Klawonn & Widlund, 2006). Let 5\? |F”| Jris Ap A de. Tt is easy to

see that )\%Zj = )\gm)]

Note that:

il = 1 G o =IO (G0} (A =2) ) o
< 5;-2 <|7'l (CFU (Ar) - )) |A(Z) + ‘H (CFU' ()‘g) 5‘F”>> ‘A“ )

We only need to estimate the second term above, and the first term can be estimated

similarly. Let A%0) = QoAU) € A0U) and )\%( 7 s the restriction of A% to 0€);. We have

D (¢ (A = N2 ) ) o = 80 (G (A =239+ X5 9 =20 ) )

§5}2|H(i)<ém(() ApY ))IA + 81210 (Cm (AF() A}L)) 200 (4.23)

We estimate the above two terms in (4.23) separately. Let R() (Ap) ; Ag) — AW be
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the zero extension of )\g) € Ag) to AW,
. ‘ 0.0 . ‘ 0.0
oM@ (CFU ()\(rj) —Ar m)) % < COPIRW (CFU ()\(rj) —Ap m)) %

. . . *,2
R (CFU ()\%J) _)‘% (J))) N

< Cypemin(pi, pi) b0 0 (G (A =20 12 oy

< C'm,féfpi

KGIT}“KQQ,'

= Cyprmin (p;, pj) b~ > IXD =20 @3
cC(OKNFiY), KeTy, KT,

= Cyprmin (p;, pj) ™" > IAD = XOD3 o

eC(OKNFid), KET,, KCQ;

Here, we use the definition of H( and R(® for the first inequality. Lemma 4.1.1 is used for
for the second inequality. (4.22) and the definition of |[|-||* in (4.18) are used for the third

inequality. Further, we have

Cyprmin (pi, pj) b~ P> IAG = X0 @)2
eC(OKNFiT), KeT;, KA,

< Cyprpih™ ( DR PP NS R )
KEE,Kng

<ot )

*,2 19
o, < CmrA g = Consr

N @g) :

We used (4.21) in Lemma 4.1.3 for the last inequality. For the second term in (4.23), we

have

i P i T
5;‘2|7'f( ) (CFU (/\r G A%E)) % < 05;2!7'1% (CFM (Ar @ _ A%)) %)
< O 0PI (G (00 =32 )) 2

RT

= C’Vh,ra;{ZKFij (A% @) _ AELZ?]) |Z(i)

I,RT

Here the definition of H() and ”HRT(i) are used for the first inequality. Lemmas 4.1.1 and
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4.1.2 are used for the second inequality and definition of ”HRT(i) is used for the last equality.
By the equivalence lemmas Lemma 4.1.1 and 4.1.2 for the zeroth-order Lagrange multipliers
for the hybridized mixed finite element method and Lemma 4.1.4, and from the observation
that A%zj = )\Fl(] ), we have

6;2”_[(2) (CFU <)\?"( 7) 5‘%1])) ’A(z) < nyh T |CFU ()\1"( 7) )\(;7%] ) |2(z)

< Cyp,r <1+log;]) A (%’(j) zéj) =C,r (1+10g ) ’/HRT </\1“( )> A4)
< C,r <1 +log[Z)2 |/\0’(j) ig)T

<O (1108 ) 0002 = (1410820l Qo
<O (110 D) 02

< Cv,r <1+10g21)2 ADEG) = C,» <1+1Og H)2 7Y (A (rj))ﬁ(j)

= Cp,r <1+10gl;[>2 (r) Zﬁj)'

Here we use Lemma 4.1.4 for the second inequality. The definition ’HRT(i) is used for the
third inequality. Lemma 4.1.2 is used for the fourth inequality. Equation (4.20) in Lemma

4.1.3 is used for the fifth inequality and Lemma 4.1.1 is used for the sixth inequality.

4.1.6 Conditioner Number Estimate for the BDDC Preconditioner

We are now ready to formulate and prove our main results. It follows by proving the lower
and upper bound for A%ngF using Lemma 4.1.5. See similar proof as in (Li & Widlund,
2006a; Mandel et al., 2005; Tu, 2006, 2007d,c).

Theorem 4.1.6. The condition number of the preconditioned operator M~18p is bounded

by C (1+log (%))2, where vy, is defined in (4.17).
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Proof. 1t is sufficient to prove that for any Ar € /A\p,
XM < XESpar < € (1+1og () AR M.
In what follows, we prove the lower and upper bound for )\%Sp)\p respectively.
Let wp == MAp = (B} 1Sp Bp,r) Ar. Obviously, wr € Ar.
Note that E%EDJ* = égj\ér‘ =1.

The details for the proof the lower bound go as follows:

A%M)\[‘ = )\IZIUF = )\%ﬂélrgpgr_lépj[‘wp
= <RF)\Fa§1:1RD,FwF>§F
12~ i~ 1/2

< <Rr/\r7 RF>\F>§F <5p 'Rp rwr, Sp 1RD,FUJP>§F

— (NERESp o) ().

Thus, we obtain )\ITM Ar < A%S{‘)\F by cancelling a common factor and squaring on both

sides. Next, we prove the upper bound.

MESrAr = MERESr Rr RY 57! Rp, rr
—(Rror. EpSoiR =~

<Rr r, EpSp RD,F“’F>5F

1/2
5

G-17 G—17 1/2
<EDSF Rp rwr, EpSp RD,FwF>§F

~ ~ 1/2 H ~ 4= ~ 1= 1/2
S O<RF>\F,RF)\F>§F (1 +log <h>> <SF 1RD,FwF75[‘ IRD,FU]F>S

r

< <Rr>\r,fir)\r>

1/2

H ~pe 1/2 o~ 1~ o~ 4~
C (1 +log (h)) (A%R%SFR[‘)\F) (w%Rg,I‘SP 1SI‘SP IRDIU)F)

C (1 +log (5)) (AESear) ™ (\Eanar) .

~ 2
Thus, the upper bound is )\IZSF)\F =C (1 +log (%)) AM Ar.
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’ Number of Subdomains ‘ Iterations ‘ Condition number ‘

4x4 ) 2.22
88 9 2.39
12x12 8 2.33
16x16 8 2.34
20%20 8 2.33

Table 4.1: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8, p=1l,7=1,and k=0.

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 6 3.46
8x8 10 3.74
12x12 10 3.71
16x16 10 3.70
20%20 10 3.69

Table 4.2: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8 p=1l,7=1,and k= 1.

4.1.7 Numerical Experiments

We have applied our BDDC algorithms to the model problem (4.4) with f = 272sin (7x) sin (7y)
and Q = [0, 1]2. We decompose the unit square into v/ N x v/N subdomains with sidelength
H=1/ v/N. Equation 4.1 is discretized in each subdomain by the kth-order HDG method
with element diameter h. The preconditioned conjugate gradient iteration is stopped when
the ly—norm of the residual reduced by a factor of 10°.

In the first set of experiments, we take the coefficient p =1, and fix the size of the subdo-

main problem to be % = 8. The first six tables show the iteration counts and the estimates

’ Number of Subdomains \ Tterations \ Condition number ‘

4x4 6 4.47
88 12 4.84
12x12 12 4.79
16x16 12 4.78
2020 12 4.78

Table 4.3: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8, p=1,7=1,and k=2
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’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 ) 2.35
88 9 2.53
12x12 9 2.50
16x16 9 2.50
20%20 8 2.46

Table 4.4: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomains numbers. % =8, p=1l, 7= %, and k£ =0.

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 6 3.30
88 10 3.57
12x12 10 3.53
16x16 10 3.53
2020 10 3.52

Table 4.5: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8, p=1l, 7= %, and k= 1.

’ Number of Subdomains \ Tterations \ Condition number ‘

4x4 6 4.38
8X8 12 4.75
12x12 12 4.68
16x16 12 4.68
20%20 12 4.68

Table 4.6: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8, p=1l, 7= %, and k= 2.
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’ Number of Subdomains ‘ Iterations ‘ Condition number ‘

4x4 3 1.80
88 8 2.08
12x12 9 2.13
16x16 10 2.15
20%20 10 2.16

Table 4.7: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8, 7=1, k=0, and p is in a checkerboard

pattern with p=1 or p = 1000.

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 4 2.35
88 8 2.74
12x12 9 2.82
16x16 10 2.85
2020 10 2.86

Table 4.8: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8, 7=1, k=1, and pis in a checkerboard

pattern with p =1 or p = 1000.

of the condition numbers for the BDDC preconditioned operator with changing subdomain
numbers for different polynommial orders and stabilization parameter. The condition num-
bers are found to be independent of the number of subdomains for a certain polynomial order
and stabilization paramter. Also, it is observed that the condition number bound is almost
independent of the stabilization parameter based on the current tests. But it increases with
the increasing polynomial orders.

The next group of tables demonstrate results for the second set of experiments in which p

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 4 3.08
88 9 3.45
12x12 10 3.52
16x16 11 3.54
20%20 11 3.55

Table 4.9: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomains numbers. % =8, 7=1, k=2, and pis in a checkerboard

pattern with p =1 or p = 1000.
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’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 4 1.86
88 8 2.15
12x12 9 2.21
16x16 10 2.24
20x20 10 2.25

Table 4.10: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomains numbers. % =8, 7= %, k=0, and p is in a checkerboard
pattern with p =1 or p = 1000.

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 4 2.28
88 8 2.65
12x12 9 2.73
16x16 10 2.76
2020 10 2.77

Table 4.11: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomains numbers. % =8, 7= %, k=1, and p is in a checkerboard
pattern with p =1 or p = 1000.

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 4 3.10
88 9 3.45
12x12 10 3.51
16x16 11 3.54
20%20 11 3.5

Table 4.12: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomains numbers. % =8, 7= %, k=2, and pis in a checkerboard
pattern with p =1 or p = 1000.
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’ % ‘ Iterations | Condition number
4 7 1.68
8 8 2.08
12 8 2.32
16 8 2.49
20 8 2.62

Table 4.13: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 X 8 subdomains, 7=1, k=0, and p is in
a checkerboard pattern with p=1 or p = 1000.

’ % ‘ Iterations ‘ Condition number
4 8 2.32
8 8 2.74
12 9 2.99
16 9 3.16
20 9 3.30

Table 4.14: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 X 8 subdomains, 7=1, k=1, and p is in
a checkerboard pattern with p =1 or p = 1000.

is in a checkboard pattern with p=1 or p=1000. Again, the size of the subdomain problem is
fixed to be % = 8. Compared with results from the first set of experiments, the inhomogeneity
of the coefficient p almost does not degrade the performance of the preconditioner.

Results from the third set of experiments are given in the last group of tables. In these
cases, p is still in a checkboard pattern with p =1 or p = 1000. But instead of fixing the
size of the subdomain problems, we fix the subdomain partition to be 8 x 8, and allow the

subdomain problem size to vary. The condition number is found to increase logarithmically

’ % ‘ Iterations ‘ Condition number
4 9 3.23
8 9 3.45
12 9 3.61
16 9 3.75
20 9 3.85

Table 4.15: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 X 8 subdomains, 7=1, k=2, and p is in
a checkerboard pattern with p=1 or p = 1000.
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‘ % ‘ Iterations ‘ Condition number ‘
4 8 1.76
8 8 2.15
12 8 2.39
16 8 2.57
20 8 2.70

Table 4.16: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 x 8 subdomains, 7 = %, k=0, and p is
in a checkerboard pattern with p =1 or p = 1000.

’ % ‘ Iterations | Condition number
4 8 2.23
8 8 2.65
12 9 2.90
16 9 3.07
20 9 3.21

Table 4.17: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 x 8 subdomains, 7 = %, k=1, and p is
in a checkerboard pattern with p =1 or p = 1000.

’ % ‘ Iterations | Condition number
4 9 3.25
8 9 3.45
12 9 3.60
16 9 3.73
20 9 3.83

Table 4.18: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 x 8 subdomains, 7 = %, k=2, and p is
in a checkerboard pattern with p =1 or p = 1000.
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with the subdomain problem size when other changing parameters are kept to be the same.

To conclude, we have carried out a series of experiments to obtain iteration counts and
condition number estimates. The experimental results prove to be consistent with the the-
ory. That is the condition number bound of the BDDC preconditioned system is of the form
C (1 +log %)2, where H and h are the diameters of the subdomains and elements, respec-
tively, and C' is almost independent of coefficients in the original equation, the stabilization
parameter of the numerical scheme, but dependent on the orders of the approximating poly-

nomial. Possible future work will be to explore the high order effects on C.

4.2 BDDC for Elliptic Problem with WG Method

4.2.1 Introduction

The weak Galerkin (WG) methods are a class of nonconforming finite element methods,
which were first introduced for a second order elliptic problem in Wang and Ye (Wang &
Ye, 2013). The idea of the WG is to introduce weak functions and their weak derivatives as
distributions, which can be approximated by polynomials of different degrees. For second
order elliptic problems, weak functions have the form of v = {vp;vp}, where vy is defined
inside each element and vy, is defined on the boundary of the element. vy and v, can both be
approximated by polynomials. The gradient operator is approximated by a weak gradient
operator, which is further approximated by polynomials. These weakly defined functions
and derivatives make the WG methods highly flexible and these WG methods have been
extended to different applications such as Darcy in Lin et al. (Lin et al., 2014), Stokes in
(Wang & Ye, 2016), bi-harmonic in Mu et al. (Mu et al., 2014b), Maxwell in Mu et al. (Mu
et al., 2015c), Helmholtz in Mu et al. (Mu et al., 2015a), and Brinkman equations in Mu
et al. (Mu et al., 2014a). In Mu et al. (Mu et al., 2015b), the optimal order of polynomial
spaces is studied to minimize the number of degrees of freedom in the computation.

The WG methods are closely related to the hybridizable discontinuous Galerkin (HDG)
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methods, which were introduced by Cockburn and his collaborators in Cockburn et al. (Cock-
burn et al., 2009a). As most DG methods, the WG methods result in a large number of
degrees of freedom and therefore require solving large linear systems with condition number
deteriorating with the refinement of the mesh. Efficient fast solvers for the resulting linear
system are necessary. However, so far there are relatively few fast solvers for the WG meth-
ods. Some multigrid methods, based on conforming finite element discretization, are studied
in Chen et al. (Chen et al., 2015).

The BDDC algorithms, introduced by Dohrmann for second order elliptic problem in
Dohrmann (Dohrmann, 2003), see also Mandel and Dohrmann (Mandel & Dohrmann, 2003),
Mandel et al. (Mandel et al., 2005), are non-overlapping domain decomposition methods,
which are similar to the balancing Neumann-Neumann (BNN) algorithms. In the BDDC
algorithm, the coarse problems are given in terms of a set of primal constraints. An important
advantage with such a coarse problem is that the Schur complements that arise in the
computation will all be invertible. The BDDC algorithms have been extended to the second
order elliptic problem with mixed and hybrid formulations in Tu (Tu, 2005, 2007a) and the
Stokes problem in Li and Widlund (Li & Widlund, 2006a).

In this work, we apply the BDDC preconditioner directly to the system arising from
the WG discretization and estimate the condition number of the resulting preconditioned
operator using its spectral equivalence with that of a hybridized RT method, which have
been studied in Tu (Tu & Wang, 2016).

4.2.2 An elliptic problem Setting and its WG discretization

Let Q C R™ be a simply connected bounded polygon (n =2, 3). Consider the following second

order scalar elliptic problem with a Dirichlet boundary condition:

—V-(aVu)=f in{)
( )=/ (4.24)
u=gq on 0f2
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where a (r) € [L™ (2)]""" is a symmetric positive-definite matrix function, f € L? (), and
g€ HY2(09Q). In particular, £Ta(z)€ > a | € ||, for € Q a.e., and some positive constant
a. Without loss of generality, we assume that g = 0. If Q is convex or has a C? boundary,
then equation (4.24), with sufficiently smooth coefficient a, has a unique solution v € H?(Q2).

We approximate u by discontinuous finite element spaces. Let 7; be a shape-regular
triangulation of €2, and K be the element in 7. For any K € 7}, we denote by hg the
diameter of K with h = maxgeT, hg. Define Fj, be the set of edges/faces of elements
K eTy,. ,?L and ]—"ﬁ are subsets of Fj,, which consists of domain interior and boundary
edges, respectively. Let P¥ (D) be the space of polynomials of degree < k on D. Define the

weak Galerkin finite element spaces associated with 7, as:
Vi ={v={vo,vp} :vo € Wy, vp € My_1},
where

Wi = {wp, € L*(Q) - wy, |k € Pp(K), VK €Ty},

My, = {up € L*(Fp) : pn | € Pi(e), Ve € Fp}.

A function v € V. has a single value v, on each e € F},.
Let

V2 ={veV,:u=00nd0}.

Denote by V,, 1—1 the discrete weak gradient operator on the finite element space Vj. It is
defined as follows: for v = {vg,vp} € V};, on each element K € Ty, Vy, 10 |k € [Pr—1(K)]"

is the unique solution of the following equation

(Vur1vlk.a), == (vok V-a) + <Ub,KaCI'n>aK> Vg € [Py (K)]",

where vg x and vy, i are the restrictions of vyp and v, to K, respectively. To simplify the
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notation, we will drop the subscript £ —1 in the discrete weak gradient operator V, ;1. We
use the common notations for L?-inner products. Write (u,v)p = [puvdx whenever D is a
domain of R" and (u,v) p = [ uvdx whenever D is an (n—1)-dimensional domain. In partic-
ular, we have (u,w) g = [ vwdz and (u,w)sx = [ uwds. Define (v,w)7, =X ke, (v, W)k
and (v, w)oT, = X KeT; (V, W)oK -

The discrete problem resulting from the WG discretization can then be written as: find

up, = (ug, up) € V}) such that

a(up,vp) + s(up,vp) = (f, v0), Yv={vo, vp} € Vko, (4.25)

where

a(up,vp) = (Vwtn, Vavn)r, |

s(un,vp) = > i (Quuo — up, Qpvo — U)o -
KeTy,

Herein, Q denotes the L? projection from L2 (e) to P,_q (e), for e € OK. In Mu et al. (Mu
et al., 2015b), (4.25) is proved to have a unique solution and the approximation properties
of the WG methods are also studied.

Given a uy € Vi, let qg = Vyup |k and write (4.25) as a system of g, ug, up, which is
similar to the linear system resulting from the HDG discretization with the local stabilization
parameter hl_(l. Given the value of u, on 0K, q and ug can be uniquely determined in K, see
Cockburn et al. (Cockburn et al., 2009a). Therefore, by eliminating V,u | and wug locally

in each element, (4.25) can be reduced to a system in u; only
Aup = b, (4.26)

where b is the corresponding right-hand-side function.

In the next section, we will develop a BDDC algorithm to solve the system in (4.26) for
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up. To make the notation simple, we will denote uj by A and the finite element space for wu;,

by A={p € My_1:ule=0Veec I}

4.2.3 The BDDC Algorithms

We decompose €2 into N nonoverlapping subdomains €2; with diameters H;, i=1,---, N, and
set H =max; H;. We assume that each subdomain is a union of shape-regular coarse triangles
and that the number of such triangles forming an individual subdomain is uniformly bounded.
We also assume a(z), the coefficient of (4.24), is constant in each subdomain. We reduce
the global problem (4.26) to a subdomain interface problem. Let I' be the interface between
subdomains. The set of the interface nodes 'y, is defined as I'j, = (UZ-#@QM ﬂan,h) \ 0Qp,,
where 0€); 5, is the set of nodes on 0€2; and 9€y, is the set of nodes on 0f.

We can decompose A into the subdomain interior and interface parts as

N : ~
A=PAYPAr.
i=1

(4)

We denote the subdomain interface numerical trace space of €2; by Ap’, and the associate
product space by Ap = Hf\il /AX(FZ ). Rl(f ) is the operator which maps functions in the continuous
interface numerical trace space /AXF to their subdomain components in the space Ag ). The
direct sum of the R{j ) is denoted by Rr. We can eliminate the subdomain interior variables
)\Ej) in each subdomain independently and define the subdomain Schur complement Sl(j) by:

given )\g) € A{j), determine Sl(ﬂi))\%i) such that

Af) AR A | o o
AT 40 | ] @ gy | ‘
IT T r r Al

The global interface problem is assembled from the subdomain interface problems, and
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can be written as: find Ap € /AXF, such that
SrAr = br, (4.28)

where br = >7; 1RF) bg), and Sp = Z S( )R%). Thus, §p is a symmetric, positive
definite operator defined on the interface space Ap. We will propose a BDDC preconditioner
for solving (4.28) with a preconditioned conjugate gradient method.

In order to introduce the BDDC preconditioner, we first introduce a partially assembled

interface space Ap by

Ar=An@As =A@ (]‘[ Ag) .
=1

Here, _/A\H is the coarse level, primal interface space which is spanned by subdomain interface
edge basis functions with constant values at the nodes of the edge for two dimensions. We
change the variables so that the degree of freedom of each primal constraint is explicit, see

(Li & Widlund, 2006b) and (Klawonn & Widlund, 2006). The new variables are called the

primal unknowns. The space Ap is the direct sum of the AX), which are spanned by the

remaining interface degrees of freedom with a zero average over each edge. In the space Ar,
we relax most continuity constraints across the interface but retain the continuity at the
primal unknowns, which makes all the linear systems nonsingular.

We need to introduce several restriction, extension, and scaling operators between differ-

(4) (4)

ent spaces. Rp’ restricts functions in the space Ar to the components Ay’ of the subdomain

(4)

Q;. RX) maps the functions from /A\p to A,’, its dual subdomain components. Rryp is a

restriction operator from /AXF to its subspace JAXH. Rr: /N\p — Ar is the direct sum of the Rg )

and Rp : /A\p — /NXF is the direct sum of Rpp and RX). We define a positive scaling factor

5:(%’) as follows: for v € [1/2,00),

Y
! pl—(), v € a0 Ny,
( ) Z]epr]( ) h "
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where N, is the set of indices j of the subdomains such that z € 9€2;. We note that 5} (x) is
constant on each edge, since we assume that the p;(z) is constant in each subdomain, and

(4)

the nodes on each edge are shared by the same subdomains. Multiplying each row of R ’,

with the scaling factor 5;[ (x), gives us Rg) A- The scaled operators R p,r is the direct sum of

Rrrp and the R%) A
The partially assembled interface Schur complement is defined by Sp = E?dz’ag(Sp)Ep,

and the preconditioned BDDC operator is then of the form: find Ap € /A\p, such that
RDpSp ' RprSrar = Rp pSt! Rp rbr. (4.29)
The system above can be solved by the preconditioned conjugate gradient method.

4.2.4 Auxiliary Results

Denote by C' a generic constant independent of mesh size h. Its value may differ at different
occurrences. We prove the spectral equivalence of A, defined in (4.26), and the triple-bar

norm defined in(Gopalakrishnan, 2003) as below:

1/2

* 1 2
Ao = > 7 [IA=mreW)lor | (4.30)
KeTy,KCD

where mg (\) = ﬁ S5 Ads. Recall that this triple-bar norm was first introduced in (4.18).
Define the local lifting operators Q(-) and U(-) for the weak Galerkin (WG) method as

below:

(Qu,m)i + ULV -7)ie = (mr-marc forallr € [P1(K)",  (4.31a)

—(w,V-Qu) e + (W1 ( QU — 1), Quuw) o = 0 for allw € Py(K). (4.31b)

Note that the connection between (4.31) and (4.25) can be revealed for the case f =0 as
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follows:

unh = Q)\; Up = (Z/l)\,)\),

where (A, \) is an ordered pair.
Following the work in (Gopalakrishnan, 2003),we prove the equivalence between the

triple-bar norms obtained from the WG bilinear form
1M = an (3, 3) = (QA, QN7 + (A~ (QuUA = X). QA = N)or,

and ||-||" as defined in (4.30). To denote the triple-bar norm defined over an element K, we

add a subscript K to it.
Lemma 4.2.1. The function ||\||x is zero on K € Ty, if and only if X is constant on 0K.

Proof. Assume that ||\ =0 on K. It follows that
0= (Vut, Vour) + h ™ (QuUA = X, QU — N ok,

where u = {UM, A}, and V,u= Q. This implies that V,,u =0 on element K and QU =\
on OK. Further, we have from the definition of the discrete weak gradient operator or the

lifting operator Q given in (4.31b) that for any 7 € [Pr_1(K)|",

0= (Vyu,7)x
=—(UNV -T)g+(\T-n)oK
= (VUNT)k — (UN= X\, T -n)pK
= (VUNT)k — (QpUN— N\, T-n)oK

- (VU)\,T)K.

Let 7= VUA. Then we have VUA =0 on K. It follows that U\ = const. on K. Thus,

QU = const. on OK. Since QpU\ = X on 0K, we have A = const. Note that similar

69



argument as above was provided in Wang & Ye (2016) to prove the faithfulness of the norm

Conversely, assume A is constant on 0K. Substituting the ordered pair (r, w) in (4.31)

with (Q\, U\) and adding up, we obtain
NI = (A @X-max — b~ HQUA = A, Mok

Let w = X be the test function in (4.31b). Since A is constant, A = QpA. It follows from
(4.31b) that
—(\, QA -n)ar +h HQUUA =X, Nk = 0.

Therefore, [|A]]| ;= 0.

Lemma 4.2.2. Let My, = {vy: v = {vg,v5} € V?}. For all A € My,

2 2 2
el < NI < ClIMIL "

Proof. First, we prove the lower bound. By Lemma 4.2.1, ||A||; = 0 implies that A is
constant on K. Similarly as in Gopalakrishnan (2003), by a scaling argument, it can be

shown that

C . C *
AN = Wégﬁn)\_ Ellor = W A =mrN)lgx = C|||)\|||h,Kv

for some constant ¢ independent of \.

Next, we prove the upper bound. Let r = Q\, and w =U\. Plugging the ordered pair (r, w)
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into (4.31), and adding up, we obtain

A% = (A, QX-n)ar —h~ QA =\, Mok
=\ QX-n—h HQUA—N)ok

= (A=mg(\), Qx-n—h~H QU= X))ok

C
< e A= ) e I
= CIAI Al

where we have used (4.31b) for the third equality, the trace inequality (1.5.3) and inverse

inequality (1.5.4) for the second-to-last inequality. It follows that

2 2 2
ML 7 < MM < CHIAIE & -

Summing up over all elements in 7}, we obtain

2 2 2
M < I < ClIMIE™

4.2.5 Condition Number Bound

We define the interface averaging operator Ep, by
Ep=RrRpr,

which computes a weighted average across the subdomain interface I' and then distributes

the averages to the degrees of freedom on the boundary of the subdomains.
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Based on the equivalence of norms in Lemma 4.2.2, similar to the proof of Lemma 4.1.5
or (Tu & Wang, 2016, Lemma 5), we can obtain that the interface averaging operator Ep

satisfies the following bound:

Lemma 4.2.3. For any Ar € /~Xr,

\EpAr[2 <C’<1—I—logH>2|)\ 2
D FSF_ h T o’

where C' is a positive constant independent of H, h, and the coefficient of (4.1).

As in the proof of (Li & Widlund, 2006a, Theorem 1), (Tu & Wang, 2016, Theorem 1),

and Theorem 4.1.6, using Lemma 4.2.3, we can obtain

Theorem 4.2.4. The condition number of the preconditioned operator M_lgr is bounded

by C(1+log %)2, where C' is a constant which is independent of h, H, and the coefficients
a of (4.1).

4.2.6 Numerical Experiments

We have applied our BDDC algorithms to the model problem (4.1), where Q = [0,1]2. We
decompose the unit square into N x N subdomains with the sidelength H =1/N. Equation
(4.1) is discretized, in each subdomain, by the kth-order WG method with a element diameter
h. The preconditioned conjugate gradient iteration is stopped when the relative lo-norm of
the residual has been reduced by a factor of 106.

We have carried out two different sets of experiments to obtain iteration counts and
condition number estimates. In the first set of experiments, we take the coefficient a =1. In
the second set of experiments, we take the coefficient @ =1 in half of the subdomains and
a = 1000 in the neighboring subdomains, in a checkerboard pattern. All the experimental

results are fully consistent with our theory.
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Table 4.19: Performance with H/h = 8/#sub = 64

p=1 p checkboard pattern
k=1 k=2 k=1 k=2
H/h  #sub  Cond. Iter. Cond. Tter. Cond. Iter. Cond. Tter.
8 4x4 2.22 6 3.50 7 1.80 5) 2.37 5)
8x8 2.45 13 3.8 16 2.08 9 2.76 10
16 x16  2.45 14 3.86 17 2.16 14 2.87 15
24 %24  2.46 14 3.87 17 2.17 15 2.89 15
32x32 246 14 3.87 17 2.18 15 2.90 16
#sub  H/h  Cond. Iter. Cond. Iter. Cond. Iter. Cond. Iter.
8§ %8 4 1.78 11 2.90 14 1.67 9 2.33 10
2.45 13 3.86 16 2.08 9 2.76 10
16 3.29 15 4.95 18 2.49 10 3.18 10
24 3.85 17 5.67 18 2.74 10 3.43 11
32 4.28 17 6.21 19 291 10 3.60 11
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Chapter 5

BDDC Algorithms for Stokes flow

The main results from the first section are included in a manuscript in preparation(Tu &
Wang, 2017a); those from the second section are included in another manuscript in prepa-

ration(Tu & Wang, 2017b).

5.1 BDDC for Stokes Problem with HDG Method

5.1.1 Introduction

Nonoverlapping domain decomposition methods have been studied well for solving saddle-
point problems; see, e.g., (Pavarino & Widlund, 2002; Li, 2005; Goldfeld et al., 2003;
Dohrmann, 2007b; Li & Widlund, 2006a; Tu, 2007a, 2005; Li, 2005; Li & Tu, 2013; Tu
& Li, 2014, 2013, 2015; Pavarino & Scacchi, 2016). In many of these works, the original sad-
dle point problems are reduced to positive definite problems in a subspace called the benign
subspace and the conjugate gradient (CG) methods are used to solve the system. In order to
make all CG iterates in the benign subspace, one has to deal with the so-called no-net-flux
constraints across subdomain boundaries, which often lead to large coarse level problems.
The no-net-flux constraints can be complicated for the incompressible Stokes equations with

standard finite element discretization, especially in three dimensions (Li & Widlund, 2006a).
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Moreover, the large coarse level problem will be a bottleneck in large scale parallel compu-
tations, and some inexact solvers in the algorithms are needed to reduce its impact, cf. (Tu,
2007d,c,b; Klawonn & Rheinbach, 2007; Dohrmann, 2007a; Kim & Tu, 2009; Tu, 2011).

The Balancing Domain Decomposition by Constraints (BDDC) algorithms, introduced
by Dohrmann for second order elliptic problem in (Dohrmann, 2003) and analyzed in (Man-
del & Dohrmann, 2003; Mandel et al., 2005), are nonoverlapping domain decomposition
methods, which are similar to the balancing Neumann-Neumann (BNN) algorithms. In the
BDDC algorithm, the coarse problems are given in terms of a set of primal constraints. An
important advantage with such a coarse problem is that the Schur complements that arise
in the computation will all be invertible. The BDDC algorithms have been extended to the
second order elliptic problem with mixed and hybrid formulations (Tu, 2005, 2007a), with
isogeometric collocation methods and spectral elements (Beirdao da Veiga et al., 2013, 2014;
Canute et al., 2014), with staggered discontinuous Galerkin methods (Kim et al., 2014),
with hybridizable discontinuous Galerkin (HDG) discretization (Tu & Wang, 2016), and the
incompressible Stokes problem with conforming finite element discretization (Li & Widlund,
2006a).

In this work, the BDDC algorithm is developed for the incompressible Stokes equation
with HDG discretization. General HDG methods were introduced by Cockburn and his
collaborators in (Cockburn et al., 2009a) and the specific HDG method we consider here is
often called LDG-H method, which is constructed by using the local discontinuous Galerkin
method on each element. One distinct feature of the HDG method, applied to a scalar
elliptic problem, is that the only global coupled degrees of freedom are a scalar variable,
called “numerical traces”. Therefore the resulting global system from the HDG is much
smaller than other traditional DG methods. The HDG discretization for incompressible
Stokes flow has been introduced in (Nguyen et al., 2010) and analyzed in (Cockburn et al.,
2011). The main features of this approach is that it reduces the globally coupled unknowns to

the numerical trace of the velocity and the mean of the pressure on the element boundaries.
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The size of the reduced saddle point problem is significantly smaller compared to the original
one. In (Nguyen et al., 2010), the reduced saddle point problem is solved by an augmented
Lagrange approach. An additional time dependent problem is introduced and solved by a
backward-Euler method. Here, we solve the reduced saddle point problem directly using
the BDDC methods. Similar to the earlier domain decomposition works on saddle point
problems (Pavarino & Widlund, 2002; Li, 2005; Li & Widlund, 2006a; Tu, 2005), we reduce
the saddle point problem to a positive definite problem in a benign subspace and therefore
the CG method can be used to solve the resulting system. Compare to the standard finite
element discretization, the HDG discretization has discontinuous pressure basis functions,
which make the application of the BDDC algorithm much easier, see (Li & Tu, 2013; Tu &
Li, 2014, 2013, 2015). Moreover, the complicated no-net-flux condition, which is needed to
make sure all CG iterates in the benign subspace, can be ensured by edge and face average
constraints for each velocity component in two and three dimensions, respectively. These
constraints are the same as those for the elliptic problems with the HDG discretizations
(Tu & Wang, 2016). This fact makes the BDDC algorithm much simpler than those with
standard finite element discretizations.

Following a similar approach used in (Wang & Ye, 2016) for a weak Galerkin finite element
method for the Stokes equation, we prove the inf-sup stability of one class of the HDG
methods discussed in (Nguyen et al., 2010). Based on this result, we establish the relation
between the Stokes and Harmonic extensions with this class of the HDG discretization.
The relation is important in the condition number estimate and the similar relation for the
standard finite element method is provided in (Bramble & Pasciak, 1989). Combining all
these results and the condition number bound for the elliptic problem in (Tu & Wang, 2016),

we obtain the condition number estimate of the BDDC preconditioned Stokes operator.
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5.1.2 A Stokes problem and HDG Discretization

We consider the following Stokes problem on a bounded polygonal domain 2, in two or three

dimensions, with a Dirichlet boundary condition:

—Au+Vp=f in Q,
V.u=0 in Q, (5.1)

u=g on 01,

where f € L2(Q) and g € H'/2(99Q). Without loss of generality, we assume that g = 0. The
solution of (5.1) is unique for the pressure p up to a constant. Here we will look for the
solution with the pressure p having a zero average over the domain (2.

We follow the approach in (Nguyen et al., 2010; Cockburn et al., 2011) and introduce
the HDG method for the velocity-pressure-gradient formulation of the Stokes equation as

follows:
L—Vu=0 in

—V-L+Vp=f in
V-u=0 in €,

u=0 in  Of).

We will approximate L, u, and p by introducing discontinuous finite element spaces. Let Tj,
be a shape-regular and quasi-uniform triangulation of 2 with characteristic element size h
and the element in 7, denoted by k. Define £ to be the union of edges of elements . & and
&y are the sets of the domain interior and boundary edges, respectively.

Let Py (D) be the space of polynomials of order at most k£ on D. We set Py (D) = [Py (D)]"

(n =2 and 3 for two and three dimensions, respectively) and Py (D) = [Px(D)]"™*".
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For each element x, we find (Lp,up,pn) € (Pr(k),Pr(k), Pr(k)) such that for all kK € Tj,

(Lh,Gh),{—F(uh,v-Gh),@—<ﬁh,Ghn>8H = 0, vV Gy, Epk(li),
(Lp, Vvp)e — (Pn, V- Vi) — <Ehn —ﬁhn,Vh>am = (f,vp)e, VvyePi(k), (5.3)
—(ap, Van)x + (Un -0, q5) = 0, V qn € Pi(k),

where (+,+),; and (-,-)5, denote L2-inner product of functions or vector-valued functions in
r and Ok, respectively. Eh, Uy, and py, are the numerical traces which approximate Ly, up,
and pj, on Ok respectively.

Define the following finite element spaces:

Gr={Gj, € [L2(Q)]\nxn): G|, € Pu(k) VreQl,
Vk = {Vh € [L2(Q)]n : Vh|m € Pk(/i) Vk € Q},
Wk:{phELQ(Q) :phlﬁepk(/i), /QphZO, VKJEQ},

My = {uy, € [L2(E)]" : pyle € Pile) Ve e}

Let Ax = {pp, € My : pp,le =0 Ve € 00}. To make our notations simple, we drop the subscript
k from now on.

Let A, € A and the numerical trace G, = A,. The numerical flux Lyn — ppn is more
complicated and see (Nguyen et al., 2010; Cockburn et al., 2011) for more general discussion.

In this work, we consider the following numerical trace:
I:hn—ﬁhn: Lhn—phn—m(uh—)\h), on 8/{, (54)

where 7, is a local stabilization parameter, see (Nguyen et al., 2010; Cockburn et al., 2011)
for details.
With the definitions of numerical trace Gy, = A, and the numerical flux L,n — pj,n, this dis-

crete problem resulting from HDG discretization can be written as: to find (L, up,pp,Ap) €
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(G, V,W,A) such that for all (Gp,vp,qn, 1) € (G, V,W,A)

(L, Gr)7, + (0, V- G) 7, — My Grm) g = 0,

(L, V)7, = (0, V- vi) 7, — (Lpn— ppn = 7 (0, — Ap) Vi), = (£.va)7;,

—(un, Van) 7, + A -1,00) o7, = 0,

_<Lhn_phn_7-/€(uh_)‘h)vll'h>8’7'h = 0.
Define

A, G- G, Aua:G—=V, ApnL:G—=A Aw: V-V,

Au:V—=A Bu: V=W, Apw:A—=A By A=W,

as

(ALLLn, Gr) = —(Lp, Gp) 7,0 (AuwLin, vi) = —(Ln, Vvi) 75,
(AxLn,pp) = (Lan,py) o7 3 (Aualn, Vi) = 7o (Un, Vi) o,
(Apun, pp) = =T < Wb, >07,,  (AaAn ) = T < An by, >o7;,
(BpuVi,pn) = (Vi Vou) 7, (BpaAn,Pr) = — < Ap 1, pn >o7;,,

for all Ly, Gy, € G, up, vy €V, pp,qp € W, and )\,[l, cA.

Correspondingly, the matrix form of (5.5) is

A, AL AL 0 L 0
A Aw AL, BL || ul| | B
A A An BL || A 0o |
0 By By 0 ||» 0

(5.5)

(5.6)

(5.7)

where we use L, u, A, and p to denote the unknowns associated with Ly, up, Ay, and py,
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respectively.

Let
AL AL AL 0 L 0

A= | Au, Awa AL |2 Ba=|BL |. w=|u|, adF=|F . (58
Ay, Axa Ay B\ A 0

the global problem (5.7) can be written as the following saddle point problem

Ae By || ua | | Fa 59)
B, 0 P

where A, corresponds to the same HDG discretization for elliptic problem as discussed in
(Tu & Wang, 2016).

In each k, we decompose the pressure degrees of freedom p to the element average pressure
poe and the rest called the element interior pressure p; and let W = W; & W, correspondingly.

We can rewrite (5.7) as

A, AL o0 AL 0 L 0
Au. Aw BlL., A3, 0 u Fy,
0 Bpu 0 By 0 pi |=1]0 | (5.10)
Axp A Bly Aw Bl A 0
0 0 0 Bpo O Poe 0

Given the value of XA on 0k, L, u, p; can be uniquely determined in each element x. Namely,

in the matrix form, we note that

AuL Auu Bg;u
0 Bpu 0
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is block diagonal. Each block is nonsingular and corresponding to one element k. Therefore,
we can easily eliminate L, u and p; in each element independently from (5.10) and obtain

the system for A and pg. only

A BT || A b
= : (5.11)
B 0 Doe 0
where .
A, Ay, 0 AL
A=Ay = AL Aaa BL] | Aur Auu B, AL 1
0 Bpu 0 By
and 1
A, AL 0 0
B=DByx b=—[Ax Axu Bia] | Aur Auu B, Fy,
0 Byu O 0

Once the solution A and pg. of (5.11) is obtained, the solution of (5.10) can be completed by
computing L, u, p; in each element with the given .
By (Nguyen et al., 2010, Theorem 2.1), the system (5.11) can be considered as the matrix

form of the following problem: to find A € A and pg. € Wy, such that

ap(Ap) +bp(poe,pp) = Ip(p), YpeA

(5.12)
b (qoe; ) = 0, V qoe € Woe
Here
an(n,p) = Ler, (L), L(1)) g+ (TuU(n) —n), U1) — 1) gye
bn(poes i) = —(poes M)y, (5.13)
In (1) = Yem, (1) = Xier, (fnU))x

where L(u) and U(p) are the unique solution (L = L(u), up, =U(p)) of the local element
problem (5.10) with A=y, f =0, and p=0.
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In next two sections, we will develop a BDDC algorithm to solve the system in (5.11) for

A and poe.

5.1.3 Reduced Subdomain Interface Problem

We decompose 2 into N nonoverlapping subdomain €2; with diameters H;, i =1,..., N,
and set H = max; H;. We assume that each subdomain is a union of shape-regular coarse
triangles and that the number of such elements forming an individual subdomain is uniformly
bounded. We define edges/faces as open sets shared by two subdomains. Two nodes belong
to the same edge/face when they are associated with the same pair of subdomains. Let T’
be the interface between the subdomains. The set of the interface nodes I';, is defined as
Iy, := (U#]‘@Qiyhﬂﬁﬁj’h) \ 0Qp,, where 05); 5, is the set of nodes on 0€2; and 02, is that of
09). We assume the triangulation of each subdomain is quasi-uniform.

We decompose the velocity numerical trace A and the average pressure Wy, into:
A=A;®Ar, Woe = Wi @& W.

jA\p denotes the degrees of freedom associated with I". Ay and W are products of subdomain
interior velocity numerical trace spaces V[(i) and subdomain interior pressure spaces W(i),
respectively; i.e.,

&) N )
AI:HAI, W[:HWI.

i=1 i=1
The elements of Ay) are supported in the subdomain €2; and vanishes on its interface I, while
the elements of Wj(i) are restrictions of the pressure variables to {2; which satisfy fQi pgi) =0.
KF is the subspace of edge/face functions on I" in A, and W} is the subspace of W with
constant values p(()‘) in the subdomain €; that satisfy ZZ 1 po) (©i) = 0, where m (§2;) is
the measure of the subdomain ;.

We denote the space of interface velocity numerical trace variables of the subdomain €;

by A%) , and the associated product space by Ar = []; 1AF) generally edge/face functions in
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Ar are discontinuous across the interface. We define the restriction operators Rl(j ) : IAXF — A? )

to be an operator which maps functions in the continuous global interface velocity numerical

trace variable space Ar to the subdomain component space A(Fi ), Also, Ry : Ar — Ar is the
(1)

direct sum of Ry’.

The global problem (5.11) can be written as

A II B%} AIII 0 A I b[
Brir 0 B AO pr | _ 0 (5.14)
0 0 B 0 Po 0
and it is assembled from subdomain problem
i . AT AT IR o]

RV VA A I VA I

o0 s o || o -
. AT . AT . - . . .

Aty Bk A B |||

o o BY o PV 0

We can eliminate the subdomain interior variables )\y) and pgi) in each subdomain in-
dependently, and define the subdomain Schur complement Sﬁi) as follows: given /\g) € Ag),

determine Slgi)A?) such that

7 )T )T 7
Ay s | ] [ o
BY o BT =] o [ (5.16)

.

Ay Bl A | ]| sOA
The global interface problem is assembled from the subdomain interface problems, and

can be written as: find (Ap, po) € (IA\p,WO) , such that
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D) | S BT
17 = ar ,  where S = AF or ) (5.17)
Po 0 Bor 0
Sp = RWT 5@ p® BYRY and
r =S Ry SURY, Bop = S Byp Ry, an

_ _ A0 gOT 50
)T i ; ; 11 II I

o0 = SR a0 BT ||
By 0 0

The operator Sp is symmetric positive definite, because of the Dirichlet boundary con-
ditions on 99 and the primal continuity constraints defined on the interface. Note that S
is symmetric indefinite. In what follows, we will propose a BDDC preconditioner, and show
that the preconditioned operator is positive definite when restricted to a proper subspace.
A preconditioned conjugate gradient method can then be used to solve the global interface

problem.

5.1.4 The BDDC Preconditioner

The BDDC (Balancing Domain Decomposition by Constraints) methods, which were in-
troduced and analyzed by Dohrmann, Mandel, and Tezaur in (Dohrmann, 2003; Mandel
& Dohrmann, 2003; Mandel et al., 2005), are originally designed for standard finite ele-
ment discretization of elliptic problems. The BDDC algorithms are similar to the balancing
Neumann-Neumann algorithms. However, their coarse problems, in BDDC, are given in
terms of sets of primal constraints. The main advantage of such coarse problem is that the
local subdomain problems, arising in the BDDC algorithms, are invertible. They are one
of the most tested and popular domain decomposition algorithms and suitable for parallel
computation.

In order to introduce the BDDC preconditioner, we first introduce a partially assembled
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interface space Ar by

- - N N .
Ar=Ap®As=Ape [JAY.

i=1
Here, 1A\H is the coarse level, primal interface velocity space and the space A is the direct
sum of the A(Ai), which are spanned by the remaining interface degrees of freedom.In the
space 1~Xp, we relax most continuity constraints across the interface but retain the continuity
at the primal unknowns, which makes all the linear systems nonsigular.

We need to introduce several restriction, extension, and scaling operators between differ-
ent spaces. Eff) : 1~\p — A}i) restricts functions in the space 1~\[’ to the components A}i) of the
subdomain Q;. Rr: 1~\p — Ar is the direct sum of Eg ). RX) : .Kp — AX) maps the functions
from 1A\p to AX), its dual subdomain components. Rpyy : IA\p — IA\H is a restriction operator

from 1A\p to its subspace 1A\H. Ry : KF — 1~\[‘ is the direct sum of Ry and RX). We define the

positive scaling factor (53 (x) as follows:

1
o (x) = ———— o NI

where Z,, is the set of indices of the subdomains that have x on their boundaries, and card (Z,,)
counts the number of the subdomain boundaries to which z belongs. We note that 5; (x) is

constant on each edge. Multiplying each row of RX) with the scaling factor gives us R(Di) A

The scaled operators ED,F is the direct sum of Ry and R%{ A

We denote the direct sum of 51@ by St and the partially assembled interface velocity
Schur complement is defined by Sp = E?S{‘EF. Correspondingly, we define an operator
Byr, which maps the partially assembled interface velocity space 1~\p into the space of right-
hand sides corresponding to Wj. BOF is obtained from the subdomain operators B(gir) by
assembling with respect to the primal interface velocity part, i.e., Bop = Zi]il Bé??{j ). Using

the following notation
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. R _ | St Bt
Rp=| "0 |, §=|" Y, (5.18)
I Bor 0

the preconditioner for solving the global interface Stokes problem is
ML= BLS Ry,

and the preconditioned BDDC algorithm is then of the form: find (Ap,po) € (./A&p, Wg), such

that

R [V
R Rps| | =BES Ry | | (5.19)

Po 0

Note that R p,r is of full rank and that the preconditioner is nonsingular.

The matrix S defined in (5.17) is symmetric indefinite on the space (IAXF,WO), but it is
positive semi-definite on the subspace (KF Nker (BOF),WO). With the careful chosen primal
velocity space IAXH, we can construct a BDDC preconditioner to make sure the preconditioned
BDDC operator in (5.19) is symmetric positive definite in a subspace and the conjugate
gradient iterates remain in this subspace when solving (5.19). This subspace is called the

benign subspace.

Definition 5.1.1 (Benign Subspaces). We will call

IA\F,B = {Ar € Ar | BorAr =0}, KF,B = {Ar € Ar | BorAr =0}

the benign subspaces of JA\F and 1~\p, respectively.

It is easy to see that the operators S and S, defined in (5.17) and (5.19), are symmetric
positive definite on (K[‘ B,WO) and (]\1" B,Wo), respectively.
As in (Li & Widlund, 2006a; Tu, 2005), in order to make the iterates in the benign

subspace, we require that the functions in the dual velocity space satisfies the no-net fluzx
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condition, i.e.,

AD =0, ¥ 2D e AD. (5.20)
0

In order to make the dual velocity space satisfy the no-net fluxr condition, we choose
the primal variables which are spanned by subdomain interface edge/face basis functions
with constant values at the nodes of the edge/face for two/three dimensions. We change
the variables so that the degrees of freedom of each primal constraint is explicit; see (Li
& Widlund, 2006b; Klawonn & Widlund, 2006). The dual space Ap are spanned by the
remaining interface degrees of freedom, with a zero average over each edge/face.

The following Lemma, see (Li & Widlund, 2006a, Lemma 6.2) and (Tu, 2005, Lemma

4.1), is crucial to prove the positive definiteness of the preconditioned BDDC operator.

Lemma 5.1.1. Let Ap € IN\RB. Then, Rg,r)\p S IA\["B.

5.1.5 Some Auxiliary Results

This section we collect a number of results which are needed in our condition number estimate

of the preconditioned system (5.19). We define

Yh,r = max{1l+7.hq}, (5.21)
KETh

where 7,, and h, are the stabilization parameter and the diameter of the element k, respec-
tively. We use ¢ and C' to present constants which are independent of h, H, and 7.

Let Q;, and Qp be the L? projection operators from [Lz(/@)]n onto Pi(k) and Py (k),
respectively. Qp is the L? projection from [L2(e)}n onto Py(e). Let Ty be a finite element
partition of €2 satisfying the shape regularity assumption as specified in (Wang & Ye, 2014,
lemma 4.1). The following lemma is (Wang & Ye, 2014, Lemma 4.1) or (Wang & Ye, 2016,
Lemma A.1).
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Lemma 5.1.2. w € [HTH(Q)}H with 1 <r <k. Then, for 0 <s<1, we have

> B W = Qow |y < WU Wl - (5.22)
KE€Th

Let x be an element with e as an edge/face. For any function g € H'(x), the following
trace inequality holds (Wang & Ye, 2014, Lemma A.3) or (Wang & Ye, 2016, Equation
(A.4)).

Lemma 5.1.3.

1911720y < C (R 91720y + Pl Vl72()) - (5.23)

We first introduce several useful norms and semi-norms, which are defined in (Li &
Widlund, 2006a; Tu, 2005).

The subdomain Schur complements Séi), defined in (5.16), are symmetric, positive semi-
definite by the inertia of Schur complements. They are singular for any subdomains with a
boundary that does not intersect 0f).

The operators Sy and Sr, defined in (5.17) and (5.18), are symmetric positive definite
because of the Dirichlet boundary condition on 0€) and sufficiently many primal continuity
constraints for the no-net-flux condition.

The interface operators S and S, defined in (5.17) and (5.18), are indefinite, but they
are positive, semi-definite when they are restricted to the benign subspaces of (K,Wg) and

(K, WO), respectively. We can define

wi% =w'Sw= Hx\rH%F, VY w=(Ar,po) € (KF,Byw()), (5.24)

‘W%:WTSWZ ”)\FH%F, V' w=(Ar,po) € (IN\F,B,WO)-

We also define Sl(j)E, the subdomain Schur complement for the corresponding elliptic
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problem, as follows: given )\fj) € Ag), determine S AY such that

I, EAT
_L(i)_ - 0

o 2 0

AP 1= , (5.25)
M) [SEea

(4)

where Ag’ is the subdomain matrix for A, defined in (5.8) and defined as follows:

i T |
Af) - Af)

I'L
4@ g 40T 40T
A((lz) _ uL u;‘ Iu Tu (526)
u

RG T T )T |
A AL A

(
A 4y
(

AR Ara AR AR
IRNCENGIN

Let A = {)\IZ AL ] , by the definition in (5.6), (Cockburn et al., 2009a, Theorem 2.1) or

(Cockburn et al., 2014, Theorem 2.1), we have

12 - AT
L L® L
(1) (4) (4) , N
g a0 s -
)\gz) /\gz) /\(Iz) )
Mo Y] Y
= > LY L, 47, <u(i) QRO _)‘(i)>a : (5.27)
KETH(€) "

) @ A0 Z0]"
for (L@ u® A} )\FZ)] satisfying (5.25).

We also have the following lemma:
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Lemma 5.1.4. If 1 < Chyry, for all k € Tp(€;), then

-2
L)
- u®
> Ivaa, <O : (5.28)
KETR($2:) )\gz)
(i)
Ar AY
. . > N T
for [L® () )\gz) Ag)} satisfying (5.25).
Proof:
— (D v.vg® ORVON OESYORVEON
= —(u”,V-Vu ),.;—|—<)\ ,Vu n>am—|—<u A Vu n>a,_C
— (LD, vu®), + <u(z') ESVOR VG '">an
< (LO,LO)Y2(Vul), Va2 4/ (u® 20 o) A(z’>>;/2 B2 (Val) . m, vul .n>;/ 2
< (LO,LO)2(vu®, Fu®)l2 4 0p /2 (0 — 230, a0 )‘(i)>;/ 2 (va’W(i))l/ ?

where we use integration by part for the first equality, the first equation in (5.5) for the
third equality, the trace inequality ( Lemma 5.1.3) and the inverse inequality for the last
inequality.

Therefore, if 1 < Chyg7y,
(vu®, vu?y), < C ((L(i),L(i))K T <u(i) A @ _)\(i)>aﬂ) '

O

Similar to the inf-sup condition of the weak Galerkin finite element methods (Wang &

Ye, 2016, Lemma 4.3), we have the following theorem:
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Theorem 5.1.5. If hy1, < C, then there exists a positive constant S independent of h and
H, such that

L m > Bloll 2oy, (5.20)
forallpeW. Here Ay, Bg are defined in (5.8). The theorem is also hold when Q) is replaced

by the subdomain ;.

Proof: For any given p € W C L3(Q), it is well known that there exists a vector-valued

function ¥ € [H3(€2)]"™ such that

V-ou,p
BD) 5 Gl 2, (5.30)
19l 1 (02)

where C' is a constant depending only on the domain 2.
Let L= Q,Vi, v = Qui, A = Qy, and uf — { L v A } Recall Q.. Qo Q are the Ly

projections to the corresponding spaces. For any Gj, € G, we have

(L,Gh)ﬁ+(V,V-Gh)—</\,Ghn> (5.31)
= (QpV0,Gp)k+(Qo0, V- Gyp) — (Qpv, Gpn)
= (V1~}7Gh)n+<?~),VGh)— <?7,Ghn>

= 0.
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Therefore, if 7,.h, < C, we have

T
Uy Aglig

IN

IN

IN

VAN

IA

Z ((L7L):"€ + Tk (<V7V>8K —2 <A7V>BH + <A7A>8m)) (532)
KETH()

Y (LL)s+7 (v=Av—=X)y,)
’ie'Th(Q)

3 (QLVT,QuVD) s + 7 (Qol — Qu, Qi — Qi) ,.)

KETH()

> (V5, VD), + 7 (Qu(Qod — 7), Qp(Qo — 1)) 5,.)

KETR(Q)
Y (V3,V0)s 474 (Qot — 0, Qo0 — 7))

KE€TL(Q)

C > (V0,V0),+hy 1HQOU—UHL2 (0r))
Ii€7—h( )

C Z ((V0,V0),+h,, 2||QOU—U||L2
KETH(Q)

Cllol g

+[1V(Qod — )1 72(s))

Here, we use (5.31) for the first equality, the definitions of L, v, and A for the third equality,

the definitions of the projections for fourth and fifth inequalities, the choice of 7, for the

sixth inequality, the trace inequality (5.23) for the seventh inequality, (5.22) for the last

inequality.

U

Z;ng = (Baua)Tp: Z ((V7Vp>/€_<)"n7p>8m) (5'33>
KETH()

= Z ((Qofl,vp)ﬂ_<Qb'D'n7p>8m>
KETH()

= > ((0,Vp),—(0-n,p)y,)
KETH()

= Y —(Vup,=—(V-3,p).
KETH()

Combining (5.32) and (5.33), we have
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|uang| > (Vﬁap)

Z = > Blpl 2 5.34
LA = ol = P1@) (5.54)
O
2 . o 2 . o
Let )\%’) G0 /\%Z)TSI@A(FZ), and )\{f) o /\g)TSI(f’)E)\%). We will use the inf-sup stabil-
r T E

ity for each subdomain in the proof of the following lemma. Similar results for the standard

finite element discretization can be found in (Bramble & Pasciak, 1989).

Lemma 5.1.6. If 7,h, =~ C, the

52

T+ hP A A

‘)‘(z‘) 2 < ‘)\(z‘)
r|go — |71
N

2
< |y
st _’)‘F
I E

2
s’
where [ is the inf-sup stability constant defined in (5.29).

Proof. We define the harmonic and Stokes extensions from A(Fi ) to (G(i),V(i),A(i)) as follows:

for any )\(Fi) € Ag),

’%,\(F’) "= inf JED] o, (5.35)
A’ EO=LO v XD)e(a®) vi) AD), E(“lri:/\(;) a
and
(4) . .
‘SAP 0= ko B (536)
A" EO=LO OGO, vOAY), EO|r =AY BILE® =0 a

where Aﬁf), defined in (5.26), is the subdomain local matrix of A, defined in (5.8). BC(Z?; is

the subdomain local matrix of B, defined in (5.8) excluding the pressure degree of freedom

(4) (4)

corresponding to the subdomain average pressure. Given Ap’, the harmonic extension HAp
can be obtained by solving the equations corresponding to the first three rows of (5.25). The
Stokes extension S)\(Fi ) can be obtained by first solving the equations corresponding to the
first two rows of (5.16) and then using the resulting [/\gi) /\(Fi)]T to obtain [L() v(?) p(i)]T in

i
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*

p
each element. We denote the resulting pressure by p* and let p = , which is the whole
0

degrees of freedom for pressure in the subdomain €2;.

By the definition of these two extensions and the semi-norms |- |g. , and |-|s., we have

2
o) (4) _ 1@
‘HA o=, ] =
F,E
The second inequality can be obtained as
(4)
"\ s, ‘H)‘ <>—‘S’\ ne ‘)‘ SO

We prove the first inequality as follows. Let (Lg),vg),)\g) ) = 2) = ”H/\(F), (L g),vgi),

/\gi)) = Egi) = S)\g ), By the definitions of the harmonic and Stokes extensions, we have

T ‘ T
BV g 4P BY [ EP| o
0 BY o ||»p 0
Therefore, we have
B = EfAVE+E[ B p— (BYE,) p. (5.37)
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P . T
Since p = , ( L(f)Es> p =0, and,
0

. T
(BS)E;Z) po= > ((vi:VD)e— (A -m.p)y,)
KETH()

= Y (Vv +{(An— Vi) n,D)y,)
KETR (L)

1/2 1/2
C( 3 (Vvh,Vvh)H) (Z(p,p)n)

KET (Ql) KETH

IN

1/2 1/2
+c( 5 hgw—vh,xh—vm) ( > hn<p,p>an)

KETH() KETH ()
C|Eh\Ag) 1Pl z2(0:) (5.38)

IN

where we use the Cauchy-Schwarz inequality for the third inequality, (5.27), Lemmas 5.1.4
and 5.1.3 for the last inequality.

By (5.37), the Cauchy-Schwarz inequality, and (5.38), we have
. T
|Es|igi> —EjAVE,+E[B{) p<C (\Eh|Ag) [Es| o +En] 0 ”p”L?(Qi)> : (5.39)

Applying Theorem 5.1.5 on the subdomain €2;, we have

—1
I Pl < 8 supuaaeww,w)(UTA%
a

—1 . UZASJ)ES 4
/6 SUPUGG(G(i),V(i),A(l)) (UTA(Z) )1/2 (5 0)

a Aa Ua

< BTYE o,

where we use the definition of the Stokes extension E; for the second equality and the

Cauchy-Schwarz inequality for the last inequality.
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Plugging (5.40) into (5.39), we obtain

2 -1
By < 0 (Bl B o + Bl 087 L0 )

Therefore, we have

2 62

NG
'A s (1+8)?

e

| |A()—C‘Eh’ (1)_0"\

. (5.41)
Sl" FE

O

In order to prove the condition number bounds for the BDDC preconditioner, we define
an averaging operator Ep, which maps (INXF,WO), with generally discontinuous interface

velocities, to the same space with continuous interface velocities: for any w = (wr, qo) €

(Kr, W()),

wr Rpr RY wr Ep rwr ~
ED = pr = 7 € (AF7 WO) )
q0 I Il q q0

where Ep = Epégr averages the interface velocity with a properly defined weight.
The following lemma is the result of the Ep 1 for the elliptic problem, see (Tu & Wang,
2016, Lemma 5).

Lemma 5.1.7. There exists a positive constant C, which is independent of H and h, such

that

H -
Epracl, | < Cg (14108 ) Al L. Vared
where 7y, - is a constant defined in (5.21).
Now, we prove the bound of the averaging operator Ep for the Stokes problem.

Lemma 5.1.8. If h,1, = C, then there exists a positive constant C, which is independent of
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H and h, such that

2

14 3)? H -
|EDw|2§§C( 626) Vh,r <1+1Ogh> wi% Y w=(r, )€ (Ar,5,W0),

where 3 is the inf-sup stability constant, and ~p, » is a constant defined in (5.21).

Proof. For any vector w = (Ap, qp) € (KP,B,WO), by Lemma 5.1.1, E%,F’\F € IA\F’B. Thus,
ED,F)\F = R[‘R%’F/\F c IN\RB.

From the definition of the S-seminorm, we have
2 2 B 2
[Epw|% = HED,FAFH§F = |Rr (Eprir) [, (5.42)

By Lemmas 5.1.6, 5.1.7, we have

(1+p)?
52

H\? .
Yh,r (1 +log h) |)‘F|§F7E <C

|Rp (ED,F/\F) 5. <C

(1+p)?
52

| Rp (ED,F/\F) .

(1+8)?
52

HN\?
Vh,r <1+10gh) |)‘F|§F'

IN

C

Then, we have

1+3)2 2 14+3)2 2
[Epwl} < CU5n, (1+log i) A2 < CUE . (1+log i)l

O
Remark. In (Tu & Wang, 2016), for the elliptic problems, the algorithm is proved to be
scalable with the choices of the stabilization constant 7, to be 1 and ﬁ, see Lemma 5.1.7
and (5.21). For the Stokes problem, we require 7,h, ~ C, which excludes the case with
7w = 1. This condition is required in the proof of (5.38). In our numerical experiments, we
test three choices of 7, as in (Tu & Wang, 2016), namely 7, = 1, i, é With all choices
of 7, the BDDC algorithms perform similarly to the elliptic cases, but our theorem is only

valid for the choice with 7, = é
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5.1.6 Conditioner number estimate for the BDDC preconditioner

We are now ready to formulate and prove our main result; it follows as in the proof of (Li
& Widlund, 2006a, Theorem 6.7) using Lemma 5.1.8. Also see the proof of (Mandel et al.,
2005, Theorem 25), (Tu, 2007d, Lemma 4.6), and (Tu, 2007c, Lemma 4.7).

Theorem 5.1.9. The preconditioned operator M5 s symmetric, positive definite with

respect to the bilinear form (,>§ on the space (K[‘ B,WO). If hyt = C, the condition

2
number of M~ 1S s bounded from below by 1, and from above by C’( oy Vhr (1+log( )) ,
where C'is a constant which is independent of H and h. vy, » is a constant defined in (5.21)

and (8 is the inf-sup stability constant.

Proof:

It is enough to prove that, for any u € (./AXRB, W()) with up # 0,

u' Mu<u'Su<C Yhr (1 +log(H/h))2uTMu,

(1+5)?
62

Lower bound: Let

w=(RhS"Rp) we (App. ). (5.43)

Using the properties RTRp = R%é =1 and (5.43), we have,

W Mu=u" (RHS ™ Rp) " u=u"w
= W"R'S5 Rpw = (Ru, 57 Rpw),
< (Ru,Ru)" (87 Rpw, 5 Rpw).”

(T RTSRu)" (w” RS 85 Rpw)
— (uTRTSR)" (o 2a) .
We obtain

ul Mu < uTgu,
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by canceling a common factor and squaring.
Upper bound: Using the definition of w in (5.43), the Cauchy-Schwarz inequality, and

Lemma 5.1.8, we obtain the upper bound:

ul' Su = uTéTgﬁiégg_léDw

= <EU,ED§_IED'LU>§
< Eu,§u>/ <EDS 1RDU) EDS RDU)>;/2
< C’<J§u,§u>§/2 (1;6)’71/2

(1+log(H/h))|S™'Rpwlg

= D2 g ) (uf B SR (RS 85 )
(1+8) 1/2
= O /2 (1+1og(H/h)) (TSu) (uTMu) .
Thus,
2
ul Su < C’(l—gzﬁ)vhﬁ (14log(H/h))*u" Mu.

5.1.7 Numerical Experiments

We have applied our BDDC algorithms to the model problem (5.1), where Q = [0,1]2. Zero
Dirichlet boundary conditions are used. The right-hand side function f is chosen such that
the exact solution is
sin3(7x) sin? (7y) cos(ry)
u= and p=a?—1y>
—sin? () sind(ry) cos(mz)
We decompose the unit square into N x N subdomains with the sidelength H =1/N. Equa-
tion (5.1) is discretized, in each subdomain, by the pth-order HDG method with a element
diameter h. The preconditioned conjugate gradient iteration is stopped when the relative

lo-norm of the residual has been reduced by a factor of 106.
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Table 5.1: Performance of solving (5.19) with HDG discretization (tau =1)

k=0 k=1 k=2
H/h  #sub Cond. Iter. Cond. Iter. Cond. Iter.

8 4 x4 4.13 10 4.46 12 1212 14
8% 8 2.03 13 8.34 17 11.27 20
16x16 4.88 13 9.87 20 13.16 24

24x24  5.04 13 10.26 20 13.67 24
32x32 494 12 10.23 19 13.77 24

#sub  H/h  Cond. Iter. Cond. Iter. Cond. Tter.

8% 8 4 2.49 9 5.86 13 8.32 17
2.03 13 8.34 17 11.27 20

16 7.49 15 11.28 20 1751 24

24 9.12 17 13.22 21 19.83 25

32 10.37 19 14.69 22 21.15 25

We consider three different choices of the stabilization constant 7, namely 7, =1, 7, = h—lﬁ,

and 7, = hi% as those in (Tu & Wang, 2016) for elliptic problems. For each choice of 7., we
have carried out experiments to obtain iteration counts and condition number estimates.
The performance of the algorithms for the Stokes problem with these three choices of 7,
is similar to those for the elliptic problems. The experimental results for 7, = i are fully

consistent with our theory. Our theory does not apply to the cases of 7, =1 and 7, = as

1
F%a
we point out in the Remark. We note that, for the choices of 7, = 1, the algorithms work as
good as 7, = h—lﬂ As for the elliptic case, for 7 = h%’ Vi, R h% and the condition number is

linearly increasing with the mesh refinement. The algorithm is not scalable anymore.
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Table 5.2: Performance of solving (5.19) with HDG discretization (tau = 1/hy)

k=0 k=1 k=2
H/h  #sub Cond. Iter. Cond. Iter. Cond. Iter.

8 4 x4 4.21 10 4.72 12 12,72 14
8% 8 5.12 12 8.81 17 1152 20
16x16  5.00 13 1043 21 13.44 24
24x24 514 13 10.83 20 13.96 25
32x32 5.14 13 10.84 20 14.09 25

#sub  H/h  Cond. Iter. Cond. Iter. Cond. Tter.

8% 8 4 2.56 9 6.23 14 8.52 17
5.12 12 8.81 17 1152 20

16 7.59 15 11.86 20 17.86 24

24 9.22 17 13.86 22 20.32 25

32 1048 19 15.37 23 2221 26

5.2 BDDC for Stokes Problem with WG Method

5.2.1 Introduction

Numerical solution of saddle point problems using non-overlapping domain decomposition
methods have long been an active area of research; see, e.g., (Pavarino & Widlund, 2002; Li,
2005; Goldfeld et al., 2003; Dohrmann, 2007b; Li & Widlund, 2006a; Tu, 2007a, 2005; Li,
2005; Li & Tu, 2013; Tu & Li, 2014, 2013, 2015; Pavarino & Scacchi, 2016). The Balancing
Domain Decomposition by Constraints (BDDC) algorithm is an advanced variant of the
non-overlapping domain decomposition technique. It was first introduced by Dohrmann in
2003 (Dohrmann, 2003), and the theoretical analysis was later given by Mandel, Dohrmann
(Mandel & Dohrmann, 2003). In this theoretical development, optimal condition number
bound was obtained for the BBDC operators proposed for symmetric positive definite sys-
tems. Nonetheless, the variational form of the incompressible Stokes problem is a saddle

point problem (Brezzi & Fortin, 1991), and the discretization by finite element methods lead
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Table 5.3: Performance of solving (5.19) with HDG discretization (tau = 1/h2)

E=0 k=1 k=2
H/h  #sub Cond. Iter. Cond. Iter. Cond. Iter.

8 4 x4 4.48 11 2213 16 19.54 17
8% 8 2.36 13 36.61 30 27.04 29
16x16 5.36 14 62.50 45 36.51 37
24x24 540 14 87.78 50 4751 41
32x32  5.33 13 111.22 53 27.78 43

#sub  H/h  Cond. Iter. Cond. Iter. Cond. Tter.

8% 8 4 3.05 10 1897 22 1391 21
2.36 13 36.61 30 27.04 29

16 707 16 73.03 40 44.63 36

24 9.38 18 111.36 46 60.93 43

32 10.61 19 151.09 48 76.86 46

to symmetric indefinite matrices. Thus, the conventional theory usually fails to apply. In the
first attempt to apply BDDC to the incompressible Stokes problem by Li and Widlund (Li
& Widlund, 2006a), the approach via benign spaces was used to reduce the Stokes system
to a symmetric positive definite problem, and optimal convergence result was obtained as
for the elliptic case. However, this method was proposed and analyzed with discontinuous
pressure approximation, and there is a big class of mixed finite element spaces featuring
continuous pressure, e.g., the Taylor-Hood finite elements. Later, Li and Tu proposed a non-
overlapping domain decomposition algorithm for continuous finite element pressure space,
which was proved and numerically verified to be scalable(Li & Tu, 2013). Earlier, Sistek et
al. applied a parallel BDDC pre-conditioner based on the corner constraints to the Stokes
flow using mixed discretization by Taylor-Hood finite element(Sistek et al., 2011). They
numerically demonstrated the promising speedup property of their BDDC pre-conditioner
as applied to benchmark test problems of real-life relevance, even though optimal scalability

was not achieved.
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As the property of the discretized system to be solved is dependent on the numerical
methods used, in this study, we design BDDC pre-conditioners for trending non-conforming
finite element methods, in particular, the hybridizable discontinuous Galerkin (HDG) and
weak Galerkin(WG) methods.

Non-overlapping domain decomposition have been widely studied and applied for solv-
ing large symmetric positive definite linear systems arising from the discretization of ellip-
tic partial differential equations(Toselli & Widlund, 2005). The balancing domain decom-
position by constraints (BDDC) algorithms are domain decomposition methods based on
non-overlapping subdomain division. They represent an important class of iterative sub-
structuring methods. This method was first introduced by Dohrmann(Dohrmann, 2003),
and further analyzed in the elliptic case by Mandel, Dohrmann, and Tezaur (Mandel &
Dohrmann, 2003; Mandel et al., 2005). In BDDC methods, a coarse problem is proposed
across the interface formed by parts of the boundaries of at least two subdomains to enforce
the primal continuity constraints. The primal variables, which will be the same across the
interface for each iteration, include point constraints, edge or face average constraints, and
for some applications constraints for first order moments. One advantage with such designed
coarse problem is that the corresponding Schur complements are invertible. This method
is a successful redesign of the balancing Neumann-Neumann (BNN) alogrithm in the same
way as FETI-DP algorithms to the older one-level FETI. The BDDC algorithms have been
extended to the second order elliptic problem with mixed and hybrid formulations, hybridiz-
able discontinuous Galerkin (HDG) methods (Tu, 2005, 2007a; Tu & Wang, 2016) and the
Stokes problem with standard finite element and HDG method (Li & Widlund, 2006a; Tu
& Wang, 2017a).

In this work, a BDDC algorithm is developed for weak Galerkin discretization of the
incompressible Stokes problem. The weak Galerkin (WG) methods are a class of noncon-
forming finite element methods, which were first introduced for second order elliptic problems

by Wang and Ye(Wang & Ye, 2013). The idea of WG is to introduce weak functions and their
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weak derivatives as distributions, which can be approximated by polynomials of different de-
grees on different support. For example, for second order elliptic problems, weak functions
have the form of v = {wp, vy}, where vy is defined inside each element and vy, is defined on the
boundary of the element. vg and v, can both be approximated by polynomials. The gradi-
ent operator is approximated by a weak gradient operator, which is further approximated by
polynomials. These weakly defined functions and derivatives make the WG methods highly
flexible in terms of approximating functions and finite element partition of the domain. The
same weak concepts have been extended to other differential operators such as divergence and
curl, which appears in applications like Stokes (Wang & Ye, 2016)and Maxwell(Mu et al.,
2015¢) equations respectively.

As most finite element methods, the WG methods result in a large number of degrees of
freedom and therefore require solving large linear systems with condition number deterio-
rating with the refinement of the mesh. Efficient fast solvers for the resulting linear system
are necessary. However, relatively few attempts on designing fast solvers for the WG meth-
ods can be found in the literature; see (Chen et al., 2015). An effective implementation of
WG method is to reduce the unknown variables to those associated with element bound-
aries through a Schur-complement approach. It can be further reduced to the subdomain
interface. The interface problem can then be solved using the conjugate gradient method
preconditioned with a BDDC algorithm. In addition to point constraints, it is also necessary
to impose edge or face average constraints across the interface. By a change of variable(Li &
Widlund, 2006b; Klawonn & Widlund, 2006), the primal constraint on edge or face average
can be converted to an explicit variable. The reduced system for the primal variables will be
the coarse problem to solve. The BDDC preconditioner can be built based on such designed
coarse problem, and thus be used as a preconditioner for the conjugate gradient method.

In a recent study(Tu & Wang, 2016), the authors proved the condition number bound for
elliptic problems with hybridizable discontinuous Galerkin discretizations using its spectral

equivalence with that of a hybridized RT method, which was previously studied by Tu(Tu,
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2007a). Later this result was extended to the same problem with WG discretization by
drawing connections between these two methods(Tu & Wang, 2017¢). In this work, a BDDC
algorithm is further developed for weak Galerkin discretization of the incompressible Stokes
problem in a similar way to (Li & Widlund, 2006a). The preconditioned Stokes problem
such designed is positive definite when restricted to certain benign subspaces, and its iterates
stay in this subspace. It can be proved that the condition number bound is as strong as for

the elliptic case.

5.2.2 A Stokes problem and its weak Galerkin Discretization

We consider the primary velocity-pressure formulation for the Stokes problem on a bounded
polygonal domain €2, in two dimenisons (n = 2), or three dimensions (n = 3), with a Dirichlet

boundary condition:

—Au+Vp=f in Q,
V-ou=0 in (5.44)

u=g¢g on Of),

where f € [LQ (Q)}n, and g € [Hl/Q (89)}71 Without loss of generality, we assume that g = 0.
The weak form in the primary velocity-pressure formulation for the Stokes problem seeks

u€ [H& (Q)}n and p € L& () such that

(Vu, Vo) = (V-v,p) = (f.0) Voe [HF(Q)]", (5.45)

(Veuq) = 0 VgeL3(9Q).

The idea of weak Galerkin finite element scheme is to substitute the standard function
and differential operators with the weakly defined counterparts. A weak function over the
domain D is defined as v = {vg, vy} such that vy € L?(D) and v, € H/2(dD). The vy part

represents the value of v in the interior of D, while the v, part represents the value of v
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on the boundary of D. Note that v, does not bind itself with vy from the definition. In
essence, weak functions relax the continuity property of the standard functions, thus to offer
more flexibility in terms of variable representation. We denote by W (D) the space of weak

functions over the domain D

W(D) = {v={vo, v} : vo € L*(D), v, € H'/*(OD)},

and the relevant vector-valued weak function space by

W(D)" ={v={vo,vs}: vo [L*(D)|", vy € [H'2(2D)|"},

and

W (D))" ={v={vo, v} : vo € [L*(D)]", v, n € H~'/>(9D)}.

The space of weak gradient or divergence operators will be defined as the dual space of
appropriate Hilbert space, in similar manner as the dual of [LZ (D)]n can be identified with

itself by using the L? inner product as the action of the linear functionals.

Definition 5.2.1. For any v € [W(D)]", the weak gradient of v is defined as the linear

functional ¥V, v in the dual space of H(div; D) whose action on each q € H (div; D) is given

by

(va, q)D - - (V07V'q)D+ <Vb7q'n>6Da

where n is the outward normal direction to 9f2.

Definition 5.2.2. For any v € [W (D)]", the weak divergence of v is defined as the linear

functional V., -v in the dual space of H'(D) whose action on each p € H' (D) is given by

(Vw v, SO)D = - (V07V90)D+ <Vb'n790>8Da
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where n is the outward normal direction to ).

Now, we are in a position to introduce the weak Galerkin finite element algorithm. First,
we introduce the mesh of the domain, then we will define discontinuous weak Galerkin finite
element spaces over the mesh. Let 7; be a shape-regular and quasi-uniform triangulation of
2, and the element in 7, denoted by K. For any K € T}, we denote by hy the diameter of
K with h = maxgeT;, hg. Define Fj, be the set of edges/faces of elements K € 7p,. .7:,2 and
}",? are subsets of F, which consists of domain interior and boundary edges, respectively.
For any domain D, let Py (D) be the space of polynomials of degree <k on D. Define the

weak Galerkin finite element spaces for the velocity variable associated with 7}, as follows:

Vi = {U = {vo,vp} - {vo,vp} K € [Py (K)]" x [Py (e)]", VK € Ty, e C 3K}-

Note that a function v € Vj, has a single value v, on each edge e € Fj. The subspace of

Vi with vanishing boundary values on 0f is denoted by

Vk:o = {v={vo,vp} € Vi : v, =00n00N}.

We denote the standard piecewise polynomial finite element space by

Ve ={v: vl € [P (K)]" VK € Ty},

and a relevant matrix polynomial function space by

Qi1 ={v: VK € [Py (K)"" VK € Ty}

For the pressure variable, define the following finite element space

Wy_1= {q: ¢ € L§(Q), dlx GPk—l(K)}-

Denote the discrete weak gradient operator by V,, ;_1, and the discrete weak divergence
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operator by (vw,k—l')7 respectively. On the finite element space Vj, they are defined as
follows: for v = {vg,vp} € Vi, on each element K € T, Vi p 10 |k€ [Pr—1 (K)]"*" and
Vuwk—1 K€ Pr_1 (K) are the unique solutions of the following equations, respectively,
Vq € [Pe_1 (K)]™",

(Vw,kqv K, Q)K =— (UO,K,V'Q>K+ <Ub,K>CI‘n>8K7

(Vas1:v1x,9) . == (v0.56, V) .+ (vpc n’90>aK’ Vo € By (K),

where vg g and vy, i are the restrictions of vg and v, to K, respectively, (u, w) = f g uwdz,
and (u,w)yp = [55 vwds. To simplify the notation, we shall drop the subscript k& —1 in
the notation V, ;_1 and (vw,k—l') for the discrete weak gradient and the discrete weak
divergence operator. We denote the L? inner product over the triangulation as a summation
over each element of the triangulation, for example,(V,u, wa)Th =Y keT, (Vuwu, Vyw) g,
(Vi -0, Q)ﬁ =2 KeT, (V- v, q) k-

Denote by Qg the L? projection from [LZ (K)}n onto [P, (K)]", and denote by Q; the
L? projection from {LQ (e)]n onto [Py_1(e)]", for e € Fj, . And we write the correponding
projection operator for the weak function as Qp = {Qo, @p}. Next, we introduct three bilinear
forms, which will be used in the weak Galerkin finite element discretization for the Stokes

equation as below,

s(,w) = Trer, hic (Qvo— b, Quwo — wh) e (5.46)
a(v,w) = (Vyv, Vyw)y +s(v, w),
b(U, Q) = (Vw'U, Q)Th

The discrete problem resulting from the WG discretization can then be written as: find

up, = {ug, up} € V2 and py, € Wy_; such that

a(up,v)—=b(v,pr) = (f,v0), Yv={vo, vp} €V,

b(uha q) - 07 vq € Wk—l'
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We introduce the following operators: A : Vko — Vko, B Vko — Wi_1, by

(Aup, v) = a(up, v), (Bup, q) = —b(up, q). (5.47)

Using these operators, the matrix form of the weak Galerkin scheme can be represented
as
A BT |y, f

B 0||p] |0

At element level, for each K, given the edge component vy, of the velocity and the pressure
p, the interior component vy of the velocity can be uniquely determined. Namely, vy can be
eliminated in each element independently. We thus obtain the reduced system of v, and p

only with considerable smaller size but different sparsity pattern as below

A BpTu Uh,b _ fub

Bpyw Cpp| | Pn Ip

Hereafter, we will work with the reduced system such obtained.

5.2.3 Reduced Subdomain Interface Problem

We decompose 2 into N nonoverlapping subdomain €2; with diameters H;, ¢ =1,..., N, and
set H = max; H; . We assume that each subdomain is a union of shape-regular coarse
triangles and that the number of such elements forming an individual sudomain is uniformly
bounded. We define edges/faces as open sets shared by two subdomains. Two nodes belong
to the same face when they are associated with the same pair of subdomains. Let I' be
the interface between the subdomains. The set of the interface nodes I}, is defined as
Iy = (Ui¢j89i7hﬂ89j,h> \ 0, where 0€); 5, is the set of nodes on 9€2; and 02, is that of
09). We assume the triangulation of each subdomain is quasi-uniform.

We decompose the discrete velocity and pressure spaces Vi and Wj_; into:
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V=ViaWr, W =W;®W,.

We drop the subscripts k£ and k—1 for simplicity. Herein, V7 and W are products
(4) (4)

of subdomain interior velocity spaces V;’ and subdomain interior pressure spaces W;”’,

respectively; i.e.,

) -
vi=1[v,", wi=]]Iw,".
=1 1=1

The elements of Vj(i) are supported in the subdomain §2; and vanishes on its interface
I';, while the elements of W](i) are restrictions of the pressure variables to €2; which satisfy
fQi p([i) =0. Vp is the subspace of edge functions on I', and Wy is the subspace of W with
constant values p(().) in the subdomain €; that satisfy >N, po) (©;) = 0, where m (§2;) is
the measure of the subdomain (2;.

We denote the space of interface edge velocity variables of the subdomain €2; by V(i),
and the associated product space by Vp = H 9V ), generally edge functions in Vp are
discontinuous across the interface. We define the restriction operators R(FZ ) Vi — VF(Z) to be
an operator which maps functions in the continuous global interface edge variable space Vr
to the subdomain component space Vr(i). Also, Rr: Vi — Vp is the direct sum of R{j ). We
denote the spaces of the right-hand-side interior load vectors f; and interface load vectors
fr by Fr and Fr, respectively. Similar notation conventions apply to the spaces Fr, ﬁp, ﬁn,
F X ), Fr(i), and Fp. We will use them in what follows without further explanation.

With the decomposition of the solution space, the global Stokes problem can be written
as follows: find (up, pr, ur, po) € (VI,W[,VF,WO) such that
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A Bfp Aty 0| |ug fr

By Crp B, 0 | |pr Io;

JH P | (5.48)
Ar; Bry Arr Blp| |ur Ir
0 0 By 0 |]|po 0

For each subdomain problem, the dimension of the null space is one, and this corresponds
to the undetermined degree of freedom of the mean pressure for each subdomain. For
this reason, the bottom right block, which corresponds to the mean pressure from each
subdomain, is zero. The lower left block in (5.48) is zero, because the bilinear form b(uy, )
does not explicitly relate to uy and p; for any uj € Vko and ¢ € Wy. The leading two-
by-two block of the matrix above can be rewritten into a block diagonal form with each
block corresponding to an independent subdomain problem. And the global problem can be

assembled from the constituent subdomain problems, as below
Ay B AT o [ [
Bgll) Cyl) BF[ 0 pgl) B fzg? (5.49)
i o g || [

o o BY o |[pl 0
(i (i

We can eliminate the subdomain interior variables u;” and p;’ in each subdomain inde-

pendently, and assemble the global interface problem from the subdomain interface problems.

Definition 5.2.3. (Schur complement of the Stokes problem) Define the subdomain Schur
complement Sl(j) for the Stokes problem as follows: given u(ri) € VF(Z'), determine Sﬁi)u(ri) € Flg)

such that

7 )T )T 7
Ay s | [ ] o
sy oy ||| o | 530
Ay sy A ] s
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The global interface problem can then be written as: to find (ur, pg) € (‘A/F,W()) , such

that
~lu
g1 =17 (5.51)
Do 0
where
_ Sy BT g
g=| " 7 =N ROTSORD B =v ¥ BORD and

-1
7 )T 7
Ay myr ]

e L I | DRt O

The operator S is symmetric positive definite, because of the Dirichlet boundary condi-
tions on 0f2 and the primal continuity constraints defined on the interface. Let the operator
of the global interface problem be denoted by S. Note that S is symmetric indefinite. In
what follows, we will propose a BDDC preconditioner, and show that the preconditioned op-

erator is positive definite when restricted to a proper subspace. A preconditioned conjugate

gradient method can then be used to solve the global interface problem.

5.2.4 The BDDC Preconditioner

The BDDC (Balancing Domain Decomposition by Constraints) algorithm is a variant of
the two-level Neumann-Neumann type preconditioner. It was first introduced and analyzed
by Dohrmann, Mandel, and Tezaur (Dohrmann, 2003; Mandel & Dohrmann, 2003; Mandel
et al., 2005) for standard finite element discretization of elliptic problems. The BBDC pre-
conditioner consists of local inexact solvers for the subdomain problems and the artistically
designed global coarse-level problem. The coarse level problem is assembled from primal
variables, such as edge/face averages across the interface on which the continuity constraints
are enforced. In contrast to earlier versions of balancing Neumann-Neumann methods with-

out coarse level problems, the BDDC methods do not need to solve singular systems and the
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algorithms demonstrate good scalability for parallel computation.
In order to introduce the BDDC preconditioner, we first introduce a partially assembled

interface space Vp by

N
Ve =Vn@®©Va=Vno® (H VA(Z)) :
i=1

Here, Vi1 is the continuous, coarse level, primal interface edge velocity space. The variables
in this space are called the primal unknowns, and each primal unknown is shared by the
adjacent subdomains. The remaining interface velocity variables live in the complimentary
dual space V . This space is the direct sum of the VA(i), which are spanned by basis functions
with vanishing value at the primal degrees of freedom. The functions in Va are generally
discontinuous. Thus, in the space Vi, we relax the continuity constraints across the interface
at the dual variables but retain the continuity at the primal variables, which makes all the

component linear systems in the preconditioner nonsingular.

We require that | 09, ug) -n; = 0, for all the dual interface velocity variables uX) € VA@,
with n; the unit outward normal of 0€;; see(Li & Widlund, 2006a; Tu, 2005). We will
refer to this assumption as the divergence free constraint for the dual velocity variables.
In order to satisfy this constraint, we choose the primal variables which are spanned by
subdomain interface edge/face basis functions with constant values on these edges/faces for
two/three dimensions. We change the variables so that the degree of freedom of each primal
constraint is explicit; see (Li & Widlund, 2006b; Klawonn & Widlund, 2006). The dual
space is correspondingly spanned by the remaining interface degrees of freedom with zero
average values over the interface edge/face. This constraint is critical to the design of the
preconditioner, as we will see more details in Subsection 5.2.5.

We need to introduce several restriction, extension, and scaling operators between differ-

ent spaces. E{f ) Ve — Vr(i) restricts functions in the space Vi to the components Vr(i) of the

subdomain ;. Rp: Vi — Vp is the direct sum of E%i ). RX) : Vp — VA(i) maps the functions

from IA/F to VA@, its dual subdomain components. Rpryy : XA/F — VH is a restriction operator
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from Vp to its subspace Vir. Rr: Vi — Vp is the direct sum of Rpyp and RX). We define the
positive scaling factor (51T (x) as follows:
1

STa)= —— o0 N T
7 (ill') card (Ix)a T c ih h>

where Z is the set of indices of the subdomains that have x on their boundaries, and card (Z,)
counts the number of the subdomain boundaries to which = belongs. It is clear that (SiT (x)’s
provide a partition of unity, i.e., Y ez, 5; () =1, for any x € I',.  We note that 53 (z) is
constant on each edge. Multiplying each row of RX) with the scaling factor gives us R%{ A

The scaled operators ﬁip,p is the direct sum of Rppp and Rg) A

The Schur complement Sp defined on the partially assembled interface velocity space Vi

can be represented as follows: given ur € ‘N/p, gpup € ﬁ’p satisfies

[ nT T ~mr| [ o] [ 1
A BT AR o AT | 0

1 1 DT ~ ()T 1
CNC T ¥ I

1 1 1 ~(\T N _|rss (1)
A B A A 0| = | (S
;1%} El(Tll) ES)A jHH_ I | _(grur)n_

Hereinabove, A = -V, RO 40 g0 A0 _ gOT 40 700 _ g7 40 04 50

IIA — IIA>
)
Based on this definition, we can also obtain St from subdomain Schur complements Sl(j)

by assembling with respect to the global degrees of freedom of the primal interface velocities,

ie.,

Sr = Ry-Sr Ry (5.52)
Here, we denote the direct sum of Sl(j) by Sp. The global interface Schur operator Sp on the

continuous interface velocity space Vp can be obtained by further assembling with respect
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to the dual interface variables, i.e.,

Sp = RLSrRr = RLSpRy. (5.53)

Correspondingly, we define an operator Byr, which maps the partially assembled interface
velocity space Vi into Fp, the space of right-hand sides corresponding to Wy. Byr can

(1)

be obtained from the subdomain operators By by assembling with respect to the primal
interface velocity part, i.e., Eop = Zi]\il B(()QE? ). Similarly, the operator EOF can be obtained
from the partially assembled operator Bor by further assembling with respect to the dual

interface velocity variables on the subdomain interfaces, i.e., EOF = éorél".

The preconditioner for solving the global interface Stokes problem is

M = BL3 1Ry,

where

- Rp _ | Sp BE
Rp=| "0 |, §=|"" T (5.54)
I Bor 0

Note that R p,r is of full rank and that the preconditioner is nonsingular. The preconditioned

BDDC algorithm is then of the form: to find (ur, pg) € (Vp, Wo), such that

1o 0
5.2.5 Some Auxiliary Results

We adopt the convention that C' denotes a generic constant independent of the mesh size
h and subdomain size H. In general, its value may vary at different instances. For shape
regular partition 7y as given in Appendix A, the trace inequality (1.5.3) and inverse inequality
(1.5.4) hold; see details in (Wang & Ye, 2014).

We collect a few results of the weak Galerkin finite element scheme, which will be used
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in our analysis of the BDDC preconditioner. Note that the discrete weak velocity function

space Vko is a normed linear space with a triple-bar norm given by(Wang & Ye, 2016)

2 2 _ 2
loll” = S e Vuwvllz + Xxen br 1Qsvo = vsllox- (5.55)

Lemma 5.2.1. For the weak Galerkin scheme described in subsection 5.2.2, the following

results hold:

1. For any v = {vg, v} € Vi, we have St [|[Vool7 < C|v|*;
2. For any v € V), a(v,v) = lloI%;
3. For any v, w € V)2, |a (v, w)| < |||l w]];

4. For any v = {vo, vy} € Vi, p € Wi—1, [b(v, p)| < Cloll [l 125

b(v, p)
llvll,,

5. For any p € Wj._1, SUp,ey0 > B |l pllz2, where § is positive constant independent

of the mesh size h.

Proof. The first result is Lemma A.2 in (Wang & Ye, 2016); the second and third results
give the coercivity and boundedness property of the bilinear form a (-, -), which are proved
in Lemma 5.1 in (Wang & Ye, 2016). The fourth result is the boundedness property of the
bilinear form b (-, -). This can be proved as follows.
b, )l = [Sxer (Vuv, )|
= [Sken (= (0, Vo) + (01, p)oic)|
= |Zxer, (V-0 p) e = ((Qsvo = vb) -, p) o )|
< O (Sker IVol2em) (Swer o122
+C (Lrerm hi' llvs — Quvoll Z2(ox)) 2 (Swer b lloll 2o )

< Cllolllioll g2
Note that we use the definition of weak divergence for the second equality, and itegra-

1/2

N

1/2

tion by parts for the third equality. We use the Cauchy-Schwarz inequality for the fourth
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inequality, and part (1) of Lemma 5.2.1, definition of the triple-bar norm, eqn (5.55), and
trace inequality, eqn (1.5.3), for the last inequality.

The last result is the discrete inf-sup condition, which is proved in Lemma 5.3(Wang &
Ye, 2016). These results also hold for the subdmain €2;. If follows that the weak Galerkin

scheme is well-posed for the global interface problem and local subdomain problems.
OJ

We introduce several conceptual tools which will be useful in our analysis of the BDDC

preconditioner.

Definition 5.2.4. (Schur complement of the subdomain elliptic problem) The subdomain

Schur complement for the elliptic problem, denoted by SI(‘i)Ef is defined as follows: given

u(ri) € Vr(i), determine Sg)Eu(Pi) € Fp(i) such that

0N i I R

1] [l
1 )T
Afy Af

where A() = ) )
App Arpp

Since the subdomain elliptic problem A® is symmetric positive definite(Wang & Ye,

2013), the Schur complement Sl(f)E is also symmetric positive definite by the inertia of Schur

2 . . .
complements(Li & Widlund, 2006b). Thus, we can define the norm = DT A, (1) =
A (3

2

W0

= u(ri)TSﬁ)Eu(pi), for all U%i) € Vr(i). Similarly, the

a (u(i), u(i))  forall u® e V@ and ‘U(FZ)

(4)
Sr'e
subdomain Schur complements for the Stokes problems, defined in (5.50), are symmetric,

positive semi-definite(Li & Widlund, 2006a). They are singular for any subdomains with
floating boundaries, by which we mean the boundary of the subdomain does not intersect

with the global domain boundary 0€2. Thus, we can define the Sp— and Sp— seminorms
2 . L . . L2
by‘u(rz) L= u%z)TSl(f)u#), for all u(FZ) € VFZ). It follows that |ur|?gF = U%S{‘UF = Zij\il ‘ug) R

(4)
ST r
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By definition, it is not hard to show by direct computation that

2 2

(4)
s®

Uy

_ ’ (i)
s [ law

, and 'ug) "
A’L

where ug) e V) and ug) e V® are the harmonic and Stokes extension, respectively.

The fully and partially assembled global interface velocity operators Sp and Sr, given in
(5.53) and (5.52), are both symmetric, positive definite because of the Dirichlet boundary
conditions on 02 and the adequacy of the primal continuity constraints for the divergence

free condition. In similar way as before, we define the g[‘— and §p—norms on the spaces Vp

and Vp, respectively, as below.

2 a 2 &
lur||§. = ut Srur = uf Rf- Sp Rrur = |Rrurlg,  Vur € W,

2 s o =2 -
lur||§. = ut- Srur = uf Ry S Rrur = ‘RPUF’SF Vup € Vr.

The global interface operator S and S, introduced in (5.51) and (5.54), are symmetric
indefinite on the space Vp x Wo and Vp x Wy, respectively. However, when restricted to the
proper subspaces, these operators can be positive semidefinite, and we can thus define a S—
and S—seminorms on these subspaces. We call such subspaces as the benign subspaces, and
denote them by XA/R B X Wy and XN/R B X Wy, respectively. Specifically, they can be defined as

follows.

Definition 5.2.5. (Benign subspaces)

‘71“73 = {UF S Vrléopup = 0} and VF,B = {UF < VF|BOFUF = 0}.

If follows that we can define

|u|?g = ul'Su Yu = (ur, po) € XA/p,B x Wo,
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|u|§ = ’LLT§’U, Yu = (Ul“a po) S ‘71—‘73 X WO

We can show by direct computation that the following facts hold.

2 5 ~
ulg = llurllg.  Vu= (ur,po) € Vo B xWo,

[ul=llurlls.  Yu=(ur,po) € Vg x Wo.

We denote the null space of the S—seminorm operator on the space Vp, B X Wy by Z. It
is easy to see that this space is comprised of elements u = (0, pg) € ‘A/R B X Wy. The induced
normed space (Vp B X WO) / 7 is called the quotient space, and two elements (vr, pg) and
(wr, qo), belonging to this quotient space, are identified if vp = wp.

The following lemma is crucial to the analysis of the preconditioned BDDC operator.

The proof can be found in (Li & Widlund, 2006a; Tu, 2005).

Lemma 5.2.2. Under the divergence free constraint for the dual interface velocities, intro-

duced in Subsection 5.2.4, we have _]leT)u € \A/RB x Wy for any u € f/p,B x Wo.

With the choice of the primal velocity continuity constraints of the BDDC algorithm,
the preconditioned BDDC operator M ~13 is positive definite on the quotient space, and
correspondingly, we can use the preconditioned conjugate gradient method when the itera-
tions are restricted to the quotient space. The design of the BDDC preconditioner and the
result from lemma 5.2.2 garantee that the iterations of the preconditioned conjugate gradient
method will stay in the quotient subspace if the initialization lies in the quotient subspace(Li
& Widlund, 2006a).

Next we introduce two important extension operators for the trace over the subdomain

boundary.

119



(4)

Definition 5.2.6. (Discrete harmonic exention) The discrete harmonic extension of v € Vb

over the submain Q;, denoted by H(7) : Vr(i) — V@ satisfies the following:

a(H(),v)=0  Yo={v,u}e V) (),
H () loa,= -
The bilinear form a(-,-) is defined in (5.46).

Definition 5.2.7. (Discrete Stokes extension) The discrete Stokes extension of v € Vr(i) over

the subdomain €, denoted by S (7) : Vr(i) — V@ satisfies the following:

a(S(7),v)=b(v,P(1)=0  Yv="{vo, v} €V (),

b(S(),q)=0  VgeW,_1(%),

S () log, ="
where P (7y) is the correponding pressure extension with zero mean value living in the space
Wi_1(Q4). The bilinear forms a(-,-) and b(-,-) are defined in (5.46).

The connection between harmonic/Stokes extensions and the Schur complements of the
corresponding linear systems can be revealed as follows.

Remark. By definition, it is clear that

N |2 2
”H (u§)>’ = inf ‘uu) y
A U(i)ev(i):u(i)\aﬂfug) A®)
and that
N |2 2
’S (u{f))’ = inf ’u(i) .
AD DV, u®]gn, =uld), BOu=0 A
. 2
For the same edge velocities u% ) over the subdomain boundary 0€2;, we have |H (ug‘)) ‘ <
(1)
L ‘ 2A
‘S <u¥))‘ " since the infimum over a larger set is smaller. It follows that 'uff) o =
At SI"Z,E
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Next, we prove the connection between the edge velocity seminorms weighted by the

Schur complements of the elliptic and Stokes problems for the same subdomain. Similar

proof can be found in (Bramble & Pasciak, 1989).

Lemma 5.2.3. For any u{j) € Vlﬂ(i), we have

2 NV 2
i, <[of

g —’
SI‘,E

RN
NI ‘“F

where (B is the inf-sup stability constant defined in lemma 5.2.1.

Sl(j) Sl(j)

Proof. The second inequality directly follow from the Remark.
We prove the first inequality as follows. Denote the discrete harmonic and Stokes exten-
sion of u(Pi) € Vp(i) by H (u?) and S <u(ri)), respectively. Using v =8 (u(rl)) —H (u(rl)) as

the test function, by definition 5.2.7, we have

o(5() (o)) o5 (5) o). ) -0

where p is the corresponding pressure extension with zero mean value living in the space

Wi—1(£%).
Sinceb<s<u(“> )—0 it follows that (s( @) 3( <i>>)_ <3< <z‘)> H( <z‘>>>_
v ), p) =0, it follows that a up’ ), S (up —a up ) ul’
(o))

By Lemma 5.2.1, we have

sl <ls(u®Y |y
A P e A A YE

By the inf-sup condition,

2 (i
()], + ()] Wollzey (550
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_ b
o1ty < 62 sup 2]

vevo ) ol
. 2
: (S (?) )
= 7% sup : (5.57)
sty ol

2 (4) 2 2 (2) 2
< 5 ls ()] =07l ()]

where we have used definition 5.2.7 for the second equality and Lemma 5.2.1 for the last
inequality.

Substituting (5.57) into (5.56), we have

1)

‘S <“(F)) ‘A(z ’S (“F > ’Am H <“(F)) ‘ a0 +CB7! ‘S <“(F)> ‘A(”
1+ :
<C’S< )‘A(i) ‘H (u%))‘A(i)

It follows that

2 |0 _o 8
Wa)? [T g0, 7 (148)°

AN |2 AN |2 ;
S (48)] o [ () =¥

9,
O
In order to prove the condition number bounds for the BDDC preconditioner, we de-
fine an averaging operator for the Stokes problem, denoted by Ep, which maps \7F x W,
with generally discontinuous interface velocities, to the same space with continuous interface
velocities. Specifically, for any u = (ur, pg) € ‘71" x Wo, Ep [ur, po]T = ‘71" x Wy, where
Rr R} r Epr

Ep= RIS = L ,
1 1 1

and Epr = EFEIT)I is the interface averaging operator for the velocities across the interface
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I'. The operator Epr computes a weighted average for the edge velocity across the subdo-
main interface I', and then distributes the average back to the original degree of freedoms on
the interface. In our previous work, we have proved the upper bound of the operator Ep r

for the elliptic problem

—Au=f in Q
u=0 on 02

with hybridizable discontinuous Galerkin (HDG) discretizations(Tu & Wang, 2016). The

result is cited in the following lemma.
Lemma 5.2.4. For any ur € ‘71“, we have

H 2

2 2

|ED,FUF’§F)E < CYhr (1 +log h) |UF|§F7E,

where yp, 7 = [rglea%i {14 7xhK}, Tk and hx are the local stabilization parameter and diameter
h

of the mesh element K, respectively.

The proof of this lemma is based on the equivalence of norms from the bilinear form of
HDG (aH DG (., -)>l/zand that of the hybridized mixed method with Raviart-Thomas (RT)
element (aRT (-, )) 1/2. Thus, the previous results of preconditioners developed for the hybrid
RT methods can be applied to the HDG methods, and we proved that the upper bound
for the averaging operator Epr for the HDG method with high oder interface variables
is similar to that of the hybridized RT method with zero oder interface variable with the
addition of an extra scaling factor involving the local stabilization parameter 75 and mesh
size h. Importantly, a triple-bar norm of numerical trace variables is used to bridge between
(aH DG (., -))1/2 and (aRT (-, )) 1/2. This norm is defined in(Gopalakrishnan, 2003; Cockburn

et al., 2014) as below:
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1/2
lallp= {5 > e e
KeTp,KCD
where 4 is the numerical trace of the velocity variable, 4 = ﬁ J5p tids, and |9K]| is the
measure of the boundary of K.

We note that the HDG and weak Galerkin discretizations are close relatives with the
numerical trace of velocity @ in HDG playing a similar role as the edge velocity component
up in the weak Galerkin method. In weak Galerkin method, a fixed local stabilization
parameter is chosen as 7 = h}_(l, whereas this parameter 7, may vary in HDG (Cockburn
et al., 2009a; Nguyen et al., 2010). In HDG method, an auxiliary flux variable q = —Vu is
introduced, which results in an expanded linear system for the elliptic problem. An additional

assumption is made about the numerical trace of the flux variable on the edge/face 0K of

the mesh element as below:

g-n=qn+r(u—1a).

With this assumption, the equivalence of the matrix forms resulting from these two

methods can be established as below.

Aqq qu qu q 0
Aug Auu Agu up | = | (Au)y |-
Asq Adu Asa up (Au),
where
(Agq@ V) = (@, V)7, (Aug@,w) = (V-q,w)y . (Aaqq, 1) = = (a1, 1)o7 ,

(Auuua w) = <Tku7 w>8’Th ) (Aﬁuua ,M) = <Tku> H>87’h ) (Aﬁﬂﬁa :u) = <Tkﬁ7 H>87’h )

for all (q, {u, a}) € (Qk_l, Vk()) and (v, {w, u}) € (Qk_l, Vko). The subscripts 0 and b in-
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dicate the restriction of the vector Au to the components corresponding to the interior
and edge parts, respectively. A is the operator for the elliptic bilinear form of the weak
Galerkin method, as defined in (5.47), and u = {ug, up} is the weak velocity function. When
the polynomial approximation spaces with the same degree order are used for the variable
counerparts of these two methods, and 7 is set to be hl_(l, it is clear that A matrix resulting
from the weak Galerkin method is the Schur complement formed by eliminating the variables
of the leading block Aqq of the HDG matrix. This reveals the connection between these two
methods.

Weak Galerkin methods boasts flexibility of polynomial space selection in practical com-
putation (Mu et al., 2015b). In this work, we use a combination of polynomial spaces
designed to balancing the conflicting requirements between computational cost and accu-
racy(Mu et al., 2015b). Take the scalar elliptic problem for example, in weak Galerkin
method, we use ((Vy),uo, up) € ([Pk,l]d, Py, Pk,1>.Rigorous analysis on the connection
between the triple-bar norm ||-||* and the norm induced by the bilinear form of the weak
Galerkin method |||-|| was provided in Lemma 4.2.2. We cite Lemma 4.2.3, which proves the

bound of the averaging operator for weak Galerkin method, as below.
Lemma 5.2.5. For any ur € f/p, we have
H\?
2 2
= < — <
|ED7FUF|SF’E < C (1 +10g h ) |UF|SF,E’
for the weak Galerkin discretization.

Now, we are in a position to prove the bound of the averaging operator Ep for the Stokes

problem.

Lemma 5.2.6. There exists a positive constant C, which is independent of H and h, such

that

2 2
1+ H -
|EDw|%§C<66> <1+10gh> |w|2§ Vw = (wr, qo) € V1, B X W,
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where (3 is the inf-sup stability constant.

Proof. For any vector w = (wr, qo) € ‘711,3 x Wy, by Lemma 5.2.2, EZT)w € ‘A/po x Wp. Thus,
Epw = ﬁﬁir{)w S ‘71“73 x Wo.

From the definition of the S-seminorm, we have

Noting that Sp = diag(Sﬁi)), and applying Lemma 5.2.3 to each subdomain, we have
_ 1 2 _
|Br (Eprwr) [, <C(%52)"|Be (Eprwr) 3, -
Further, we have
_ 2 2
2 _ 2 H 2 H 2
|Br (Eprur) (3, , = [Eprurfy  <C (1+1og 4 furlf < C(1+1log ) Jwrl% -

Combining these inequalities, we have

|EDw|2Sv <C (%)2 (1+log%> |’LU1'"§F =C (%)2 (1 +log %)2 |w[2§

5.2.6 Condition number estimate for the BDDC preconditioner

We are now ready to formulate and prove our main results. It follows by proving the lower
and upper bound for v M ~18u. See similar proof in (Li & Widlund, 2006a; Mandel et al.,
2005; Tu, 2006, 2007d,c).

Theorem 5.2.7. Assume the divergence free constraint holds for the interface velocities. The
preconditioned operator M -18 s symmetric, positive definite with respect to the bilinear form
(-,->§ on the space ‘A/RB x Wo. Its eigenvalues are bounded from below by 1 and from above

b C(H”B)2 (1 +lo E)Q where Cis a constant which is independent of H, h, and the number
) /32 g h ’ p > 1Y

of subdomains, and [ is the inf-sup stability constant.

Proof. 1t is sufficient to prove that for any u = (up, pg) € VR B X Wy, with up #£ 0,

(u,u)g < <u, M_1§u>§ < C(#f <1+log (%))2 (u, u) 4.

126



In what follows, we prove the lower and upper bound for <u, M *1§u> 5 respectively.
Let u = g_lépgu. Obviously, @ € VF,B x Wo.

Note that RTRp = RIT)R = I. The details for the proof of the lower bound go as follows:

(u,u)g =u TSRERu=u"SRES 15Ru=<a,]§u>§

< (wa)Y? (R, Ru)y” = (0,0 (u,0) 2.

Thus, we obtain (u, u)¢ < (@,7)g by cancelling a common factor and squaring on both
sides.

Since

(U,0) g = uTgélT)S’_lgg_lRDS'u = <u, Eg§_1RD§u>S = <u, M_1§u>§,

we have (u, u) g < <u, M_1§u>§.

Next, we prove the upper bound.

Since M1 RTS LR p, we have RDu = M~1Su.

By using Lemma 5.2.6 and the fact that S = RT SR, we obtain

(M~ Su, M~ Su) . = (Rba, Rbi) = (RRb#, RRD)
2

5
2
:|EDﬂ|%§C<H55> <1+logH) i |2<c< ) (1+10gl;[> (u, M50,

Using the Cauchy-Schwarz inequality, we have

<u,M_1§u> <(u, u)1/< M~'Su, M~ 1Su>1/2

1+ H 1/2
C’ﬂﬁ <1—|—logh) (u, u);/2<u M~ 15u>S :

~ 2 2
This gives <u, M*18u>g <C (%) (1 +log %) (u, u> The upper bound of the eigen-

values thus follows.
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’ Number of Subdomains ‘ Iterations ‘ Condition number ‘

4x4 11 4.12
88 13 5.01
12x12 13 4.77
16x16 13 4.90
20%20 13 5.05

Table 5.4: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8,and k=1.

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 13 7.37
8x8 17 9.24
12x12 20 9.41
16x16 20 9.89
2020 20 10.17

Table 5.5: Condition number estimates and iteration counts for the BDDC preconditioned

operator with changing subdomains numbers. % =8, and k =2.

5.2.7 Numerical Experiments

In this subsection, we will report some numerical results for the BDDC algorithm proposed
for the weak Galerkin discretization of the Stokes problem. We used the BDDC algorithm to
solve the model problem (5.44) on the square domain Q = [0, 1]* with zero Dirichlet boundary
condition. The analytical solution of the test problem is given by
sin® (mx) sin? (my) cos (my) s o
u= and p=x"—y°.
—sin? (rx) sin3 (my) cos (1)

We decompose the unit square into N x N subdomains with side length H =1/N. Each
subdomain has a characteristic mesh size h. Both the first order (k= 1) and second order
(k = 2) weak Galerkin methods are used to discretize the model equations. The BDDC
preconditioned conjugate gradient iterations are stopped when the ls—norm of the residual

has been reduced by a factor of 106.
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’ % ‘ Iterations | Condition number
4 9 2.49
8 13 5.01
12 15 6.42
16 15 7.48
20 16 8.36

Table 5.6: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 x 8 subdomains, and k= 1.

’ % ‘ Iterations | Condition number
4 14 5.87
8 17 9.24
12 19 11.57
16 21 12.47
20 21 13.58

Table 5.7: Condition number estimates and iteration counts for the BDDC preconditioned
operator with changing subdomain problem size. 8 x 8 subdomains, and k = 2.

In the first set of experiments, we fix the size of the subdomain problem to be % =38.

Table 5.4 and 5.5 show the iteration counts and the estimates of the condition numbers
for the BDDC preconditioned operator with changing subdomain numbers for £ =1 and
k = 2, respectively. The condition numbers are found to be independent of the number
of subdomains. As another set of experiment, instead of fixing the size of the subdomain
problems, we fix the subdomain partition to be 8 x 8, and allow the subdomain problem
size to vary. The condition number is found to increase logarithmically with the subdomain
problem size. Table 5.6 and 5.7 demonstrate results for the second set of experiments for
k=1 and k = 2, respectively.

To conclude, we have carried out a series of experiments to obtain iteration counts and
condition number estimates. The experimental results prove to be consistent with the theory.

That is the condition number bound of the BDDC preconditioned system is of the form

2 2
C(lgf ) (1—i—log %) , where H and h are the diameters of the subdomains and elements,

respectively. Possible future work will be to explore the high order effects on C.
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Chapter 6

Concluding Remarks

We have designed BDDC preconditioners for linear systems arising from HDG and WG
discretizations of Poisson and Stokes equations. The condition number bound of the precon-
ditioned operator is shown to be polylogarithmically dependent on the size of the subdomain
problem, which is consistent with results for elliptic problem using standard finite element
discretizations. We have also conducted numerical experiments to validate the theoretical
analysis. The numerical observations agree well with the theoretical results. Possible future
work will be to study the dependence of condition number bound with the order of approx-
imation polynomials, and to develop overlapping domain decomposition preconditioners for

linear systems of our interest.
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Appendix A

Shape Regularity Assumptions of the
Mesh

Let 7T, be a shape-regular tessellation of €2 with polygons in 2D and polyhedra in 3D. We
denote the element in Ty by 7', the diameter of 7' by hr, and the area/volume of T" by |T|.
The mesh size is characterized by h = maxre7, hy. Define Fj, be the set of edges/faces
of elements T € Tj,. fl and .7-"}? are subsets of Fj,, which consists of domain interior and
boundary edges, respectively. We denote by |e| the length/area of e and he the diameter of
the edge/face in Fp,.

The following shape regularity assumptions are needed for the finite element partition
in order to have the desired approximation properties in the weak Galerkin finite element

space.

e There exist positive constants o and g, such that

or W <|T|, 0eh® ' <le|, VT ETh, ec Fi
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A

Figure A.1: An example of a shape-regular polygonal element ABCDE

e There exists a positive constant x such that

khp < he, VT €Ty, e € Fy,.

e Assume the mesh elements have linear edges/faces. For each T' € Ty, e € Fy, there
exists a pyramid P(e,T, A.) contained in T with its base e and apex A.. The height
of the pyramid is given by oc.hr with . > o, > 0 for some fixed positive number o,.
Besides, the angle between the vector . — A, for any z. € e, and the outward normal

direction of e is strictly acute.

e Assume that each T € 7}, has a circumscribing simplex S(7') that is shape regular
and has a diameter hg) < y.hy with 7, being a positive constant independent of T'.
Further, each circumscribed simplex S(7") intersects with a small and fixed number of

such simplices for all other T" € T},.

Figure A.1 illustrates a shape regular polygonal element. Under the above shape regular-
ity assumptions of the mesh, we have the trace and inverse inequalities (1.5.3) and (1.5.4);

see(Wang & Ye, 2014) for details.
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Appendix B

Lagrange Element

We used the Lagrange triangle in the simulation. The nodal basis functions are tabulated
below.
Table B.1: Nodal basis {¢1,¢2,...,¢x} of shape function space

Linear Lagrange triangle ‘ Quadratic Lagrange triangle

p1=1-§—n ¢1=(1-&§—n)(1—2§—2n)
¢2=¢ P2 =&(26—1)

P33 =1 ¢z =mn(2n—1)

P4 =4En

g5 =4n(1—¢&—n)

g6 =45(1—&—n)

More details can be found in (Brenner & Scott, 2008).
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