1,565 research outputs found

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    Haptic Hand Exoskeleton for Precision Grasp Simulation

    Get PDF
    This paper outlines the design and the development of a novel robotic hand exoskeleton (HE) conceived for haptic interaction in the context of virtual reality (VR) and teleoperation (TO) applications. The device allows exerting controlled forces on fingertips of the index and thumb of the operator. The new exoskeleton features several design solutions adopted with the aim of optimizing force accuracy and resolution. The use of remote centers of motion mechanisms allows achieving a compact and lightweight design. An improved stiffness of the transmission and reduced requirements for the electromechanical actuators are obtained thanks to a novel principle for integrating speed reduction into torque transmission systems. A custom designed force sensor and integrated electronics are employed to further improve performances. The electromechanical design of the device and the experimental characterization are presented

    Improving expressivity in desktop interactions with a pressure-augmented mouse

    Get PDF
    Desktop-based Windows, Icons, Menus and Pointers (WIMP) interfaces have changed very little in the last 30 years, and are still limited by a lack of powerful and expressive input devices and interactions. In order to make desktop interactions more expressive and controllable, expressive input mechanisms like pressure input must be made available to desktop users. One way to provide pressure input to these users is through a pressure-augmented computer mouse; however, before pressure-augmented mice can be developed, design information must be provided to mouse developers. The problem we address in this thesis is that there is a lack of ergonomics and performance information for the design of pressure-augmented mice. Our solution was to provide empirical performance and ergonomics information for pressure-augmented mice by performing five experiments. With the results of our experiments we were able to identify the optimal design parameters for pressure-augmented mice and provide a set of recommendations for future pressure-augmented mouse designs

    Doctor of Philosophy

    Get PDF
    dissertationVirtual reality is becoming a common technology with applications in fields such as medical training, product development, and entertainment. Providing haptic (sense of touch) information along with visual and audio information can create an immersive vi

    Robotically assisted eye surgery : a haptic master console

    Get PDF
    Vitreo-retinal surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Operations are performed with needle shaped instruments which enter the eye through surgeon made scleral openings. An instrument is moved by hand in four degrees of freedom (three rotations and one translation) through this opening. Two rotations (? and ? ) are for a lateral instrument tip movement. The other two DoFs (z and ?) are the translation and rotation along the instrument axis. Actuation of for example a forceps can be considered as a fifth DoF. Characteristically, the manipulation of delicate, micrometer range thick intraocular tissue is required. Today, eye surgery is performed with a maximum of two instruments simultaneously. The surgeon relies on visual feedback only, since instrument forces are below the human detection limit. A microscope provides the visual feedback. It forces the surgeon to work in a static and non ergonomic body posture. Although the surgeon’s proficiency improves throughout his career, hand tremor may become a problem around his mid-fifties. Robotically assisted surgery with a master-slave system enhances dexterity. The slave with instrument manipulators is placed over the eye. The surgeon controls the instrument manipulators via haptic interfaces at the master. The master and slave are connected by electronic hardware and control software. Implementation of tremor filtering in the control software and downscaling of the hand motion allow prolongation of the surgeon’s career. Furthermore, it becomes possible to do tasks like intraocular cannulation which can not be done by manually performed surgery. This thesis focusses on the master console. Eye surgery procedures are observed in the operating room of different hospitals to gain insight in the requirements for the master. The master console as designed has an adjustable frame, a 3D display and two haptic interfaces with a coarse adjustment arm each. The console is mounted at the head of the operating table and is combined with the slave. It is compact, easy to place and allows the surgeon to have a direct view on and a physical contact with the patient. Furthermore, it fits in today’s manual surgery arrangement. Each haptic interface has the same five degrees of freedom as the instrument inside the eye. Through these interfaces, the surgeon can feel the augmented instrument forces. Downscaling of the hand motion results in a more accurate instrument movement compared to manually performed surgery. Together with the visual feedback, it is like the surgeon grasps the instrument near the tip inside the eye. The similarity between hand motion and motion of the instrument tip as seen on the display results in an intuitive manipulation. Pre-adjustment of the interface is done via the coarse adjustment arm. Mode switching enables to control three or more instruments manipulators with only two interfaces. Two one degree of freedom master-slave systems with force feedback are built to derive the requirements for the haptic interface. Hardware in the loop testing provides valuable insights and shows the possibility of force feedback without the use of force sensors. Two five DoF haptic interfaces are realized for bimanual operation. Each DoF has a position encoder and a force feedback motor. A correct representation of the upscaled instrument forces is only possible if the disturbance forces are low. Actuators are therefore mounted to the fixed world or in the neighborhood of the pivoting point for a low contribution to the inertia. The use of direct drive for ' and and low geared, backdriveable transmissions for the other three DoFs gives a minimum of friction. Disturbance forces are further minimized by a proper cable layout and actuator-amplifier combinations without torque ripple. The similarity in DoFs between vitreo-retinal eye surgery and minimally invasive surgery (MIS) enables the system to be used for MIS as well. Experiments in combination with a slave robot for laparoscopic and thoracoscopic surgery show that an instrument can be manipulated in a comfortable and intuitive way. User experience of surgeons and others is utilized to improve the haptic interface further. A parallel instead of a serial actuation concept for the ' and DoFs reduces the inertia, eliminates the flexible cable connection between frame and motor and allows that the heat of the motor is transferred directly to the frame. A newly designed z-?? module combines the actuation and suspension of the hand held part of the interface and has a three times larger z range than in the first design of the haptic interface

    KiloHertz Bandwidth, Dual-Stage Haptic Device Lets You Touch Brownian Motion

    Get PDF
    This paper describes a haptic interface that has a uniform response over the entire human tactile frequency range. Structural mechanics makes it very difficult to implement articulated mechanical systems that can transmit high frequency signals. Here, we separated the frequency range into two frequency bands. The lower band is within the first structural mode of the corresponding haptic device while the higher one can be transmitted accurately by a fast actuator operating from conservation of momentum, that is, without reaction forces to the ground. To couple the two systems, we adopted a channel separation approach akin to that employed in the design of acoustic reproduction systems. The two channels are recombined at the tip of the device to give a uniform frequency response from DC to one kHz. In terms of mechanical design, the high-frequency transducer was embedded inside the tip of the main stage so that during operation, the human operator has only to interact with a single finger interface. In order to exemplify the type of application that would benefit from this kind of interface, we applied it to the haptic exploration with microscopic scales objects which are known to behave with very fast dynamics. The novel haptic interface was bilaterally coupled with a micromanipulation platform to demonstrate its capabilities. Operators could feel interaction forces arising from contact as well as those resulting from Brownian motion and could manoeuvre a micro bead in the absence of vision

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    New control architecturebased on PXI for a 3-finger haptic device applied to virtual manipulation

    Get PDF
    To perform advanced manipulation of remote environments such as grasping, more than one finger is required implying higher requirements for the control architecture. This paper presents the design and control of a modular 3-finger haptic device that can be used to interact with virtual scenarios or to teleoperate dexterous remote hands. In a modular haptic device, each module allows the interaction with a scenario by using a single finger; hence, multi-finger interaction can be achieved by adding more modules. Control requirements for a multifinger haptic device are analyzed and new hardware/software architecture for these kinds of devices is proposed. The software architecture described in this paper is distributed and the different modules communicate to allow the remote manipulation. Moreover, an application in which this haptic device is used to interact with a virtual scenario is shown
    • …
    corecore