19 research outputs found

    Integrated Circuit Blocks for High Performance Baseband and RF Analog-to-Digital Converters

    Get PDF
    Nowadays, the multi-standard wireless receivers and multi-format video processors have created a great demand for integrating multiple standards into a single chip. The multiple standards usually require several Analog to Digital Converters (ADCs) with different specifications. A promising solution is adopting a power and area efficient reconfigurable ADC with tunable bandwidth and dynamic range. The advantage of the reconfigurable ADC over customized ADCs is that its power consumption can be scaled at different specifications, enabling optimized power consumption over a wide range of sampling rates and resulting in a more power efficient design. Moreover, the reconfigurable ADC provides IP reuse, which reduces design efforts, development costs and time to market. On the other hand, software radio transceiver has been introduced to minimize RF blocks and support multiple standards in the same chip. The basic idea is to perform the analog to digital (A/D) and digital to analog (D/A) conversion as close to the antenna as possible. Then the backend digital signal processor (DSP) can be programmed to deal with the digital data. The continuous time (CT) bandpass (BP) sigma-delta ADC with good SNR and low power consumption is a good choice for the software radio transceiver. In this work, a proposed 10-bit reconfigurable ADC is presented and the non-overlapping clock generator and state machine are implemented in UMC 90nm CMOS technology. The state machine generates control signals for each MDAC stage so that the speed can be reconfigured, while the power consumption can be scaled. The measurement results show that the reconfigurable ADC achieved 0.6-200 MSPS speed with 1.9-27 mW power consumption. The ENOB is about 8 bit over the whole speed range. In the second part, a 2-bit quantizer with tunable delay circuit and 2-bit DACs are implemented in TSMC 0.13um CMOS technology for the 4th order CT BP sigma-delta ADC. The 2-bit quantizer and 2-bit DACs have 6dB SNR improvement and better stability over the single bit quantizer and DACs. The penalty is that the linearity of the feedback DACs should be considered carefully so that the nonlinearity doesn't deteriorate the ADC performance. The tunable delay circuit in the quantizer is designed to adjust the excess loop delay up to +/- 10% to achieve stability and optimal performance

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    Hybrid continuous-discrete-time multi-bit delta-sigma A/D converters with auto-ranging algorithm

    Get PDF
    In wireless portable applications, a large part of the signal processing is performed in the digital domain. Digital circuits show many advantages. The power consumption and fabrication costs are low even for high levels of complexity. A well established and highly automated design flow allows one to benefit from the constant progress in CMOS technologies. Moreover, digital circuits offer robust and programmable signal processing means and need no external components. Hence, the trend in consumer electronics is to further reduce the part of analog signal processing in the receiver chain of wireless transceivers. Consequently, analog-to-digital converters with higher resolutions and bandwidths are constantly required. The ultimate goal is the direct digitization of radio frequency signals, where the conversion would be performed immediately after the front-end amplifier. ΔΣ-modulation-based converters have proved to be the most suitable to achieve the required performance. Switched-capacitor implementations have been widely used over the last two decades. However, recent publications and books have shown that continuous-time architectures can achieve the same performance with lower power consumption. Most designs found throughout the literature use a single- or few-bit internal quantizer with a high-order modulation. As a result, in order to achieve the resolutions and bandwidths required today, the sampling frequency must exceed 100MHz. This approach leads to non-negligible power consumption in the clock generation. Moreover, the presence of such fast squared signals is not suitable for a system-on-chip comprising radio frequency receivers. In this thesis we propose a low-power strategy relying on a large number of internal levels rather than on a high sampling frequency or modulation order. Besides, a hybrid continuous-discrete-time approach is used to take advantage of the accuracy of switched-capacitor circuits and the low power consumption of continuous-time implementation. The sensitivity to clock jitter brought about by the continuous-time stage is reduced by the use of a large number of levels. An auto-ranging algorithm is developed in this thesis to overcome the limitation of a large-size quantizer under low-voltage supply. Finally, the strategy is applied to a design example addressing typical specifications for a Bluetooth receiver with direct conversion

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    Noise shaping techniques for analog and time to digital converters using voltage controlled oscillators

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 175-181).Advanced CMOS processes offer very fast switching speed and high transistor density that can be utilized to implement analog signal processing functions in interesting and unconventional ways, for example by leveraging time as a signal domain. In this context, voltage controlled ring oscillators are circuit elements that are not only very attractive due to their highly digital implementation which takes advantage of scaling, but also due to their ability to amplify or integrate conventional voltage signals into the time domain. In this work, we take advantage of voltage controlled oscillators to implement analog- and time-to-digital converters with first-order quantization and mismatch noise-shaping. To implement a time-to-digital converter (TDC) with noise-shaping, we present a oscillator that is enabled during the measurement of an input, and then disabled in between measurements. By holding the state of the oscillator in between samples, the quantization error is saved and transferred to the following sample, which can be seen as first-order noise-shaping in the frequency domain. In order to achieve good noise shaping performance, we also present key details of a multi-path oscillator topology that is able to reduce the effective delay per stage by a factor of 5 and accurately preserve the quantization error from measurement to measurement. An 11-bit, 50Msps prototype time-to-digital converter (TDC) using a multi-path gated ring oscillator with 6ps of delay per stage demonstrates over 20dB of ist-order noise shaping. At frequencies below 1MHz, the TDC error integrates to 80fsrms for a dynamic range of 95dB with no calibration of differential non-linearity required. The 157x258pm TDC is realized in 0.13ipm CMOS and operates from a 1.5V supply.(cont.) The use of VCO-based quantization within continuous-time (CT) [Epsilon] [Delta] ADC structures is also explored, with a custom prototype in 0.13pm CMOS showing measured performance of 86/72dB SNR/SNDR with 10MHz bandwidth while consuming 40mW from a 1.2V supply and occupying an active area of 640pm X 660pm. A key element of the ADC structure is a 5-bit VCO-based quantizer clocked at 950 MHz which we show achieves first-order noise-shaping of its quantization noise. The quantizer structure allows the second order CT Epsilon] [Delta] ADC topology to achieve third order noise shaping, and direct connection of the VCO-based quantizer to the internal DACs of the ADC provides intrinsic dynamic element matching (DEM) of the DAC elements.by Matthew A. Z. Straayer.Ph.D

    High Speed and Wide Bandwidth Delta-Sigma ADCs

    Full text link

    Low Power and Small Area Mixed-Signal Circuits:ADCs, Temperature Sensors and Digital Interfaces

    Get PDF
    corecore