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tences techniques ainsi que leurs qualités humaines font de Maher et de
Patrick des personnes d’exception.

Je remercie très chaleureusement toutes les personnes avec qui j’ai partagé
le bureau 331 du Laboratoire d’Electronique Générale pendant près de
cinq longues années:

Danica Stefanovic, avec qui j’ai étroitement collaboré et avec laquelle je
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Abstract

In wireless portable applications, a large part of the signal processing is
performed in the digital domain. Digital circuits show many advantages.
The power consumption and fabrication costs are low even for high lev-
els of complexity. A well established and highly automated design flow
allows one to benefit from the constant progress in CMOS technologies.
Moreover, digital circuits offer robust and programmable signal process-
ing means and need no external components. Hence, the trend in con-
sumer electronics is to further reduce the part of analog signal processing
in the receiver chain of wireless transceivers. Consequently, analog-to-
digital converters with higher resolutions and bandwidths are constantly
required. The ultimate goal is the direct digitization of radio frequency
signals, where the conversion would be performed immediately after the
front -end amplifier.

ΔΣ-modulation-based converters have proved to be the most suitable
to achieve the required performance. Switched-capacitor implementations
have been widely used over the last two decades. However, recent pub-
lications and books have shown that continuous-time architectures can
achieve the same performance with lower power consumption. Most de-
signs found throughout the literature use a single- or few-bit internal quan-
tizer with a high-order modulation. As a result, in order to achieve the
resolutions and bandwidths required today, the sampling frequency must
exceed 100MHz. This approach leads to non-negligible power consump-
tion in the clock generation. Moreover, the presence of such fast squared
signals is not suitable for a system-on-chip comprising radio frequency
receivers.

In this thesis we propose a low-power strategy relying on a large num-
ber of internal levels rather than on a high sampling frequency or modu-
lation order. Besides, a hybrid continuous-discrete-time approach is used
to take advantage of the accuracy of switched-capacitor circuits and the
low power consumption of continuous-time implementation. The sensitiv-
ity to clock jitter brought about by the continuous-time stage is reduced
by the use of a large number of levels. An auto-ranging algorithm is de-
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veloped in this thesis to overcome the limitation of a large-size quantizer
under low-voltage supply. Finally, the strategy is applied to a design ex-
ample addressing typical specifications for a Bluetooth receiver with direct
conversion.

Keywords: analog-to-digital conversion, delta-sigma modulation, multi-
bit, quantization noise, hybrid architecture, continuous-time, discrete-
time, full clock-cycle sampling, double-sampling, digital calibration, auto-
ranging algorithm, tracking quantizer, dynamic element matching, spec-
tral shaping, tree-structured encoder, segmented DAC, Bluetooth, WCDMA,
GSM, EDGE, comparator, CMOS technology, fully-differential amplifier,
transconductance amplifier.



Résumé

Dans les applications portables de communication sans-fil, une grande
partie du traitement du signal est exécutée de manière numérique. Les
circuits numériques présentent plusieurs avantages. Même pour un haut
degré de complexité, la consommation d’énergie ainsi que les coûts de fab-
rication sont faibles. Le processus de conception est bien établi avec un
haut degré d’automatisation permettant de tirer profit du progrès con-
stant des technologies CMOS. En outre, les circuits numériques offrent
un traitement du signal robuste et programmable et ne nécessitent aucun
composant externe. La tendance pour le marché grand public est donc de
réduire encore plus la partie analogique dans les châınes de réception de
systèmes sans fil. En conséquence, des convertisseurs avec des résolutions
et des bandes passantes toujours plus élevées sont nécessaires. Le but
ultime est la numérisation directe du signal radio, où la conversion serait
faite après amplification du signal fournit par l’antenne.

Les convertisseurs basés sur la modulation ΔΣse trouvent être les
plus appropriés pour atteindre les performances requises. Les implémen-
tations à capacités commutées ont été très utilisées ces deux dernières
décennies. Cependant, de récentes publications ont montré que les ar-
chitectures à temps continu pouvaient atteindre les mêmes performances
avec une consommation réduite. La plupart des réalisations présentées
dans les publications font usage d’un quantificateur interne à deux ou à
un nombre restreint de niveaux et une modulation d’ordre élevé. Par
conséquent, pour atteindre les résolutions et bandes passantes demandées
de nos jours, la fréquence d’échantillonnage dépasse la centaine de mé-
gahertz. Cette approche amène à une consommation non négligeable du
générateur d’horloge. En outre, la présence de signaux carrés d’une telle
rapidité est à éviter sur un système intégré de grande taille qui comprend
des récepteurs radio.

Dans cette thèse, nous proposons une stratégie à faible consomma-
tion qui compte sur un grand nombre de niveaux internes plutôt que sur
une haute fréquence d’échantillonnage et un ordre de modulation élevé.
De plus, une approche hybride à temps continu et discret est employée
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afin de profiter de la précision des circuits à capacités commutées et de la
faible consommation des circuits à temps continu. La sensibilité à la gigue
du signal d’horloge, introduite par le traitement à temps continu, se voit
diminuée par l’utilisation d’un nombre élevé de niveaux internes. Un al-
gorithme d’ajustement automatique d’amplitude est développé dans cette
thèse afin de gommer l’inconvénient d’un quantificateur de grande taille
travaillant sous basse tension d’alimentation. Pour terminer, la stratégie
est appliquée à un exemple de conception visant les spécifications typiques
d’un récepteur Bluetooth à conversion directe.

Mots-clés: conversion analogique-numérique, modulation delta-sigma,
multibit, bruit de quantification, architecture hybride, temps continu,
temps discret, échantillonnage sur deux demi périodes, double échan-
tillonnage, calibration numérique, algorithme d’ajustement automatique
d’amplitude, quantificateur, appariement dynamique, mise en forme spec-
trale, encodeur à structure en arbre, CAN segmenté, Bluetooth, WCDMA,
GSM, EDGE, comparateur, technologie CMOS, amplificateur différentiel
symétrique, amplificateur à transconductance.
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Chapter

1
Introduction

1.1 Motivation

In wireless portable applications, a large part of the signal processing is
performed in the digital domain. Digital circuits show many advantages.
The power consumption and fabrication costs are low even for high lev-
els of complexity. A well established and highly automated design flow
allows one to benefit from the constant progress in CMOS technologies.
Moreover, digital circuits offer robust and programmable signal processing
means and need no external components. Hence, the trend in consumer
electronics is to further reduce the part of analog signal processing in the
receiver chain of wireless transceivers. Consequently, Analog-to-Digital
Converters (ADC) with higher resolutions and bandwidths are constantly
required. According to [Raz96], the ultimate goal is the direct digiti-
zation of Radio Frequency (RF) signals, where the conversion would be
performed immediately after the front-end Low-Noise Amplifier (LNA).

ΔΣ-modulation-based converters have proved to be the most suitable
to achieve the required performance [Jes01, GWT02]. Discrete-Time (DT)
Switched-Capacitor (SC) implementations have been widely used over
the last two decades. However, recent publications [Kap03, YS04, AL02]
and books [CS00, BH01, KvR06, OG06, Sho95, Yan02] have shown that
Continuous-Time (CT) architectures can achieve the same performance
with lower power consumption. Besides, CT modulators present an in-
herent anti-aliasing property, relaxing the specifications of the analog low
pass filter placed in front of the ADC. Most designs found throughout the
literature use a single- or few-bit internal quantizer with a high-order mod-
ulation. As a result, in order to achieve the resolutions and bandwidths
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2 Intention of the this work

required today, the sampling frequency must exceed 100MHz. This ap-
proach leads to non-negligible power consumption in the Phase-Locked
Loop (PLL) generating the clock signals. Moreover, the presence of such
fast squared signals is not suitable for a System-on-Chip (SoC) comprising
RF receivers.

1.2 Intention of the this work

The objective of this thesis is to propose a low-power strategy relying on
a large internal Number-of-Levels (NL) rather than on a high sampling
frequency (fs) or modulation order (n). Besides, a hybrid continuous-
discrete-time approach is used to take advantage of the accuracy of SC
circuits and the low power consumption of continuous-time implementa-
tions. The intention of this work is to provide designers with an optimiza-
tion methodology.

1.3 Hybrid multi-bit modulators

In the general case, a ΔΣmodulator consists of an NL-level quantizer and
an nth-order analog filter providing spectral shaping of the quantization
noise. The analog filter is set up with n successive integration stages.
From the second to the last one, each successive stage takes advantage
of an additional order of the spectral shaping. As a consequence, the
power consumption of the modulator is generally dominated by its first
stage. Hence, having the first stage as a CT integrator enables a significant
amount of power saving. On the other hand, keeping the upper stages as
DT integrators allows one to take advantage of the accuracy of SC circuits
coefficients. The modulator still takes partial advantage of inherent anti-
aliasing filtering. Figure 1.1 shows an illustrative example of such a hybrid
architecture.

Multi-bit hybrid architectures were proposed by [MCL+05, KRSC05]
for audio applications and by [RLS+03] for communication systems. In
this thesis, we suggest of further increasing the number of levels. An
auto-ranging algorithm is developed to overcome the limitation of a large-
size quantizer with a low voltage supply. The complexity of the Dynamic
Element Matching (DEM) is addressed by an appropriate segmentation
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Quantizer

DAC

DigitalAnalog
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Figure 1.1 Illustrative example of the hybrid architecture.

of the DACs as proposed by [FSW+02, Gal97]. A synthesis algorithm is
developed to evaluate all the possible segmentations.

1.4 Organization of the dissertation

The thesis starts by a didactic review of the ΔΣ-modulation signal pro-
cessing, then presents the low-power strategy and its relevant aspects, and
ends with a design example.

Chapter 2 introduces the ΔΣmodulation for analog-to-digital conversion.
The fundamental aspects of the signal processing are covered as well as
the methods used for performance estimation. An accurate analytical
expression of the expected resolution is derived for the general case of a
multi-bit single-stage modulator. The impact of the most relevant circuit
imperfections is shown. The chapter ends with an overview of the well-
known architectures and variants commonly used nowadays.

Chapter 3 proposes the low-power strategy which consists of an optimal
combination of different techniques. Relevant aspects of the techniques
used are covered. The sensitivity to clock jitter is studied in detail and
used as a main optimization criterion.

Chapter 4 explains the principle of the auto-ranging algorithm. The main
limitations of the technique are analyzed, taking into account the imple-
mentation constraints. An analytical expression of the efficiency of the



4 Organization of the dissertation

algorithm is developed and used for optimization. The extendability to
different applications is demonstrated.

Chapter 5 discusses the optimization of the DEM. The segmented tree-
structured architecture is introduced. Different shaping algorithms are
provided as well as a synthesis method. An analytical expression of the
power consumption is given.

Chapter 6 presents a design example addressing the specifications for a
BLUETOOTH receiver with direct conversion. The modulator equations
are derived, giving a general design procedure. The design of the ampli-
fiers and the quantizer is outlined. The digital calibration of the compara-
tors offset is analyzed. The chapter ends with a comparison with other
published works.

Chapter 7 gives the final conclusions and summarizes the main contribu-
tions of the thesis. Suggestions for further development and analyses are
made.



Chapter

2
Delta-Sigma ADC from the ground

The purpose of this chapter is to cover the fundamental aspects of
analog-to-digital conversion. It considers the basics of signal pro-

cessing up to the main issues known today. It also introduces the
definitions commonly used and makes the link between the analyti-
cal models and the reality of implementation. The first section en-
ables the non-expert reader to rapidly understand how a low-resolution
quantizer can become a high-resolution converter by subsequently
over-sampling, grafting a control system and filtering. The detailed
calculations of the expected performance are given in the second sec-
tion. The third section introduces the main circuit imperfections that
would potentially reduce the expected performances. Finally, the last
section gives a broad view of the most classic architectures known
today.

2.1 From analog to digital

2.1.1 Sampling

The first task in analog-to-digital conversion consists in providing samples
of the analog signal equally apart in time by the sampling period Ts. This
process of going from the continuous-time to the discrete-time domain is
called sampling. We define the sampling frequency as fs = 1/Ts. After
sampling, there is no any signal faster than half of the sampling frequency,
also referred to as the Nyquist frequency.

Figure 2.1 shows a low-pass filter followed by an ideal sampler. Code 2.1
and 2.2 simulate the sampling of a single-tone and the additional filtered
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6 From analog to digital

resistor white Gaussian noise, whose Power Spectral Density (PSD) is
given by:

PN (f) = 4kTR . (2.1)

As shown in Figure 2.2(a), when the noise is sampled at a frequency
higher than the filter cut-off frequency fRC , no aliasing occurs and the
output spectrum contains the tone and the filtered thermal noise. In con-
trast, Figure 2.2(b) shows that if the bandwidth of the noise is higher
than the Nyquist rate, the noise unavoidably folds back and its level in-
creases. As treated in detail in many textbooks [Raz01, JM97], the noise
floor is multiplied by π/2 and the ratio between the cut-off and Nyquist
frequencies.

PN (f) = 4kTR · π

2
· 2fRC

fs
. (2.2)

x y
clk

R

C

Figure 2.1 Sampling: An RC-filter is placed in
front of the sampler providing anti-aliasing fil-
tering.
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Figure 2.2 Sampling process: Simulations performed with 50 average points and 218

FFT bins. A 1mV tone at 500kHz together with a 10kΩ resistor thermal noise are
sampled at a frequency of 2GHz (a) and 2MHz (b). The filter cut-off is set at 100MHz.
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Code 2.1 MATLAB code for the sampling process: avr and kfft control the averaging
number and the FFT number of bins. The down-sampling factor is set by down,
whereas f0, fs and fRC are respectively the tone, sampling and filter cut-off frequencies.

%%%%%%%%%%% parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
avr=50;waste=1024;down=1024;
kfft=2^18;k=kfft*avr+2*waste; %sim. parameters
f0=500e3;fs=2e9; %signal/sampling freq.
f0=fs*round(kfft*f0/fs)/(kfft); %integer nbr.of period
fRC=100e6; %filter cut-off freq.
v0=1.0e-3; %signal amplitude
n0=4.07e-4; %sqrt(4kTR fs/2))

%%%%%%%%% generation of signals %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
noise = n0*randn(k,1);
signal = v0*(sin(2*pi*f0*(1:k)’/fs));
v=signal+noise;
RCfilter=(1-exp(-2*pi*fRC/fs))*exp(-(2*pi*fRC/fs)*(0:2^10)’);
v_filtered =filter(RCfilter,1,v);
v_down =v_filtered(1:down:k);

Code 2.2 MATLAB for power spectral density esitmation.

%%%%%% power spectral density of the filtered signal %%%%%%%%%
y=v_filtered;
psd = zeros(kfft, 1);
for j=0:avr-1

psd=psd+...
abs(fft(y(waste+1+j*kfft:waste+(j+1)*kfft))).^2/kfft/fs*2;

end
psd=psd(1:kfft/2+1)/avr;f=(0:fs/kfft:fs/2);loglog(f,psd);

%%%%%% power spectral density of the down-sampled signal %%%%%
kfft=kfft/down;fs=fs/down;waste=waste/down;
y=v_down;
psd = zeros(kfft, 1);
for j=0:avr-1

psd=psd+...
abs(fft(y(waste+1+j*kfft:waste+(j+1)*kfft))).^2/kfft/fs*2;

end
psd=psd(1:kfft/2+1)/avr;f=(0:fs/kfft:fs/2);loglog(f,psd);

With the circuit described in Figure 2.1 the cut-off is given as 2πRC.
As a well-known result, commonly referred to as the kT/C-noise, the noise
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floor becomes independent of the resistor size:

PN (f) =
kT

C
· 2
fs

. (2.3)

All these considerations reveal that the process of sampling itself al-
ready degrades the quality of the signal, even before its conversion into
a digital representation. Furthermore, it gives good reasons to place an
anti-aliasing filter in front of an ADC to avoid the folding of any signal
or noise present at frequencies higher than the Nyquist rate

The experiment of Code 2.1 introduces a few important features of
spectral estimations. First of all, it is important to appropriately round
the number of periods of the tone in the simulation in order to avoid
spectral spreading. Secondly, in the presence of random signals, averaging
is essential to reveal the continuous shapes hidden by important variations.
A power-of-two is suitable choice for the number of samples to avoid an
artificial zero padding by the Fast Fourier Transform (FFT) algorithm.
Finally, in order to provide a representation of the single side-band PSD,
the absolute value of the FFT is squared, normalized by the number-of-
bins kFFT and by the sampling frequency [II02, HvV99]:

PSD[k] =
2 |FFT[k]|2

fskFFT
∀ k ∈ {0, . . . , kFFT/2} . (2.4)

2.1.2 Quantization

The second task of the conversion consists in providing samples with an
amplitude rounded to the closest value of a finite set of so-called lev-
els. This process of going from the continuous-amplitude to the discrete-
amplitude is called quantization.

This task is performed by a quantizer, also called flash ADC, which is
the core of any analog-to-digital conversion circuit. Figure 2.3 describes
a quantizer with NL levels. In some architectures, such as successive
approximation, single-bit ΔΣor pipeline converters, NL can go down to
two, requiring only one comparator.
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Figure 2.3 A quantizer with NL levels consists
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quantization in amplitude, and(NL − 1) Data-
Flip-Flops (DFF), providing the quantization in
time. The (NL − 1) voltage thresholds, sepa-
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Figure 2.4 Mid-thread 5-level quantizer trans-
fer characteristic described by Equation (2.5).
The vertical parts correspond to the voltage
thresholds and the horizontal parts to the pos-
sible output levels.
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Figure 2.4 shows the transfer characteristic from the analog input v
to the digital output y, which in all cases can be described by

y =

⎧⎨
⎩

sign(v)(NL − 1)/2 , if |v| ≥ NLΔ/2 ,
round(v/Δ) , if NL is odd ,
floor(v/Δ) + 1/2 , otherwise .

(2.5)

Whether the Number-of-Levels NL is even or odd, the quantizer has
a mid-rise or mid-thread transfer characteristic. NL is often chosen as a
power-of-two because the quantizer output can be further encoded in a
binary representation with the minimum Number-of-bits N, where NL =
2N.
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Alternatively, choosing NL as a power-of-two plus one allows encoding
in the so-called extra-LSB representation, as is necessary for the use of a
tree-structured mismatch shaping encoder, as discussed in Chapter 5. In
such a case, NL is odd and the number of comparators is even. In this
thesis only quantizers with power-of-two plus one levels are considered.

Code 2.3 MATLAB for the quantization process: The tone amplitude v0 is set at
the maximum allowed, namely at half of NL. The quantization error q is extracted
to determine its statistical distribution. The power spectral density is evaluated as
already described in Code 2.1. For the sake of simplicity, an odd-NL quantizer with
steps equal to one is considered.

%%%%%%%%%%% parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
avr=20;kfft=2^11;k=kfft*avr; %sim. parameters
NL=2^5+1; %Number-of-Levels
v0=NL/2; %signal amplitude
f0=200e3;fs=32e6; %signal/sampling freq.
f0=fs*round(kfft*f0/fs)/(kfft); %integer nbr.of period
%%%%%%%%%%% signals %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
v = v0*(sin(2*pi*f0*(1:k)’/fs));
y = zeros(k,1);
%%%%%%%%%% quantization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:k

if (abs(v(i)) >=NL/2)
y(i)=sign(v(i))*(NL-1)/2;

else
y(i)=round(v(i));

end
end
q=y-v; %quantization noise extraction

Code 2.4 Additional MATLAB code for dithering: The tone amplitude is reduced by
extra to prevent over-loading as the necessary dithering amplitude d0 is quite high

extra=-1.5; %input range reduction
v0=NL/2+extra; %signal amplitude
d0=0.5; %dither signal amplitude
dither = d0*randn(k,1);
....
in=in+dither; %dithering
....
out=out-dither; %dither removal

Code 2.3 is a simulation of the quantization process applied to a single
tone. The results in Figure 2.5 show an output PSD that is nothing but
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Figure 2.5 Quantization process: Simulation performed with 2000 averages, NL=33,
extra=−1.5, single-tone at 10kHz and sampling frequencies fs=1MHz.
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Figure 2.6 Dithered quantization: Simulation performed with 2000 averages, NL=33,
extra=−1.5, Gaussian dithering of 0.5, single-tone at 10kHz and sampling frequencies
fs=1MHz.

a sum of harmonics because of the deterministic nature of the quantiza-
tion process. In the second experiment, with the modification proposed
in Code 2.4, a Gaussian dithering signal is artificially added at the input
and removed at the output. The quantization becomes a random process.
According to Figure 2.6, the output PSD is white and the statistical dis-
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tribution is uniformly distributed between ±1/2. In real cases, the signal
to be converted is quite random and no dithering is usually required.

This observation leads to the so-called linear approximation where
the highly non-linear behavior of Equation (2.5) is modeled as a gain of
1/Δ. Any error from that linear characteristic generated by the quanti-
zation process is considered an additional random noise. As highlighted
in Figure 2.7, this approximation holds as long as the input stays within
±NLΔ/2, namely as long as errors are bounded and random. If we exceed
this range, the quantizer overloads and, as shown in Figure 2.8, with a
sinusoidal input, harmonic distortion is generated.
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Figure 2.7 A mid-thread
5-level quantizer: The real
transfer characteristic is
shown as a dashed line.
The linear model consists in
separating the characteristic
in a gain of 1/Δ and a
quantization error q bounded
by ±1/2. Beyond the range
of ±NLΔ/2 the quantizer
is overloaded and the linear
model no longer holds.

The subject of quantization noise is only outlined here to give an
insight. The subject is handled analytically at greater length in [Gra90,
Gal94, Gal93].

2.1.3 Over-sampling

Today it is hard to find applications requiring quantizers with a number
of bits less than 10, meaning 1024 levels. Building a quantizer with such a
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Figure 2.8 Overloaded quantizer: 2000 averages, NL=33, extra=0, Gaussian dithering
of 0.5, in-band single-tone at 10kHz, sampling frequencies fs=1MHz.

large NL is impractical. But, as explained in more detail in the next sec-
tion, the quantization noise level is inversely proportional to the sampling
frequency. We can therefore choose to sample the signal faster.

Let us suppose that the input signal frequency never exceeds a certain
band-of-interest fb. If fs equals twice fb, the quantizer is said to operate
at the Nyquist-rate, whereas if fs is higher we talk about over-sampling.
We commonly define the Over-Sampling Ratio OSR as how much faster
the signal is sampled with respect to the Nyquist rate.

OSR =
fs

2fb
. (2.6)

Figure 2.9 highlights how the 33-level example studied previously,
over-sampled 32 times, sees its quantization level dropping. In addition to
lowering the quantization noise PSD, over-sampling provides a frequency
space able to contain unwanted signals that would be removed afterwards.
Signals appearing either inside or outside the band-of-interest are usually
referred to as the in-band and out-of-band signals respectively.
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Figure 2.9 Over-sampled quantizer: Simulation results of Code 2.3 with avr=20,
NL=33, extra=−1.5, d0=0.5. As the sampling frequencies goes from (a)1MHz to
(b)32 MHz, the quantization noise, integrated over the band of interest, here from 0
to 500kHz, drops by the same factor. Meanwhile, the area under the in-band tone at
100kHz remains unchanged.

2.1.4 Spectral shaping

ΔΣ-modulation consists in grafting an analog error control system onto
an over-sampled quantizer. The digital quantizer output is converted by
DACs and re-injected before the quantizer, so creating one or more feed-
back loops. Unlike the quantizer, a DAC does not introduce any quanti-
zation error and is therefore represented by a linear gain as in Figure 2.10.

A nth-order modulator is a cascade of n integrators whose purpose
is to provide a strong negative reaction at low frequencies. This forces
the quantizer output to be an accurate replica of the analog input at low
frequencies. This process is commonly referred to as spectral noise shaping
and its mathematical description is analyzed in detail in the next section.

Figure 2.10 describes a conventional nth-order ΔΣ-modulator imple-
mented by Code 2.5.
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Figure 2.10 ΔΣ-modulation: Conventional nth-order architecture.

Code 2.5 MATLAB code for an nth-order ΔΣ-modulator.

%%%%%%%%%%% parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
coeff=[1 3 3];
n=length(coeff);
x0=(NL-2^n+1-2)/2;
%%%%%%%%%%% signals %%%%%%%%%%%%%%%%%%%%%%%%%%%
dit = d0*randn(k+n+1,1);
sig = zeros(k,n+1);
out = zeros(k,1);
x=x0*(sin(2*pi*f0*(1:k)’/fs));
sig(:,1)=x+dit(n+1:k+n);
for i=n+1:k

%%%% integrators %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for r=1:n

sig(i,r+1)=sig(i-1,r+1)-coeff(r)*out(i-1)+sig(i-1,r);
end
%%%%%%% quantizer %%%%%%%%%%%%%%%%%%%%%%%%%%%
if (abs(sig(i,n+1)) >= NL/2)

out(i)=sign(sig(i,n+1))*(NL-1)/2;
else

out(i)=round(sig(i,n+1));
end

end
out=out-dit(1:k); %dither remotion

Figure 2.11 shows the quantizer output with a first-order control sys-
tem. Compared to the over-sampled quantizer alone, the quantization
noise level droped around DC. In contrast, the input tone remained un-
changed. The control system provided what we call spectral shaping. As
for the simple over-sampled case, we consider our input signals are within
a certain band-of-interest.
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Figure 2.11 Spectral shaping: Simulation results of (a) Code 2.3 and (b) Code 2.5
with avr=20,NL=33,extra=−1.5, d0=0.5,fs=32MHz. The shaping provides a 3-decade
attenuation of the quantization level at low frequencies. Meanwhile, the area under
the in-band tone at 100kHz remains unchanged.

Figure 2.12 shows the quantizer output with a second-order control
system. At first sight, the second-order shaping does not bring any benefit
with respect to the first-order shown previously. In reality, the quantiza-
tion noise floor goes further down but this is hidden by a phenomenon
called spectral leakage.

Fourier analysis supposes that the data go from minus infinity to plus
infinity and are perfectly periodic. To this extent what we did is equivalent
to multiplying these samples by a finite rectangular window. As a result,
the spectrum of the data, periodic and of infinite length, convolves with
the spectrum of the window. Hence, the spectrum of the rectangular
window is a sinc function and therefore has so-called side-lobes which
make any point of the data spectrum leak on the other frequencies. Well-
known textbooks like [OSB99, HvV99], where the subject is studied in
detail, propose other windows with reduced side-lobes but increased speed
of the spectrum. The Blackman-Harris window provides an interesting
trade-off. Figure 2.12(b) shows the same second-order modulator output
with the proposed modification of Code 2.6 including the windowing of
the samples. The tone is now represented by about five dominant points
and the side-lobes are low enough to reveal the drop of quantization noise
level.
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Figure 2.12 Second-order spectral shaping: 20 averages, NL=33, extra=−1.5, Gaus-
sian dithering of 0.5, in-band single-tone at 100kHz, sampling frequencies fs=1MHz
and 32MHz.

Code 2.6 Modification of the MATLAB code for PSD estimation with Blackman-Harris
window

w=blackmanharris(kfft);
w=w/mean(w);
psd=zeros(kfft, 1);
for j=0:avr-1

y=w.*out(1+j*kfft:(j+1)*kfft);
psd=psd+abs(fft(y)).^2/kfft/fs;

end
psd=psd(1:kfft/2+1)/avr;

As we increase either n or NL, the tone representation in the PSD
moves up and the side-lobes around the tone emerge from the noise. As
highlighted by the third-order case in Figure 2.13, it becomes harder to
make a clear distinction between the tone and the noise contributions.

Another way of proceeding, practiced in particular by [FSW+02], con-
sists in extracting the tone from the samples using the best root-mean-
square method. Then both the tone and the noise PSD are evaluated
separately. Distinction between the tone and the noise is now guaranteed
and a narrow spectrum window, like the Blackman-Harris, is therefore not
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Figure 2.13 Third-order spectral shaping: 20 averages, NL=33, no extra, no dithering,
in-band single-tone at 100kHz, sampling frequencies 32 MHz.

necessary. Only the side-lobes are to be considered to avoid leakage. We
can also remove the period synchronization, since an integer number of
periods is not essential. Code 2.7 encompasses the modifications of PSD
estimation.

Code 2.7 Modification of MATLAB code for PSD estimation with signal extraction
method.

w=hann(kfft);
w=w/mean(w);
s=w.*sin(2*pi*f0*(1:kfft)’/fs);
c=w.*cos(2*pi*f0*(1:kfft)’/fs);
psd_n=zeros(kfft,1);
psd_s=zeros(kfft,1);
for j=0:avr-1

y=w.*out(1+j*kfft:(j+1)*kfft);
A= [+sum(y.*s) +sum(y.*c)]/...

[+sum(s.^2) -sum(s.*c);...
-sum(s.*c) +sum(c.^2)];
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y_s=(A(1).*s+A(2).*c);
y_n=y-y_s;
psd_n=psd_n+abs(fft(y_n)).^2/kfft/fs;
psd_s=psd_s+abs(fft(y_s)).^2/kfft/fs;

end
psd_s=psd_s(1:kfft/2+1)/avr;
psd_n=psd_n(1:kfft/2+1)/avr;

A Hann window is used. Ideal sine-wave and cosine-wave vectors si

and ci are generated. Their amplitudes, s0 and c0, are found by minimiz-
ing the root-mean-square errors with respect to the sample vector yi:

∂

∂s0, c0

k∑
i=1

(yi − s0si − c0ci)2 = 0 . (2.7)

which lead to the following solution:

[
s0

c0

]
=
[

+
∑

s2
i +

∑
sici

−∑
sici +

∑
c2
i

]−1 [ +
∑

yisi

−∑
yici

]
. (2.8)

Note that in this last example no dithering is used. In fact, as the order
is higher, the length of any output pattern that would repeat periodically
becomes extremely large.

2.1.5 Digital decimation

As mentioned earlier, the digital quantizer output goes through a filter,
ideally removing everything outside the band, and is re-sampled at the
Nyquist rate. Such a process is called decimation. The design of the digital
filter depends strongly on the application, more specifically on what we
expect as out-of-band unwanted signals. In most cases, the decimation is
done in two stages. Each of them consists of an anti-aliasing filter followed
by a down-sampler. Because a linear phase response is often required and
stability must be guaranteed, Finite Impulse-Response (FIR) filters with
symmetric coefficients are used almost exclusively.

The first-stage performs a rough filtering and down-samples at twice
the Nyquist rate. It consists of a cascade of n identical m-tap FIR filters.
Because all the m coefficients are equal to one, this is called an nth-order
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comb-filter. The transfer function Hc(z) of the filter becomes a geometric
series and can therefore be rewritten as follows:

Hc(z) = (1 + z−1 + z−2 + z−3 + . . . + z−m)n =

(
1 − z−m

1 − z−1

)n

. (2.9)

Therefore, as described in Figure 2.14, a comb-filter can be realized with
n accumulators, operating at fs, and n differentiators operating at fs/m.
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Figure 2.14 First-stage decimation filter made of n cascaded accumulators and n dif-
ferentiators.

According to [Bra91], it is sufficient to chose a filter order n equal
to the order of the modulator plus one. Figure 2.15 show the first-stage
decimation process applied to a second-order modulator.
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Figure 2.15 First-stage decimation: (a) 33-level second-order modulator output sam-
pled at 32MHz and comb filter output before (b) and after down-sampling (c) at 2MHz.
A band of 500KHz is considered.
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Code 2.8 provides the necessary additional procedure for this experi-
ment. Figure 2.15(b) highlights the comb filter shaping with its notches at
multiples of 2MHz. Figure 2.15(c) shows the PSD after down-sampling at
2MHz. The spectrum around the notches folds back to DC. Nevertheless,
the attenuation around the notches prevents the noise floor increasing.

Code 2.8 MATLAB code for the first-stage decimation filter.

x=out_mod;
out_comb=zeros(k,1);
acc1=zeros(k,1);acc2=zeros(k,1);acc3=zeros(k,1);
dif1=zeros(k,1);dif2=zeros(k,1);dif3=zeros(k,1);
out=zeros(k,1);
for i=17:k

acc1(i)=acc1(i-1)+x(i-1);
acc2(i)=acc2(i-1)+acc1(i-1);
acc3(i)=acc3(i-1)+acc2(i-1);
dif1(i)=acc3(i)-acc3(i-16);
dif2(i)=dif1(i)-dif1(i-16);
out_comb(i)=dif2(i)-dif2(i-16);

end
out_comb=out_comb/16^3;
out_comb_down=out_comb(1:16:k);
x=out_comb_down;

The second-stage of decimation consists of a sharper filter, usually im-
plemented as a half-band filter, performing the remaining down-sampling
factor of two. A half-band filter is a symmetric (m/2 + 1)-tap FIR filter,
where the order m is even and all odd coefficient are chosen to be zero,
except the middle one. Its transfer function Hh(z) can be written as

Hh(z) =
{

c1z
−1 + c3z

−3 + . . . + cm/2z
−m/2 + . . .

c0z
−0 + c2z

−2 + . . . + cm/2z
−m/2 + . . .

. . . + c3z
−m+3 + c1z

−m+1 , if m
2 is even ,

. . . + c2z
−m+2 + c0z

−m . if m
2 is odd .

(2.10)

Depending on the application, a high-order FIR filter is required to
remove unwanted signals, as well as quantization noise, that would fold
back to the band-of-interest when down-sampling. A poly-phase half-band
filter allows the number of operations to be drastically reduced compared
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to conventional FIR filters. Nevertheless, such an architecture can only
perform a decimation by two.

Figure 2.16 shows the second-stage decimation process simulated with
Code 2.9.
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interest

Frequency (Hz)
100k 1M300k30k

(c)

band−of−
interest

Figure 2.16 Second-stage decimation: Half-band FIR filter output before (a) and after
down-sampling (b) at 1MHz. (c) PSD of a Nyquist-rate 32k-level quantizer.

Code 2.9 MATLAB code for the second-stage decimation filter.

x=out_comb_down;
out_fir=zeros(length(out_comb_down),1);
for i=23:length(out_comb_down)

out_fir(i)=(...
-8*(x(i-22)+x(i-1))...
+14*(x(i-21)+x(i-3))...
-26*(x(i-19)+x(i-5))...
+48*(x(i-17)+x(i-7))...
-96*(x(i-15)+x(i-9))...
+315*(x(i-13)+x(i-11))...
+500*(x(i-12)) )/1000;

end
out_fir=out_fir(200:length(out_fir)-200);
out_fir_down=out_fir(1:2:length(out_fir));

Figure 2.16(b) shows the filter output after down-sampling. The PSD
highlights the aliasing of the spectrum around fs/2 which folds back
to DC. Figure 2.16(c) shows the PSD of a Nyquist-rate quantizer with
a large number-of-levels. The areas under the band-of-interest in Fig-
ures 2.16 and 2.15 are all the same. The 33-level analog modulator,
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together with digital filters, is comparable to a 32k-level Nyquist-rate
quantizer.

Another filter, operating at the Nyquist rate, is usually added to com-
pensate for the droop of the signal transfer function inside the band-of-
interest brought about by the preceding filter stages.

Since the complexity of the stages progressively increseases up as the
sampling frequency decreases, this set-up is efficient in terms of area and
power consumption. Moreover, filtering and down-sampling are often
combined. The digital filter is part of the complete analog-to-digital con-
version process. One of the interesting aspects of ΔΣ-modulation-based
converters is that they are realized with half analog circuitry and half
digital hardware. The latter takes benefits from the constant progress
in CMOS technologies. Its contribution to power consumption and die
area therefore becomes negligible. Furthermore, the digital section is usu-
ally synthesized from a formal description, in a Hardware Description
Language (HDL), so allowing jumping from one technology to the other
without redesigning the whole filter.

2.2 Performance calculations

2.2.1 Linear model

In the previous section we saw that the quantization process described
by Equation (2.5), under certain conditions, is equivalent to a linear gain
of 1/Δ and an additional random signal q, called the quantization noise.
The quantizer can therefore be represented as in Figure 2.17.

1

y
v

q

Δ−1 Figure 2.17 Quantization: Linear signal flow
graph representation where, q is white noise uni-
formly distributed between ±1/2.

According to the observation made in Section 2.1.2, the probability
density function of the quantization noise pq(x) has a uniform distribution
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bounded by ±1/2:

pq(x) =
{

1 , if − 1/2 < x < +1/2 ,
0 , otherwise .

(2.11)

The variance of such a distribution1 is well-known as:

σ2
q =

∫ +∞

−∞
pq(x)x2dx =

1
12

. (2.12)

Additionally, the power spectral density of the quantization noise
Pq(f) is constant. With the hypothesis that the quantization noise is
stationary and according to Rayleigh’s energy theorem we can write:

σ2
q =

∫ +∞

−∞
Pq(f)df = Pq(f)fs . (2.13)

We can finally claim that the quantization noise power spectrum is of the
form

Pq(f) =

⎧⎨
⎩

1
12fs

, if − fs/2 < f < +fs/2 ,

0 , otherwise .
(2.14)

2.2.2 Modulator general description

Any single-stage ΔΣ-modulator could be described by the linear Signal
Flow-Graph (SFG) shown in Figure 2.18. As considered from the begin-
ning of this chapter, nodes x and y represent the modulator analog input
and digital output, whereas node v is the input of the quantizer.

We apply the quantizer linear approximation discussed previously.
The quantizer is therefore modeled as a gain of Δ−1 with an additional
white noise source q, uniformly distributed between ±1/2. By applying
Mason’s gain formula [MZ60], we can calculate the expression of frequency
response Y (z) and V (z) as functions of the sources X(z) and Q(z):

1Many textbooks refer the quantization noise to the quantizer input. In such a case, the
random variable q is uniform to within ±Δ/2 and the variance is equal to Δ2/12
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1

y

v

q

x

H(z)

G(z)
Δ−1

Δ

Figure 2.18 General linear Signal Flow
Graph representation of the single-stage
modulator: The quantizer is represented by
a gain of Δ−1 and an additional random
source q. In contrast, the DACs do not in-
troduce errors and are simply modeled as a
gain of Δ.

Y (z) =
G(z) ·Δ−1

1 − H(z)︸ ︷︷ ︸
=STF(z)

X(z) +
1

1 − H(z)︸ ︷︷ ︸
=NTF(z)

Q(z) , (2.15)

V (z) =
G(z)

1 − H(z)︸ ︷︷ ︸
=Δ ·STF(z)

X(z) +
H(z) ·Δ
1 − H(z)︸ ︷︷ ︸

=Δ · (NTF(z)−1)

Q(z) . (2.16)

Equation (2.15) provides the common definition of the Signal Transfer
Function (STF) and the Noise Transfer Function (NTF).

2.2.3 Dynamic range

Let us consider as a hypothesis the classic nth-order architecture with a
flat STF(z), which simply consists of an n-delay function, and an NTF(z)
with n poles at the center of the z-plane, and n zeros zi at frequencies fi,
that are either real or complex conjugated pairs:

STF(z) =Δ−1z−n , (2.17)

NTF(z) =
n∏

i=1

(1 − ziz
−1) , (2.18)

where

z =e j2πf/fs , (2.19)

zi =e j2πfi/fs+σi . (2.20)
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n poles

zeros +fs/4

fs/2

zeros
at DC

−fs/4

poles

Real
axis

Imaginary
axis

Unit
circle

z−plane

conjugated pairs
on the unit circle

 

conjugated
pairs

in the center

R=1

Figure 2.19 Poles and zeros: represen-
tation in the complex z-plane. Stabil-
ity is guaranteed if all the poles are
within the unit circle. Here all the n
poles are placed at the center provid-
ing the maximum stability. The zeros
appear either on the real axis or in
complex conjugated pairs.

In such conditions, with the additional constraint that Re[zi] ≥ 0, ∀zi,
referring to Equation (2.16), the highest possible value of v is given by:

‖y‖∞ = ‖STF(z)‖1︸ ︷︷ ︸
=kxΔ−1

· ‖x‖∞ + ‖NTF(z)‖1︸ ︷︷ ︸
=kq

· ‖q‖∞ , (2.21)

‖v‖∞ = ‖STF(z)‖1 ·Δ︸ ︷︷ ︸
=kx

· ‖x‖∞ + ‖NTF(z) − 1‖1︸ ︷︷ ︸
=kq−1

·Δ · ‖q‖∞ . (2.22)

Let us call the quantities kx and kq signal and noise range factors
respectively. The initial hypotheses of Equation (2.17) imply that kx is
always unity. According to the definitions and proofs provided in Ap-
pendix A.1 and A.2, we can write that:

kx =1 , (2.23)

kq =
n∏

i=1

(1 + zi) . (2.24)

For the specific case where all the zeros are placed at DC, these rela-
tionships become

kx =1 , (2.25)
kq =2n . (2.26)
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Let us assume that the modulator is at the limit of overloading. The
quantization errors are still uniformly distributed between ±1/2 and we
can write:

‖q‖∞ < 1
2, (2.27)

‖v‖∞ < 1
2Δ(NL). (2.28)

The definition of v claims that the quantizer never overloads, which implies
that q never exceeds ±1/2. Once all these conditions are met, we can
rewrite Equation (2.22) to optain that

‖x‖∞ < 1
2Δ (NL − kq + 1) , (2.29)

which provides the maximum input signal the modulator can sustain with-
out overloading, also referred to as the full-scale amplitude. It is interest-
ing to note that NL cannot be smaller than kq−1 and that this limitation
increases with the modulator order. For this reason, the non-overload
dynamic range is limited by the equation:

NL = 2n − 1 . (2.30)

With a single comparator quantizer NL = 2 and with any order n > 1 the
modulator is overloaded for an NTF= (1 − z−1)n.

Figure 2.20 illustrates how a high-order modulator is limited. More
room is required for quantization noise than for the signal itself. From
Equation (2.21) we find the range of the digital output to be right at the
limit of the maximum deliverable by the quantizer:

‖y‖∞ < 1
2 (NL + 1) . (2.31)

2.2.4 Resolution

Let us consider now an nth-order modulator, such as described by Equa-
tions (2.18) and (2.17), with all its zeros at DC, namely zi = 1, ∀zi.
A full-scale tone applied at the input appears at the output with a total
power

Px,y =
‖x‖2

∞
2

|STF(f)|2 = 1
8 (NL − 2n + 1)2 . (2.32)
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Figure 2.20 Digital output of a second (a) and a fourth-order (b) modulator with a
33-level quantizer. A clear distinction can be made between the fast quantization noise
at 32MHz and the slow 100kHz-tone input.

However, the quantization noise q undergoes the NTF before reaching
the output. As shown in the previous section, the modulator output
passes through different digital filters and is down-sampled to 2fb. For
this reason, supposing ideal infinitely sharp filtering, only the quantization
noise integrated over that band-of-interest is to be considered:

Pq,y =
∫ fb

−fb

PQ(f)df = 2
1

12fs

∫ fb

0

|NTF(f)|2 df . (2.33)

As mentioned earlier, the Over-Sampling Ratio (OSR) is defined as:

OSR =
fs

2fb
. (2.34)

Assuming the OSR � 1, namely fs � fb, the NTF can be simplified by
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removing the high-order terms in its Taylor expansion.

|NTF(f)|2 =
∣∣(1 − z−1)n

∣∣2
z=e j2πf/fs

= · · · (2.35)

· · · =

∣∣∣∣∣
(
−j

2πf

fs
− 2π2f2

f2
s

+ j
4π3f3

3f3
s

+ · · ·
)n∣∣∣∣∣

2

∼=
(

2πf

fs

)2n

.

The high-over-sampling assumption simplifies the calculation of Pq,y :

Pq,y
∼= 2

12fs

∫ fb

0

(2πf/fs)2ndf =
1

12π

(
π

OSR

)2n+1

/(2n + 1) . (2.36)

We finally calculate the Signal-to-Quantization Noise Ratio and find
the general relationship:

SQNRmax =
Px,y

Pq,y
=

3
2

π(NL − 2n + 1)2(2n + 1)

(
OSR

π

)2n+1

. (2.37)

This relationship is evaluated in Figure 2.21(a) for different cases of
modulator order. As an alternative, Figure 2.21(b) shows the equation
inverted so as to find the quantizer size for a targeted SQNRmax:

NL = 2n − 1 +

√√√√2 π SQNR
3 (2n + 1)

(
π

OSR

)2n+1

. (2.38)

Similarly, the expression for the SQNR can be inverted so as to find the
required OSR as a function of the other parameters:

OSR = π
2n+1

√
2 SQNR

3π(NL − 2n + 1)2(2n + 1)
. (2.39)

In the case of non-over-sampled quantizer alone, referred to as a
Nyquist-rate quantizer, n=0, OSR=1 and we get:

SQNRmax =
3
2
NL2 . (2.40)
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As mentioned in the previous section, we can define the number-of-bits
N, also referred to as the resolution

N =
log NL
log 2

. (2.41)

By combining the last two equations we find the relationship between the
SQNR and an the equivalent N-bit quantizer resolution, commonly called
Effective Number-of-Bits ENOB.

ENOB =
SQNRdB − 1.76

6.02
. (2.42)

The left and right scales in Figure 2.21(a) provide this direct relationship
between the ENOB and the SQNR. In a real implementation, the distor-
tion generated by the circuit itself and by other sources of noise degrades
the SNQR. The latter becomes the Signal-to-Noise plus Distortion Ratio
SNDR. This last relationship therefore provides a way of evaluating an
equivalent resolution in terms of the number of bits.

2.2.5 Simulations

Given the power spectral density, extracted according to the methods
described in Section 2.1.4, the expected resolution is determined as the
ratio of the total signal and noise power within the band-of-interest. As
proposed by the additional Code 2.10, the total powers are evaluated by
summing the noise and extracted power spectral densities along the band.

Code 2.10 Additional MATLAB code for SNR calculation with the signal extraction
method.

f1=0; f2=500e3;
kf1=round(f1/fs*kfft)+1;
kf2=round(f2/fs*kfft)+1;
SNR=10*log10(sum(psd_s(kf1:kf2))/sum(psd_n(kf1:kf2)))

Alternatively, the conventional evaluation of the SNR is given by
Code 2.11.

The SNR is usually evaluated for different input signal amplitude pro-
viding the so-called Dynamic-Range Plot (DR-Plot). Figure 2.22 shows
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Code 2.11 Additional MATLAB code for SNR calculation with direct evaluation.

f1=0; f2=500e3;
kf1=round(f1/fs*kfft)+1;
kf2=round(f2/fs*kfft)+1;
kf0=round(f0/fs*kfft)+1;
SNR=10*log10(sum(psd(kf0-3:kf0+3))/sum(psd([kf1:kf0-4,kf0+4:

kf2])));
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Figure 2.22 Dynamic range plot around the under- and over-load regions for a second-
and third-order modulator. To optain such a smooth plot, 1000 averaging points are
required and a small 0.05 dithering signal for the second-order modulator.

the DR-Plot for a 33-level second-order modulator. As expected, the SNR
grows monotonically from zero up to SQNRmax with a slope of 10dB per
decade. For some architecture or in the presence of circuit imperfections,
the DR-Plot may present a deviation from the ideal form. To make things
clear, we commonly define the Dynamic Range as the input amplitude
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Figure 2.24 Quantization noise in the overload region for a second-order modulator
with extra=0.2.

range for which the SNR goes from zero to its maximum, usually referred
to as the Peak-SNR. In the ideal case DR and SNR are the same.

For input amplitudes higher than the range determined by Equa-
tion (2.29) the quantizer overloads. The modulator cannot be considered
as a linear system anymore. The feedback loops small-signal gain is pe-
riodically deactivated and the system tends to work as a cascade of n
integrators in open-loop. Since such a system is unstable, increasing the
amplitude leads to further instability. For this reason, the SNR drops
abruptly. Figure 2.23 highlights the transition from an under-load situa-
tion, through an over-load region, before reaching a completely unstable
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condition.

Figure 2.24 shows the quantization errors under over-load conditions.
The errors remain within ±0.5 with periodical exceptions when the in-
put signal is either high or low, thus generating harmonics and additional
noise. The behavior within this region is hard to predict since the mod-
ulator cannot be modeled anymore as a linear system. In a conservative
design we try to avoid the overload region. Nevertheless, the third-order
case in Figure 2.23(b) reveals a longer overload region because of a larger
kq which can be exploited for higher-order cases.

2.2.6 Aggressive pole placement
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Figure 2.25 Maximum achievable SQNR of a 33-level second-order modulator with an
OSR of 32 as a function of the global feedback coefficients a1 and a2. The resulting
position of the poles and zeros for few relevant case are depicted on the sides. The
experiment is performed with at input signal at 100kHz for a sampling frequency of
32MHz.

The poles are responsible [HvV99] for the rising peaks, even to infin-
ity, of the frequency response. Any real pole, or conjugated complex pair
of poles, inside the unity circle provides a damped impulse response. In
contrast, the poles outside the circle provide an impulse response which
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grows unbounded. The position of the poles, shared by both the NTF
and the STF, is determined by global feedback coefficients ai. As already
mentioned in Section 2.2.3, we chose throughout this thesis to place the
poles at the center of the z-plane. This provides the system with the
best robustness in terms of stability [Oga95, Lon95], the center of z-plane
being the farthest point from the unity circle.

The performance of the spectral shaping in a ΔΣ-modulator is es-
sentially determined by the zeros. The poles may nevertheless increase
the integrated quantization noise if they are placed close to the band-of-
interest. Figure 2.25 show the maximum achievable SQNR as a function of
the global feedback coefficients. Paradoxically, an appropriate placement
of the poles allows an improvement of the SQNR by 6dB with respect to
the conservative case where the poles are at the center.

Feedback coefficient a (−)
0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fe
ed

ba
ck

 c
oe

ffi
ci

en
t a

 (−
)

0 2 4 6 8 10 12 14 16

18

−2−4

2

1

Figure 2.26 Parameter extra as a
function of the global feedback co-
efficients a1 and a2 for the case of
Figure 2.25.

This improvement is due to an increase in dynamic range. In this
experiment, for each set of coefficients, a dynamic range plot is performed
to find the maximum input amplitude, sometimes also over-loading the
quantizer. Figure 2.26 depicts the parameter extra for each set of feedback
coefficients. This parameter is defined as the additional number-of-levels
with respect to the over-load limit for the simple case with all the poles
in the center.

The Figure 2.25 shows that the maximum of 100dB is reached when
{a1, a2}={2.5,3}. The case with {1.5,3.5} is unstable but provided an
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SQNR of 63dB. The saturation of the quantizer limiting the unstable
behavior caused the modulator to operate as a highly non-linear system.

Designing an NTF with optimal placed poles is risky and is usually
referred to as aggressive noise shaping in contrast to a conservative noise
shaping. Furthermore, to have a flat STF, feed-forward paths are required
to compensate for the rise provided by the poles.

2.2.7 Optimal zero placement

So far we have considered the NTF of modulators with zeros placed at DC.
The general case studied in Section 2.2.3 started with the hypothesis, in
Equation (2.18), that zeros are either real or complex conjugated pairs. To
be able to control the zeros, additional local feedback paths are necessary.
By local feedback, we mean feedback loops not comprising the quantizer.
The generic architecture, described in Figure 2.27 and implemented by
the additional Code 2.12, forces the zeros to be placed on the unit circle.

fs y

z−1 z−1z−1z−1

a1 a2 anan−1

b1 b2 bn−1

grafted analog controler

n − 1 local feedbacks

n global feedbacks

oversampled
quantizer

v1

1 − z−1

1

1 − z−1

1

1 − z−1

1

1 − z−1x

Figure 2.27 ΔΣ-modulation: Additional local feedbacks bi controlling the zeros of the
NTF.

Code 2.12 Additional MATLAB code for local feedback paths. The vectors coeff and
local provide the list ai and bi coefficients respectively.

coeff=[0.940499 3.9006 5.8801 3.92];
local=[0.01 0 0.07];
...
%%%%%%% local feedbacks %%%%%%%%%%%%%%%%%%%%%
for r=1:n-1
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sig(i,r+1)=sig(i,r+1)-local(r)*sig(i,r+2);
end
%%%%%%% quantizer %%%%%%%%%%%%%%%%%%%%%%%%%%%
...

The zeros are responsible [HvV99] for peaks of the frequency re-
sponses falling even to zero. Any real zero, or conjugated complex pair of
zeros, on the unity circle provides a notch in the frequency response. The
zeros that are not on the circle provide only a light drop. Without local
feedback loops, all the n zeros are automatically placed at DC.
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Figure 2.28 33-level third-order modulator sampling at 32 MHz with a band-of-interest
from 0 to 4MHz. All the poles are placed at the center of the z-plane. In (a) all the
zeros are at DC. In (b) one zero is placed at DC and a complex conjugated pair at
3MHz. The coefficient and local feedback vectors are respectively [1 2.64 2.64] and [0
0.36].

Placing zeros on the unit circle gives the NTF with deep drops at
specific frequencies. According to [ST05], an optimal placement can pro-
vide important resolution improvements. Table 2.1 gives the frequency
positions of the zeros, with respect to the band of interest, allowing cal-
culation of the local coefficients bi. The global coefficient values ai are set
in a Pascal triangle configuration. Because the local coefficients influence
the location of the poles, correction terms are added to keep them at the
center of the z-plane.
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Table 2.1 Feedback coefficients to place the poles at the center of the unity circle,
optimal zero placement on the unity circle according to [ST05]. The nominal values of
the global coefficients ai are in bold to highlight the Pascal triangle configuration.
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2.3 Circuit imperfections

2.3.1 Removal of quantization noise

We usually make a clear distinction between the quantization noise and
errors provided by circuit imperfections such as thermal noise and compo-
nent mismatches. The former can be seen as a system limitation imposed
by design. The quantization noise often hides these imperfections. The
study of their impact on the resolution becomes easier if we selectively
remove quantization noise from the modulator output sequence in simu-
lations. As implemented by Code 2.13, the difference between the output
and the input of the quantizer gives the quantization errors. These errors
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go through an imitation of the NTF before being subtracted from the
modulator output.

Code 2.13 Additional MATLAB code for quantization noise removal. The filter func-
tion imitate a second-order with all the poles at the center of the z-plane an all the
zeros at DC.

...
q(i)=out(i)-sig(i,n+1); %get quantization errors

end
out=out-filter([1 -2 1],[1],q); %removal
...

2.3.2 Circuit noise

The simplest model of circuit noise consists of a white Gaussian variable,
accounting for thermal noise, and an additional 1/f -power law component,
accounting for the so-called flicker -noise which is particularly important
in CMOS transistors. Code 2.14 generates such a noise sequence with
an IIR filter. The generation of colored noise is treated at great length
in [Kas95].

Code 2.14 MATLAB code for the generation of circuit noise with white and 1/f-power
law components.

pink=zeros(1,1000);
pink(1)=1;
for m=2:1000

pink(m)=(m-2.5)*pink(m-1)/(m-1);
end
noise=filter(1,pink,0.1*randn(k,1))+0.5*randn(k,1)

Figure 2.29 shows the output of a conventional second-order mod-
ulator in the presence of noise. The quantization errors are removed.
A colored noise is introduced at different nodes of the system, at the
modulator input, after the first integrator and before the quantizer. The
results illustrate how the circuit errors, here circuit noise, benefit from
the modulator spectral shaping. As a consequence, the errors due to the
imperfections of the first components in the processing chain, like the in-
put signal, undergo the STF before reaching the modulator output. It is
not possible distinguish these errors form the wanted signal. As shown in
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Figure 2.29(a), the colored noise appears at the output without attenu-
ation or spectral shaping. Hence these errors usually limit the resolution
of the modulator.

In contrast, the errors introduced after the kth integrator are spec-
trally shaped with a kth-order high-pass transfer function. In particular,
as revealed in Figure 2.29(c), the errors occuring at the input of the
quantizer, like the quantization noise, undergo the NTF.
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Figure 2.29 Second-order 33-level modulator with circuit noise injected at the input
(a), after the first integrator (b) and before the quantizer (c). The quantization noise
is removed.

2.3.3 Clock jitter

The modification proposed in Code 2.15 introduces the effect of an im-
perfect sampling clock signal. The sampling period is now randomly dis-
tributed around 1/fs using a Gaussian variable whose spectrum is white.

Code 2.15 Modification of the MATLAB code of the signal generation to introduce
the clock jitter.

x=x0*(sin(2*pi*f0*(0.1*randn(k,1)+(1:k)’)/fs));

This imperfection is called clock jitter. Figure 2.30 show how the pres-
ence of a high-amplitude high-frequency turns the clock jitter into a noise
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Figure 2.30 Output power spectral density of a second-order 33-level modulator, whose
sampling is affected by clock jitter, with a full-scale input tone at 100kHz (a) and 1MHz
(b). The quantization noise is removed.

signal. The clock jitter is analyzed in detail in the next chapter, showing
the different transfer mechanisms for the continuous- and discrete-time
modulators.

2.3.4 Component mismatch

A multi-bit ΔΣ-modulator requires an ADC and, for each node fed back
from the digital output, a DAC. In a conventional implementation, these
blocks are realized as a bank of NL comparators for the ADC, and as
a bank of NL one-weight elements for the DAC. Among the major ben-
efits of integrated circuits, we find that identical components close to
each other are well matched. Nevertheless, the matching properties are
highly dependent on the size of the components. But increasing their size
also increases the distance between the components therefore reducing the
matching properties. As a result, the matching properties are limited by
the technology.

The mismatches between the components of the ADC and DAC affect
their input-output transfer characteristic which is, in an ideal situation,
a perfect staircase function. The DAC element mismatch changes the
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height of levels and the comparators offset changes the thresholds. These
changes in the characteristic cause harmonic distortion. Figure 2.31 shows
the modulator output in the presence of mismatch. The quantization
noise is completely removed. Since the harmonic distortion occurs in the
ΔΣ-modulator loop, the harmonic tones generated also fold parts of the
quantization noise.
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Figure 2.31 Output power spectral density of a second-order 33-level modulator with
DAC elements mismatch (a) and ADC comparator offset (b).

As highlighted in Figure 2.31, the errors brought about by the ADC
are shaped contrary to the errors of the first DAC. A similar degradation
of SNR is produced with 0.1% and 20% of mismatch, in the DAC and
ADC respectively. This illustrates once again how the spectral shaping of
the modulator itself allows relaxing the circuit imperfection of components
placed at the end of the signal processing chain, like the quantizer in this
case.

2.3.5 Harmonic distortion

A non-linear behavior in the system gives rise to harmonic distortion.
As a didactic model, let us consider the simple function f(x) = x + kx3

and a single-tone input signal. When this function is applied directly at
the input of the modulator, an additional sinewave at three times the
tone frequency appears with an amplitude of 3k/4. As highlighted in
Figure 2.32(a), the additional sinewave is an unwanted signal and brings
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about a degradation of the SNR. As already mentionned earlier, in such
a case, we use the Signal-to-Noise plus Distortion Ratio (SNDR) to de-
termine the resolution. In order to take into account the distortion in
simulations, the test tone needs to be set at a rather low frequency with
respect to the band-of-interest. Consequently, the number of clock cycles
to simulate can be quite large. This might be impractical in complex
circuit level simulations.
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Figure 2.32 Simulation of distorsion in a second-order 33-level modulator with a full-
scale low-frequency single-tone (a) and two half-scale high-frequency tones (b). A
500kHz bandwidth is considered.

Alternatively, the two-tone test allows short simulations. Figure 2.32
shows the experimental setup with two half-scale out-of-band tones, set at
frequencies f1 and f2. In such a case, different harmonics appears at high
frequencies 2f2 + f1, 2f1 + f2, f1 − 2f2, 3f1 and 3f2. Since these tones
remain out of the band-of-interest, their presence is usually hidden by
quantization noise. On the other hand, an unwanted tone is generated at
f2 − 2f1 which falls into the band-of-interest. The tone has an amplitude
of 3k/32, namely hight times lower than the harmonics found with the
single-tone test. As a result, the measured degradation is 6dB lower with
the two-tone test.



44 Architecture classification

2.4 Architecture classification

2.4.1 Single- and multi-bit

Many designs have been proposed with a number-of-levels brought to the
extreme limit of two, while keeping a high resolution by increasing both
the order and the over-sampling. Such an architecture is commonly re-
ferred to as a single-bit modulator in contrast to the multi-bit general case
treated so far. Because of its simplicity, this architecture has been very
popular over the last decades. In a large part of the didactic literature,
such as [AH02, JM97, Par93, PVS96, Hay01], the explanations are en-
tirely built on the single-bit first-order topology, considering the multi-bit
feedback as a rather particular case.

At first glance, the implementation is drastically simplified since only
one comparator and one DAC element are required. Moreover, the mis-
match and offset issues disappear. As a drawback, both the circuit speed
and the analog signal processing are increased. Furthermore, as shown
in Figure 2.33, the signals processed by the modulator constantly jump
from one level to another at high speed, putting an important slew-rate
constraint on the amplifiers.
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Figure 2.33 First-order single-bit modulator output.

Figure 2.34 highlights an important difference between the single- and
multi-bit cases. As predicted by Equation (2.29), if NL goes below kq − 1
the quantizer overloads and the linear model does not hold anymore. The
NTF deviates from the predicted shape. A flat region with spurs appears
at high frequencies with odd harmonic distortion. In contrast to the multi-
bit architecture, the DR-Plot in Figure 2.35 reveals a DR higher than the
peak SNR. The slope is not perfectly constant and the curve smoothly
drops down at an amplitude which is hard to predict.
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Important work has been carried out to understand the behavior
of such highly non-linear systems. In particular, the contribution of
[vEvdP99] brought an interesting modeling of the single-bit quantization
along with prediction of unstable conditions allowing robust design. [?]
provided an extensive analysis of the switched-capacitor implementation
and [Bal03] studied the three-level case.

2.4.2 Low-, high- and band-pass

So far we have considered a band of interest from DC to a given frequency.
However, in some applications it may turn out that the bandwidth has
to start and end at f1 and f2 respectively. Considering f2 > f1, the
band-of-interest is the difference fb = f2 − f1. If either f1 or f2 is set to
zero, the modulator is said to be low-pass or high-pass respectively, the
intermediate case being called band-pass. Figure 2.36 shows fourth-order
examples of the three cases.

2.4.3 Single and multi-feedback path

So far we have considered an architecture with a feedback on each inte-
grator. We should recall that each feedback coming from the modulator
output requires its own DAC. In contrast to this so-called multi-feedback
topology, the single-feedback architecture, described in Figure 2.37(b),
simplifies the implementation to the limit of only one path from the dig-
ital modulator output. The same NTF can be realized by introducing
the interpolation paths di. Unfortunately, in this configuration the feed-
forward paths ci are necessary to avoid important ripples in the STF.
Moreover, the addition before the quantizer requires another amplifier.
The feed-forward path can also be used in a multi-feedback configuration
to control the STF independently from the NTF. A combination of both
approaches is also possible.

Many designs are proposed with a single-bit single-feedback topology.
Their simplicity allows focusing on fewer constraints since there is only
one comparator and one DAC element in the whole modulator.
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In most of the designs published, like [BH01], the circuit consists of
a continuous-time RC integrator followed by gm-C cells ending with a
comparator. Nevertheless, these choices force the modulator to work at
high sampling frequencies and with high-order shaping.
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Figure 2.37 General (a) multi-feedback (b) single-feedback and configurations.

2.4.4 Single and multi-stage

Because of the stability issues mentioned previously, building high-order
modulators with a single-bit quantizer calls for a careful design. Alterna-
tively, a cascade of low-order modulators can give the performance of a
single high-order modulator without the stability issue. Each modulator
is referred to as a stage and such a topology is commonly called multi-
stage or MASH architecture. In the general case described in Figure 2.38,
low-pass ΔΣ-modulators are considered with the following characteristics:



Delta-Sigma ADC from the ground 49

x

y

ΔΣ ΔΣΔΣΔΣΔΣ

z−n2...−nm z−n3...−nm z−n4...−nm z−nm

q1 q2 q3 qm−1n1 n2 n3 nm−1 nm

y1 y2 y3 ym−1 ym

(1 − z−1)n1 (1 − z−1)n1+n2 (1 − z−1)n1...+nm−2 (1 − z−1)n1...+nm−1

digital processing

m cascaded ΔΣ-modulators

Figure 2.38 m-stage architecture: Each stage consists of a low-pass nith-order ΔΣ-
modulator with all poles at the center and zeros at DC. Only the quantization noise
qi is transferred from one stage to the other.

STFi(z) =z−ni , (2.43)

NTFi(z) =(1 − z−1)ni . (2.44)

Each stage feeds its own generated quantization noise qi to the next
stage. Each qi is obtained by sampling the quantizers input and subtract-
ing the their output. A post-processing combines the m digital outputs
yi to cancel out the quantization noise of the first m− 1 stages. Provided
that the digital and analog processing match perfectly, the processed out-
put y is the same as asingle-stage modulator with an order equal to the
sum of the individual stage orders:

Y (z) =X(z)z−ne + Qm(z)(1 − z−1)ne , (2.45)
ne =n1 + n2 + . . . + nm−1 + nm . (2.46)

An architecture with, for example, a second-order and two first-order
modulators is referred to as a 2-1-1 MASH modulator. A good matching
of the analog and digital processing requires almost exclusively an SC
implementation.
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2.5 Conclusions

We have introduced the well-known linear model of the quantization pro-
cess in a didactic way through computer experiments. Different aspects
of spectral estimation issues were addressed. Over-sampling and spectral
shaping were presented as a means of increasing the resolution of a multi-
bit quantizer. In contrast to other authors in the field, the single-bit
modulator is considered here as a particular case of the multi-bit ΔΣ-
modulation, operating as a non-linear system. The analytical expression
of the resolution, often given in a less accurate form in the literature, was
derived and exploited to guide a preliminary design. The chapter ended
with a brief review of the different architectures known today.



Chapter

3
Low-power strategy

The first section of this chapter briefly introduces a design strategy to
lower the power consumption of single-stage modulators. The strat-
egy consists in combining different techniques, each of them address-
ing a specific issue. The designer is naturally led to multi-bit hybrid
continuous-discrete-time architectures. The subsequent sections an-
alyze in detail particular aspects of the techniques used, highlighting
the advantages and drawbacks. In this way, the chapter gives de-
signers the tools to make the appropriate trade-offs. For the sake of
readability, two important subjects of the strategy, the auto-ranging
technique and the optimization of the DEM, are covered in dedicated
chapters.

3.1 Strategy outline

3.1.1 Continuous-time implementations

Many recent publications [Kap03, YS04, AL02, Abo02, PNR+04, GM01],
books [CS00, BH01, KvR06, OG06] and thesis dissertations [Sho95, Yan02]
have demonstrated the low power consumption of continuous-time ΔΣ-
modulators. As a matter of fact, continuous-time implementations require
amplifiers with less current and bandwidth than their discrete-time coun-
terparts. While a continuous-time filter operates smoothly without inter-
ruption, in a discrete-time circuit half a clock period is used to sample
the input and the remaining half to perform the integration. The integra-
tion usually requires a charge transfer determined at each clock cycle by
a decaying exponential which demands a high initial slewing current.

51
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Figure 3.1 Continuous-time implementation of a multi-feedback single-loop.

Figure 3.1 shows a single-loop multi-feedback modulator implemented
with a continuous-time analog control system. The block diagram shows
that the position of the sampling process, with respect to a discrete-time
implementation, has moved from the modulator input x to the quantizer
input v, after the nth-order integration chain. As shown further on, this
inherently provides anti-alias filtering because the STF is no longer the
result of the compensation of the NTF by the cascade of discrete-time
integrators.

Despite the benefit of anti-aliasing and low-power processing, two im-
portant issues arise, an increased sensitivity to clock jitter, as highlighted
in [Oli01, Oli99, CS99] and an inaccurate control of the feedback coeffi-
cients. The next section presents a detailed analysis of these two aspects.
In particular, it is shown under which conditions the multi-bit feedback
path can significantly reduce the jitter sensitivity. Next, it is shown that
the tolerance on the last feedback coefficients is more stringent than on
the first one.

3.1.2 Multi-bit feedback

Table 3.1 gives the required over-sampling ratios for a targeted SQNR,
using the analytical model developed in Chapter 2. The NL-OSR couples
are to be seen as solutions for a chosen modulator order. We find the
large-NL-low-OSR solutions on the right side and the small-NL-high-OSR
solutions on the left.

Often designers choose the high-order single-bit solutions with a mod-
erate OSR. While the single-bit solutions are attractive because of their
simplicity, their stability can easily be compromised. Furthermore, the
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Table 3.1 Required OSR for an NL-level nth-order modulator with SQNR=94dB ac-
cording to Equation (2.39).

Number-of-levels NL

n 3 5 9 17 33 65 129 257 513

1 1113 701 442 278 175 110 70 44 28

2 - 96 62 44 32 24 18 14 10

3 - - 34 22 17 13 11 9 7

4 - - - 20 12 10 8 7 6

5 - - - - 14 8 7 6 5

next section shows that continuous-time modulators are more sensitivity
to clock jitter for high shaping order. It is also shown that among the
possible solutions of Table 3.1, for a given order, an optimal case with
moderate sets of NL/OSR provides the lowest jitter sensitivity.

Besides the aspect of stability and sensitivity to jitter, increasing NL
while decreasing n and OSR relaxes the specifications of all the analog
circuitry. In fact, the OSR is related to the sampling frequency and there-
fore to the amplifier bandwidth and slewing capability, whereas the order
roughly corresponds to the number of amplifiers. To some extent, using
a large number-of-levels significantly decreases the signal voltage steps,
further alleviating the slewing specifications of the amplifiers.

3.1.3 Optimal DEM segmentation

The DAC is generally implemented as a bank of NL− 1 one-bit elements.
As already mentioned at the end of Chapter 2, the mismatch between
the elements introduces harmonic distortion. A digital Dynamic Element
Matching (DEM) algorithm is therefore necessary. The hardware com-
plexity of the DEM grows in proportion to NL. Furthermore, the low
OSR, brought about by the increase of NL, reduces the efficiency of the
mismatch shaping algorithm, forcing the use of higher-order algorithms,
which further increase the size and consumption of the DEM.

Among the different DEM algorithms summarized in [GS02], the tree
structured architecture proposed by [FSW+02] is extendable to any shap-
ing order. This architecture takes advantage of extra-LSB coding to re-
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Figure 3.2 Tree structured DEM
for a DAC with 17 levels. The con-
ventional (a) solution consists of 16
1-bit DAC elements and 15 switch-
ing blocks. In the fully segmented
case (b), there are only 7 switching
blocks but a total of 31 elements.

duce the logic circuitry provided that NL is a power-of-two-plus-one. As
illustrated by Figure 3.2(a), a conventional tree consists of NL−1 one-bit
DAC elements and NL−2 switching blocks. Each switching block contains
its own mismatch shaper controlling a switching network.

A segmentation of DAC into elements with different weights, proposed
by [FSW+02] allows reducing the number of switching blocks. Conse-
quently, for a fully segmented solution, as in the example in Figure 3.2(b),
2 log2(NL−1)−1 switching blocks are needed. At the same time, the total
number of 1-bit elements is then 2NL − 3. In other words, segmentation
drastically reduces the digital circuitry but at the same time increases the
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total number of 1-bit DAC elements. Chapter 5 covers this subject in
detail and reveals the existence of a partial segmentation solution that is
optimal in terms of power consumption.

3.1.4 Auto-ranging algorithms

The most limiting factor for large-NL-low-OSR solutions remains the num-
ber of comparators. In a DAC bank, each one-bit element uses the full
range of the reference voltage. In contrast, in a quantizer the reference
voltage splits into NL− 1 quantization steps. With a large NL, the quan-
tization steps become too small to be resolved by a bank of comparators
strongly handicapped by a statistical offset. A large NL may simply not
be achievable, especially with low voltage supplies.

2

y

an
an−1an−2

z−1

1 − z−1

z−1

1 − z−1

z−1

1 − z−1

nth-order discrete-time
analog controller

Digital
emulation
algorithm

Quantizer
with a reduced
number-of-levels

pulse

range

Figure 3.3 Digital algorithm to emulate a large NL with a reduced quantizer number-
of-levels.

Moreover, the power consumption and chip area increase significantly
with the number of comparators. At the same time, the bank of com-
parators provides the last integrator with a rather large capacitive load,
which further raises the consumption of the modulator.

Nevertheless, the number of comparators can be reduced while keeping
the NL unchanged. Different methods have been presented by [Zie00,
Lu04, DKG+05] to allow the emulation of NL with a small number of
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comparators. A novel technique is proposed here which consists of shifting
both the input and output of the reduced size quantizer.

As illustrated in Figure 3.3, the shift of the digital output is provided
by a range signal, whereas the analog shift of the input is provided by a
digital pulse integrated by the last feedback path. The reuse of an existing
path circumvents the need for additional analog circuitry. At the same
time, the quantization steps can be enlarged to take advantage of the full
voltage swing of the last integrator amplifier.

Chapter 4 treats in detail the implementation aspects, the optimiza-
tion and sensitivity to imperfections. In particular, it is shown that the
accuracy of the reused feedback path is crucial.

3.1.5 Hybrid architecture

Continuous-time
analog controller

x

fs

z−1

a1 a2 a3

c2 c3

fs

s

z−1

1 − z−1

1

1 − z−1

Discrete-time analog controller

Figure 3.4 Multi-bit hybrid continuous-discrete-time ΔΣ-modulator.

These considerations naturally lead to a multi-bit hybrid architecture
such as described by Figure 3.4. In the proposed architecture only the first
integrator is continuous-time. As demonstrated at the end of Chapter 2,
the first integrator imperfections do not benefit from any spectral shaping.
Hence, the modulator power consumption is often dominated by the first
amplifier. Turning this stage into a continuous-time version has a large
impact on the overall consumption. Keeping the rest of the modulator
in the discrete-time domain allows a more aggressive spectral shaping,
with local feedback paths, since switched-capacitor circuits can rely on
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accurate coefficients depending on the matching of capacitors. In turn,
this allows a reduction of the over-sampling ratio for a given performance.
An increase in the number of quantization levels allows the jitter issue
brought about by the continuous-time first-stage to be circumvented. At
the same time, more levels bring a reduction of power dissipation in the
discrete-time controller since the step size is small with respect to the
single-bit case.

3.1.6 Continuous-to-discrete domain interface

In the case of a pure discrete-time ΔΣ-modulator, the continuous-to-
discrete-time interface is located right at the input. The amplifier of
the sampling device does not take advantage of any spectral shaping.
Therefore, in order to meet the linearity requirement, its specifications
are stringent, resulting in a large power dissipation.

In contrast, in the case of a hybrid implementation, the sampling pro-
cess takes place after at least one integration stage, depending on the
architecture chosen. Consequently, at least a first-order shaping mecha-
nism can be exploited.

Buffer with full-
clock-cycle sampling

Continuous-time
analog controller

x

fs
a1 a2

c2

1
fs

s

z−1

1 − z−1

Discrete-time analog controller

Figure 3.5 Continuous-to-discrete-time transition with an isolation buffer and a full-
clock-cycle sampling scheme.

As shown in Figure 3.5, the process of sampling requires a unity gain
buffer to guarantee a proper operation of the continuous-time integrator.
Without this buffer, the output of the continuous-time integrator is pe-
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riodically connected to the sampling capacitors, formerly emptied during
the integration phase.

The buffer provides the continuous-time integrator with a small and
constant capacitive load. On the other hand, the buffer has the task of fill-
ing the sampling capacitor at each clock cycle. As described conceptually
in Figure 3.5, a full-clock-cycle sampling scheme can be used to alleviate
the sampler specification. As shown further in this chapter, thanks to
spectral shaping the errors introduced by the capacitors mismatch have a
limited impact on the resolution.

3.1.7 Summary

Figure 3.6 summarizes the low-power strategy proposed in this chapter.
Each technique used brings, directly or indirectly, a reduction of the dis-
sipated power. At the same time, each technique introduces a drawback
while addressing another one [PCSK07]. In reality, the strategy starts
with the task of converting an analog signal into a digital sequence with a
targeted resolution and bandwidth. The choice of a ΔΣ-modulation-based
converter allows the use of an over-sampled single-comparator quantizer
while providing about 12’000 level. The price is an important increase in
sampling frequency. The overall consumption is then decreased by rely-
ing on a continuous-time implementation. The sensitivity to clock jitter
and the overall modulator consumption are further reduced by finding
a quantizer number-of-levels between the two extremes of 12000 and 2.
The lower sensitivity to clock jitter has an indirect impact on the circuit
consumption, since in a large System-on-Chip (SoC) the clock signal is
provided by a PLL, generally not considered in converter power consump-
tion summary. Then, two adapted digital solutions, a segmented DEM
tree and an auto-ranging algorithm, are used to circumvent the drawbacks
of a multi-bit implementation. Because the auto-ranging requires an ac-
curate last feedback path, the modulator upper stages must be realized
with discrete-time integrators. Such a multi-bit hybrid architecture allows
one to take advantage of the benefits of the discrete- and continuous-time.
The continuous-to-discrete-time interface has therefore moved inside the
modulator loop to take advantage of spectral shaping.

Analog-to-digital conversion consists in combining sampling and quan-
tization. In a multi-bit hybrid ΔΣADC, the two processes are placed in-
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Figure 3.6 Low-power design strategy.

side the control loop thus taking the best advantage of spectral shaping.
Furthermore, the signal representation progressively goes from an infinite
to a moderate number-of-levels before reaching the expected high reso-
lution. In contrast, with a single-bit modulator, the representation goes
down to a low number-of-levels with a high over-sampling frequency.
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3.2 Anti-aliasing property

3.2.1 Signal processing of the continuous-time modulator

The signal processing of the continuous-time modulator in Figure 3.1 is
described in detail in the block diagram in Figure 3.7.

fs

s

fs

s

fs

s
x

q

y

a1 a2a2

1 − e −s/fs

s

e −s/fs

1 − e −s/fs

Figure 3.7 Continuous-time ΔΣ-modulator block-diagram.

The sampling process, which converts a continuous-time signal into a
discrete-time representation, is mathematically expressed as a multiplica-
tion by a train of pulses in the time domain. In the frequency domain,
the multiplication becomes a convolution by the Laplace transform of the
train of pulses which is given by

L

{ ∞∑
k=1

δ(t − k/fs)

}
=

e−s/fs

1 − e−s/fs
. (3.1)

In contrast, the conversion of a discrete-time signal into a continuous-time
representation by a No-Return-to-Zero (NRZ) DAC, is mathematically
expressed as convolution, in the time domain, by a rectangular pulse whose
duration is 1/fs. In the frequency domain, the convolution becomes a
multiplication by the Laplace-transform of the rectangular pulse which is
given by

L

{
u(t) − u(t − 1/fs)

}
=

1 − e−s/fs

s
. (3.2)
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As already explained in detail in Chapter 2, the quantization process
can be modeled as an additional discrete-time random sequence q with a
uniform distribution and a white power spectral density.

A multiplication in the time domain is not a linear operation. Never-
theless, the sampling of the sum of two signals can be expressed here as
the sum of the two sampled signals. We can therefore redraw the block
diagram as in Figure 3.8.
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e −s/fs
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Figure 3.8 Block diagram in Figure 3.7 redrawn to distinguish a continuous-time for-
ward path and the discrete-time internal loop.

The processing chain involving sampling, the continuous-time filter
H(s) and holding can be described as a pure discrete-time transfer func-
tion using the so-called step-invariant transform, which is stated in [Lon95,
Oga95] as

H(z) = (1 − z−1)Z

{
L −1

{
H(s)

s

}}
. (3.3)

The coefficients ai are designed such as to provide a discrete-time transfer
function H(z) = 1 − 1/NTF(z) as shown in Figure 3.9. In this way, the
quantization error sequence goes through the NTF before reaching the
output y.

As a result, the input signal x goes through an nth-order integration
before sampling and then through the NTF.
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Figure 3.9 Block diagram in Figure 3.8 redrawn to highlight the STF and NTF.

3.2.2 Input signal spectrum folding

According to the block diagram in Figure 3.9, and assuming the NTF has
all the poles at the center of the z-plane and all its zeros at DC, the STF
can be expressed, for signal frequencies lower than the Nyquist rate fs/2,
as

STF(f) =

(
fs

s

)n

· (1 − z−1)n . (3.4)

The transfer function is plotted in Figure 3.10 for different modulator
orders n. The second-order case is plotted as a solid line. For in-band
input signals the continuous-time integrators and the discrete-time high-
pass function cancel each other. The STF is therefore equal to unity.
For a signal at the Nyquist rate fs/2, the terms do not cancel, giving an
attenuation of (2/π)n.

A signal at fs is filtered by the cascade of integrators. But the discrete-
time high-pass function, thanks to its periodicity, completely removes the
signal. As highlighted by the grey areas in Figure 3.10, the attenuated
parts of the spectrum close to fold back to the band-of-interest.

For a case with an OSR of 32, we find 72dB of attenuation of the
out-of-band interferers around the sampling frequency. This contribution
to anti-aliasing alleviates the specifications of the filter placed in front
of the modulator. Since in a discrete-time implementation the sampling
process occurs at the modulator input, no anti-aliasing can be provided by
the modulator itself. The parts of the input spectrum around multiples
of ±fs directly fold back in the band-of-interest at sampling, without
attenuation.
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In a hybrid case the loop transfer function is the same. Assuming the
c first integrators are continuous-time and the remaining n− c integrators
are discrete-time, the forward path become partially continuous-time. The
STF becomes

STF(f) =

(
fs

s

)c

· (1 − z−1)c · zc−n . (3.5)
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Figure 3.11 Block diagram of an nth-order hybrid continuous-discrete-time modulator
with c continuous-time first integrators.



64 Clock jitter issue

As a result, the inherent anti-aliasing filter is the same as in the case
of a cth-order purely continuous-time modulator. For a case with only a
first continuous-time integrator and an OSR of 32, an interferer around
fs is attenuated by at least 36dB.

3.3 Clock jitter issue

3.3.1 Discrete- and continuous-time mechanisms

The timing uncertainty on the clock edges, also referred to as clock jitter,
turns into an error signal similar to thermal noise. The transfer mechanism
from time to amplitude is different for continuous- and discrete-time ΔΣ-
modulators. Figure 3.12 shows the two transfer processes, revealing that
the clock signal controls the feedback holder in the continuous-time case
and the input sampler in the discrete-time case.

(a) (b)

z−1

1 − z−1

fs

s

hold

clock clock

x x

y
y

Figure 3.12 ΔΣ-modulator input stage with discrete- (a) and continuous-time (b) im-
plementations.

In the discrete-time modulator, the input signal x is sampled before
processing. The samples are further considered by the analog controller
as being equally apart in time by the period Ts. In reality, in the presence
of jitter, this period is not constant, which provides the controller with a
randomly modified signal. We refer to these generated errors as sampling
errors.

In a continuous-time modulator, the signal is first processed and then
sampled at the quantizer input, thus taking full advantage of spectral
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shaping. Hence, sampling errors are negligible. On the other hand, the
feedback digital signal y is held for a period Ts considered constant by
the controller. In reality, the first stage performs the integral of y over a
varying period. We refer to these errors as holding errors.
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Figure 3.13 Discrete- (a) and continuous-time (b) clock-jitter transfer mechanism to
an equivalent input error sequence.

Figure 3.13 presents the two mechanisms in detail. In both cases, an
equivalent input error εx[k] can be calculated, related to the clock timing
error εt.

εx[k] = εt[k] ·

⎧⎪⎪⎨
⎪⎪⎩

∂x

∂t
[k] Discrete-time

Δy

Ts
[k] Continuous-time

. (3.6)

The amount εt is commonly referred to as cycle-to-average jitter in
literature [SSS05]. As described in Figure 3.13, the sampling errors de-
pend on the derivative of x whereas the holding errors are linked to the
variations from sample to sample of y. Assuming a stochastic timing error
sequence, we can write

σ2
x = σ2

t ·
{

σ2
∂x/∂t Discrete-time

σ2
Δy/Ts

Continuous-time . (3.7)
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Considering a clock-jitter with a Gaussian distribution and a white
spectrum, the PSD of the equivalent discrete-time input noise keeps the
same properties

Px(f) =
2
fs

·σ2
x . (3.8)

Let us define here the Signal-to-Jitter Noise Ratio SJNR as the signal
power Ps to Pj , the jitter-induced noise power, integrated over the band-
of-interest fb as

SJNR =
Ps

Pj
=

‖x‖2
∞ /2∫ fb

0
Px(f)df

=
1

OSR(2fbσtξ)2
, (3.9)

or as function of the the relative jitter standard deviation σr = σtfs

SJNR =
Ps

Pj
=

OSR
(σrξ)2

. (3.10)

We introduce here the jitter transfer factor ξ as the jitter to equivalent
amplitude error gain, normalized to the maximum input amplitude ‖x‖∞.

ξ =

√
2

‖x‖∞
·
{

σdx Discrete-time
σΔy Continuous-time . (3.11)

Figure 3.14 shows the simulated jitter transfer factor for different mod-
ulator orders and number-of-levels. These curves are determined with the
MATLAB scripts provided in Chapter 2 and the additional Code 3.1.

Code 3.1 Additional MATLAB code to determine the jitter transfer factor.

x =x0*(sin(2*pi*f0*(1:k)’/fs));
dx=2*pi*f0/fs*x0*(cos(2*pi*f0*(1:k)’/fs));
...
xi_discretetime=sqrt(2)*std(dx)/x0;
xi_continuoustime=sqrt(2)*std(diff(out))/x0;

This simulation is purely discrete-time and its purpose is to consider
the statistical nature of Δy and dx. As a consequence, the attenuation for
a tone close to the Nyquist frequency fs/2 provided by the continuous-
time integrators was not taken into account. Hence the continuous-time
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transfer factors at Nyquist frequency reach a value of 2 independently
of the modulator order. The analytical development in the next section
introduces the effect of this attenuation. The factor at fs/2 is found to
be slightly less than two.

The chart shows that with a large NL, the continuous- and discrete-
time ξ factors are the same for a certain frequency range. Whereas,
close to Nyquist, the discrete-time factor is higher, at low frequencies
the continuous-time factor reaches the baseline. This happens because
even for slow input signals, a minimum of activity is brought abount by
sequence of quantization errors. This activity was already highlighted by
the quantization factor kq defined and calculated in Section 2.2.3. As
confirmed in Figure 3.14(b), the higher the shaping order n the large this
activity.

As a consequence, the sensitivity to clock-jitter of a continuous-time
ΔΣ-modulator can be reduced by increasing NL while keeping a low shap-
ing order n. The single-bit case, NL=2, presents the highest jitter transfer
factor. In contrast, if NL is large enough the continuous-time case reaches
the limit set by the discrete-time case. According to Equations (3.9)
and (3.10), provided ξ constant, by increasing the OSR the sensitivity to
the relative jitter σr is improved but the sensitivity to time jitter σt is
degraded.

This limit can be overcome with Return-to-Zero (RZ) techniques where
the pulse duration is constant and its integral independent of the clock
edges. This can be done with either an RC-shape or rectangular pulse.
Recent publications such as [OG06, DKG+05, vV03] demonstrated the re-
duction of sensitivity of switched-capacitor feedback in continuous-time.
Nevertheless, the return to zero feedback demands an rather larger am-
plifier bandwidth. The benefits of the continuous-time implementations
are significantly reduced.

3.3.2 Analytical expression of the jitter transfer factor

In the discrete-time case, the transfer factor depends on dx. For a full-
scale sinusoidal input x(t) = ‖x‖∞ sin(2πf) we find the standard deviation
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of dx

σdx =
1
fs

· 2πf ‖x‖∞√
2

. (3.12)

As a consequence, the jitter transfer factor is π times the tone over-
sampling ratio

ξ = π · 2f

fs
. (3.13)

In the continuous-time case, the transfer factor depends on Δy. Ac-
cording to the modulator equation (2.15), the output y is a superposition
of the signal x and the quantization noise q. We can therefore write

ΔY (z) = (1 − z−1)
(

STF(z)X(z) + NTF(z)Q(z)
)

. (3.14)

Let us restrict our development to a multi-feedback nth-order modu-
lator with all the poles at the center of the z-plane and all the zeros at
DC. On the other hand, we consider the general case where the c first
integrators are continuous-time. Under these conditions we can express
the Noise and Signal Transfer Functions, NTF and STF as

NTF =(1 − z−1)n , (3.15)

STF =

(
1 − z−1

2πjf/fs

)c

· z−n+c . (3.16)

Replacing these expressions in Equation (3.14) and further extracting
its statistical variance we find

σ2
Δy =

∣∣∣∣∣(1 − z−1)c+1

(j2πf/fs)c

∣∣∣∣∣
2

·σ2
x +

∥∥(1 − z−1)n+1
∥∥2

2
·σ2

q . (3.17)

The 2-norm ‖.‖2 is defined in Appendix A.1.
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The variance of the input signal σ2
x is equal to the signal power

Ps = 1
8 (NL − 2n + 1)2 and the variance of the quantization sequence

σ2
q , calculated in Chapter 2, equal to 1/12. The development of 2-norm

‖.‖2 is treated in detail in Appendix A.3. As a result, once normalized
according to its definition (3.11), the jitter transfer factor becomes

ξ =

√√√√∣∣∣∣∣ (1 − exp[−j2πf/fs])
c+1

(2πf/fs)c

∣∣∣∣∣
2

+
2
3
· (2n + 2)!/(n + 1)!2

(NL − 2n + 1)2
. (3.18)

The jitter transfer factor is made up of a frequency-dependent term
related to the input signal, and a constant related to the quantization
error sequence. The latter is responsible for the flat behavior at low input
frequencies. The flat level can therefore be found at zero frequency, when
the first term is negligible. Therefore

ξ(f = 0) =

√
2
3 (2n + 2)!

(n + 1)!(NL − 2n + 1)
. (3.19)

Table 3.2 Continuous-time jitter transfer factor at low frequency according to Equa-
tion (3.19).

Number-of-levels NL

n ξ(0) 2 5 9 17 33 65 127 257

1
2

NL − 1
2 0.50 0.25 0.125 0.0625 0.0313 0.0156 0.00781

2
2
p

10/3

NL − 3
- 1.83 0.609 0.261 0.122 0.0589 0.029 0.0144

3
2
p

35/3

NL − 7
- - 3.42 0.683 0.263 0.118 0.056 0.0273

4
2
√

42

NL − 15
- - - 6.48 0.720 0.259 0.114 0.0536

5
2
√

154

NL − 31
- - - - 12.4 0.730 0.253 0.110

Equation (3.19) is evaluated for different modulator orders and number-
of-levels and summarized in Table 3.2.
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For moderate frequencies lower than fs/2, the first term dominates
and we can approximate the exponential term and find that

ξ(f < fs/2) ∼=
∣∣∣∣∣ (1 − exp[−j2πf/fs])

c+1

(2πf/fs)c

∣∣∣∣∣ ∼= π · 2f

fs
. (3.20)

Thus, for moderate frequencies the transfer factors of the discrete- and
continuous-time case are almost identical. Finally, at the Nyquist fre-
quency, the continuous-time factor saturates and the STF further atten-
uates it. Therefore

ξ (f = fs/2) =
2c+1

πc
. (3.21)

According to Equation (3.13) in the discrete-time case ξ = π at the
Nyquist rate. The fact that π > 2 and so πc+1 > 2c+1 implies that
π > 2c+1/πc. The continuous-time jitter transfer factor at the Nyquist
rate is therefore always smaller than the discrete-time case. Notice that
c = 0 gives ξ = 2 as simulated in the chart in Figure 3.14. In such a case
the STF attenuation is simply not considered.

3.3.3 Resolution degradation

In the presence of jitter, the resulting SNR degradation can be evaluated
as

SNR =
Ps

Pq + Pj
=

1
1

SQNR
+

1
SJNR

. (3.22)

When the contributions of the quantization errors and the jitter are the
same SQNR=SJNR, bringing the SNR down by 3dB. We can therefore
find the relative jitter standard deviation under these conditions

σ3dB =
1
ξ

√
OSR

SQNR
. (3.23)

This relationship, along with the chart in Figure 3.14, shows that the
sensitivity to clock jitter can be improved by either increasing the OSR
or the number-of-levels. On the other hand, increasing the shaping order
is not recommended.



72 Clock jitter issue

S
N

R
 (d

B
)

NL=33

10 12 14 16 18 202 3 4 5 6 7 8 9
Clock jitter RMS (ps)

DT

74

73

72

71

70

69

68

CT

Second−order
fs=32MHz

OSR=32

D
T

C
T

1p 10p 100p 1n
Clock jitter RMS (s)

94

93

92

91

90

89

88

S
N

R
 (d

B
)

10% Full−scale
in−band signal@16kHz

90% Full−scale
Interferer@1.6MHz

Full−scale
in−band signal@16kHz

NL=33
Second−order

fs=32MHz
OSR=32

(b)

(a)

Figure 3.15 Jitter sensitivity plot for a 33-level second-order case with an OSR of 32.
The input signal is (a) a full-scale in-band tone and (b) a −20dB in-band tone with an
additional −0.9dB out-of-band signal.

As an example, a 33-level second-order modulator, sampled at 32MHz,
with a full-scale input signal at 16kHz presents a transfer factor of 0.122
and π/1000 for the continuous- and discrete-time cases respectively. The
−3dB SNR drop is therefore expected at 30ps and 1.2ns, which highlights



Low-power strategy 73

the higher tolerance to clock jitter in the discrete-time case. The simula-
tion results in Figure 3.15 reveals the accuracy with which the charts in
Figure 3.14 can predict the impact of jitter on the modulator resolution.
In contrast, in the presence of a full-scale out-of-band signal at 1.6MHz,
the transfer factors are close to each other, namely 0.28 and 0.30 once
scaled by 90%. The SQNR in the formula is kept unchanged, therefore
providing the drop at 12ps and 13ps for the continuous- and discrete-time
cases.

Figure 3.16 shows the calculated relative jitter sensitivity σ3dB with
respect to the design parameters SQNR, NL and OSR. For that purpose
the analytical expressions of the jitter transfer factor (3.13) and (3.18) are
used. The chart is intended to help to choose at an early design stage how
to address a targeted resolution. Sets of OSR and NL providing a given
SQNR are found by using the inverted form of the resolution equation
(2.39). The curves confirm that, for a large enough NL, a discrete- and a
continuous-time modulator have the same sensitivity.

The solutions with large NL and small OSR are shown on the right
side of Figure 3.16, where the impact of jitter is less attenuated by over-
sampling as predicted by Equation (3.23). As shown previously, close
to the Nyquist rate the continuous-time sensitivity slightly outperforms
the discrete-time. Hence, these solutions may present a better sensitivity,
especially when considering signals that are far out-of-band.

In Figure 3.16, the solutions with small NL and high OSR are shown
on the left side, where a clear separation is made between the discrete- and
continuous-time implementations. These solutions present a deceptively
low sensitivity in the discrete-time case. For high-bandwidth applications,
the resulting clock frequency would not be appropriate for a low power
implementation. Besides, the continuous-time case fails to take advantage
of the attenuation due to over-sampling.

Somewhere in between, the continuous-time curves reveal an optimal
solution where the relative sensitivity is minimal. In the presence of a
full-scale out-of-band interferer at twice the bandwidth, the optimal is
found for the 33-level solution with an OSR of 32.

Figure 3.17 presents the same analysis for different modulator orders
n. The curves reveal an increased relative sensitivity for high modulator
orders. Nevertheless, it should be noted that as the order increases, for
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Figure 3.16 Design chart for a second-order modulator with an SQNR of 94dB using
Equations (3.18) and (3.13). The relative jitter sensitivity is plotted considering dif-
ferent maximum frequencies fmax. The discrete- and hybrid cases are represented by
dashed and solid lines respectively.

a targeted SQNR, the OSR decreases. As a result, the absolute jitter
sensitivity remains almost constant. Again, the optimal solutions are
found for moderate NL’s between 33 and 65.

Finally, we recall that we restricted the analytical development to
single-stage multi-bit non-overloaded cases with an NTF whose poles
and zeros are at the center of the z-plane and at DC respectively. The
single-bit case with NL=2, being constantly overloaded, is therefore not
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Figure 3.17 Design chart for modulator with an SQNR of 94dB and different orders n
using Equations (3.18) and (3.13). The relative jitter sensitivity is plotted considering
a maximum frequency of twice the bandwidth. Only the hybrid case with a continuous-
time first integrator is represented.

accurately predicted by the chart where the sensitivity is expected to
drop down to zero. In particular, according to the dynamic range equa-
tion (2.30) developed in Chapter 2, the 3-level case is the limit of overload
for a second-order modulator with an NTF = (1 − z−1)2. For that solu-
tion, Equation (3.18) provides an infinite jitter transfer factor. In reality,
the allowed input signal amplitude is not zero and therefore the normal-
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ization does not change the transfer factor to infinity. As a matter of fact,
the simulated jitter factor in Figure 3.14 is equal to 2.34 and is almost
constant with respect to signal frequency.

3.4 Accuracy of coefficients

fs y

a1 a2 anan−1

grafted analog controler

n DACs

n analog integrators

oversampled
quantizer

v
z−1

1 − z−1

z−1

1 − z−1
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1 − z−1

z−1

1 − z−1
x

Figure 3.18 ΔΣ-modulation: Conventional nth-order architecture.

Any single-stage n-th order modulator consists of a control system
containing n loops. Each loop is a integration path weighted by a coef-
ficient ai. The order of integration goes from one to n. For example, a
third-order modulator is made up of a single, double and triple integration
loop. From the conventional architecture in Figure 3.18 we can write the
NTF as

NTF(z) =
1

1 +
∑n

i=1 ai

(
z−1

1−z−1

)n−i+1 =
(z − 1)n

(z − 1)n +
∑n

i=1 ai(z − 1)i−1
.

(3.24)
We choose the coefficient ai such as to cancel out the terms of the ex-

pansion of (z−1)n leaving only zn. Under this condition, all the poles are
located at the center of the z-plane. Now we consider that the coefficient
ak presents a certain deviation Δak around its nominal value. Therefore
we can write

NTF(z) =
(z − 1)n

zn + Δak(z − 1)k−1
. (3.25)

The location of the poles is therefore provided by the solution of the
following equation

zn + Δak(z − 1)k−1 = 0 . (3.26)
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For each coefficient, taken individually, we can find the deviation Δak

such that at least one pole reaches the unity circle of the complex z-plane.
Numerical solutions of Equation (3.26) are provided in Table 3.3. Each
coefficient has a nominal value when poles are placed at the center of the
z-plane. The poles remain within the unity circle as long as the coefficients
do not go beyond the maximum and minimum deviations. Beyond these
ranges, stability is compromised.

(a)

6 poles

6 zeros

(b)

6 poles
6 zeros

6a = −0.05
1a =1

Re

Im

Re

Im Figure 3.19 NTF zeros
and poles location for
a sixth-order modulator.
The six zeros are located
at DC and the six poles at
the center of the complex
z-plane. As the sixth (a)
and first (b) coefficients
deviate from their nomi-
nal value, the poles moves
toward the unity circle.
The poles are represented
when the variation brings
the modulator at its limit
of stability.

Table 3.3 Feedback coefficients with their respective tolerance to guarantee stability.

n a1 a2 a3 a4 a5 a6

1 1+1.00
−1.00

2 1+1.00
−1.00 2+0.50

−1.00

3 1+1.00
−1.00 3+0.62

−0.50 3+0.25
−0.50

4 1+1.00
−1.00 4+0.50

−0.56 6+0.33
−0.25 4+0.13

−0.24

5 1+1.00
−1.00 5+0.53

−0.50 10+0.25
−0.29 10+0.17

−0.13 5+0.06
−0.11

6 1+1.00
−1.00 6+0.50

−0.52 15+0.28
−0.25 20+0.13

−0.15 15+0.08
−0.06 6+0.03

−0.05

Since the coefficients need to compensate for the terms of the poly-
nomial (z − 1)n, the table takes the shape of the Pascal triangle. The
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allowed deviation ranges drastically decrease with the coefficient index.
As a result, high-order modulators see their stability compromised by the
accuracy of the last loop coefficient. In other words, the signal paths with
single and double integration are the most sensitive ones. Besides, the
n-integration loop coefficients a1 can theoretically sustain variations of
±100% for all values of n if the system is really linear.
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Figure 3.20 Feedback coefficient sensitivity for a second- (a), third- (b) and fourth-
order (c) modulator. Results with and without the quantizer saturation are displayed
as solid and dashed lines respectively.

The simulation results in Figure 3.20 reveal a further reduction of the
allowed range. Removing the quantizer saturation gives the results shown
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with the dashed lines. In such a case, the number-of-levels is infinite, the
modulator remains a linear system and the tolerances of Table 3.4 per-
fectly predict the range of operability. The solid lines show the quantizer
with a limited number-of-levels NL. The deviation of coefficients brings
the modulator to a non-linear region, causing an early drop of the resolu-
tion.

3.5 Sampling capacitor mismatch

We already mentioned, in the description of the strategy, that sampling
the signal over the whole clock-cycle implies alternating between two sets
of capacitors at a frequency of fs/2. Therefore, the gain of the sampling
device also alternates between two slightly different values, G1 and G2.
These can be expressed as a constant, the mean value G = (G1 + G2)/2,
and a mismatch term η = (G2 − G1)/G such that

G1,2 = G
(
1 ± η

2

)
. (3.27)

Consequently, as illustrated in Figure 3.21, the gain splits into a linear
gain G and a modulating part (−η/2)k. The modulating part takes the
signal and the quantization sequence at the sampling node and shifts their
spectrum by fs/2.

z−1

1 − z−1

fs

s

„
−η

2

«k ac+1

c + 1th integratorcth integrator

Figure 3.21 Equivalent block diagram of the full-clock-cycle sampling.

In the multi-feedback modulators, as considered until now with an
NTF with all poles located at the center of the z-plane, the coefficients ai
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are binomial. The output of the cth integrator C(z) is given by

C(z) = −Q(z)(1 − z−1)n
c∑

i=1

(
i − 1

n

)(
z−1

1 − z−1

)c−i+1

. (3.28)

The modulation shifts the spectrum of C(z) by fs/2 and weights it
by η. Once reintroduced, the sequence goes through the first-order spec-
tral shaping and we find at the modulator output a contribution M(z)
equal to

M(z) = −Q(z) · η

2
· (1 + z−1)n

c∑
i=1

(
i − 1

n

)(
− z−1

1 + z−1

)c−i+1

︸ ︷︷ ︸
α

. (3.29)

Considering moderate to high over-sampling ratios allows us to approxi-
mate z−1 ∼= 1 within the band of interest. The factor α can therefore be
calculated as

α = 2n
c∑

i=1

(
i − 1

n

)(
−1

2

)c−i+1

. (3.30)

The power spectral density PM referred to the modulator output can
therefore be calculated as

PM =
η2

4
·α2 · ∣∣(1 − z−1)c

∣∣2 ·PQ . (3.31)

In the presence of mismatch, the resulting SNR degradation can be
evaluated as

SNR =
Ps

PQ + PM
=

SQNR
1 + PM/PQ

. (3.32)

The power ratio is evaluated over the band-of-interest and gives

PM

PQ

∼= η2

4
α2

∫ fb

0 (2πf/fs)2cdf∫ fb

0 (2πf/fs)2ndf
. (3.33)
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Again considering high over-sampling ratios allows us to approximate the
integrals and we find

PM

PQ

∼= η2

4
·α2 · (2n + 1)(2πfb/fs)2c+1

(2c + 1)(2πfb/fs)2n+1
=

η2

4
·α2 · 2n + 1

2c + 1
·
(

OSR
π

)2(n−c)

.

(3.34)

When the contributions of the quantization errors and the mismatch
are the same PM = PQ, bringing the SNR down by 3dB. The mismatch
at that point is therefore calculated as

η3dB =

√
2c + 1
2n + 1

· 2
α
·
(

π

OSR

)n−c

. (3.35)

In the case of a pure continuous-time modulator, n = c and the sensi-
tivity to the capacitor mismatch η3dB = 2/α and is therefore independent
of the order and the over-sampling ratio. In contrast, for a hybrid case
where c = 1, the relationship reveals an important increase in sensitivity
with regard to the OSR and the modulator order. Consequently, as for
the jitter sensitivity issue, it is preferable to choose, for a targeted SQNR,
solutions with low OSR and small n to reduce the sensitivity to mismatch
in the sampling device.

Table 3.4 Calculated fifth-order cases with OSR=32.

c 1 2 3 4 5

α 16 72 124 98 31

η3dB 0.00061% 0.0018% 0.012% 0.18% 6.5%

The simulated sensitivities in Figure 3.22(a) show that with a full-
scale input signal, the SNR drops prematurely, due to the presence of
the modulated signal close to fs/2. Figure 3.23 shows the output of the
modulator with a capacitor mismatch of 10%. The modulated replica of
the full-scale signal appears around fs/2. With such a large mismatch the
power of this unwanted signal is great and overloads the quantizer giving
rise to an important harmonic distortion. The system is no longer linear
and degradation deviates from the prediction of Equation (3.32). Instead,
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with a reduced amplitude, the degradation is dominated by the quanti-
zation noise modulation. For this second-order case, the −3dB drop is
expected and occurs at 7.6%. Such capacitor matching is easily achieved.
Figure 3.22(b) together with Table 3.4 allows us to compare the simulated
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and calculated sensitivities, showing how accurately Equation (3.35) can
predict the SNR degradation.

The mismatch sensitivity η of Equation (3.35) is plotted in Figure 3.24
for different NL providing a targeted SQNR. The corresponding OSR is
determined by Equation (2.39) for the different orders n.

SQNR=94dB

Required NL and OSR couples

OSR

M
is

m
at

ch
 s

en
si

tiv
ity

(%
)

0.1

1

10

c=1

65 257179 129335 513

n=2

n=3

n=4

24 144462 183296 10
13 92234 111734 7
10 72015 81214 6

NL

n=2
n=3
n=4

Large−NL
Low−OSR

Small−NL
High−OSR

Figure 3.24 Sampling capacitor mismatch sensitivity for 94dB of SQNR.

The curves highlight the loss of efficiency of a first continuous-time
integrator case, where c = 1, as we choose higher-order modulators.
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3.6 Conclusions

A low-power design strategy was presented. The limitations were ad-
dressed while other specific aspects will be analyzed in further dedicated
chapters. Without losses of generality, examples were provided in view of
the case study of Chapter 6.

The chapter allows us to conclude that hybrid continuous-discrete-
time architectures are well suited for low-power applications. Increasing
the internal number-of-bits can significantly reduce the sensitivity to clock
jitter. The analytical model developed in this chapter revealed the exis-
tence of an optimal solution for a moderate number-of-levels and over-
sampling ratios. The analysis showed that the higher the shaping order,
the easier the timing errors transfer to an equivalent noise, degrading the
modulator resolution.

With the hybrid architecture the sampling process has moved inside
the modulator, thus partially benefiting from the spectral shaping. A
full-clock-cycle scheme therefore becomes possible. The modulation of
quantization noise introduced by the capacitor mismatch was analyzed
and its impact on performance estimated.



Chapter

4
Auto-ranging algorithm

This chapter starts with the observation that in low-pass multi-bit
modulators a large number of comparators remain periodically unused.
The different tracking techniques proposed throughout the literature
to reduce the quantizer size and consumption are compared. A novel
technique, called auto-ranging, is presented and analyzed in detail in
the second section. The third section studies all the setup aspects to-
gether with the limitations of the technique. The algorithm principle
is applied to a conventional first-, second- and third-order modula-
tor. The fourth section provides the design and optimization method
based on an analytical model. A realistic second-order case, whose
realization is the subject of the next chapter, is analyzed together with
its extendibility to different applications.

4.1 Observations

4.1.1 Slow and fast components

The typical digital output signal of a low-pass multi-bit modulator dis-
played in Figure 4.1 leads to an interesting observation. As already shown
throughout Section 2.2.3, the output is a superposition of two components:
the slow large-swing input signal and the fast small-swing quantization
noise.

This observation is quite representative of the quantizer activity. In
fact, from sample-to-sample, only a small group of comparators, called
here active group, senses variations. All the comparators below this group
stay at logical one and the comparators above stay at logical zero. This

85
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Figure 4.1 Typical output signal of a low-pass multi-bit ΔΣ-modulator. This example
is a second-order 33-level modulator. The input is a sine wave 640 times slower than
the clock signal.

situation remains unchanged for many clock-cycles. Therefore, the active
group is sufficient to obtain the unpredictable quantization error sequence.

In contrast, the position of this group moves slowly with the input
signal and can therefore be predicted. The output of the active group also
carries information about the tendency of the slow component. In fact,
as the signal either rises or falls, either the upper or the lower edge of the
active group window starts changing. This information can therefore be
used to predict the position of the group. However, let us recall that this
superposition is correct as long as the linear approximation holds.

4.1.2 Exploiting the phenomenon

Figure 4.2 illustrates three ways of exploiting this interesting quantizer
output composition. The simplest technique consists in turning off all
the comparators that are not part of the active group. Given the pre-
dicted future position of the group, the comparators in the future active
group progressively turn on as the others turn off. This first approach
enables a reduction of the quantizer consumption to the strictly necessary
amount. Nevertheless, the whole bank of comparators still needs to be
implemented and ready for activation. Therefore, our wish to increase NL
in the modulator is still limited.
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Figure 4.2 Different methods: (a) conventional ADC with only the active group turned
on, (b) switching references proposed by [Lu04] and [DKG+05] and (c) signal shifting
proposed here as an extension of [Zie00].

However, we should notice that at any time the whole bank of com-
parators can be turned on to allow the modulator to recover from a tran-
sient unstable condition or at start-up. With this flexibility, we can keep
a robust quantizer and start turning the comparators on and off when the
application is battery-powered.

The second approach, illustrated in Figure 4.2(b), was presented in [Lu04]
and [DKG+05]. It consists in building only the active group of compara-
tors. The complete bank of references is necessary. A switching network
selects the references corresponding to the position of the active group.
A large part of the chip area on silicon might be spared. Nevertheless,
the presence of the entire NL-resistor reference ladder and a complex
switching network are limiting factors. Using a large number-of-levels is
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impractical, especially if we consider a voltage supply as low as 1.2V. In
fact, the reference voltage, represented here by ref+ and ref–, is divided
by NL. The random comparator offset is likely to become dominant over
these small quantization steps. In such a case, the resolution of the quan-
tizer is determined by the offset of the comparators and no longer by the
number-of-levels.

This technique is commonly referred to as tracking quantizer since
the principle consists in following the slow component signal, namely the
group position, with the comparator references.

4.1.3 Auto-ranging technique

In this work, we propose a different approach, similar to the solution
published by [Zie00] which uses a single-bit first-order modulator. As
illustrated in Figure 4.2(c), again only the active group of comparators is
really implemented. But this time only the references of the active group
are necessary. The analog switching network is no longer required.

The technique consists in shifting both the analog input and the digital
output of the quantizer by exactly the same amount. The few comparators
implemented constantly sense the fast unpredictable signal component
and, as the group position changes, the range of the quantizer is adapted
by shifting. The quantizer itself is a conventional flash ADC exploiting
the whole voltage swing between ref+ and ref–.

The quantizer output provides a digital algorithm with enough infor-
mation to automatically shift the signal range. Because of this, we refer
to this technique as the auto-ranging (AR) algorithm.

4.2 Principle in detail

4.2.1 Last integrator reuse for signal shifting

As shown in Figure 4.3, the quantizer input and output will be shifted
by the current range value. That amount can therefore be stored and
updated to track the slow input signal. This interesting observation leads
to the idea of reusing the analog integrator placed in front of the quantizer.
By adding digital pulses at the input of the last feedback DAC, we can
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generate and apply an analog shift at the quantizer input. The same
operation can be performed in the digital domain at the quantizer output.
This process is illustrated in Figure 4.4.
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Figure 4.4 Feedback path reuse. The bold and light lines represent digital and analog
signal processing respectively. The dashed area shows the existing processing being
reused.

As shown in Figure 4.5, a digital algorithm is added to control the
shifts. Consequently, the AR technique does not require any additional
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analog circuitry. Given a ΔΣ-modulator with a high number-of-levels, the
comparator and reference bank can be reduced. Additionally, a separate
mismatch shaping digital encoder is necessary since the signal of the last
feedback is no longer identical to the others. Moreover, the quantizer input
range can be extended to the limits given by the power supply.In other
words, the size of the quantization steps Δ is increased, which alleviates
the offset constraints on both the reference ladder and the comparators
themselves.

The modulator internal number-of-levels remains unchanged and the
DAC still has to reproduce them. Unlike the quantizer, the DAC consists
of a bank of NL elements all taking advantage of the full voltage swing. As
a consequence, the AR technique allows a large number-of-levels without
the usual voltage supply restriction and increase in quantizer size and
power consumption.

By using existing analog blocks and only adding limited digital pro-
cessing, this AR technique is better suited than that of [DKG+05] to
deep sub-micron processes.
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4.2.2 Control function

We now need to determine the control sequence s based on knowledge of
the quantizer output. This link is represented in Figure 4.6 by the control
function κ(y′). A simple and efficient method of preventing the quantizer
from overloading consists in generating s equal to the quantizer output.
In this way, at each clock-cycle the signal, processed by the quantizer,
moves into the center of the quantization window.

1

1

− anz−1

1 − z−1

anz−1

1 − z−1

y

y′
v

q

x

s

H(z)

G(z)

Δ−1

Δ
κ(y′)

Figure 4.6 General linear Signal
Flow Graph representation of the
single-stage modulator of Fig-
ure 2.18 with the auto-ranging al-
gorithm.

This corresponds in the signal flow graph in Figure 4.6 to κ(y′) =
y′/an. In such an ideal case we can determine the new expressions of
Y (z) and V (z) as

Y (z) =
G(z) ·Δ−1

1 − H(z)︸ ︷︷ ︸
=STF(z)

X(z) +
1

1 − H(z)︸ ︷︷ ︸
=NTF(z)

Q(z) , (4.1)

V (z) =
G(z) − G(z)z−1

(1 − H(z))(1 + z−1)︸ ︷︷ ︸
=Δ ·STF(z) 1−z−1

1+z−1

X(z) +
(H(z) + H(z)z−1 − 2z−1) ·Δ

(1 − H(z))(1 + z−1)︸ ︷︷ ︸
=Δ ·NTF(z) 1−z−1

1+z−1 −1

Q(z) .

(4.2)



92 Principle in detail

The overall transfer functions NTF(z) and STF(z) remain unchanged,
but the transfer functions to node v now have a pole at fs/2. To prevent
the system from becoming unstable, we should introduce a dead-zone in
the control function therefore deactivating the auto-ranging loops for small
amplitude signals. In such a case, neither the quantization noise from
node q nor small signals from x will be seen by the algorithm. Besides, we
intuitively understand that if signals are small in amplitude, the algorithm
is no longer necessary.

Because we are reusing the last integrator path, we are forced to make
shifts that are multiples of an. Rather than describing this mathemati-
cally, the control function is represented graphically. Figure 4.7 shows
three examples for a first-, second- and third-order modulator. The as-
sumption is made that all the NTF poles are at the center of the z-plane.
As shown in Table 2.1, the feedback coefficients are in a Pascal triangle
configuration. Therefore the last coefficient is equal to the modulator or-
der n. The functions κ1, κ2 and κ3 are therefore configured to bring the
quantizer input into the center of the quantization window. The functions
are displayed only for quantizer outputs up to ±8. The choice of the num-
ber of implemented levels causes either an extension or a reduction of the
range.

It is interesting to note that the dead-zone required for stability is
naturally present in the control function. As mentioned earlier, the slope
has to be 1/an and the function provides integer control. As a result, the
dead-zone is 2an wide, which is sufficient for the three cases studied here.
According to the discussion in Chapter 2, the quantization noise remains
within the total range of 2n. The dead-zone would be artificially enlarged
with high-order modulators to prevent instability.

As the output y reaches either its maximum or minimum, determined
by the number-of-levels NL, the control function is overridden. The shift
control s has to be limited to prevent y from going beyond ±(NL− 1)/2.
The next section gives more insight into this particular feature, especially
when describing the hardware implementation of the algorithm.

4.2.3 Implementation constraints

There are several constraints limiting the choice for the auto-ranging pa-
rameters. First of all, the last feedback coefficient an has to be an integer
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value. This is mandatory if we want to be able to reproduce exactly the
same signal shift on both the analog and digital side. Secondly, as the
internal number-of-levels NL is odd, the reduced number-of-levels NR has
to be odd too. Now, since the modulator output y is always equal to the
sum of the quantizer output y′ and the range r provided by the algorithm,
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the maximum of r can be calculated:

NL − 1
2︸ ︷︷ ︸

‖y‖∞

=
NR − 1

2︸ ︷︷ ︸
‖y′‖∞

+ ‖r‖∞ ⇒ ‖r‖∞ =
NL − NR

2
. (4.3)

Since both NL and NR are odd integers ‖r‖∞ is an integer. This number
needs to be a multiple of an in order to allow emulation of all the NL levels.
As an example, a second-order modulator with an = 2 and NL = 33 can
work with any even 2n − 1 < NR < NL. But considering high-order
modulators, these constraints put together drastically restrict the degrees
of freedom. The same example with n = 3 and an = 3 leaves only the
possibilities NR = 15, 21, 27.

4.2.4 Number of step changes

As we choose to reduce the number of comparators, the question arises
of how many levels should be kept . To give an answer, we start our
analysis by calculating the number of steps γ taken from one clock cycle
to the other at the quantizer input v. In a way similar to the low-pass
modulator output in Figure 4.1, Figure 4.8 illustrates the signal swing at
the quantizer input predicted in Section 2.2.3 by Equation (2.22).
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Figure 4.8 Quantizer input signal boundaries.

In a non-overloading situation, the quantizer input should remain
within two sine waves ‖x‖ sin(2 π ft) ± Δ(kq − 1)/2. We can show that
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the maximum γ occurs at the zero-crossing of the middle sine wave. It
follows that

γ = ‖x‖ sin(θ + πf
fs

) − ‖x‖ sin(θ − πf
fs

) + Δ(kq − 1) . (4.4)

∂γ

∂θ
= 0 : sin(θ) cos(πf

fs
) = 0 . (4.5)

We can therefore write the expression

γmax = ‖x‖ 2 sin
(

πf
fs

)
+ Δ(kq − 1) . (4.6)

If we substitute Equation (2.29) in this last relationship, normalize to Δ
and further round to the next integer by the ceiling function 
.�, we obtain
an absolute limit:

γmax = 
(NL − kq + 1) sin
( π

2 OSR

)
+ kq − 1� . (4.7)

Figure 4.9 compares the simulation results and the predictions of Equa-
tion (4.7). The predictions give an absolute limit that is sometimes not
reached. As the order becomes higher the probability of generating an
alternative quantization error sequence of ±1/2 becomes very small.
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Figure 4.9 Maximum number of steps seen by a 33-level ADC: (a) all the NTF zeros
are located at DC, (b) one zero located at DC and two conjugated zeros at 0.77 times
the bandwidth.
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In Figure 4.9(b), the same equation is plotted for an NTF with its zeros
optimally distributed on the unity circle. For a third-order modulator,
this means, according to [SRNT97], one zero at DC and a conjugated
pair at 0.77 times the bandwidth fb. The difference, compared to the
results with the zeros at DC, is almost imperceptible, which shows that the
position of the zeros has little impact on γmax. The superimposed points
are simulated with MATLAB. They show how accurately Equation (4.7)
predicts the maximum number of steps even at low OSRs.

Note that if the OSR is higher than approximately NL, the highest
possible step change between two samples is ±2n. This baseline in the
curve is reached when the quantization noise dominates the variations
seen by the quantizer. As already highlighted by Figure 2.20, the higher
the order, the more quantization room is required.

4.3 Realization and limitations

4.3.1 Simulations

We chose here to analyze a 33-level modulator with first-, second- and
third-order spectral shaping. The simulation codes for these three cases
are listed in Appendix D.1. They implement the control functions de-
scribed in Figure 4.7. An excerpt of the second-order case is reproduced
in Code 4.1. The modulator output outr is reconstructed as the addition
of the quantizer output out and the range register rng. As explained previ-
ously, the last feedback signal outp consists of the modulator output with
an additional pulse sequence ctrl which indirectly generates the shifts at
the quantizer input. The same shifting is reproduced in the range register
with a factor of two, corresponding to the last feedback coefficient.

Code 4.1 Excerpt of the MATLAB simulation code of the second-order modulator with
auto-ranging.

...
outr(i)=rng(i) +out(i);
outp(i)=outr(i)+ctrl(i);
rng(i+1)=rng(i)+ctrl(i)*2;
...

Figures 4.10, 4.11 and 4.12 compare the simulation results for the
three cases with a 15-level quantizer in a 33-level modulator.
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Figure 4.10 Simulation results for the first-order 33-level modulator with a 15-level
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Figure 4.11 Simulation results for the second-order 33-level modulator with a 15-level
quantizer.
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Figure 4.12 Simulation results for the third-order 33-level modulator with a 15-level
quantizer.
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The case NR=15 is in fact realizable, according to the constraints
summarized in Section 4.2.3, for the three cases.

The input signal is a full-scale 100kHz sine wave sampled at 32MHz,
where the full-scale is chosen according to the definition given by Equa-
tion (2.29). The comparison highlights the increased activity in the quan-
tizer with the shaping order n. In the case of first-order modulation, the
reduced number-of-levels is still conservative for this input signal. The
number-of-levels could be further reduced to reach the situation of the
third-order case where the comparators change their state more often.

In all three cases, we recognized the shaping order by the number of
steps taken by the range register of one, two and three, respectively. Let
us recall that this constraint is imposed by the last feedback coefficient
being equal to n for the case studied here.

The reconstructed outputs also highlight the limitation of in input
signal dynamic range versus the modulator order for a given NL. The
higher the order, the more room necessary to accommodate the quan-
tization noise. Auto-ranging can be seen as a technique that splits the
modulator output into a rough and a fine representation. The algorithm
task is to guarantee that together they represent the modulator output
without errors.

4.3.2 Input signal constraints

The simulation codes presented previously allow one to determine the
performance of the algorithm with different parameters. In particular,
let us consider the following experiment. The sampling frequency is set
at 32MHz and the band-of-interest is 500kHz. Again three cases with a
first-, second- and third-order shaping are analyzed. For each case, an
in-band tone at 100kHz is applied with an amplitude 40dB lower than the
full-scale. An additional full-scale out-of-band tone is applied at different
frequencies. This situation is fairly representative of a realistic situation
in a communication system application. The additional tone simulates
the presence of a large interferer which would not be enough attenuated.



Auto-ranging algorithm 101

NR=29

NR=31

NR=27

NR=25

NR=23

NR=9
NR=11

NR=13

NR=15
NR=17

NR=19
NR=21

SQNR=53dB
second−order

(b)

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t a
m

pl
itu

de
 re

du
ct

io
n 

fa
ct

or
 (−

)
1.2

SQNR=30dB
first−order(a)

NR=29

NR=31

NR=27

NR=25

NR=23

NR=33

NR=9
NR=11

NR=13
NR=15

NR=17

NR=19

NR=21

NR=33

Frequency (Hz)
500k 10M1M 3M 5M 30M20M2M 4M

SQNR=73.5dB

NR=15

NR=21

NR=27

third−order

NR=33

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t a
m

pl
itu

de
 re

du
ct

io
n 

fa
ct

or
 (−

)

1.2

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t a
m

pl
itu

de
 re

du
ct

io
n 

fa
ct

or
 (−

)

1.2

(c)

Figure 4.13 Frequency limitation of a 33-level (a) first-, (b) second- and (c) third-order
modulator for different reduced number-of-levels NR. The sampling frequency is set at
32MHz and a band-of-interest of 500kHz is considered.
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On the other side, the in-band tone is the signal of interest to be
further processed in the system. The presence of the interferer may com-
promise the algorithm operations. In fact, as mentioned earlier, if the
amplitude-frequency product is too high, the reduced size quantizer over-
loads and the algorithm does not work properly anymore.

Figure 4.13 shows the necessary interferer amplitude reduction to keep
the SQNR unchanged. As expected, the SQNR’s are about 40dB lower
than the maximum predicted by Equation (2.37). The code presented
previously is placed into a search loop to determine accurately the atten-
uation at each frequency. Constraints on the search algorithm convergence
forced us to aim at resolutions slightly lower than the maximum SQNR
of –40dB. For this reason, in some cases the reduction factors are slightly
higher than unity for low frequencies. The case with NR=33 is equivalent
to not having any auto-ranging at all. As expected, this case is not limited
by the full-scale interferer frequency.

These curves are meant to help the designer in choosing the appropri-
ate reduced number-of-levels according to the overall system requirements.
For instance, the second-order case with NR=11 allows accommodation
full-scale out-of-band signals up to twice the band-of-interest. Interferers
with frequencies higher than 1MHz should be progressively attenuated by
the anti-alias filter in front of the modulator.

Figure 4.14(a) shows the dynamic range plot performed with a low
frequency single tone. The dynamic range plot is perfectly linear and,
as expected with multi-bit modulators, the dynamic range is equal to
the maximum SQNR. Figure 4.14(b) shows the output PSD with two
half-scale out-of-band tones. These results do not reveal any harmonic
distortion.

4.3.3 Sensitivity to circuit imperfections

The auto-ranging principle relies on the ability to reproduce accurately
the same shift in both the analog and digital side of the quantizer. For
the class of modulators studied here, the last feedback coefficient an is an
integer equal to the modulator order n.

The digital shifts are guaranteed to be exact multiples of an. In con-
trast, the accuracy of the analog shifts depends on the precision of this
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Figure 4.14 33-level second-order modulator with a 11-level quantizer. Simulated (a)
dynamic range plot and (b) output PSD with two half-scale input tones at 700kHz
and 900kHz. The tones are place within the band, from 500kHz and 1MHz, specified
by the plot of Figure 4.13. The dynamic range plot is performed with a 50kHz single
tone.

last feedback processing chain, including the DAC, the integrator and the
quantizer.

Figure 4.15(a) shows the sensitivity to the overall coefficient for a
second-order case. The maximum SQNR of the example analyzed is 94dB.
The error on the overall coefficient should therefore stay below 2% to main-
tain 93dB of resolution. Such a stringent tolerance requires this feedback
path to be implemented with a switched-capacitor circuit. Furthermore,
special care has to be taken in order to match the DAC and quantizer
slopes of Δ and 1/Δ, respectively.

The accurate reproduction of the shift also relies on having the same
integrator behavior in the analog and digital side of the quantizer. Once
again, the digital accumulator is guaranteed to perform the exact op-
eration. In contrast, the analog integrator has a finite DC gain. Fig-
ure 4.15(b) shows the sensitivity to the integrator DC gain. To achieve
93.5dB of resolution, more than 60dB of gain is necessary for the case
with an 11-level quantizer.

The last imperfection studied here is the offset of the comparators .
Figure 4.16 shows the offset sensitivities with and without auto-ranging.
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The case without reduction is slightly more sensitive since it involves
more comparators. On the contrary, as mentioned earlier, the reduced
size quantization window is enlarged to cover the full output swing of the
last amplifier. Therefore, with auto-ranging, the limiting offset of a few
percents applies to larger quantization steps Δ. Considering quantization
steps of 80mV, offsets inferior to 2mV are necessary. Such a precision can
be achieved by enlarging the input transistor pair, or with the capacitive
coupling compensations presented in [Raz01, JM97], or with the digital
compensation techniques proposed by [PK06]. This subject is further
analyzed in the frame of a design example in Chapter 6.
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Figure 4.16 Tolerance on the statistic offset of the comparators for the second-order
case with (a) and without (b) auto-ranging.

4.3.4 Hardware implementation

Figure 4.17 shows the low-level hardware description of the auto-ranging
algorithm. According to the block diagram in Figure 4.4, the algorithm
requires three signed adders, a register and the control function. The de-
bubbler and the binary encoder are necessary even without auto-ranging.
Nevertheless, they are now smaller in size. At the output of the de-
bubbler, all the bits are equal to zero except the one representing the
position of the thermometer code. This simplifies the logic of the encoder
and the control function. Meanwhile, the positive and negative quantizer
saturation signals, called here max and min, are provided by the last de-
bubbler output and the NOR applied to all of them.

Table 4.1 shows the decision scheme for the 33-level second-order de-
sign as analyzed in Chapter 6. This scheme implements the control func-
tion κ2 described earlier by Figure 4.7 for 11 reduced levels. As explained
previously, the control function is overridden if the shift chosen causes
the emulated 33-level quantizer to overload. The control function without
this saturation mechanism is highlighted by bold numbers. This func-
tion slightly differs from κ2 in that the edge controls are ±3 instead of
±2. This change provides a small improvement in the input frequency
limitation. In fact, this level is activated only when tracking the fastest
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Figure 4.17 Hardware implementation of the algorithm.

full-scale signal.

The min and max bits control the auto-reset mechanism which is shown
in Figure 4.18. Two shift registers store the history of min and max. The
reset rst is automatically activated if the quantizer goes from its lowest
to its highest level within one, two or three clock-cycles, and vice-versa.
The mechanism also detects if either max or min is high for at least four
clock-cycles. If activated, the reset bit stays high for two clock-cycles.

Code 4.2 Additional MATLAB code to simulate the auto-reset circuit.

...
mx=(NR-1)/2;
if ((i>5) & (...
((out(i)==+mx)&(out(i-1)==+mx)&...

(out(i-2)==+mx)&(out(i-3)==+mx))|...
((out(i)==-mx)&(out(i-1)==-mx)&...

(out(i-2)==-mx)&(out(i-3)==-mx))|...
((out(i)==+mx)&(out(i-2)==-mx))|...
((out(i)==-mx)&(out(i-2)==+mx)) ))
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Table 4.1 Shift control signal.

12-level 11-level quantizer output

register 0 1 2 3 4 5 6 7 8 9 10

11 –3 –2 –1 –1 0 0 0 0 0 0 0

10 –3 –2 –1 –1 0 0 0 +1 +1 +1 +1

9 –3 –2 –1 –1 0 0 0 +1 +1 +2 +2

3. . . 8 –3 –2 –1 –1 0 0 0 +1 +1 +2 +3

2 –2 –2 –1 –1 0 0 0 +1 +1 +2 +3

1 –1 –1 –1 –1 0 0 0 +1 +1 +2 +3

0 0 0 0 0 0 0 0 +1 +1 +2 +3

shift registershift register

min−max

fast transition

min

max−min

fast transition

max−stuck

min−stuck

max clk

D Q
rst

two−cycle
reset

Figure 4.18 Automatic reset mechanism for recovery.

sig(i,:)=zeros(1,3);
out(i)=0;rng(i+1)=1;

outp(i)=0;outr(i)=0;
ctrl(i)=0;

end
...

Figure 4.19 shows the recovery process simulated with the additional
Code 4.2. The simulation started with an input signal at its maximum
level and the integrators output at their minimum value. The range reg-
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ister is set at its highest level. The mechanism described in Figure 4.18
resets the integrators and the algorithm memory many times until sta-
ble conditions are reached. The recovery is short and requires less than
a quarter of the signal period. This mechanism is activated only when
necessary to recover from an unstable situation.
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Figure 4.19 33-level modulator output showing the automatic recovery process with a
full-scale input signal at 100kHz and 500kHz.

4.4 Optimization

4.4.1 Reduced number of quantization levels

The reduced number-of-levels should prevent the quantizer from loosing
any information. The worst situation occurs with a full-scale input signal
at the highest frequency. In particular, if the quantizer reaches either edge



Auto-ranging algorithm 109

levels of the quantization window, the algorithm decreases the quantizer
input by the maximum possible shift, which in this case is higher than
NR/2. According to Table 4.1, if a rising input signal causes the quantizer
to reach its highest level, a control shift of +3 is applied, which corresponds
to a down-shift by 6 levels, as explained in Section 4.3.4. This shift brings
the quantizer input at level 4, half a level below the quantizer window
center.
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Figure 4.20 Illustration of the worst case situa-
tion with a large rising input signal at the max-
imum frequency. The algorithm performs con-
secutively maximum shifts of (NR − 1)/2. The
quantizer overloads whenever its input goes be-
yond the maximum and minimum levels. The
numbers represent the NR levels and the short
lines the NR − 1 comparator thresholds.

The situation is further worsened if γmax steps are taken more than
once consecutively. As illustrated by Figure 4.20, the quantizer has (NR+
1)/2 levels available to sense the next γmax step. If the signal goes beyond
the maximum, the quantizer overloads and part of the information is lost.
The situation is the same for the falling signal case. We can therefore
calculate the minimum reduced number-of-levels NRmin as:

NRmin = 2γmax − 1 . (4.8)

The efficiency of the auto-ranging technique can be evaluated by a re-
duction factor, defined here as the emulated-to-reduced number-of-levels
ratio NL/NRmin. We first substitute the expression γmax from Equa-
tion (4.7) into Equation (4.8) and then, by inverting the resolution equa-
tion (2.37), we find the OSR as a function of SQNR, n and NL. As in
the example studied, we consider a specified band of twice the modulator
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bandwidth fb, which halves the OSR in Equation (4.7), and we find the
reduction factor:

NL
NRmin

=
NL/2

(NL− 2n+1) sin
(

2n+1

√
3π(2n+1)(NL−2n+1)2

2SQNR

)
+2n−1.5

. (4.9)

The reduction factor is plotted in Figure 4.21 for a second-order mod-
ulator as a function of the possible sets {NL, OSR} providing the targeted
SQNR of 94dB, according to Equation (2.37). The solid curve reveals the
presence of a maximum in the auto-ranging efficiency with a reduction
factor of 3, in the case of a specified bandwidth of 2fb. The chosen set of
{33,32} for this example is close to the optimum. In contrast, the dashed
curve reveals a higher efficiency without the presence of out-of-band in-
terferers. In this case, the appropriate choice would be NL=65, NR=13
with an OSR of 24.

4.4.2 Reduction factor

The parameter γmax is related to the minimum number-of-levels the quan-
tizer should keep. Let us define the reduction factor as the ratio be-
tween the number-of-levels, determined by Equation (2.38) and γmax.
Figure 4.21 reveals, for a given SQNR, an optimal over-sampling ratio
providing the maximum possible reduction of the quantizer size. The
number-of-levels is also plotted on the same figure since the OSR deter-
mines NL at the same time, for a given SQNR.

The figure also highlights that as the order is increased, the potential
for reduction decreases. In fact, the range of the quantization error is
wider and more levels are necessary to sense that unpredictable signal.

4.4.3 Extendability

According to the closed-form expressions developped so far, both NRmin

and SQNR are functions of the modulator parameters n, OSR and NL.
If any three of these variables are known, the remaining two are set. In
this analysis of extendability SQNR is determined by the specifications
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Figure 4.21 Auto-ranging design chart: reduction factor NL/NRmin for an SNQR of
94dB as functions of the required NL and OSR for the first-, second-, third- and fourth-
order cases. The solid and dashed lines correspond to the cases where a maximum
full-scale signal frequency is respectively twice or equal to the bandwidth.

of the targeted application, whereas NRmin and n are determined by the
topology choice. Under these considerations, OSR and NL are directly
determined by the application.

Let us keep the low-pass second-order architecture with an 11-level
ADC, which requires 2 amplifiers and 10 comparators. With voltage sup-
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plies from 1.8V down to 1.2V, this reduced number-of-levels is reasonable.
By combining Equations (4.7) and (2.37) we can determine the required
NL and OSR to reach a targeted resolution. Considering, as in this ex-
ample, a specified band of twice fb and choosing NR = 2γmax + 1 we can
write:

NL =
NR+1

2 − 2n + 1
sin

(
π

OSR

) + 2n − 1 . (4.10)

It is common practice to design the modulator with an SQNR 10dB higher
than the targeted SNR. This margin allows for circuit noise and distortion
losses. Therefore, introducing Equation (4.10) in Equation (2.37) yields:

SNR =
3π(2n + 1)

20

(
OSR

π

)2n+1
(

NR+1
2 − 2n + 1
sin

(
π

OSR

) )2

. (4.11)

By inverting the equation we find the required OSR. As a result, the sam-
pling frequency is OSR times twice the band-of-interest fb, and a minimum
of (NL− 1) DAC elements are necessary. These two last relationships are
plotted in Figure 4.22 for different targets.

Table 4.2 Extension to typical applications for a second-order modulator with NR=11.

Performance Requirement Efficiency

Application SNR (dB) fb (Hz) NL fs (Hz) NL/NR

Audio 98 22k 82 1.8M 7.5

GSM/EDGE 84 200k 33 13M 3

Bluetooth 84 500k 33 32M 3

WCDMA 74 2M 25 92M 2.3

For the dashed curves NL′ and OSR′ in Figure 4.22, a specified band
equal to the band-of-interest is considered. These should be used for
applications, such as audio conversion, where no large out-of-band signals
are expected. Since the number of comparators is constant, the higher
the NL the more efficient the auto-ranging.
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Figure 4.22 Required NL and OSR for a targeted SNR and a given NR. The specified
band is twice the bandwidth and the SQNR is 10dB higher than the target. Identical
bandwidth and specified band are considered for the dashed curves NL′ and OSR′.
The targeted applications shown in Table 4.2 are labeled and highlighted with dots.
The design example considered in a subsequent chapter corresponds to the Bluetooth
case addressing 84dB, which requires an OSR of 32 and 33 levels.
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The curves NL and OSR show that a 25-level modulator sampled at
90MHz can cover the WCDMA standard. In contrast, NL′ and OSR′ lead
a typical 16-bit audio converter to 82 levels, emulated from an 11-level
quantizer. Table 4.2 summarizes some of the most common application
standards. The auto-ranging efficiency is defined here as the ratio NL/NR.

In this approximation trend we considered a conservative non-overloaded
modulator with a second-order NTF with all its zeros located at DC. In
reality, each case has to be optimized taking into account all the aspects
of a specific application. Nevertheless, it shows interesting efficiency with
high to medium OSRs. For this reason, high-bandwidth low-resolution
applications are not good candidates for the auto-ranging technique.

4.5 Conclusions

The principle of the auto-ranging algorithm has been explained in detail
and compared to other published techniques exploiting the same phe-
nomenon. A thorough analysis of the limitations was carried out. The
analytical model developed revealed the existence of optimum values for
moderate number-of-levels and over-sampling ratios. Thus, for the 94dB
modulator studied in the design example, presented in a subsequent chap-
ter, the choice of NL=33 and OSR=32 is the most appropriate. Besides, it
was shown that high-order modulators have a limited efficiency in contrast
to the first- and second-order case.

The auto-ranging efficiency presents some similarities with the clock
jitter sensitivity. They are both related to the step size between two
samples at either the input or the output of the quantizer. However, the
mechanism linking them to the resolution is different.



Chapter

5
Mismatch shaping optimizations

This chapter starts by explaining the principle of the spectral shaping
of DAC element mismatch. The well-known tree-structured archi-
tecture is described and the most relevant features are highlighted
by simulation experiments. The second section introduces the seg-
mentation of the architecture. A synthesis method using functional
programming is presented. The last section addresses the power con-
sumption optimization.

5.1 Dynamic element matching

An NL-level DAC usually consists of a bank of one-bit (NL − 1) ele-
ments. The analog output nodes are all connected together, resulting in
a summation of all their individual contributions.

output

input

ref+

ref−

DAC
elem.

ref+

ref−

DAC
elem.

ref+

ref−

DAC
elem.

ref+

ref−

DAC
elem.

analog

digitalNL−1

NL−1 one−bit elements

Figure 5.1 Conventional DAC implementation as a bank of (NL − 1) elements.

As illustrated in Figure 5.1, each element uses the differential reference
voltage with nodes ref+ and ref–. In contrast, as shown in Figure 4.2, each
comparator of a quantizer bank uses a fraction of the differential reference

115
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voltage. A large NL is therefore less of a limitation factor for the DAC
than for the internal ADC in a multi-bit ΔΣ-modulator.

As shown in Chapter 2, the mismatch between the elements of the first
DAC bank significantly degrades the resolution. In the presence of mis-
match, the transfer characteristic of the DAC is not linear and harmonic
distortion is generated if a thermometer coding is used. The purpose of
the Dynamic Element Matching (DEM) algorithm is to provide an in-
telligent scrambling such that the transfer characteristic appears linear
on average. The algorithm is implemented in a digital circuit commonly
referred to as a mismatch shaping encoder.

According to the comparisons made by [WG02] and more extensively
in [GS02], among the DEM algorithms proposed in the literature, we can
distinguish three main classes of encoders: the vector feedback, the Data
Weighted Averaging (DWA) and the tree-structured encoder.

As conceptually described in Figure 5.2, the three techniques differ
from each other in the way they choose which elements are to be set high or
low. At a sample time i, for a given input x[i], the vector feedback encoder
employs a vector quantizer to choose the x[i] elements less used. The DWA
employs a barrel shifter to select the x[i] elements consecutive to the ones
used at the previous sample time i − 1. The tree-structured encoder
employs a network of switching blocks to split x[i] into the (NL − 1)
connections to the elements.
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er

Th
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Acc.

Switching
blocks network
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x[i] x[i]

Figure 5.2 DEM algorithm implementations: conceptual representation of (a) the vec-
tor feedback, (b) the DWA and (c) the tree-structured encoders. The implementations
shown here provide a first-order spectral shaping.

The first-order spectral shaping is provided by the accumulators. By
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altering the structures and adding accumulators, each implementation can
provide arbitrary spectral shaping of mismatch errors. However, the anal-
ysis of [WG02] points out that tree-structured encoders can easily avoid
the generation of tones. Moreover, according to [FSW+02], these encoders
can be used with segmented DACs which allows a significant reduction in
the hardware complexity significantly. Hence, the tree-structured archi-
tecture is chosen here.

5.2 Tree-structured architectures

(b)

S
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S
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S
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2
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S
3

3
43,1

(a) Figure 5.3 Tree-structured en-
coder: (a) example for a 9-level
DAC and (b) switching block
general descriptions.

A tree-structured encoder for a 9-level DAC is shown in Figure 5.3
with the definitions set by [Gal97]. The tree is composed of 7 switching
blocks placed on 3 layers. Each block Sk,r is set on the layer k and the
row r. Its input xk,r splits into two parts

xk−1,2r−1 =
xk,r ± sk,r

2
, (5.1)

xk−1,2r =
xk,r ∓ sk,r

2
, (5.2)

where

sk,r =
{ ±1 , if xk,r is odd ,

0 , if xk,r is even .
(5.3)
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If xk,r is odd sk,r is chosen randomly. A pseudo-random generator is
there necessary to provide each switching blocks with a sequence of ±1
values uncorrelated. The mathematical aspect about the pseudo-random
sequences is treated in deepth by [GG05]. The practical aspects reguard-
ing the hardware implementation are explained in [FGHJ00].

As an example, let us consider that at the input of any switching
block xk,r[n] = 17. Since 17 is odd, it splits into either 8 and 9 or 9
and 8. The sequence sk,r [n] causes these two possibilities to alternate at
any time an odd number will be represented. On the other hand, any
even number splits perfectly without the opportunity to alternate. The
author of [Gal97] showed with a recursive demonstration that, under these
conditions, the analog output y[n] of the DAC can be expressed as:

y[n] = αx[n] + β + e[n]. (5.4)

where α and β are respectively the global DAC gain and offset, which are
constant and depend on the statistic mismatch of each DAC elements.
Besides, the sequence e[n] is equals the sum of each sk,r[n] sequences
weighted by their respective local gain Δk,r:

e[n] =
b∑

k=1

2b−k∑
r=1

Δk,rsk,r. (5.5)

The DAC output can therefore be seen as a linear gain device with an
additional offset and noise whose spectrum is determined by the sequences
sk,r[n]. Each column k needs its own pseudo-random sequence. The
sequences should be uncorrelated to each other. [FGHJ00] shows how
to transform a conventional b-bit Linear Feedback Shift Register (LFSR)
such as to generated k sequences whose cross-correlation has a period of
2b/k. As shown in [WGF01], this splitting can be implemented with a
simplified hardware by taking advantage of the extra-LSB coding.

5.2.1 Spectral shaping

Each switching block has its own shaper generating the sequences sk,r[n].
Figure 5.4 describes the signal processing of a first-order shaper. The
shaper works like a single-bit ΔΣ-modulator. A 2-bit accumulator, fol-
lowed by a hard limiter, is placed in a feedback configuration. As explained
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Reg.
21

q   {−1,+1}

o   {0,+1}

s    {−1,0,+1}

ran    {−1,+1} Figure 5.4 Signal processing of the
first-order shaping. The output of
the hard limiter q is either ±1.
Whether the switching block in-
put is odd or even, the shaper out-
put s is forced to zero or kept un-
changed.

at a greater length in [Gal97], the hard limiter generates the sequences
q such as to force the sum to be bounded. As the input of the switching
block is odd, node o becomes zero as well as the output sequence s. The
dithering is introduced by the random variable ran when the accumulator
output is zero and the hard limiter has the choice of providing either ±1.
In this way, the spectrum of each sequence sk,r has a first-order spectral
shape as well as the mismatch errors e[n].

The general tree-structured encoder for an NL-level DAC described
above is implemented in Code 5.1. The two arrays y and acc correspond
the switching block output and accumulator state respectively.

Code 5.1 MATLAB code for the first-order tree encoder. The parameter N is the
encoder depth equal to log2(NL − 1).

y(1,1)=out(i)+(NL-1)/2;
for ii = 2:N+1,

ran=sign(randn(1)); %random +/-1;
for jj = 1:2^(ii-2),
in=y(ii-1,jj);

%%%%% first-order shaper %%%%
if (mod(in,2)~=0)

if (acc(ii,jj)==0) s=ran;
else s=-sign(acc(ii,jj));end
else s=0;

end
%%%%%%%%%%%%%%%%%%

acc(ii,jj)=acc(ii,jj)+s;
y(ii,2*jj-1)=(in+s)/2;
y(ii,2*jj)=(in-s)/2;
end

end
out(i) =sum((y(3,:)*1-0.5).*(dac+mismatch));
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Figure 5.5 shows the block diagram of the simulation testbench we
used to evaluate the spectral shaping properties of the encoder. Any type
of signal is fed into the encoder. The output goes through a DAC with
mismatches. In accordance to Equation (5.4), the mismatch errors e are
extracted by removing the input signal multiplied by α and an offset β
from the output.

Real DAC
with

mismatch

Ideal DAC

slope
correction

Mismatch
shaping 
encoder

Signal
generation

Mismatch
errors

  

offset
correction

e

Figure 5.5 DEM testbench to extract the mismatch errors e. α and β are the DAC
gain and offset of equation (5.4).

Figure 5.6 shows the simulations with different full-scale input signals.
The spectra highlight the signal dependence of the mismatch shaping.

Figure 5.7 shows the simulations results with the ΔΣ-modulation used
as an input. In the case shown in Figure 5.7(a), the variable s in Code 5.1
is kept equal to one if the switching block input is odd. In this way the
data are not scrambled at all. This situation is equivalent to a direct con-
nection from the quantizer output to the DAC input. In Figure 5.7(c) the
simulation is performed with a ΔΣ-modulator output signal. The spec-
tral shaping corresponds exactly to a first-order modulator output. This
experiment shows that such an encoder is well suited to ΔΣ-modulation-
based DACs and ADCs.

As pointed out in Chapter 2, due to the mismatch between its el-
ements, the DAC has a non-linear transfer characteristic and harmonic
distortion is generated. In the case depicted in Figure 5.7(b), the variable
is set randomly at each clock cycle. As a result, the encoder scrambles the
data and the PSD of the mismatch errors is white. The surface below the
PSD over the band-of-interest is similar for both cases, bringing about an
important degradation of the resolution. In contrast, in the case shown
in Figure 5.7(c), the variable is set as described previously. The spectral
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variable. A band-of- interest of
500kHz is highlighted in gray. The
encoder is clocked at 32 MHz

shaping was therefore applied and the PSD presents a prefect first-order
characteristic.

5.2.2 Higher-order spectral shaping

The mismatch spectral shaping can be improved by changing the shaper
processing. Figure 5.8 shows the shaper block diagram for a second- and
third-order modulator. Codes D.4 and D.5 implement these sequence
generators. The hard limiter output q, which is either + or -1, is chosen
such as to keep the accumulator outputs bounded. The first accumulator
have priority over the others such as to guaranty the first-order shaping.

Both shapers maintained the same first stage with a 2-bit accumulator.
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The additional accumulators offer a degree of freedom in the choice of
register size. The simulation results in Figure 5.9 reveal that for a low
OSR, in the example equal to 32, the second-order shaping with a 3-bit
accumulator behaves as a first-order at low frequencies. However, the
mismatch noise PSD integrated over the band-of-interest is similar to the
case with an infinite number of bits.

The PSD of Figure 5.9(c) shows that a third-order shaping is possible
with resonance. Nevertheless, at least 13-bit accumulators are necessary
for the second and third stages. The size of the registers and adders drasti-
cally increase the complexity of the encoder. Such an architecture should
be used only with deep sub-micron CMOS technology with transistor sizes
below 90nm.
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Figure 5.8 Signal processing block diagram of the second- and third-order mismatch
shaper.

5.3 Optimization

5.3.1 DAC segmentation

In [FSW+02] it is shown that the processing of the switching block de-
scribed by Equations (5.1) and (5.2) can be altered thus reducing signifi-
cantly the number of switching blocks.

However, as the number of switching block decreases, the number
of DAC elements increases. The first aspect to consider is that both the
switching blocks and the DAC elements contribute to the power consump-
tion of the DAC. An optimization is therefore necessary.

Table 5.1 summarizes the switching block proposed by [FSW+02]. The
conventional block here refers to the F block, which stands for Full. The
other blocks are respectively the Half (H) and the Quarter (Q) switching
blocks. These names are chosen with respect to their functionality. For
instance, the H block splits its input x into the next multiple of 2 and
its remainder. In this way, the output with the multiple of 2 has half
the possibilities. Similarly, the Q block splits its input x into the next
multiple of 4 and its remainde. In this way, each output has a quarter the
possibilities. A detailed demonstration is provided in [FSW+02].
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5.3.2 Synthesis automation

The synthesis process can be automated. We restrict the process to the
switching blocks given in Table 5.1. The process is implemented with
the functional programming of the MATHEMATICA software. MATH-
EMATICA is a powerful tool based on the manipulation of lists, which
is particularly adapted to the synthesis of trees. Codes C.1, C.2 and C.3
used for the synthesis are provided in appendix.

The synthesis is performed in three steps. The first step consists
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Table 5.1 Switching blocks description

F
n−1

n−1
n

(N,d)

(N/2,d)

(N/2,d)

H
n−1

2
n

(N,d)

(2d,d)

(N,2d)

Q
n−2

4
n

(N,d)

(8d,d)

(N,4d)

E
n−3

5
n

(N,d)

(16d,d)

(N,8d)

down={−1, ... ,+1}

down={−N/4, ... ,+N/4}

up={−N/4, ... ,+N/4}

in={−N/2, ... ,+N/2}
up={−N/2, ...,+N/2}

in={−N/2, ... ,+N/2}

in={−N/2, ... ,+N/2}

in={−N/2, ... ,+N/2}

down={−3d, ... ,+3d}

up={−N/2, ... ,+N/2}

Output range Switching block Input range

down={−7d, ... ,+7d}

up={−N/2, ... ,+N/2}

in recursively generating the tree of solutions, which is not yet a list of
encoders. The recursive function BuildTree is used for that purpose. Fig-
ure 5.10 gives a partial representation of the result generated at the first
step. The starting point is the list of possible switching blocks Q,H and
F. Each of these blocks has two outputs. Each output can be followed by
either block in the list Q, H and F. The process goes on recursively until
the terminating conditions are satisfied. In such a case the branch ends
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Figure 5.10 Tree of solutions as the output
of the first synthesis step. Each node of
the tree is a list of all the possible blocks.
Each block has two branches representing
the block outputs.

with a Δ which corresponds to a one-bit element.

The recursive function propagates the increase in weight brought about
by the blocks H and Q. Hence, the branches end in some places with mul-
tiples of Δ. The multiples correspond to the weight of the DAC element
at that point.

The second step consists in removing redundant solutions with the
help of the function RemoveSymmetry. Figure 5.11 shows a part of the
solution tree displayed in Figure 5.10. The two lists of possible blocks on
both sides would generate redundant solutions in the last synthesis step.
For instance, solutions with an F block connected to either H and F or F
and H are redundant. As illustrated in Figure 5.11, this step starts the
extraction of the encoder structures and the combinations of two different
blocks only appear once.

In the third step, the function ExtracTree operates in the same way on
the entire solution tree without taking care of redundant solutions. The
process transforms the tree of solutions into a list of tree structures as
shown in Figure 5.12.

Code C.5 in the appendix shows how to use the three recursive func-
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{ Q , H , F }
starting point

{ Q , H , F } { Q , H , F }

{ Q , H , F }
starting point

{ { Q , F } , { H , F } , { H , Q} , { H, H } , { Q , Q } , { F, F } }

Figure 5.11 Removal of redundant solutions in the solution tree performed during the
second synthesis step.
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FF
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FF

H

H

F

4 4

F F

2 2

Figure 5.12 Output after the last step of the synthesis.

tions. The synthesis process is applied to the 33-level DAC using F, H and
Q blocks. The algorithm finds 628 distinct solutions. Code C.4 provides
a function to display the trees. As an example, Figure 5.13 shows the
last solution taken from the list of trees. The input is a 6-bit bus repre-
sented with an extra-LSB code. The total number of one-bit elements is
equal to 70 and there are 11 switching blocks. This solution is unlikely
to be optimal. However, since the first splitting device is a Q-block, the
encoder depth is reduced by one level with respect to a conventional tree.
The critical path is shorter and may allow a longer delay for the logic
synthesis.

Figure 5.14 shows the synthesis results for the 33-level using F, H and
Q blocks. The last of these solutions corresponds to the structure shown in
Figure 5.13. The solutions are classified with respect to the total number
of DAC elements and the current consumption of both the DAC itself and
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Figure 5.13 Example of a synthesized
tree for a 33-level segmented DAC us-
ing the three switching blocks, F, H
and Q. The digital signals are repre-
sented by an extra-LSB code.

the digital encoder.

We are considering here the situation of the design example of Chap-
ter 6. A second-order shaper with a 3-bit accumulator is used. The
approximate gate-count as well as the power consumptions of each block
are given in Table 5.2. The simulation of standards cell for the 0.18μm
CMOS technology used gives a mean current consumption of 0.3μA/gate.
We take into account the consumption of the first DAC elements for the
Δ’s.

5.3.3 Standard segmentation

The solutions giving the best performance in terms of power consumption
with respect to the number of elements are highlighted in Figure 5.14
with a dashed curve. It turns out that these solutions have only H and F
switching blocks. Moreover, the H blocks are all cascaded at the beginning



Mismatch shaping optimizations 129

Table 5.2 Gate count for switching blocks with a second-order shaper with a 3-bit
accumulator.

Block Sequence generator Switching logic Consumption (μA)

F 27 8 10.5
H 27 10 11.1
Q 81 12 27.9
Δ - - 2.7

of the tree. Figure 5.15 shows one of these solutions, the number 589, as
a general example. We refer to these structures as a standard segmented
tree. We define the segmentation depth m, as shown in Figure 5.15, as
the number of cascaded H blocks. Code D.6, provided in appendix, allows
to simulate such a standard segmended tree with all the possible encoder
and segmentation depths.

From the above description of the standard segmentation, we can
express the current consumption analytically as

I = Δ · 2(2N−1 + 2m − 1)︸ ︷︷ ︸
analog

+ F · (2N−m + m − 1) + H · (m)︸ ︷︷ ︸
digital

, (5.6)

where N and m are the encoder and segmentation depths respectively. If
only H and F blocks are used, the encoder depth is given by

N = log2(NL − 1) . (5.7)

The parameters F, H and Δ are the individual current consumption of the
switching blocks and a one-bit DAC element. This equation corresponds
to the dashed curve of Figure 5.14. The optimal segmentation depth can
be found as

mopt = log2

⎛
⎝
√

(H + F)2 + 2N+3FΔ ln2 2 − (H + F)

4Δ ln 2

⎞
⎠ . (5.8)

In most cases, the complexity of the switching blocks H and F is
dominated by the shaper. The H block has only a few extra gates for the
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Figure 5.14 Classification of the 628 solutions found by the synthesis process for a
33-level DAC using F, H and Q blocks.

multiplexer with respect to the F block. Consequently, the consumption
parameters H and F can be considered equal. Equation (5.8) can therefore
be simplified as

mopt = log2

(√
1 + 2N+1α ln2 2 − 1

2α ln 2

)
(5.9)

where α = Δ/F. In the case of a high-order shaping, the ratio α may
become small. In such a case, the expression of the optimal segmentation
depth can be further approximated as

mopt = N − 1.53 . (5.10)
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Figure 5.15 Standard segmentation. Solution number 589 is a standard segmented
tree with a segmentation depth of 2.

Therefore, if the switching block complexity is high, as in the case of third-
order shaping algorithm for instance, a large segmentation is suitable.
In contrast, if the switching blocks are either simple, as in the case of
a first-order shaping, or complex but benefiting greatly from deep sub-
micron devices provided by the technology, a lower segmentation depth is
recommended. The other aspect to be pointed out by the classification
proposed in Figure 5.14, is that the higher the segmentation depth, the
more noise sources there are in the DAC bank.
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5.4 Conclusions

The auto-ranging technique described previously allows us to increase the
internal number-of-levels thus circumventing the problem of implementing
a large quantizer bank. However, the DAC does not benefit from that.
On the contrary, as we are now allowed to increase the number-of-levels,
the DAC bank size, as well as the complexity of the mismatch shaping
encoder, may become an issue.

To that extent, we developed in this chapter an analytical method as
well as a synthesis algorithm. This provides designers with a means for
estimating and optimizing the consumption. Besides, the classification
proposed allows consideration of other constraints, such as the number of
extra noise sources in the DAC bank or the encoder depth.

Finally, it should be pointed out that segmentation makes the layout
of the DACs and their routing to the digital section easier. The bus size
carrying the feedback digital signals is reduced, in the example studies,
from 32-bit to 12-bit. The DAC elements with weights of 2 and 4 can be
inter-digited such as to guarantee better matching properties.



Chapter

6
Design example

The low-power strategy and the techniques presented previously are
applied in a design example in this chapter. A BLUETOOTH receiver
with direct conversion architecture was chosen as a typical target ap-
plication. The examples shown throughout the previous chapters serve
as a support to the second-order modulator studied here. The chapter
starts by describing the modulator architecture and its analysis at the
signal processing level. It then gives details of circuit implementation.
Finally, the expected performance and consumption of the designed
circuit are summarized and compared with equivalent state-of-the-art
realizations.

6.1 Modulator design

6.1.1 Targeted specifications and topology choice

This design example addresses possible BLUETOOTH specifications with
83dB of resolution over a bandwidth of 500kHz. These specifications could
be set for a direct conversion receiver where limited selectivity and anti-
aliasing filtering is achieved before the ADC.

An SQNR of 94dB was chosen, allocating about 10dB of margin for
circuit noise and distortion. Among all the possible choices for n, NL and
OSR, we chose a 33-level second-order modulator with an over-sampling
ratio of 32. In line with the low-power strategy elaborated in Chapter 3,
the architecture is hybrid with a continuous-time first integrator and a
discrete-time second integrator. Sampling is performed with a full-clock-
cycle scheme to reduce the power consumption of the interfacing buffer.

133
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This solution is optimal in terms of jitter sensitivity as shown in Chap-
ter 3. The design charts in Figure 3.17 showed that modulators with
higher shaping orders are more sensitive. With an SQNR of 94dB the
sensitivity reaches its optimum for a moderate NL around 33. Moreover,
the analysis of Chapter 4 concludes that this moderate NL of 33 also gives
the best efficiency for the auto-ranging technique, allowing the number of
comparators to be reduced from 32 to 10.

The main purpose of this example is to demonstrate the application
of the low power strategy proposed in Chapter 3. The NTF is designed
with all its poles in center of the z-plane and all its zeros at DC. A
more aggressive pole and zero placement, such as described in Chapter 2,
would increase the performance at the cost of introducing complexity in
the design. Furthermore, no feed-forward paths are added, providing a
flat STF with the anti-aliasing filtering as calculated in Chapter 3.

Table 6.1 summarizes the characteristics of the modulator. The sam-
pling frequency corresponds to the order of a clock signal available on a
typical System-on-Chip (SoC).

Table 6.1 System characteristics.

Targeted resolution (13.5bits) SNR 83 dB

Quantization resolution SQNR 94 dB

Band-of-interest fb 500 kHz

Full-scale interferer band fmax 1 MHz

Sampling frequency fs 32 MHz

Over-sampling ratio OSR 32

Shaping order n 2

Emulated quantizer NL 33 levels

Internal quantizer NR 11 levels

6.1.2 Circuit description

The schematic of the chosen 33-level hybrid continuous-discrete-time mod-
ulator is depicted in Figure 6.2. The analog part is composed of fully dif-
ferential amplifiers for the CT-integrator and DT-integrator, a fully differential
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difference amplifier for the Sampler, a current steering i-DAC, a switched-
capacitor sc-DAC, an 11-level Quantizer and its reference ladder. The Digital

section comprises the two mismatch shaping encoders, the auto-ranging
and a comparator offset calibration algorithms.

The quantizer reference ladder and the switched-capacitor DAC el-
ements are biased with the same voltage references ref+ , gnd and ref—,
equal to 1.22V, 900mV and 580mV, respectively. This gives a differential
reference voltage of 640mV. The resistors ladder provides 10 differential
references ref9 to ref0 with ±40mV, ±120mV, ±200mV, ±280mV and
±360mV. Consequently, the quantizer has a mid-thread transfer charac-
teristic with steps Δ =80mV.

An active-RC integrator is used for the first integrator to prevent
distortion in this first-stage which does not take advantage of any spectral
shaping. The current steering of that first-stage generates Non-Return-
to-Zero (NRZ) current pulses. To reduce the voltage swing of the control
signals, vh and vl are set to 1.5V and 300mV respectively.

p2

p1

q1

q2

s1

s2

p1d

p2d

q1d

q2d

s1d

s2d

Figure 6.1 System clock-
ing diagram.

Figure 6.1 shows the clocking diagram. The non-overlapping phases
p1 and p2, as well as their delayed versions p1d and p2d, are used in the
switched-capacitor DAC elements. The clock generator is designed so
as to provide non-overlapping time and delays of 1ns, with rise and fall
times of 0.3ns from a 32MHz signal. Capacitors are used to generate such
delays instead of a large series of inverters. The alternating phase sets,
s1,s1d,s2,s2d and q1,q1d,q2,q2d, are necessary for the full-clock-cycle scheme
described in Chapter 3. The integration process takes place during phase
one. Both the sampling and the DAC capacitors pre-charge are performed
during phase two.
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Table 6.2 CMOS technology features used.

Feature Advantage

TaN thin film resistors High linearity
Low temperature coefficient
Good matching properties

Metal-Insulator-Metal (MIM)
capacitors

High linearity
Excellent matching properties

High Voltage (HV) transistors
with thick gate oxide

Allows charge pumping for
driving switches
Provides low noise current
sources

Five metal layers Higher routing density

Triple-well technology Insulation of sensitive analog
blocks
Reduction of body effect

According to the developments of Chapter 5, the DACs are partially
segmented following a standard segmentation with a depth of 2. Because
of this, the digital bus feeding the DACs is 12-bit wide instead of 32.
Also, the two outputs of the auto-ranging block are 6-bit wide to allow
representation of the 33 levels with an extra-LSB code. The total number
of elements ND is 38 for both DACs.

The 0.18μm CMOS technology used in this design is provided by
Freescale semiconductor. The special features available are listed in Table
6.2. Freescale also provided its own SPICE-like simulator MICA along
with special analysis tools, developed internally, allowing complex statis-
tical simulations for mismatch and process variation analysis.

6.2 System Design

6.2.1 Signal processing of the circuit

The block diagram in Figure 6.3 is a direct translation of each signal
processing function of the circuit shown in Figure 6.2. As analyzed in
Section 3.2.1, the continuous-time DAC convolves each digital impulse
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Figure 6.3 Modulator block diagram. The processing blocks are labeled as in the
circuit description in Figure 6.2.

with a 1/fs-duration rectangular pulse. This becomes a multiplication
in the frequency domain. On the other hand, the sampling process is a
multiplication by a train of impulses in the time domain and becomes a
convolution in the frequency domain.

As seen in Section 3.2.1, the path involving the hold function and
the sampling process can be replaced by an equivalent z-transform. The
block diagram can therefore be simplified and described by the linear
Signal-Flow Graph (SFG) shown in Figure 6.4.

V1(z)

V2(z)

Q(z)

z−1

1 − z−1

z−1

1 − z−1

X(z)

Y (z)

1

1

sRC

−2IREF

1

Cfs

Cs

Cf

−2VREF

Cd

Cf

Δ−1

Figure 6.4 Linear signal-flow graph
representation of the modulator. The
integration paths are highlighted in
bold.

We apply Mason’s gain formula to the SFG considering Q(z) and X(z)
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as source nodes, and Y (z) as a sink node and find

NTF(z) =
Y (z)
Q(z)

=
1

1 + 2VREFCd

ΔCf
·
(

z−1

1−z−1

)
+ 2IREFCs

ΔCfsCf
·
(

z−1

1−z−1

)2 , (6.1)

STF(z) =
Y (z)
X(z)

=
1

ΔRCfs
· Cs

Cf
· z−1

1−z−1 · fs

s

1 + 2VREFCd

ΔCf
·
(

z−1

1−z−1

)
+ 2IREFCs

ΔCfsCf
·
(

z−1

1−z−1

)2 . (6.2)

6.2.2 Design equations

For a systematic design of the modulator, the equations linking the swings
of the integrators and the components parameters are needed. We start
the analysis by introducing the constraints on the STF and NTF. For the
best stability, all their poles should be placed at the center of the z-plane.
The NTF should therefore be equal to (1 − z−1)2. As already explained
in Chapter 2 and shown in Table 2.1, this means choosing feedback coef-
ficients of 1 and 2. We can therefore write:

NTF(z) = (1 − z−1)2 ⇒

⎧⎪⎪⎨
⎪⎪⎩

2IREF

ΔCfs
· Cs

Cf
= 1 ,

2VREF

Δ
· Cd

Cf
= 2 .

(6.3)

In such a case, for low to moderate frequencies the STF can be ap-
proximated to a constant.

STF(z) =
Cs

Cf
· 1
ΔfsRC

· z−1(1 − z−1)
fs

s
∼= Csz

−1

ΔRCfsCf
. (6.4)

Then we calculate the integrator outputs V1(z) and V2(z) by applying
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Mason’s gain formula, with Q(z) and X(z) as source nodes, and find that

V1(z) =
X(z)
RCfs

(
z−1 + (

2VREFCd

ΔCf︸ ︷︷ ︸
2

−1)z−2

)
− Q(z)

(
2IREF

Cfs︸ ︷︷ ︸
Δ

Cf
Cs

(z−1 − z−2)

)
,

V2(z) =
X(z)
RCfs

(
Cs

Cf
z−2

)
+ Q(z)

(
2VREFCd

Cf︸ ︷︷ ︸
2Δ

(z−1 − z−2) +
2IREFCs

CfCfs︸ ︷︷ ︸
Δ

z−2

)
.

If the equation set (6.3) is satisfied, the equations become simpler.
We determine the outputs as a function of time by applying the inverse
z-transform and find

v1(k) =
(x(k − 1) + x(k − 2))

RCfs
− (q(k − 1) − q(k − 2))Δ

Cf

Cs
, (6.5)

v2(k) =
x(k − 2)
RCfs

· Cs

Cf
− q(k − 1)2Δ + q(k − 2)Δ . (6.6)

Finally, the output swings are calculated by taking the infinite norm
‖.‖∞ as defined in Appendix A.1

‖v1‖∞ = ‖x‖∞
2

RCfs
+ ‖q‖∞ 2Δ

Cf

Cs
, (6.7)

‖v2‖∞ = ‖x‖∞
1

RCfs

Cs

Cf
+ ‖q‖∞ 3Δ . (6.8)

Setting the quantizer input so as it never goes beyond its overload
limits determines the maximum modulator input swing and the first in-
tegrator output.

‖v2(k)‖∞ =
ΔNL

2
⇒

⎧⎪⎪⎨
⎪⎪⎩

‖v1(k)‖∞ = Δ · Cf

Cs
· (NL − 2) ,

‖ x(k) ‖∞ = Δ · Cf

Cs
· NL − 3

2
·RCfs .

(6.9)
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Thanks to the auto-ranging algorithm, the quantizer number-of-levels is
reduced to NR. Consequently, the real output swing ‖v2,R‖∞ of the last
integrator is

‖v2,R‖∞ =
ΔNR

2
. (6.10)

The parameter ‖v2‖∞ becomes the emulated voltage swing which can go
beyond the voltage supply.

The reference ladder determines the relationship between Δ and VREF.
The relationship can be altered by adjusting the ratio between the edge
and inside resistors. With the configuration shown in Figure 6.2, it follows
that

Δ =
VREF

8
. (6.11)

By introducing this last relationship in Equations (6.9) and (6.3), we
can express the modulator input swing as

‖x‖∞ = RIREF(NL − 3) . (6.12)

The maximum resolution is determined with the maximum input
power Px,max which goes through the STF before reaching the modulator
output.

PX,max =
‖x(k)‖2

∞
2

|STF(z)|2 =
(NL − 3)2

8
. (6.13)

The quantization noise goes through the NTF before reaching the
modulator output. The total power PQ must be evaluated over the band
of interest fb. Assuming that OSR� 1, namely fs � fb, the NTF can be
simplified by removing the high-order terms in its Taylor expansion.

PQ = 2
∫ fb

0

1
12fs

· |NTF(f)|2 df ∼= 1
4 · 15π

(
π

OSR

)5

. (6.14)

We finally calculate the Signal-to-Quantization Noise Ratio

SQNRmax =
PX,max

PQ
=

15
2

π(NL − 3)2
(

OSR
π

)5

, (6.15)
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which is in accordance to the general formula (2.37) provided in Chapter 2.
Taking 10 times the logarithm on both sides gives the expression

SNRmax,dB = 20 log(NL − 3) + 50 log(OSR) − 11.1 . (6.16)

6.2.3 Design procedure

The equations derived above are presented in Table 6.31 in a compact
form so as to provide a three-step design procedure. Firstly, the reference
voltage is chosen. As a result, both the voltage swing of the last integrator
output and the quantization step are set. Next, the capacitors of the
sampling network and the switched-capacitor DAC elements are chosen.
Consequently, the voltage swing of the first integrator output and the
feedback capacitor of the last integrator are determined. Finally, the input
resistance and voltage swing are chosen, thus determining the continuous-
time integrator capacitor and the current steering DAC reference.

Table 6.3 Modulator design procedure.

Step Parameter choice Consequence

1 VREF =640mV

8><
>:

‖v2,R‖∞ = VREF · NR

16
=440mV

Δ = VREF · 1

8
=80mV

2 Cd=25fF, Cs=1.05pF

8<
: ‖v1‖∞ = VREF(NL − 2)

Cd

Cs
=472mV

Cf = 8 ·Cd =200fF

3 ‖x‖∞=500mV, R=6kΩ

8>><
>>:

IREF =
‖x‖∞

(NL − 3)R
=2.7μA

C =
IREF

VREF
· 2

fs
· Cs

Cd
=10.7pF

The reference voltage. At the starting point of the procedure, as NL and
NR are already set, the reference voltage VREF determines, without any

1By combining these equations and using the value chosen for the design example, we
find that RC∼= 2/fs.
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degree of freedom, the voltage swing of the last integrator output ‖v2,R‖∞,
the quantization step Δ, as well as the quantizer reference voltages. In a
complete System-on-Chip (SoC) solution, the reference voltages ref+ and
ref– are provided internally by dedicated buffers. It is therefore suitable to
chose VREF between one-half and one-third of the voltage supply so as not
to increase the constraints on the circuit design in terms of swing. This
is true especially when taking into account the worst case process corners
over a wide temperature range. Thus VREF is set at 640mV.

The switched capacitor elements. The second parameter to be chosen is the
capacitance Cd of the DAC elements. In the current architecture, the
switched capacitor DAC bank comprises 76 capacitors. Reference buffers
need to charge them at each clock-cycle. It is therefore desirable to choose
the smallest DAC elementary capacitor since it has an important impact
of the die size and consumption of the DAC bank. Moreover, the values of
the other capacitors are in a direct relationship which has a further impact
on the die size and power consumption. Nevertheless, the minimum size
is limited by technology. First of all this is because the parasitic capaci-
tances may become comparable to Cd, and secondly because the matching
properties are inversely proportional to the capacitor area. Noise consid-
erations further require us not to reduce the elementary DAC capacitor.
Fortunately, errors induced by both noise and mismatches benefit from a
first-order spectral shaping which allowed us to choose Cd = 25fF. The
sampling capacitor Cs sets the first integrator output swing ‖v1‖∞. This
swing is also seen by the sampling amplifier as a common-mode by its
differential pairs. In order to relax this design constraint, a sampling ca-
pacitor of Cs = 1.05pF is chosen so as to give a swing lower than 500mV.

Input resistance and voltage swing. The third component to be chosen is the
input resistance R. As for Cd, the resistance choice is imposed by noise
considerations. The input voltage swing ‖x‖∞ is also related to the noise
contribution. The next section addresses the issue with a simple model
and determines R = 6kΩ and ‖x‖∞ = 500mV. Consequently, according
to the design equations, the reference current becomes IREF = 2.7μA and
the first integration capacitor C = 10.8pF.
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6.2.4 Noise considerations

The choices in steps two and three of the design procedure are imposed
by noise considerations which put another constraint on the choice of
components.

First stage. Let us start with the thermal noise contribution of the first
stage. The noise power spectral density, referred to the modulator input
V 2

n,IN,1(f), of two input resistors R and two ND current steering DAC
sources is given by

V 2
n,IN,1(f) = 8kTR + 8kTγgm ·ND ·R2 . (6.17)

where gm is the gate transconductance and ND the total number of DAC
elements. To reduce the contribution of the current sources, they have
to be sized so as to provide the lowest transconductance. The sourcing
and sinking transistors are therefore placed in very strong inversion. In
such a case, the factor γ = 2n/3, where n is the slope factor, and the
transconductance is given by

gm =
2Id

nVDS,sat
. (6.18)

The transistor drain current Id is equal to half the reference current
IREF. Moreover, the drain-source voltage can be set to the maximum
allowed. According to the circuit description in Figure 6.2 and neglecting
the voltage drop through the switches, it follows that VDS = VDD/2.
Assuming that these transistors are at the limit of saturation VDS

∼=
VDS,sat and

V 2
n,IN,1(f) = 8kTR

(
1 + ND · 4IREFR

3VDD

)
. (6.19)

Introducing Equation (6.12) in this relationship gives

V 2
n,IN,1(f) = 8kTR

(
1 +

ND
NL − 3

· 4‖x‖∞
3VDD

)
. (6.20)
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Second stage. The second stage is made up of switched-capacitors. When
referred to the modulator input, the contribution of the two sampling
networks (ND DAC elements) is given by

V 2
n,IN,2(f) =⎡

⎣4kT

Cs
· 2
fs

·
(

Cs

Cf

)2

+ ND · 4kT

Cd
· 2
fs

·
(

Cd

Cf

)2
⎤
⎦(Cf

Cs
RCfs

)2

|1 − z−1|2 .

(6.21)

This is further simplified as

V 2
n,IN,2(f) =

4kT

Cs
·
[
1 + ND · Cd

Cs

]
· 2
fs

· (RCfs)
2 |1 − z−1|2 . (6.22)

The contribution of the first- and the second-stages with reference to
the modulator input can thus be summed and integrated over the band
of interest fb. The Signal-to-Thermal-Noise Ratio is finally

STNR =
‖x‖2

∞/(8kT )

2Rfb

[
1 +

ND
NL − 3

· 4‖x‖∞
3VDD

]
︸ ︷︷ ︸

CT-stage 1.1 · 1010

+
1
Cs

·
[
1 + ND

Cd

Cs

]
· (πRCfs)2

3 OSR3︸ ︷︷ ︸
DT-stage 7.8 · 108

.

(6.23)

As shown with numerical values in Equation (6.23), the continuous-
time stage contribution is more than a decade higher than the discrete-
time stage contribution. In fact, the errors made in the second-stage
benefit from a first-order shaping. The STNR is dominated by the pa-
rameters of the first-stage although a small DAC element capacitor Cd is
chosen.



146 System Design

The second term in the expression can therefore be neglected and the
constraint on R given as

R =
‖x‖2

∞/(8kT )

2 ·STNR · fb

[
1 +

ND
NL − 3

· 4‖x‖∞
3VDD

]
︸ ︷︷ ︸

∼=2

. (6.24)

This equation gives the relationship between the input resistance and
input swing. Further simplifying the expression leaves only the funda-
mental parameters such as kT , the SNR and the band-of-interest fb.

If we choose an STNR 6dB above the targeted SNR of 83dB, we find
a resistance R = 6.5kΩ. The 6dB margin allows for thermal and flicker
noise of the first amplifier and the flicker noise of the current steering
DAC, which dominates.

As a consequence of the operating conditions of the current steering
DAC, we can find the size ratio for both the sources and sinks

W

L
=

4IREF

KPp,nnV 2
DD

. (6.25)

Thick oxide transistors are used for the sources and sinks. Both
their flicker noise and transconductance coefficients are lower than for
core devices. Transconductance coefficients of KPn = 230μV/A2 and
KPn = 60μV/A2 are estimated for the N and P-MOS transistors respec-
tively. The slope factor n tends to unity in strong inversion and we find
size ratios of 1/18 and 1/5. Different adjustments are made based on
simulation before reaching the final size found in Figure 6.2. Their area
is increased to reduce the flicker noise contribution. The resulting tran-
sistors are therefore narrow and long, providing a large output impedance
gds.
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6.3 Design of the amplifiers

6.3.1 Behavioral models

The design of the amplifiers at the transistor level was carried out by
D. Stefanovic in the frame of procedural analog design methodology de-
scribed in [Ste07, SPPK07, SKP05, SKPK04a, SKPK04b].

The methodology proposed is based on the transistor model devel-
oped in [EKV95, Vit01], called the EKV model, referring to its inventors’
names. Prior to the design flow, we substituted each of the three am-
plifiers shown in Figure 6.2 by an equivalent model with a limited set of
parameters.

(a) (b)

Rout Cout Rout Cout

gm0
i0

gm0
i0

gm0
i0

Figure 6.5 Behavioral modeling of a differential (a) and differential difference (b) am-
plifier.

The last two amplifiers are Operational Transconductance Amplifiers
(OTA) whose behavior is well modeled by the transfer characteristic of a
differential pair. The behavior of the differential pair, based on the EKV
analytical model, in all regions of operation from weak to strong inversion,
is provided in Appendix A.4 and implemented in the Verilog-A codes of
Appendix B. As shown in Figure 6.5, the model of the differential pair,
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represented as a transconductance stage, is followed by an output resis-
tance and capacitance, Rout and Cout. An ideal common-mode feedback
is added, which is not shown here.

The differential pair quiescent transconductance gm0 and current i0
and the output impedance are the parameters to adjust. From the EKV
analytical model, we know that the highest efficiency, considering the ra-
tio gm0/i0, is found in the weak inversion region. Nevertheless, the weak
inversion implies large transistor sizes. In practice, it turns out that mod-
erate inversion gives the best compromise for a differential pair. Under
these conditions, a ratio gm0/i0 of 20 is systematically used and the pa-
rameter to be optimized is the current, along with the output impedance.

As shown in Figure 6.5(b), the differential difference amplifier, used for
the sampler, is modeled by two transconductance stages combining their
currents through the same output impedance. The continuous-time inte-
grator is implemented with a two-stage amplifier. The simplified model
given by Code B.2 can be used. In contrast to the model of Code B.1,
the behavior is controlled by the quiescent transconductance and current
without restriction on their ratio. In such a case, i0 models the slewing
current available, and gm0 the input pair transconductance amplified by
the second stage.

These behavioral models help in optimizing the current consumption,
related to the parameter i0. Many iterations are necessary to find a good
combination between a realizable output impedance and the transconduc-
tance stage.

6.3.2 Continuous-time amplifier

As shown in [Yan02] and confirmed by behavioral simulations, the conti-
nuous-time integrator requires less bandwidth and slewing capability. Nev-
ertheless, a large DC gain is still necessary, especially for the first integra-
tor where the non-linearity directly impacts the resolution without any
spectral shaping. Therefore the two-stage topology shown in Figure 6.6
was chosen. The topology consists of a folded cascode first-stage followed
by a common source amplifier with cascode-Miller compensation. More
details are provided in [Ste07, HH96] about how to adequately damp the
resonance introduced by such a compensation.
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cascode source
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28/1

50/1
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cmfb
13/1

0.42pF
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common source

40/1

3/0.2

22uA
common source

out+

in+ in−

Figure 6.6 Continuous-time integrator amplifier.

The differential gain reaches 78dB with a bandwidth of 71MHz and a
phase margin of 80◦. The common-mode gain reaches 64dB with a band-
width of 7.5MHz and a phase margin of 72◦. Time-domain simulations of
the system with this amplifier, the sampling amplifier and the i-DAC at
transistor level, gave an SNDR of 94.3dB.

The common-mode feedback is realized with an additional current
source controlled by the circuit in Figure 6.7. The same circuit is used
for all the three amplifiers. The topology comprises two differential pairs.
Their output currents are combined such as to provide a current propor-
tional to the difference between the common-mode of out+ and out– and
the reference node ref. This current is therefore mirrored and either added
or used directly in the active load.

Transistor level simulations revealed an important leakage from the
differential mode to the output common-mode. common-mode output
voltage variations of about 100mV peak-to-peak were observed. Such
large common-mode variations drastically reduce the amplifier swings.
Since the common-mode Rejection Ratio (CMRR) is limited, the varia-
tions propagate through the system with an additional contribution at
each amplifier output.
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This leakage is mainly due to the highly non-linear nature of the differ-
ential pairs. A large differential signal at nodes out+ and out– saturates the
pairs. Consequently, the output common-mode tracking is compromised.
The degeneration of the pairs with transistors, as proposed by [Vit01]
and [Joh92], linearizes the transfer characteristic and partially solves the
problem. Besides, while one pair is fed with out+ and ref, the other is fed
with out- and ref. As the differential output voltage increases, the two
pairs experience different input common-modes. Because of the Early
effect, the pair’s current sources are different and the calculation of the
output common-mode error is again compromised. Cascoding the pair
sources reduces this effect. The degeneration of the pairs together with
the cascoding of the current sources allowed the common-mode variations
to be reduced by a factor of 30.

2x5uA
folded linearized pair

20/1

cmfb

out+ out−
ref

2x5uA
folded linearized pair

15/0.5

5/0.5

40/1

Figure 6.7 common-mode feedback circuit.
The sizes of the current mirror transistors
bringing the control signals cmfb are differ-
ent for each amplifier and are therefore not
displayed.

6.3.3 Switched capacitor devices

Switches. All the switches in the sampling stage are controlled by the volt-
age elevator shown in Figure 6.8. The topology is based on the bootstrap-
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ping switch used by [SG04]. In a bootstrapping configuration, the shift

port is connected to either switch terminals a or b. Simulations showed
better results with the shift port at VDD, providing a higher driving volt-
age, whereas the bootstrapping tries to lower the resistance dependence
on the terminal voltage. The charging phase switches of the discrete-time
DAC, shown in Figure 6.2, were also controlled by the same circuit with
smaller sizes.

a

b

HV device
inverter

clk clkb

ctrl

VDD

VSS

shift

VSS

switch

charge pumping

10/0.2

16/0.2

7/0.5

7/0.5

700f
4/0.2

5/0.2

Figure 6.8 Sampling switches and control
circuit.

Sampler. The sampling device is composed of a differential difference
transconductance amplifier in a unity gain configuration, as shown in Fig-
ure 6.2. Figure 6.9 shows the topology chosen. The task of this amplifier
is to charge the sampling capacitors which are fully discharged during the
integration phase. Thanks to the clocking scheme used, two half clock-
cycles are allowed for the signal to settle.

Two complementary differential pairs are folded into a high-impedance
load. This wide-swing capability is required since, in a voltage follower
configuration, the input nodes experience the same large signal as the
outputs. The differential pair sources are cascoded to reject as much as
possible the input common-mode. The high impedance is provided by
cascode current sources. Gain boosting devices, made of simple common-
source amplifiers, further enhance the impedance at low frequencies to
provide a large DC gain. The common-mode feedback circuit in Figure 6.7
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Figure 6.9 Sampling buffer amplifier.
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2x2.5uA
Gain boosting

2x2.5uA

cmfb

2x

is connected to the node cmfb. It directly controls the N-MOS current
sources of the output stage. The common-mode loop gain is low enough
to keep a good phase margin and ensure its stability.

The differential-difference gain reaches 74dB with a bandwidth of
104MHz and a phase margin of 76◦. When the 1pF sampling capaci-
tors are disconnected, the bandwidth goes up to 300MHz and the phase
margin down to 52◦. This situation occurs only during a short period of
time between the end of phase q2 and the beginning of phase s2 and vice
versa. The common-mode gain reaches 46dB with a bandwidth of 47MHz
and a phase margin of 90◦. Time-domain simulations of the system with
the sampling amplifier and switched network at transistor level gave an
SNDR of 92.9dB.
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DT-integrator. The amplifier in the DT integrator is shown in Figure 6.10.
The chosen topology is a folded cascode structure with a gain enhance-
ment. The same common-mode circuit described previously in Figure 6.7
is used. Nevertheless, to ensure the stability of the common-mode loop,
the N-MOS current sources of the output stage are split, as in the case of
the CT integrator.

Figure 6.10 Discrete-time integrator
amplifier.
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cascode source
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out+ out−
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30/0.3
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40/0.25

5/1
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32/0.5

30/0.4

cmfb
52.5/0.5

20/0.5

in+ in−

The operating conditions are similar to those of the sampling ampli-
fier. The load is capacitive and the output impedance is determined by
the amplifier output stage. Nevertheless, the constraints are higher here.
In contrast to the sampling case, this amplifier has less that half a clock-
cycle to perform the charge transfer. Secondly, as shown in Chapter 4,
the auto-ranging algorithm relies on the accuracy of this integration path
to provide well-matched analog and digital shifts. Furthermore, the sig-
nal fed back through the sc-DAC has increased activity with respect to
the i-DAC. In fact, this integrator has to perform two different tasks: the



154 Quantizer design

integration of the quantization errors and the shifting of the quantizer
input.

Because of this, the slewing capability and the transconductance are
more than doubled. These higher specifications require a larger current
in the output stage. Consequently, the output impedance drops. The
cascoded sources are sized accordingly and gain boosting devices enhanced
with cascode transistors.

The differential gain reaches 79dB with a bandwidth of 660MHz and a
phase margin of 75◦. The common-mode gain reaches 23dB with a band-
width of 110MHz and a phase margin of 62◦. Time-domain simulations
of the system with this amplifier, switched network and the sc-DAC at
transistor level gave an SNDR of 90.8dB. A degradation of 2dB is brought
by the DAC switches.

6.4 Quantizer design

6.4.1 Comparator

The quantizer consists of a bank of 10 comparators, such as described
in Figure 6.11. The ref– and ref+ ports are connected to the differential
reference ladder shown in Figure 6.2, and in+ and in– to the last amplifier
output.

The structure is composed of a preamplifier and a clocked latch fol-
lowed by flip-flops. The two preamplifier input pairs perform the difference
between the input and the reference. The differential pairs are cascoded
in order to keep the same characteristics over the whole range of thresh-
old references, from − − 360mV to +360mV. The active load is made
up of current mirrors in a latched configuration. The one-by-one current
ratio gives no hysteresis [AH02, JM97]. Such an active load has the ad-
vantage of not requiring a common-mode feedback while providing high
impedance.

Minimum size transistors are used to improve the speed and to reduce
the capacitive load seen by the last amplifier. Time-domain simulations
of the system with the quantizer and the last amplifier at transistor level
gave an SNDR of 93.3dB.



Design example 155

40uA preamplifier

tracking latch

in+ in−ref+ref−

out

cmp

calib

holdreset

DFF

DFF

1/0.25

0.25/0.2

1/0.2

1/0.2

1.5/0.25

1.5/0.25

0.5/0.25

1.5/0.2

1.8/0.2

1.8/0.2

0.5/0.25

2/0.2

2/0.2

cbc

v1 v2 v3 v4

Figure 6.11 Quantizer latched comparator.

As a result, the statistical offset is large. A transient simulation with
a successive approximation algorithm is used to determine the offset of
the entire comparator chain. The simulation is preformed 2000 times in
a Monte-Carlo analysis. The resulting offset distributions displayed in
Figure 6.12 show a standard deviation of about σ = 12mV.

According to the offset sensitivity determined in Chapter 4, the offset
should remain lower than 3mV. The digital compensation proposed by
[PK06] is used here. For that purpose, access to the comparator inputs are
controlled by the c and cb ports. The compensation consists in shorting
the comparators input over six clock-cycles. A successive approximation
algorithm determines sequentially the 6 bits of a current DAC. The current
DAC feeds differential currents at nodes v1, v2, v3, v4. The compensation
cycles are carried out during the half clock cycles where the comparator is
not in use. Figure 6.13 provides the clocking diagram. The 10 comparators
of the bank are calibrated sequentially. Therefore 60 clock cycles are
necessary for a complete calibration of the quantizer.

This compensation method has a few advantages, the first being that
the calibration requires no interruption of the modulator. Nevertheless,
to avoid any perturbation, the compensation process can be applied oc-



156 Quantizer design

Input offset (mV)
−30 0 +10−20 −10 +20

Input offset (mV)
−30 +300 +10−20 −10 +20

Vref,diff=360mV

std.dev=11.8mV std.dev=12.6mV

Vref,diff=40mV

40

0

80

120

160

200

240

O
cc

ur
re

nc
e 

(−
)

380
(b)(a)

+30 +40−40 +40−40

Figure 6.12 Simulated offset distribution with Monte-Carlo analysis for a differential
reference voltage of (a) 40mV and (b) 360mV.

casionally. In contrast to the conventional compensation with coupling
capacitors, here the entire comparator chain, including the latch, is cor-
rected. In this design the compensation registers and the algorithm are
placed in the digital section. An alternative solution consists in keeping
the registers within the comparator cell to avoid routing the 60 bits.

p2

p1
p1d

p2d

cal

use

reset
DFF

Figure 6.13 Clocking dia-
gram for comparators.

6.4.2 Offset compensation circuit

The compensation is applied via the 6-bit M-3M current DAC described in
Figure 6.14 as proposed by [Pas05, PK06]. The DAC works like a digital
differential pair placed in parallel to the analog pairs of the preamplifier.
A one-to-three transistor network splits the current sink into 6 current
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branches with different weights. The transistors controlled by the digital
ports x0 to x5 also participate in the splitting. At the same time, they
allow the choice of sinking each weighted current into either the positive
or the negative branch of the current collector.

x0 x0x1 x1x4 x4

Digital differential pair

x5 x5

1/1

1/1 1/1

1/1

1/1

1/1

v1current 
collector

v3

v2 v4

Figure 6.14 M-3M DAC used for
the offset compensation.

[PK06] studied the M-2M, M-2.5M and M-3M DAC topologies. An
ideal M-2M topology splits its base current into power-of-two weighted
currents. Nevertheless, the transistors in this ladder topology does not
have the advantage of good matching properties. According to [PK06],
the mismatch tends to reduce the effective resolution of the DAC. Fig-
ure 6.15 shows the effective achievable resolution found with Monte-Carlo
simulations with different topologies. In this transistor level DC simu-
lations, all 64 levels are tested. The smallest step size is extracted and
related to the full swing of the DAC.

The M-2M topology can achieve up to 5 bits of resolution but runs the
risk of reaching 3.4 bits. Such a wide-spread resolution is not acceptable.
In contrast, the M-2.5M topology, such as described in [PK06], achieves
lower resolutions but has a narrower distribution. Finally, the M-3M
presents a well-controlled resolution of 4.6 bits within ±1% of tolerance.
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Figure 6.15 Simulated DAC effective resolution for the M2M (a), M2.5M(b) and M3M
(c) architectures.

Since the process data used in Monte-Carlo were extracted for matched
transistors, we expect worse matching properties in reality. Consequently,
the M-3M topology insures an acceptable compensation at the cost of a
reduced resolution.

6.4.3 Residual offset

By choosing the M-3M topology we set the number of levels to 24, here
referred to the variable n. We now need to choose the DAC steps size Δ
which is related to the compensation range Δ ·n.

Let us consider the offset has a Normal distribution p(x) with a stan-
dard deviation of σ.

p(x) = exp
(−x2

2σ2

)
/(
√

2πσ) . (6.26)

According to the illustration in Figure 6.16, each segment folds back
to the center of the distribution. As a result, the new probability density
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Figure 6.16 Statistical distribution of the offset before (a) and after (b) compensation
with the analytical model.

function is

q(x) =
n−1∑
i=0

f(x, i) , (6.27)

where

f(x, i) =

⎧⎪⎪⎨
⎪⎪⎩

0,
if (i = 0) and (x < −Δ

2 ) ,
or if (0 < i < n − 1) and (|x| < Δ

2 ) ,
or if (i = n − 1) and (x < Δ

2 ) ,
p(x − Δ

(
i − n−1

2

)
) , otherwise .

(6.28)

Let us recall that the standard deviation σ is defined as

σ =
∫ +∞

−∞
x2q(x)dx . (6.29)

Meanwhile, we define here another deviation σ′ for which there is a prob-
ability of 68% of finding x to within ±σ′. The definition is therefore given
by the equation ∫ +σ′

−σ′
q(x)dx = Erf

(
1√
2

)
∼= 0.683 . (6.30)

The standard deviation σ provides a Root Mean Square (RMS) value
of the errors. In contrast, the deviation σ′ links the distributions q(x)
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and p(x) according to their most likely maximum error. On applying the
Normal distribution p(x), both deviations give the same result and we
find σ = σ′.

Figure 6.17 displays these two deviations with respect to Δ. As ex-
pected, for a Δ of zero the residual offset is equal to the original value of
12mV. No compensation is provided in this case. On the other hand, if a
too large value of Δ is chosen, the comparator offset is over-compensated.
The 24 levels used here are therefore wasted. The curves reveal the pres-
ence of two different optimal values considering either σ or σ′.
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Figure 6.17 Statistical deviation expected after compensation with a 24-level DAC
and different step size Δ. An initial offset of 12mW is considered. The dots show the
simulated compensation of Figure 6.18.

Figure 6.18 shows the offset after compensation. These are the re-
sults of a transient simulation at the transistor level. A dedicated test
bench was built for that purpose. During the simulation, the compensa-
tion cycle is applied followed by another successive approximation cycle
to determine the residual offset. The same simulation is performed 800
times in the Monte-Carlo loop. The residual offset has approximately the
characteristics predicted by the chart in Figure 6.16. The distribution
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width and the standard deviation are roughly equal to 1.7mV and 2.2mV
respectively. In fact, the model differs from the simulation in that an ideal
DAC is considered here with n constant steps of Δ.
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Figure 6.18 Offset statistical distribution after compensation. The simulation is per-
formed at transistor level with 800 Monte-Carlo points.

6.5 Final circuit

The final circuit was designed and brought to layout. Figure 6.19 shows
the output power spectral density of a simulation at the transistor level
with an achieved SNDR of 90.4dB. The physical layout of the circuit is
displayed in Figure 6.20, whereas Table 6.4 summarizes the die area and
consumption of the main sections. The digital section consists of two
second-order mismatch shaping encoders, the auto-ranging algorithm and
the comparator offset compensation. The HDL description of the circuit
was synthesized, placed and routed automatically using conventional CAD
tools. The area is small with respect to the rest of the circuit. This clearly
demonstrates that the digital solutions chosen to solve analog issues, like
the ADC and DAC element mismatch, are cost effective.

The auto-ranging algorithm allows a large internal number-of-levels
and, consequently, low sampling frequency and shaping order. Mean-
while, the sensitivity to clock jitter, brought about by the continuous-



162 Final circuit
P

S
D

 (d
B

/H
z)

Frequency (Hz)
100k30k 10M1M 3M300k 30M

−160

−140

−120

−100

−80

−60

−40

−20

0

10k

extracted tone

noise
component

band−of−interest

Figure 6.19 Power spectral density
of the modulator output simulated
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Table 6.4 Consumption and chip area summary.

Component Current, μA Area, mm2

CT integrator amp. 205 0.03

SC integrator amp. 1150 0.04

Sampler amplifier 425 0.04

i-DAC 100 0.04

SC-DAC 140 0.04

Quantizer 545 0.05

Digital circuits 500 0.04

Interconnect and 10pF - 0.07

Sampling capacitors - 0.10

Total 3200 0.54

time integrator, is reduced. The expected increased size of the quantizer
is circumvented. A quantizer with three times the size, consumption and
capacitive load, would have been needed without the algorithm. In con-
trast, the size of the i-DAC and sc-DAC banks is reasonable, the large
number-of-levels notwithstanding. Furthermore, the space occupied by
the digital section, by its register and three adders is negligible.
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Figure 6.20 Layout of the circuit in a 0.18μm CMOS technology.

The sampling network has been doubled to halve the slew-rate re-
quirement of the sampling amplifier. This roughly corresponds to a 10%
increase in area against a 15% improvement in power consumption.

In a pure switched-capacitor implementation, the first-stage amplifier
would burn more power than the second-stage amplifier. In contrast, the
summary of Table 6.4 shows that the consumption of the first integrator
amplifier represents only a fifth of the discrete-time integrator amplifier.

Chapter 4 showed that the auto-ranging requires the last feedback
path to be accurately controlled, putting a higher constraint on this am-
plifier. However, the excessive consumption of the discrete-time integrator
is mainly due to the increase by a factor of three of its gain. Though a
benefit for the sensitivity to the comparator offsets, this increases the ef-
fective capacitive load Ceff of the amplifier. According to [Bur02] we can
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write for a simple model that

Ceff = Co + Cs + Ci + Co

Cs + Ci

Cf
, (6.31)

where Co and Ci are the amplifier input and output parasitic capacitances,
respectively. In this relationship, Co is multiplied by a ratio that is close
to Cs/Cf . Thus, on the one hand, the auto-ranging algorithm allowed to
reduce by a factor of three Co by reducing the number of comparators.
But on the other hand, to alleviate the offset sensitivity, the ratio Cs/Cf

was increased by the same factor. This drawback could be addressed by
relying more on the offset calibration and reducing the gain.

The sampling amplifier consumes here barely half of the current dissi-
pated in the last stage. In a pure switched-capacitor implementation, the
sampling process would be in front of the modulator and would require
an amplifier consumption of several milliamps.

Finally, it was shown in Section 2.2.6 that with an aggressive pole
placement the modulator could reach an SQNR of 100dB. Choosing to
keep 94dB instead would allow the sampling frequency to be decreased to
about 24MHz. The switched-capacitor amplifier consumption would have
been reduced accordingly by about 30%, bringing the total consumption
down to 2.8mA.

6.5.1 Benchmarking

One of the most commonly used Figure-Of-Merits in the field of ΔΣADC
converters, providing a mean of comparison, is given by

FOM =
P

2ENOBfb
, (6.32)

where P is the total power consumption of the modulator alone and fb

the band-of-interest. The Effective Number Of Bits (ENOB) is estimated
from the Signal-to-Noise-plus-Distortion Ratio (SNDR) as

ENOB =
SNDRdB − 1.76

6.02
. (6.33)

Table 6.5 summarizes some of the most relevant recent publications.
The first three citations are multi-bit hybrid architectures followed by four
pure Continuous-Time (CT) implementations.
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Citation number 4 used a multi-bit tracking quantizer. Numbers 4
and 7 used a single switched-capacitor feedback in order to reduce the
sensitivity to clock jitter. These two last examples achieved by far the
best performance with FOMs lower than 1pJ.

Nevertheless, we should consider that Numbers 6 and 7 used a high
sampling frequency while addressing a specification similar to the one
chosen in this design example. In both cases, the strategy consisted of
achieving the required resolution and bandwidth with a single-bit quan-
tizer and a high order of spectral shaping. We know from the resolution
equation (2.37) that increasing the order has a limited effect on the reso-
lution when the over-sampling is low. As a result, the sampling frequency
is in both cases at least twice the one used in this work.

The recourse to a high sampling frequency has a great impact on the
consumption of the Phase Locked-Loop (PLL). The FOM does not take
into account the consumption of such an external device. The increased
consumption when using high sampling frequencies is therefore hidden.
Moreover, on a large System on Chip (SoC), including an RF front-end,
the presence of such high-frequency components could affect the receiver
sensitivity. The clock signal over-tones corrupt the RF signals through
substrate coupling and the power supply lines. In contrast, choosing to
address the same specifications with a large number of levels allows the
sampling frequency to be low and circumvents this issue.

According to the trend given in Figure 4.22, a second-order modu-
lator with 11-level quantizer would address a target of 70dB over 2MHz
with a sampling frequency of 80MHz. In contrast, Citation Number 4
of Table 6.5, which used a tracking quantizer, a method similar to the
auto-ranging algorithm, required a clock at 104MHz. As in conclusion,
Citation Number 4, together with this work, showed that continuous-time
and hybrid ΔΣ-modulators with multi-bit emulation are promising archi-
tectures.

As for Citations 1 and 2, which address audio applications with high
resolution and small bandwidth, the achieved FOM is rather low. Accord-
ing to the trend in Figure 4.22, less than 2MHz of sampling frequency
would be required by a second-order modulator with the auto-ranging
algorithm. The algorithm efficiency would be extremely high with more
than 80 emulated levels from a 10-comparator quantizer.
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6.6 Conclusions

A complete design was carried out from the high-level specification down
to the circuit description and layout in a CMOS technology. The low-
power design strategy of Chapter 3 was applied. The resulting perfor-
mance, power consumption and die area, are comparable to the best pub-
lished solutions. The comparison highlighted that, today, two different
strategies have proved to achieve high-performance and low power con-
sumptions. On one side, we find the high-order single-bit continuous-time
and, on the opposite side, the low-order multi-bit hybrid implementa-
tions. However, we have demonstrated that the strategy proposed here
offers better extendability to various specifications and applications. In
particular, it would allow for a significant reduction of the sampling fre-
quency for wide bandwidth applications, which becomes mandatory in
large multi-standard SoCs addressing the consumer market today.





Chapter

7
Conclusions

7.1 Thesis outlook

This thesis proposes a low-power methodology for Analog-to-Digital Con-
verters (ADC) based on multi-bit ΔΣ-modulation. At the system level,
the design of a single-stage modulator has three degrees of freedom: the
internal Number-of-Levels (NL), the Over-Sampling Ratio (OSR) and the
spectral shaping order (n). The equation of the Signal-to-Quantization-
Noise Ratio (SQNR) gives the expected ADC resolution as a function of
this set of parameters. It shows that, for a targeted resolution, different
sets of n, NL and OSR are possible. It is common to find throughout the
literature of the past two decades ADCs realized with single-bit modula-
tors. In such cases, NL is set to its minimum value of 2. The modulator
has only one comparator and one element in the feedback DAC. Moderate
resolutions up to 12 bits are achieved thanks to a large OSR. Single-bit
architectures have been highly praised for the simplicity with which such
a resolution can be achieved.

However, today’s portable communication applications demand the
same moderate resolution but with bandwidths of up to several mega-
hertz. Relying on large OSR only would result in very high sampling
frequencies. Recent publications have demonstrated the low power con-
sumption of single-bit modulators with continuous-time implementations.
The required resolution is reached thanks to an increased spectral shaping
order and a moderate OSR. However, the sampling frequency can still ex-
ceed 100MHz. Moreover, part of the consumption has simply moved from
the modulator to the Phase Locked Loop (PLL) generating the clock sig-
nals. Additionally, the presence of such a fast clock signal on a large

169
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RF System-on-Chip (SoC) is not suitable because of the risk of unwanted
mixing with RF signals.

In this thesis we propose a low-power strategy relying on a large NL
rather than on a high OSR or shaping order. The sampling frequency
remains low. However, as highlighted in [Le 05], as the available voltage
supply is reduced in modern deep sub-micron technologies, the internal
number-of-levels becomes limited. Moreover, increasing NL results in a
large capacitive load for the last integrator, which could increase the power
consumption in that stage. To circumvent these issues, an auto-ranging al-
gorithm was developed in this thesis. The algorithm emulates the internal
levels from a reduced-size quantizer. The technique reuses the feedback
path of the modulator to shift the quantizer analog input. No extra analog
circuitry is necessary. The same shift is applied on the digital part.

In contrast to single-bit modulators, multi-bit architectures require
a Dynamic Element Matching (DEM) algorithm. Choosing to increase
the NL therefore has an impact on the digital complexity. This issue is
addressed with an appropriate segmentation of the DACs. A synthesis al-
gorithm is proposed in this thesis, allowing all the possible tree structures
to be found and the most efficient one in terms of power consumption to
be chosen.

As part of the strategy to further reduce the power consumption, the
first-stage of the modulator is realized as a continuous-time integrator.
The choice of a large NL significantly alleviates the sensitivity to clock-
jitter which is the main drawback of continuous-time implementations.
The continuous-to-discrete-time interface issue is addressed with a double
sampling scheme which allows twice as much time to charge the sampling
capacitors of the second stage.

The auto-ranging algorithm requires an accurate last feedback inte-
gration path. To that extent, it is necessary to realize the last integrator
with a switched-capacitor circuit, therefore relying on the good matching
properties of MIM capacitors or metal fringe capacitors available in mod-
ern CMOS technologies. We can also claim that keeping the upper stages
of the modulator in the discrete-time domain allows a design with more
aggressive quantization noise shaping. As a result, with such a hybrid
architecture, a further reduction of the sampling frequency is possible.

The methodology presented in this dissertation is sustained by a de-
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sign example addressing the specifications for a typical BLUETOOTH
receiver with direct conversion. A 33-level second-order modulator is de-
signed from these specifications down to the physical layout description.
Other constraints, like the presence of large out-of-band interferers, were
taken into account. The architecture parameters NL, OSR and n were
chosen such as to optimize both the sensitivity to clock jitter and the
auto-ranging efficiency.

The proposed strategy appears to be an optimal combination of dif-
ferent techniques in view of reducing the power consumption, the voltage
supply and the sampling frequency. These three criteria are essential when
developing low-cost large SoCs for future portable applications.

7.2 Main contributions

An auto-ranging algorithm which allows a reduction in the number of com-
parators in a multi-bit ΔΣ-modulator has been developed. With respect
to similar techniques proposed by other authors, this algorithm does not
require any extra analog circuitry. Instead, an existing part of the modu-
lator is reused. Moreover, the proposed implementation can be used with
low voltage supplies. A patent application has been filed in collaboration
with Freescale Semiconductor.

The limitation of the algorithm due to large out-of-band interferers,
was studied analytically. The development revealed the optimal modula-
tor parameter set that gives the highest efficiency in reducing the number
of comparators. Additionally, the extendability to different applications
was studied. Behavioral simulations showed that the sensitivity to the
offset of the comparators remains unchanged, but the required accuracy
on the last feedback path is increased.

An in-depth analytical development of the sensitivity to clock jitter
was carried out, also revealing an optimal modulator parameter set. Since
the auto-ranging efficiency and the jitter sensitivity mechanism are related
to the same phenomenon, the same optimal solution was found.

A synthesis algorithm for segmented tree-structured DEMs was devel-
oped. The synthesis revealed an optimal segmentation providing a signif-
icant power saving. An analytical expression of the power consumption
has been derived for the standard segmentation.
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7.3 Future perspectives

The auto-ranging algorithm is a really promising technique. However, only
part of its potential has been exploited here. First of all, it was shown
that the efficiency is limited by large out-of-band interferers. Hence, a
minimum OSR with respect the fastest concerned input frequency is re-
quired. In depth investigations should help to find out how to circumvent
this important restriction. For instance, the re-centering decision scheme
used here was rather conservative. An anticipating scheme, shifting the
signal back to a level beyond the center of the quantization window, may
allow interferers to be tracked at higher frequencies. Secondly, in this
thesis only integer values for the last feedback coefficient were considered.
This limits the degrees of freedom when designing a modulator with an
aggressive noise shaping. One possible way of removing this restriction is
to use a separate feedback for the shifts.

The basic principles of the auto-ranging have been analysed in de-
tail. Nevertheless, an analytical model to predict the sequence of shifting
pulses is necessary. Such a model would help to predict the extra activity
processed by the last integrator. By this mean, an estimation of the addi-
tional power consumption would by possible. Similarly, the sensitivity to
circuit imperfections, such as the amplifier DC gain, the comparator off-
set and the last coefficient accuracy could be analyzed. All these aspects,
if studied in detail, would help to determine the achievable performance
when addressing different applications.

The synthesis algorithm developed for the segmented DEM can be
made more efficient and implemented in a compiled code to reduce the
computing time. This is essential if a very large number of levels is to be
considered.

More investigations are also necessary at the circuit level. An analyt-
ical model of the amplifiers would allow the influence of the auto-ranging
on the consumption to be understood and also the exact role of the in-
terfacing buffer. Besides, a general comparison of the continuous- and
discrete-time integrators may reveal that with a very large NL their con-
tributions to the power consumption are of the same order of magnitude.
This would also help when revisiting the amplifier topology choice made
in the design example. In particular, it should be noted that [Bur02] con-
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cludes that two-stage amplifiers are better suited for switched-capacitor
circuits with a large gain, such as the last integrator of the example.

Finally, increasing the order of the modulator is an option to be con-
sidered to further increase the noise shaping and reduce the sampling
frequency over very large signal bandwidths. The first-stage would, of
course, remain a continuous-time integrator and any further stages should
be discrete-time integrators.





Appendix

A
Mathematical definitions and proofs

A.1 Definition of the norms

The different norms in use throughout this document follow the definitions
provided by the dictionary of mathematics [Uni97], where the p-norm, in
the general case, is defined as:

‖x‖p =

(
n∑

i=0

|xi|p
)1/p

, ∀p ∈ R+ . (A.1)

In particular, the 1-norm and 2-norm of a finite impulse response z-
transfer-function, such as

A(z) =
n∑

i=0

aiz
−i, (A.2)

where the coefficients ai ∈ R are defined as the sum of the absolute value
of the coefficients and their square:

‖A(z)‖1 =
n∑

i=0

|ai| , (A.3)

‖A(z)‖2 =

√√√√ n∑
i=0

|ai|2 . (A.4)

Besides, the ∞-norm of a sequence xi becomes the highest absolute
value of the sequence:

‖x‖∞ = max(|xi|) . (A.5)
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A.2 The 1-norm of a z transfer-function

The 1-norm is used in Chapter 2 to calculate noise range factor kq defined
as

kq =

∥∥∥∥∥
n∏

i=1

(1 − ziz
−1)

∥∥∥∥∥
1

. (A.6)

By applying the so-called Vieta’s formulas [Kos81], we can write

kq =

∥∥∥∥∥∥∥∥∥∥
n∑

i=0

z−i (−1)i
∑

q1<q2<...<qi

zq1zq1 . . . zqi

︸ ︷︷ ︸
ai

∥∥∥∥∥∥∥∥∥∥
1

. (A.7)

Considering that the complex values of zi ∈ C always appear in con-
jugated pairs and that Re[zi] ≥ 0, ∀zi, the sum of all the products
zq1zq1 . . . zqi ∈ R+. The sum of the products is always positive, so the
terms z−i(−1)i are removed by the norm and we can write

kq =
n∑

i=0

∑
q1<q2<...<qi

zq1zq1 . . . zqi . (A.8)

The same result can be obtained by applying Vieta’s formulas to the
product of (1 + zi):

n∏
i=0

(1 + zi) =

(
n∑

i=0

∑
q1<q2<...<qi

zq1zq1 . . . zqi

)
. (A.9)

We can therefore conclude that

kq =
n∏

i=0

(1 + zi) . (A.10)
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A.3 The 2-norm of a z transfer-function

The 2-norm is used in Chapter 3 to calculate the standard deviation of a
random sequence that goes through a z-transfer-function

ΔY (z) = Q(z) · (1 − z−1)n+1 . (A.11)

Each i-delayed version of the sequence is multiplied by its factor ai

providing the variance

σ2
Δy = σ2

q ·
n+1∑
i=0

a2
i . (A.12)

As a result we can write

σΔy = σq

∥∥(1 − z−1)n+1
∥∥

2
. (A.13)

The norm is determined by the sum of the squares of the binomial
coefficients ∥∥(1 − z−1)n+1

∥∥
2

=

√√√√n+1∑
k=0

(
k

n + 1

)2

. (A.14)

To further develop (A.14) let us consider the expression

(1 + x)2n =
[
1 +

(
1
n

)
x + · · · + xn

] [
xn +

(
1
n

)
xn−1 + · · · + 1

]
.

Expanding both sides and highlighting the term in xn reveals another
representation of the sum in Equation (A.14). It follows that

1 + · · · +
(

n

2n

)
xn + · · · + x2n = 1 + · · · +

n∑
k=0

(
k

n

)2

xn + · · · + x2n .

We can therefore write
n∑

k=0

(
k

n

)2

=
(

n

2n

)
. (A.15)

The equivalence applied to our specific case yields

∥∥(1 − z−1)n+1
∥∥

2
=

√(
n + 1
2n + 2

)
=

√
(2n + 2)!
(n + 1)!

. (A.16)



178 Differential pair model

A.4 Differential pair model

Figure A.1 is a general description of the differential pair used in a transcon-
ductance stage. The degeneration resistances R/2 are used for the lin-
earization of the characteristic in the gm-C filter or in the common-mode
feedback loops.

R/2

V1

R/2
V2

2I0

I0 I0
I /2

I1 I2

I /2

gm0 gm0

Figure A.1 General description of
the differential pair with resistance
degeneration.

fAccording to [Vit01], the inversion-factor, here referring to the vari-
able x, is defined as the drain current Id normalized by the specific current
Is, which is given by:

Is = 2μCox

W

L
nU2

T . (A.17)

The slope factor n is considered here as a constant as are the other param-
eters. The rest inversion-factor x0 of the transistors when the differential
pair is in equilibrium is therefore

x0 = I0/Is . (A.18)

The analytical transistor model presented in [Vit01] considers the tran-
sistor terminal voltages Vg, Vs and Vd measured from the substrate. The
pinch-off voltage Vp is defined as

Vp = (Vg − VT0)/n , (A.19)
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where VT0 is the threshold voltage. The model provides continuous func-
tions linking the normalized transconductance y and driving voltage z to
the inversion-factor x given by

z =
Vp − Vs

UT
=

√
1 + 4x + ln

(√
1 + 4x − 1

)− 1.365 , (A.20)

y =
gmnUT

Id
=

2
1 +

√
1 + 4x

. (A.21)

From the circuit description of the differential pair in Figure A.1, we
determine the transistor inversion-factors x1 and x2 from

⎧⎪⎪⎨
⎪⎪⎩

ΔI = I1 − I2

I0 = I1 + I2

I1,2 = I0 (1 ± ΔI/2)
ΔV = V1 − V2

⇒ x1,2 = x0

(
1 ± ΔI

2I0

)
. (A.22)

As a consequence, the normalized driving voltage can be expressed as

Δz =
ΔV

nUT
− ΔI

I0
ρ = Q1 − Q2 + ln

(
Q1 − 1
Q2 − 1

)
, (A.23)

where

Q1,2 =

√
1 + 4x0

(
1 ± ΔI

2I0

)
. (A.24)

The parameter ρ is the normalized degeneration resistance defined as

ρ =
RI0

2UT
. (A.25)

Equation (A.23) is used for the behavioral model in spice simulation
described in Appendix B. This implicit equation provides the differential
current ΔI given a differential input voltage ΔV . The other variables are
fixed parameters. The relationship reproduces the transfer characteristic
of the differential pair in all regions from weak to strong inversion in
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a continuous way. For better convergence of the numerical solver, the
equation is rewritten as:

ΔI

2I0
=

[
exp

(
ΔV

nUT
− ΔI

I0
ρ − Q1 + Q2

)
(Q2 − 1) + 1

]2

− 1

4x0
− 1 . (A.26)

We note that, without degeneration resistors, for extremely weak
inversion-factors Equation (A.23) becomes

lim
x0→0

ΔV

nUT
= ln

1 +
ΔI

2I0

1 − ΔI

2I0

. (A.27)

By rewriting the expression we find the well-known transfer characteristic
of the differential pair in weak inversion:

ΔI = 2I0 tanh

[
ΔV

2nUT

]
. (A.28)

By taking the derivative of the implicit equation (A.23) we find an
expression with the equilibrium transconductance gm0:

I0

gm0nUT
− ρ =

1 +
√

1 + 4x0

2
. (A.29)

We note that the expression without degeneration resistors is identical
to the definition of the normalized transconductance (A.21). From this
expression, we calculate the inversion-factor for a targeted gm0 as well as
a degeneration normalized resistance ρ:

x0 =

(
2I0

gm0nUT
− 2ρ − 1

)2

− 1

4
. (A.30)

As a result, we are able to find I1,2 as a function of the input differen-
tial voltage ΔV for a desired gm0 and I0. This model is implemented by
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the Verilog-A Code B.1. The transconductance is given as a normalized
parameter γ = gm0/I0. For typical values of n = 1.2 and UT = 26mV , the
ratio γ goes from 0, in strong inversion, to a maximum of 32 in extremely
weak inversion. For an inversion-factor of 1 we find γ = 20.

Equation (A.28) is used for the simplified model implemented by
Code B.2. By taking the derivative of the expression we find the qui-
escent normalized transconductance γ = 1/nUT . Substituting γ in Equa-
tion (A.28) gives an expression controlled by the quiescent transconduc-
tance and current:

ΔI = 2I0 tanh [γΔV/2] . (A.31)

As expected, Equations (A.31) and (A.28) perfectly match for values of γ
close to 30 without degeneration resistance.
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B
Verilog-A codes

B.1 Transconductance behavioral model

Code B.1 Transconductor stage behavioral model based on EKV transistor model.

‘include "std.va"
‘include "const.va"

module gmcell( inp, inn, outp, outn);
inout inp, inn, outp, outn ;
electrical inp, inn, outp, outn ;

parameter real i0=1u;// diff pair current source
parameter real gamma=10;// norm. transc. gm0/i0
parameter real rho=0;// norm. resistor R*io/2UT
parameter real n=1.2;// MOSFET slope factor
parameter real UT=26m;// Thermodynamic voltage
parameter real offset=0; // Input offset
parameter real ic0min=1e-10;//Minimum inv. factor

real v,deltai,ic0,Qp,Qn;

analog begin
v=(V(inp,inn)-offset)/(n*UT);
ic0=0.25*(pow(2/(gamma*n*UT)-2*rho-1,2)-1);
if (ic0<ic0min) begin ic0=ic0min;

$strobe("inversion-factor required too small!\n");
end;

deltai=2*I(outp);
Qp=sqrt(abs(1+4*ic0*(1+deltai/i0/2)));
Qn=sqrt(abs(1+4*ic0*(1-deltai/i0/2)));
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I(outp) <+ i0*(0.25*(pow(1+(Qn-1)*exp(v-rho*deltai/i0-
Qp+Qn),2)-1)/ic0-1);

I(outn) <+ -I(outp);

I(inp) <+0;
I(inn) <+0;
end

endmodule

Code B.2 Transconductance stage simplified model.

‘include "std.va"
‘include "const.va"

module gmcell_simple( inp, inn, outp, outn);
inout inp, inn, outp, outn ;
electrical inp, inn, outp, outn ;

parameter real i0=1u; // diff pair current source
parameter real gamma=10;// norm. transc. (DI/DV)/i0
parameter real offset=0; // Input offset
real v;

analog begin
v=V(inp,inn)-offset;

I(outp) <+ i0*tanh(gamma*v/2);
I(outn) <+ -I(outp);

I(inp) <+0;
I(inn) <+0;

end

endmodule
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C
MATHEMATICA codes

C.1 Synthesis functions

Code C.1 Recursive synthesis function.

BuildTree[N_, d_] := Module[{sollist = {}},
If[N == 2d, {f, {d \[CapitalDelta], d \[CapitalDelta]}},
If[N > 8 d, sollist = Join[sollist,

{{q, {BuildTree[N, 4d], BuildTree[8 d, d]}}}]];
If[N > 2 d, sollist = Join[sollist,

{{h, {BuildTree[N, 2d], BuildTree[2 d, d]}},
{f, {BuildTree[N/2, d], BuildTree[N/2, d]}}}]];

{sollist}]];

Code C.2 Removal of symmetric solutions.

RemoveSymmetry[sol_] := Module[
{poslist =

Sort[Position[sol,
{_, {p : {{{_, _} ..}}, p : {{{_, _} ..}}}} ]],
symmetricblock, blocklist, pos},

If[poslist == {}, sol, pos = First[poslist];
symmetricblock = Part[sol, Sequence @@ pos];
blocklist =
Union[Sort[#] & /@ Tuples[

Last[Last[Last[symmetricblock]]], 2]];
If[MatchQ[Part[sol,

Sequence @@ (Most[Most[pos]])], {_, {_, _}}],
ReplacePart[sol,

{{symmetricblock[[1]], #} & /@ blocklist}, pos],
ReplacePart[sol,
Unevaluated[
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Sequence @@ ({symmetricblock[[1]], #} & /@ blocklist
)],

pos]]]
];

C.2 Extraction and display of the solutions

Code C.3 Extraction of the solutions.

ExtractTrees[sol_] := Module[
{poslist = Sort[Position[sol, {{{_, _}, {_, _} ..}}]],

sollist, pos},
If[poslist == {}, sol,

pos = First[poslist];
sollist = First[Part[sol, Sequence @@ pos]];

Join[
First[Take[ReplacePart[sol, #, pos],
{First[pos]}]] & /@ sollist,

Drop[sol, {First[pos]}]]]
];

Code C.4 Displaying function.

TreeShow[tree_, n_] := Module[{},
TableForm[{tree[[n]] /. {
q -> DisplayForm[FrameBox[StyleForm["Q"]]],
h -> DisplayForm[FrameBox[StyleForm["H"]]],
f -> DisplayForm[FrameBox[StyleForm["F"]]],
a_Integer \[CapitalDelta] ->DisplayForm[FrameBox[ StyleForm[

a"\[CapitalDelta]"]]],
\[CapitalDelta] -> DisplayForm[FrameBox[ StyleForm["\[

CapitalDelta]"]]]}}]
];

Code C.5 Example of Code usage.

tree = {BuildTree[32, 1]};
treeNoSymmetric = FixedPoint[RemoveSymmetry, tree];
sol=FixedPoint[ExtractTrees, treeNoSymmetric];
TreeShow[sol, 347];
Length[sol]

powers = {\[CapitalDelta] -> P\[CapitalDelta], f -> Pf, h ->
Ph, q -> Pq};
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deltas = {\[CapitalDelta] -> 1, f -> 0, h -> 0, q -> 0};
points ={deltas, #\/1000 /.

powers} &\) /@ \((\(Total[Flatten[#]] &\) /@ sol
)\);\)\)
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D
MATLAB codes

D.1 Modulators with auto-ranging

Code D.1 First-order modulator with auto-ranging algorithm.

for i=2:k

%first integrator
sig(i,2)= sig(i-1,2) ...
+ 1.0*x0*(sin(w0*time(i-1)/fs)) ...
+ 1.0*xi*(sin(wi*time(i-1)/fs)) ...
- 1.0*outp(i-1)...
+ dither(i+1);

%quantization

if abs(sig(i,2)) >= NR/2
out(i)=sign(sig(i,2))*(NR-1)/2;

else
out(i)=round(sig(i,2));

end

%auto-ranging algorithm

outsign=sign(out(i));
rngmax=(NL-NR)/2;
ctrlmax=(rngmax-outsign*rng(i));
switch abs(out(i))

case 12, ctrl(i)=outsign*min(12,ctrlmax);
case 11, ctrl(i)=outsign*min(11,ctrlmax);
case 10, ctrl(i)=outsign*min(10,ctrlmax);
case 9, ctrl(i)=outsign*min(9,ctrlmax);
case 8, ctrl(i)=outsign*min(8,ctrlmax);
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case 7, ctrl(i)=outsign*min(7,ctrlmax);
case 6, ctrl(i)=outsign*min(6,ctrlmax);
case 5, ctrl(i)=outsign*min(5,ctrlmax);
case 4, ctrl(i)=outsign*min(4,ctrlmax);
case 3, ctrl(i)=outsign*min(3,ctrlmax);
case 2, ctrl(i)=outsign*min(2,ctrlmax);
case 1, ctrl(i)=outsign*min(1,ctrlmax);
otherwise, ctrl(i)=0;

end

%quantizer reconstruction
outr(i) =rng(i) +out(i);

%pulse for next clock cycle
outp(i) =outr(i)+ctrl(i); %acc2

%range update for next clock cycle
rng(i+1) =rng(i) +ctrl(i); %acc3

end

outr=outr(1:k)-dither(1:k);

Code D.2 Second-order modulator with auto-ranging algorithm.

for i=2:k

%first integrator
sig(i,2)= sig(i-1,2) ...
+ 1.0*x0*(sin(w0*time(i-1)/fs)) ...
+ 1.0*xi*(sin(wi*time(i-1)/fs)) ...
- 1.0*outr(i-1)...
+ dither(i+1);

%second integrator
sig(i,3)= sig(i-1,3) ...
- 2.0*outp(i-1) ...
+ 1.0*sig(i-1,2);

%quantization

if abs(sig(i,3)) >= NR/2
out(i)=sign(sig(i,3))*(NR-1)/2;

else
out(i)=round(sig(i,3));

end
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%auto-ranging algorithm

outsign=sign(out(i));

ctrlmax=floor((rngmax-outsign*rng(i))/2);
switch abs(out(i))

case 16, ctrl(i)=outsign*min(8,ctrlmax);
case 15, ctrl(i)=outsign*min(8,ctrlmax);
case 14, ctrl(i)=outsign*min(7,ctrlmax);
case 13, ctrl(i)=outsign*min(7,ctrlmax);
case 12, ctrl(i)=outsign*min(6,ctrlmax);
case 11, ctrl(i)=outsign*min(6,ctrlmax);
case 10, ctrl(i)=outsign*min(5,ctrlmax);
case 9, ctrl(i)=outsign*min(5,ctrlmax);
case 8, ctrl(i)=outsign*min(4,ctrlmax);
case 7, ctrl(i)=outsign*min(4,ctrlmax);
case 6, ctrl(i)=outsign*min(3,ctrlmax);
case 5, ctrl(i)=outsign*min(3,ctrlmax);
case 4, ctrl(i)=outsign*min(2,ctrlmax);
case 3, ctrl(i)=outsign*min(2,ctrlmax);
case 2, ctrl(i)=outsign*min(1,ctrlmax);
otherwise, ctrl(i)=0;

end

%quantizer reconstruction
outr(i) =rng(i) +out(i);

%pulse for next clock cycle
outp(i) =outr(i)+ctrl(i); %acc2

%range update for next clock cycle
rng(i+1) =rng(i) +ctrl(i)*2; %acc3

end

outr=outr(1:k)-dither(1:k);

Code D.3 Third-order modulator with auto-ranging algorithm.

for i=2:k
%first integrator
sig(i,2)= sig(i-1,2) ...
+ 1.0*x0*(sin(w0*time(i-1)/fs)) ...
+ 1.0*xi*(sin(wi*time(i-1)/fs)) ...
- 1.0*outr(i-1);
%second integrator
sig(i,3)= sig(i-1,3) ...
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- 3.0*outr(i-1) ...
+ 1.0*sig(i-1,2);
%third integrator
sig(i,4)= sig(i-1,4) ...
- 3.0*outp(i-1) ...
+ 1.0*sig(i-1,3);
%quantization
if abs(sig(i,4)) >= (NR)/2

out(i)=sign(sig(i,4))*(NR-1)/2;
else

out(i)=round(sig(i,4));
end

%auto-ranging algorithm

outsign=sign(out(i));

ctrlmax=floor((rngmax-outsign*rng(i))/3);
switch abs(out(i))

case 16, ctrl(i)=outsign*min(5,ctrlmax);
case 15, ctrl(i)=outsign*min(5,ctrlmax);
case 14, ctrl(i)=outsign*min(4,ctrlmax);
case 13, ctrl(i)=outsign*min(4,ctrlmax);
case 12, ctrl(i)=outsign*min(4,ctrlmax);
case 11, ctrl(i)=outsign*min(3,ctrlmax);
case 10, ctrl(i)=outsign*min(3,ctrlmax);
case 9, ctrl(i)=outsign*min(3,ctrlmax);
case 8, ctrl(i)=outsign*min(2,ctrlmax);
case 7, ctrl(i)=outsign*min(2,ctrlmax);
case 6, ctrl(i)=outsign*min(2,ctrlmax);
case 5, ctrl(i)=outsign*min(1,ctrlmax);
case 4, ctrl(i)=outsign*min(1,ctrlmax);
case 3, ctrl(i)=outsign*min(1,ctrlmax);
otherwise, ctrl(i)=0;

end

%quantizer reconstruction
outr(i) =rng(i) +out(i);

%pulse for next clock cycle
outp(i) =outr(i)+ctrl(i); %acc2

%range update for next clock cycle
rng(i+1) =rng(i) +ctrl(i)*3; %acc3

end
outr=outr(1:k);
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D.2 Mismatch shaping encoder

Code D.4 Second-order mismatch shaper.

if (mod(in,2)~=0)
if acc(ii,jj)==0)&(acc2(ii,jj)==0) q=ran;
elseif (acc(ii,jj)==0) q=-sign(acc2(ii,jj));
else q=-sign(acc(ii,jj)); end

else
q=0;

end
if (abs(acc2(ii,jj)+acc(ii,jj))<=acc2max)

acc2(ii,jj)=acc2(ii,jj)+acc(ii,jj); end
if (mod(in,2)~=0)

acc(ii,jj)=acc(ii,jj)+q; end

Code D.5 Third-order mismatch shaper.

if (mod(in,2)~=0)
if (acc(ii,jj)==0)&(acc2(ii,jj)==0)&(acc3(ii,jj)==0)
q=ran;

elseif (acc(ii,jj)==0)&(acc2(ii,jj)==0)
q=-sign(acc3(ii,jj));

elseif (acc(ii,jj)==0)
q=-sign(acc2(ii,jj));

else
q=-sign(acc(ii,jj));

end
else
q=0;
end
%%%%% accumulators %%%%%%%%%%%%
acc3(ii,jj)=acc3(ii,jj)+acc2(ii,jj);
acc2(ii,jj)=acc2(ii,jj)+(2^acr)*acc(ii,jj)-floor(acc3(ii,jj)

/128);
acc(ii,jj)=acc(ii,jj)+q;
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Code D.6 Standard segmented tree structure with first-order shaping. The parameters
N and depth are the encoder and segmentation depths respectively.

treesize=2^(N-depth-1);

for ii = 2:N+1,
if (ii<=depth+1) jpairrange=1;
elseif (ii< N+1) jpairrange=2^(ii-depth-2);
else jpairrange=treesize+depth;
end
r=sign(randn(1)); %+1 or -1;

for jj = 1:jpairrange,
%%%%%%% wireing %%%%%%%%%
if (jj<=treesize)

in=y(ii-1,jj); %%unsegmented
else

in=y( (depth+2)-(jj-treesize),2);%%segmented
end
%%%%%%% first-ordre shaper %%%%%%%

if (mod(in,2)~=0)
if (acc(ii,jj)==0)

q=ran;
else

q=-sign(acc(ii,jj));
end

else
q=0;

end
if (mod(in,2)~=0) acc(ii,jj)=acc(ii,jj)+q; end

%%%%%%% switching blocks %%%%%%%%%
if (ii>depth+1), %F blocks

y(ii,2*jj-1)=(in+q)/2;
y(ii,2*jj) =(in-q)/2;

else %H blocks
y(ii,2*jj-1)=(in+q)/2;
y(ii,2*jj) =-q+1; %%+1signed to unsigned

end

end
end
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