11 research outputs found

    Lightening Global Types

    Get PDF
    Global session types prevent participants from waiting for never coming messages. Some interactions take place just for the purpose of informing receivers that some message will never arrive or the session is terminated. By decomposing a big global type into several light global types, one can avoid such kind of redundant interactions. Lightening global types gives us cleaner global types, which keep all necessary communications. This work proposes a framework which allows to easily decompose global types into light global types, preserving the interaction sequences of the original ones but for redundant interactions.Comment: In Proceedings PLACES 2014, arXiv:1406.331

    Comparing the expressive power of the Synchronous and the Asynchronous pi-calculus

    Full text link
    The Asynchronous pi-calculus, as recently proposed by Boudol and, independently, by Honda and Tokoro, is a subset of the pi-calculus which contains no explicit operators for choice and output-prefixing. The communication mechanism of this calculus, however, is powerful enough to simulate output-prefixing, as shown by Boudol, and input-guarded choice, as shown recently by Nestmann and Pierce. A natural question arises, then, whether or not it is possible to embed in it the full pi-calculus. We show that this is not possible, i.e. there does not exist any uniform, parallel-preserving, translation from the pi-calculus into the asynchronous pi-calculus, up to any ``reasonable'' notion of equivalence. This result is based on the incapablity of the asynchronous pi-calculus of breaking certain symmetries possibly present in the initial communication graph. By similar arguments, we prove a separation result between the pi-calculus and CCS.Comment: 10 pages. Proc. of the POPL'97 symposiu

    Design of asynchronous supervisors

    Full text link
    One of the main drawbacks while implementing the interaction between a plant and a supervisor, synthesised by the supervisory control theory of \citeauthor{RW:1987}, is the inexact synchronisation. \citeauthor{balemiphdt} was the first to consider this problem, and the solutions given in his PhD thesis were in the domain of automata theory. Our goal is to address the issue of inexact synchronisation in a process algebra setting, because we get concepts like modularity and abstraction for free, which are useful to further analyze the synthesised system. In this paper, we propose four methods to check a closed loop system in an asynchronous setting such that it is branching bisimilar to the modified (asynchronous) closed loop system. We modify a given closed loop system by introducing buffers either in the plant models, the supervisor models, or the output channels of both supervisor and plant models, or in the input channels of both supervisor and plant models. A notion of desynchronisable closed loop system is introduced, which is a class of synchronous closed loop systems such that they are branching bisimilar to their corresponding asynchronous versions. Finally we study different case studies in an asynchronous setting and then try to summarise the observations (or conditions) which will be helpful in order to formulate a theory of desynchronisable closed loop systems

    Receptive process theory

    Get PDF

    A logical interface description language for components

    Get PDF
    Motivated by our earlier work on the IWIM model and the Manifold language, in this paper, we attend to some of the basic issues in component-based software. We present a formal model for such systems, a formal-logic-based component interface description language that conveys the observable semantics of components, a formal system for deriving the semantics of a composite system out of the semantics of its constituent components, and the conditions under which this derivation system is sound and complete. Our main results in this paper are the theorems that formulate the notion of compositionality and the completeness of the derivation system that supports this property in a component-based system

    Saturating automata for game semantics

    Get PDF
    Saturation is a fundamental game-semantic property satisfied by strategies that interpret higher-order concurrent programs. It states that the strategy must be closed under certain rearrangements of moves, and corresponds to the intuition that program moves (P-moves) may depend only on moves made by the environment (O-moves). We propose an automata model over an infinite alphabet, called saturating automata, for which all accepted languages are guaranteed to satisfy a closure property mimicking saturation. We show how to translate the finitary fragment of Idealized Concurrent Algol (FICA) into saturating automata, confirming their suitability for modelling higher-order concurrency. Moreover, we find that, for terms in normal form, the resultant automaton has linearly many transitions and states with respect to term size, and can be constructed in polynomial time. This is in contrast to earlier attempts at finding automata-theoretic models of FICA, which did not guarantee saturation and involved an exponential blow-up during translation, even for normal forms.Comment: Presented at MFPS 202

    Clocks, communications, and correctness

    Get PDF

    Theories for Session-based Governance for Large-scale Distributed Systems

    Get PDF
    PhDLarge-scale distributed systems and distributed computing are the pillars of IT infrastructure and society nowadays. Robust theoretical principles for designing, building, managing and understanding the interactive behaviours of such systems need to be explored. A promising approach for establishing such principles is to view the session as the key unit for design, execution and verification. Governance is a general term for verifying whether activities meet the specified requirements and for enforcing safe behaviours among processes. This thesis, based on the asynchronous -calculus and the theory of session types, provides a monitoring framework and a theory for validating specifications, verifying mutual behaviours during runtime, and taking actions when noncompliant behaviours are detected. We explore properties and principles for governing large-scale distributed systems, in which autonomous and heterogeneous system components interact with each other in the network to accomplish application goals. This thesis, incorporating lessons from my participation in a substantial practical project, the Ocean Observatories Initiative (OOI), proposes an asynchronous monitoring framework and the process calculus for dynamically governing the asynchronous interactions among distributed multiple applications. We prove that this monitoring model guarantees the satisfaction of global assertions, and state and prove theorems of local and global safety, transparency, and session fidelity. We also study and introduce the semantic mechanisms for runtime session-based governance and the principles of validation of stateful specifications through capturing the runtime asynchronous interactions.EPSRC grants EP/G015481/1; Queen Mary University of Londo
    corecore