

Clocks, communications, and correctness

Citation for published version (APA):
Zhou, P. (1993). Clocks, communications, and correctness. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR405965

DOI:
10.6100/IR405965

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR405965
https://doi.org/10.6100/IR405965
https://research.tue.nl/en/publications/feabba76-8f21-4fcf-a2d9-c1b04e4a4c06

Clocks, Cotntnunications,
and Correctness

PROEFSCHRIFf

ter verkrijging van de graad van doctor aan de
Teclmische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

donderdag 2 december 1993 om 14.00 uur

door

PINGZHOU

geboren te Sichuan, CHINA

druk: wibro dissertatîedrukkerij. holmond.

Dit proefschrift is goedgekeurd

door de promotoren

prof. dr. W.-P. de Roever

prof. dr. J.C.M. Baeten

en de copromotor

dr. J.J.M. Hooman

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Zhou, P.

Clocks, communications, and correctness I P. Zhou.
- Eindhoven: Eindhoven University of Technology
Thesis Eindhoven. - With ref. - With summary in Dutch.
ISBN 90-386-0442-4
Subject headings: real time I fault toleranee I verification.

Acknowledgements

I would like to express my sineere appreciation to prof. Willem-Paul de Roever, my

first promotor, who provided me with the opportunity to workat Eindhoven University

of Technology. During the last years, his criticism, guidance, and encouragement have

always stimulated my work. I am also very grateful to his wife, Corinne de Roever, who

kindly helped me get used to my new life in the Netherlands.

Many thanks go to prof. Jos Baeten for his willingness to be my second promotor

and for his constructive remarks on my thesis draft. Prof. Dieter Hammer is thanked

for his practical view and suggestions concerning my work. I am specially grateful to

prof. Chaochen Zhou for being a memher of my promotion committee and for carefully

reading mythesis draft. Prof. Flaviu Cristian is appreciated for his interest and detailed

comments on a manuscript of chapter 4 of this thesis.

Dr. Ruurd Kuiper is thanked for helping me start my research work and for cooper­

ating on a joint paper. It is my pleasure to thank dr. Jozef Hooman, my copromotor,

who helped me produce this thesis, from the selection of topics to the presentation of my

papers. My colleagues in the section of theoretica! computer science are also thanked

for their kindness and help in many aspects.

My deep appreciation goes to my parents and my elder brother without whose love

and encouragement I could not have finished this thesis. Finally, I thank my husband,

Haoran, who gives me such an enjoyable life and all the support I need during my work.

Contents

1 Introduetion 1

1.1 Real-Time Formalisms 2
1.2 Reai-Time and Fault-Tolerant Applications. 6
1.3 Notion of Time 9

1.4 Overview 10

2 Synehronous Comrnunication 13

2.1 Real-Time Programming Language 13
2.2 Compositional Semantics . 16
2.3 Specification Language 24
2.4 Proof System 28
2.5 Application 33
2.6 Soundness and Completeness . 39

3 Asynehronous Communication 43

3.1 Real-Time Programming Language 43
3.2 Compositional Semantics . 45

3.3 Specification Language .. 54

3.4 Proof System 58
3.5 Soundness and Completeness . 62

4 Atomie Broadeast Protocol 67

4.1 Introduetion 67
4.2 Top-Level Specification 70
4.3 System Assumptions 73
4.4 Server Process Specification 78
4.5 Verification of Termination . 80
4.6 Verification of Atomicity 85
4.7 Verification of Order 93

4.8 Comparison 96

ii

5 Conclusions

5.1 Summary

5.2 Related Work

A Proofs of Lemmas in Chapter 2

B Soundness of the Proof System in Chapter 2

C Preciseness of the Proof System in Chapter 2

D Proofs of Lemmas in Chapter 3

E Soundness of the Proof System in Chapter 3

F Precise Specifications for Statements in Chapter 3

Bibliography

Samenvatting

Curriculum Vitae

CONTENTS

99

99
100

103

113

125

137

145

149

153

161

165

Chapter 1

Introduetion

Computer systems are being used in a wide variety of reai-time applications, such as:

nuclear power plant control, industrial manufacturing control, medica! monitoring, and

fiight systems. Such reai-time systems are characterized by timing constraints relating

occurrences of events. For instance, it is often required that an event is foliowed by

another eventin less than 7 time units, two consecutive occurrences of an event should be

at least 3 time units apart, or a process should terminate by some deadline. Thus not only

the functional but also the timing behavior of these systems is essential. Traditionally,

the correctness of untimed computer systems is determined only by their logica! and

functional behavior. For reai-time systems, their correctness depends on the temporal

properties of their behavior as wel!.

Reai-time systems are usually very complicated. 1t is not easy to guarantee that

they will always meet their timing requirements. When failures occur, it is even more

diflicult to ensure that they will fundion correctly. Fault-tolerance techniques are often

applied in reai-time systems to ensure their correctness despite the presence of faults. All

techniques for achieving fault-tolerance depend on the effective utilization of redundancy,

that is, extra elements in the system which are redundant in thc sense that they would

not be required in a system which could be guaranteed to be free from faults [LA90].

However, the introduetion of redundancy does influence the timing behavior of a system.

For instance, the termination time of some process could be delayed and thus some

deadline might not be met. Therefore reai-time and fauli-tolerance are closely related.

Since there is hardly any existing theory for specifying and verifying reai-time and fault­

tolerant systems, it is a challenging problem to ertsure the correctness of these systems.

In this thesis we investigate formalisms for specifying and verifying reai-time and

fault-tolerant systems and their applications. Thc rest of this introduetion consists of

four sections: in section 1.1 we explain the development of reai-time formalisms, in

section 1.2 we describe thc specification and verification ol' rca.l-time and fault-tolerant

applications, in section 1.3 we discuss thc notion of time~, and in section 1.4 we give the

2 CHAPTER 1. JNTRODUCTION

structure of this thesis.

1.1 Real-Time Formalisms

1.1.1 Programming Language and Semantics

We start withareai-time programming language whîch is si mil ar to Occa.m [Occ88]. This

language is equipped with parallel composition and communication via message passing

along channels, each of which is unidirectional and connects exactly two processes. A

delay-statement is introduced to suspend the execution for some specified time. This

statement may occur in the guard of a guarded command (similar toa delay-statement

in the select-construct of Ada [Ada83]). We consider the following two versions of this

langua.ge which differ in communication mechanisms.

In chapter 2, we study the first version in which communication is synchronous, i.e.,

a sender and a receiver both have to wa.it with communication until a communication

partner is ava.ilable. This version is similar to the CSP langua.ge in [Hoa85]. In contrast

with this, we investigate in chapter 3 the second version of the programming language

where communication is asynchronous, namely, a sender does not wait to synchronize

with a receiver, but a receiver still has to wait for a message arriving if there are no

messages in the buffer of a particular channel. It is assumed that all channels are

capable of buffering an arbitrary number of messages. This is similar to the asynchronous

communication mechanism defined in [JJH90].

Our a.im is to develop a compositional proof system for the programming language.

Compositionality enables us to derive the specification of a compound programming

la.nguage construct from specifications of its constituent pa.rts without any information

about the internal structure of these parts [Ger84,Roe85]. A good starting point for a

compositional proof system is a compositional semantics, i.e., the meaning of a process

can be derived from the meanings of its components. Thus, for each of the two versions,

the meaning of the programming la.nguage is defined by a compositional semantics. To

achieve compositionality, the sema.ntics of a process contains all possible computations

of the process in any arbitrary environment, since the actual environment is not known

in advance. Later, when we compose this process with some environment, impossible

computations with respect to the given environment are excluded from the sernantics of

the composition of the process and this environment.

The two versionsof the programming language ha.ve different models of computation,

since they have different communication mechanisms. For both versions, their models

describe for each process its states, i.e., mappings from variables t.o values, and its com­

munication behavior, i.e., sending and receiving of messages. In pa.rticular, the model

1.1. REAL-TIME FORMALISMS 3

for the synchronous version also records when a process is waiting to send or to receive

on a specific channel. This waiting information is needed to obtain a compositional

semantics for this language. This is justified by the fact that this extra information

appears in the fully abstract semantics fora similar language given in [HGR87]. For the

asyncbronous version, the model does not include waiting information of processes but

contains explicit assumptions about the environment. This is consistent with [BH92] in

which a fully abstract semantics for a similar language does not contain such waiting

information.

In order to describe the reai-time behavior of processes written in the programming

language, we need to make assumptions about the execution time of statements. In gen­

era!, there are two approaches to model the timing aspects of statements. One, taken for

example in [NRSV90,BB91,HMP92], assumes tbat all statements except delays take zero

time. The otber, which is taken in this thesis as wel! as in timed CSP [RR86], assumes

that every statement takes some amount of positive time. We will use parameters to

represent the execution time of atomie statements and the time needed for the execution

of compound statements. The correctness of a process with respect to a specification,

which may express timing properties, is verified relative to these assumptions.

Another important assumption involves parallel composition. In this thesis, we use

the maximal parallelism model [SM81,KSR+ss] to indicate that each parallel process

runs at a distinct processor. Consequently, any action is executed as soon as possible

without unnecessary waiting. Notice tha.t maximal parallelism has different implications

when applied to the two versions of the language. In the synchronous case, it implies

that a process only waits when it tries to execute an input or output statement but the

communication partner is not available. In the asynchronous case, maximal parallelism

implies that a process only waits when it tries to receive a message along a channel for

which the buffer is empty. This will he explained in chapters 2 and 3.

1.1.2 Specification

To express properties of reai-time systems, a specifica.tion language is needed. As ob­

served for example in [Lam83b], linear time tempora.llogic [Pnu77,MP82,0L82,MP91]

is good for specifying and reasoning about untimed concurrent systems. This logic can

express safety properties and liveness properties. Moreover, it supports reasoning in a

simple and natura! way. Unfortunately, this logic allows only the treatment of qual­

ita.tive timing requirements, such as the demand thai an event happens "eventually"

or "always". To specify reai-time properties, we have to extend temporal logic with a

quantitative notion of time. llasically, therc are two a.pproachcs.

In one approach, new temporal operators are introduccd by extending the standard

4 CHAPTER 1. INTRODUCTION

ones with time bounds. This extension of temporallogic is called Metric Temporal Logic

(MTL). A typical timing property that "every event pis foliowed by another event q in

less than 5 time units" can he expressed in MTL as

D(p-70<5 q).

A general discussion about MTL and specification examples using MTL can he found

in [Koy92]. This logic has been adopted to the specification of reai-time properties of

a transmission medium [KVR83]. Verification methods based on MTL for reai-time

transition systems can be found in [Har88,Hen91]. Compositional proof systems based

on MTL for different versions of a programming language similar to the one stuclied in

chapter 2 of this thesis have been formula.ted in [Hoo91].

In chapters 2 and 3 of this thesis, we investigate an alternative approach, called

Explicit Clock Temporal Logic (ECTL), in which temporallogic is extended with a dis­

tinguished time variabie T that explicitly refers to the values of a global doek.

A similar logic, called RTTL (Real-Time Temporal Logic), has been used in [Ost89]

to reason about reai-time discrete event systems. There except the time variable, the

universa) quantifier is also allowed over global variables (i.e., variables whose values do

not change over time). The above example ca.n then be expressed in RTTLas

'v'x.D((pAT x)-.O(qAT<x+5)].

Another extension appears in [PH88,Har88,HLP90], where it is referred to as GCTL

(Globa.l Clock Temporal Logic) and XCTL (Explicit Clock Temporal Logic), respectively.

In addition to the time variabie T, GCTL and XCTL also use global va.riables. But it

is assumed that all globa.l variables are universally qua.ntified and thus no quantifier

appea.rs in any formula.

In [AH89] a logic called TPTL (Timed Propositional Temporal Logic) has been

proposed. Th ere globa.l variables arealso used and the explicit reference to the doek, i.e.,

the time variable, is replaced by a special freezing quantification. The freeze quantifer x.

binds the va.lue of the doek to the quantified variabie x. An extensive discussion about

TPTL ca.n be found in [Hen91]. The above example may be expressed in TPTL as

D x.[p __,. Oy.(q A y <x+ 5)],

which can he rea.d as "in every state with time x, if p holds, then there is a later state

with time y such that q holds and y is less than x + 5". A survey about the above

mentioned extensions of linear time tempora.! logic can be found in [AH92].

This exa.mple is chosen to show the different wa.ys of expression in those logies.

Unfortuna.tely, the ECTL present.ed in this thesis cannot express the exa.mple, since it

does not contain global variables to record the values of the doek at different states. If

1.1. REAL-TIME FORMALISMS 5

the property is modilied as "if p holds at the beginning of the execution, then q will hold

in less than 5 time units", then it can be expressed in ECTL as

p-+ O(q 1\ T <start+ 5),

where start denotes the starting time of the execution. In this thesis, we would like to

use the ECTL-based specification language to characterize all the possible executions of

a process. lt turns out that global variables are not needed.

In correspondence with the two versions of the programming language, the speci­

fication language based on ECTL has also two versions. In chapter 2, we present its

synchronous version which indudes primitives comm(c, vexp), wait(c!), and wait(c?),

which mean, respectively, that a process is communicating with its partner along chan­

nel c with value vexp, a process is wa.iting to send a message a.long cha.nnel c, and a

process is waiting to receive a message on channel c. In the asynchronous version of the

specification language shown in chapter 3, to describe the communica.tion behavior, it is

suflicient to include primitives send(c, vexp) and receive(c, vexp), which denote tha.t a

process has finished with sending a.nd receiving va.lue vexp along channel c, respectively.

After ha.ving used an ECTL-based specification la.ngua.ge in chapters 2 a.nd 3, it ap­

pears that it is not easy to specify a. system by using ECTL. As we will see in chapters

2 and 3, proving a simple process correct needs many steps of reasoning. In chap­

ter 4, a fault-tolerant protocol presented in [CASD89] will he specified and verified.

We would like to start with a simple specification language and to follow the infor­

mal proofs proposed in that paper. Therefore we adopt another specification language

based on first-order logic. In the protocol, pa.rallel processes are assumed to commu­

nicate asynchronously along communication links. The primitives for communication

are send(p, m, l) at t and receive(p, m, l) at t, indicating, respectively, that processor p

starts tosend messagem along link l at timet and p finishes with receiving m along l

at timet.

1.1.3 Verification

To express that a process S satisfies a specification r.p, we use a correctness formula

of the form S sat r.p. To verify that a system satisfies a specifkation, usually a proof

system is used to derive the correctness formula. Such a proof system consists of axioms

for atomie statements and rules for compound statements. Global proof systems, such

as [MP82] for temporallogic, require the complete program text. In contrast with them,

we formulate a compositional proof system to reduce the complexity of verification.

Using a compositional proof system, we reason with spccifications of processes insteadof

their program texts a.nd thus abstract from their implementations. Such compositional

6 GRAPTER 1. INTRODUCTION

proof systems have heen developed for untimed systems, e.g. [Zwi89], and reai-time

systems, such as [Hoo91]. Other compositional theoriescan be found in [Lar90].

To verify compositionally that a system satisfies a requirement, there are generally

two phases:

1. A system is decomposed into several smaller suhsystems and, by using the speci­

fications of these subsystems and an appropriate compositional proof system, we

verify that the composition of these subsystems satisfies the the requirement of

the system.

This phase is performed repeatedly until it is possible to perfarm the second phase.

2. We implement these suhsystems in some programming language and verify, by

a proof system for this programming language, that the implementations indeed

satisfy the specifications of those subsystems.

This approach is illustrated in chapter 2 by verifying a small part of an avionics system.

The principle also guides us in verifying a fault-tolerant protocol in chapter 4.

For each of the two versions of the programming and specification languages, we

formulate a compositional proof system. By examples we show how the proof systems

can be used to reason about reai-time properties. These two proof systems are shown to

he sound with respect to the semantics (i.e., all correctness formulae derivable from the

proof system are valid) and relatively complete [Bak80,Apt81] with respect to a proof

system for ECTL (i.e., all valid correctness formulae can he derived from the proof

system, provided all valid ECTL formulae are axioms of the proof system).

1.2 Reai-Time and Fault-Tolerant Applications

For non-fauit-tolerant systems, like the ones considered in chapters 2 and 3, it is im­

plicitly assumed that all computing components are correct and remain correct during

execution of these systems, i.e., these systems (including software and hardware) are

free from faults. In reality, however, computer systems are composed of both hardware

and software in which faults may exist and cause failures. A failure occurs when the

hehavior of the system deviates from its specification [RLT78]. In genera!, (software or

hardware) faults are causes of failures and failures are manifestation of faults [LA90].

Such failures are taken into account in fault-tolerant systems.

In chapter 4, we study a formalism for specifying and verifying reai-time and fault­

tolerant systems and apply it to a protocol. A processor or link is correct if and only if

it behaves as specified. Otherwise it suffers failures. We use primitives cmTect(p) at t

and correct(/) at t to indicate, respectively, that processor p and link l are correct at

1.2. REAL-TIME AND FAULT-TOLERANT APPLICATIONS 7

time t. Typica.lly for fault-tolera.nt systems, we a.lso need to express the kind of fa.ilures

which are considered when designing such systems (e.g. how much time it takes a. spare

generator to step in when electricity supply fails, in case of specifying a fa.ult-tolera.nt

electricity supply system for a hospita.l). Such assumptions about failures are called

"failure assumptions" or "failure hypotheses".

Failures of components of a system can lead to unpredictable hehavior and unavail­

ability of service. To achieve a high reliahility of a service in spite of failures, a. key

idea is to implement the service by replicating a server process on all processors in a

network [Cri90]. A server process is a piece of software which fulfills the specific task.

Given a network of distributed processors and replicated server processes, verifying tha.t

the service is indeed provided by the parallel execution of the server processes requires

a parallel composition rule. With the assumption of maximal parallelism (i.e., each

server process runs on its own processor), this rule states that parallel execution of

server processes satisfies the conjunction of all server specifications, provided that each

server specification only refers to the interface of the processor on which the server runs.

Moreover, we need a consequence rule which enables us to weaken a specification and

a conjunction rule which allows us to take the conjunction of specifications. To verify

compositionally tha.t the service is provided correctly, we follow the principle presented

in section 1.1.3 and refine the first phase into four steps:

• First, the top-level requirement of the service should he described insome forma.l

language. We call this description the top-level specification.

• Second, the general system assumptions should he axioma.tized. For instance, the

failure assumptions should he expressed and, when the service involves a lower

level communication between processors and local clocks of processors, the com­

munication mechanism and the doek synchronization assumptions should a.lso he

formalized.

• Third, the properties which the server process should satisfy must he characterized

by a server specification. Such a server specifica.tion only refers to the interface of

the processor on which the server is running. We a.ssurne that the server process

running on processor p satisfies the server specification with parameter p.

By the parallel composition rule, the parallel execution of the server processes

satisfies the conjunction of the server specifications. Notice that the execution also

sa.tisfies the system assumptions formula.ted in step 2. Thus, by the conjunction

rule, the execution satisfies the conjunction of the server specifications and the

system assumptions. The next, and final, step is easy to formulate.

• Fourth, we prove that the conjunction of the server spccifications and the system

8 CHAPTER 1. INTRODUCTION

assumptions imply the top-level specification. Then, by the consequence rule, the

parallel execution of the server processes satisfies the top-level specification.

After performing these steps, it remains to implement the server process such that the

server specificatien is satisfied. This is, however, not done in this thesis and might be a

topic for future work.

After this more theoretica! research, we would like to apply the forma! metbod to

examples. As a starting point of verifying reai-time and fault-tolerant systems, we choose

a realistic application and apply the four steps of the compositional approach to it. Since

atomie broadcast service is one of the fundamental issues in fault-tolerance, we selected

a.n atomie broadcast protocol as our case study.

The atomie broadcast protocol is executed on a network of processors and links and

is characterized by three properties [CASD89]: termination, atomicity, and order. These

properties can he described as fellows: if a correct processor broadcasts a message then

all correct processors should receive this message by some time bound (termination), if

a correct processor receives a message at some time then all correct processors should

receive this message at more or less the sametime (atomicity), and all correct processors

should receive messages in the sameordering (order). This protocol is implemented by

replicating a server process on all processors of the network. The parallel execution of

these server processes should lead to the properties of the protocol.

In [CASD89] there is a series of protoeels tolera.ting, respectively, omission failures,

timing fa.ilures, and authentication-detectable byza.ntine fa.ilures. We chose a fairly sim­

ple protocol which tolerates omission fa.ilures. When a processor suffers a.n omission

failure, it cannot send messages to other processors. When a link s.uffers an omission

failure, the messages tra.veling along this link may be lost. But those messages received

by a processor are correctly received in both timing a.nd contents. In the netwerk of

processors, each processor bas access to a local doek. It is a.ssumed that local docks of

correct processors are synchronized within a certain bound.

This atomie broadcast protocol is called synchronous in [Cri90] in the sense that

the underlying communication delay between correct processors is bounded. Other syn­

chronous protoeels can be found in, for instance, [BD85;Cri90]. There also exist asyn­

chronous atomie broadcast protoeels which do not assume bounded message transmis­

sion delay between correct processors. Examples of asynchronous protoeels are [BJ87]

and [CM84]. Also notice that, in the chosen synchronous atomie broadcast protocol

for this thesis the underlying communication is asynchronous in the sense explained in

section 1.1.1, i.e., a sender does not wait to synchronize with a receiver, and messages

are buffered by links.

1.3. NOTION OF TIME 9

1.3 Notion of Time

In this thesis we assume maximal parallelism, i.e., each parallel process runs at its own

processor. Notice that every processor has its own local doek. But, like many formalisms

for reai-time systems (e.g. see [BHRR91]), the timing behavior of a processis described

in chapters 2 and 3 from the viewpoint of an external observer with bis own doek, i.e., a

global doek. Consequently, verification is done compositionally by using specifications

in which timing is expressed by global doek values.

In chapter 4, we specify and verify an atomie broadca.st protocol whose specification

uses real time values as well as local doek values. Real time ca.n he considered as

a perfect, standard, glohal doek, e.g., Greenwich standa.rd time. We have primitives

like send(p, m, l) at t, where t refers to real time. We use Cp(t) to denote the local

doek va.lue of processor p at real time t. Using this notation, primitives written in

termsof real time values can he transformed into ahhreviations written in termsof local

doek values. For instance, send(p, m, l) at~ U, which intuitively means that processor

p sends a message m along link l at local doek time U, is an a.hhreviation of 3u :

(send(p, m, l) at u 1\ Cp(u) U), where u refers to some real time value and U refers to

the corresponding local doek value on processor p. We will follow [CASD89] and specify

the properties of the atomie hroadcast protocol by using loca.I doek values. We show

that the verification of the protocol can he done compositionally by using specifications

in which timing is expressed by local doek values.

In chapters 2 and 3, we assume a dense time domain called TIME over which the

values of a global doek range. In chapter 4, we have a dense time domain called RT I ME

over which all real time values range. Furthermore, there exists a discrete time domain

called CV AL which contains alllocal doek va.lues.

Comparing our notion of time with tha.t in MTL, we make thc following observations.

In chapters 2 a.nd 3, ECTL is the basis of our specifica.tion la.nguage and thus we can

use absolute time in the sense that time points in a specifica.tion refer directly to actual

global doek values. For instance, the property that in less than 8 time units after the

start of execution, process S communica.tes with value 7 on channel d is expressed as

follows:

S sat 0 [T <start+ 8 1\ comrn(d, 7)).

In chapter 4, we also use absolute time a.nd it can refer to both local clock values and

rea.l time va.lues.

In the framework of MTL, a spccification can only use relative time in the sense that

time points in the specification are rela.tive tosome fixcd time point. The example a.bove

can he described in MTL·style by

10 CHAPTER 1. INTRODUCTION

S sat 0 <S comm(d, 7).

Here the time points are relative to the starting point of the execution of S.

The primitives from the specification language in chapters 2 and 3 do not refer to

the time at which an action is happening. For example, in the specification language

in chapter 2, we have primitive comm(c, vexp). The time when the communication

occurs is impHeit in this primitive and it should he obtained from the context. For

instance, from formula 0 (T = 5-+ comm(c, vexp)), we know that this communication

will happen when the global doek reaches 5. On the other hand, the primitives from the

specification la.nguage in cha.pter 4 do explicitly refer to the time. For example, primitive

send(p, m, l) at t indicates clearly that processor p starts to send message m along link l

at real timet. It appears in chapter 4 that referring to the time in the primitives makes

the specification and verification of the protocol easier, si nee the primitives have already

provided the timing information and thus we do not bother ourselves with the precise

interpretation of the specification language.

1.4 Overview

The remainder of this thesis is structured as follows.

In chapter 2, we follow the outline of (Hoo91] and develop a formalism for specifying

and verifying synchronously communicating real-time systems. The synchronous version

of the programming language is described insection 2.1. A compositional semantica for

this version of the language can he found in section 2.2. The synchronous version of

the specification language based on ECTL is formulated in section 2.3. Section 2.4

conta.ins a compositional proof system for the synchronous version of the programming

and specification languages. This formalism is applied to specify and verify a smal!

part of an avionics system in section 2.5. Soundness and relative completeness of this

proof system are discussed in section 2.6. The proof system and the full version of this

chapter are publisbed in [HKZ91] and (ZHK93], respectively, which are joint work with

J. Hooman and R. Kuiper.

In chapter 3, we present the asynchronous version of the formalism. The asyn­

chronous version of the programming language is given in section 3.1. A compositional

semantics for this version of the language is defined in section 3.2. The asynchronous

version of the specification language based on ECTL is described in section 3.3. A

compositional proof system for this asynchronous version of the programming a.nd spec­

ification languages is proposed in section 3.4. The soundness a.nd relative completeness

issues are discussed in section 3.5. Most of the results in this chapter appear in [ZH92].

In chapter 4, we start with an introduetion about the specification and verification

1.4. OVERVIEW 11

of the atomie broadcast protocol in section 4.1. The top-level specification of the atomie

braadcast service is described insection 4.2. The general system assumptions are axiom­

atized in section 4.3. The properties of the server process are expressed in section 4.4.

In sections 4.5, 4.6, and 4. 7, we verify that the parallel execution of the server processes

leads to the desired top-level specification. Then we compare our results with [CASD89]

insection 4.8. The primary results of this chapter appear in [ZH93b]. A full version of

this chapter can be found in [ZH93a].

In chapter 5, we summarize our work and mention some related research.

Appendix A contains proofs of lemmas in chapter 2. Soundness. and relative com­

pletenessof the proof system in chapter 2 are provedinAppendices Band C, respectively.

Proofs of some lemmasin chapter 3 appear in Appendix D. Soundness proofs of a few

modified axioms and rules of the proof system in chapter 3 can he found in Appendix

E. Precise specifications for the statements of the programming language in chapter 3

are shown in Appendix F.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Synchronous Communication

In this chapter, we investigate a theory for proving the correctness of synchronously

communicating reai-time systems. In section 2.1, we present the synchronous version

of our reai-time programming language in which parallel processes communicate via

synchronous message passing. A compositional semantics of this language is defined in

section 2.2. The synchronous version of our specification language is given in section

2.3. A compositional proof system is developed in section 2.4. An application of the

proof theory is shown in section 2.5. Soundness and completeness of the proof system

are discussed in section 2.6.

2.1 Reai-Time Programming Language

2.1.1 Syntax and Informal Semantics

We consider a reai-time programming language which is akin to Occam [Occ88]. The lan­

guage is basedon a reai-time extension of CSP with nested parallelism and synchronous

message passing via channels [KSR+ss]. A rea.J.time statement delay e is added which

suspends the execution for e time units if e is not negative. Such a delay-statement

may also occur in the guard of a guarded command. Processes communicate by mes­

sage passing via unidirectional channels, each of which connects exactly two processes.

Communication is synchronous in the sense that a sender or a receiver bas to wait for

communication until a communication partner is available.

Let VAR be a nonempty set of variables, CHANbe a nonempty set of channel names,

and VAL be a nonempty domain of values. Let IN denotes thesetof all natura) numbers

(including 0). The syntax of the reai-time programming language is given in Table 2.1,

with c, c; E CHAN, x, x; E VAR, t? E VAL, n E IN, a.nd n ? 1.

Any statement in the programming languagc is called a proccss. A write-variable is a

variabie which occurs in an input statementor in the left hand si deofan assignment. Let

13

14 CHAPTER 2. SYNCHRONOUS COMMUNICATION

Table 2.1: Syntax of the Programming Language in Chapter 2

Expression e ::= fJ I x I e1 + e2 I e1 - e2 I e1 x e2

Guard g ::= e1 = e2 I e1 < e2 I -,g I 9t V 92

Statement S ::= skip I x e I delay e I c!e I c?x I
S1; s2 1 a 1 *G 1 S1IIS2

Guarded Gommand G ::= [0?=1g;-+ S;] I [Ui= 1g;;c;?x;-+ S;Ogo;delaye-+ So]

S be any statement. Define var(S) as thesetof variables occurring in S and wvar(S) as

thesetof all write-variables inS. Obviously, wvar(S) Ç var(S). Thesetof (directional)

channels occurring in a statementS, denoted by dch(S), is defined as the set containing

all channels occurring in S together with all directional channels c! and c? occurring in

S. For instance, dch(c!5;d?yllc?x) {c,c!,c?,d,d?}.

Informally, the statements have the following meanings.

Atomie statements

• skip terminates immediately.

• x:: e assigns the value of expression e to variabie x.

• delay e suspends execution for e time units if the value of e is not negative.

Otherwise it is equivalent to skip.

• c!e sends the value of expression e on channel c as soon as a corresponding input

statement is available. Since we assume synchronous communication, such an

output statement is suspended until a parallel process executes an input statement

of the form c?x.

• c?x receives a value via channel c and assigns this value to variabie x. Similar to

the output statement, such an input statement has to wait for a corresponding

output statement hefore a synchronous communication takes place.

Compound statements

• SI; s2 indicates sequentia! composition of sl and s2.

• Guarded cammand [U i=1g; -+ S;J is executed as follows. If none of the g; evaluates

to true, then the cammand termina.tes after the evalua.tion of the guards. Other­

wise, nondeterministically select one of the g; which evaluate to true and execute

the corresponding statement S;.

• During an execution of guarded comma.nd [0f=1g;; c;h; -+ S;0g0 ; delay e-+ SoJ,
first the guards g;, for i = 0, 1, ... , n, are evaluated. Next,

2.1. REAL-TIME PROGRAMMING LANGUAGE 15

- if none of the g; evaluates to truc, then the command terminates;

if g0 evaluates to truc, e is positive, and at least one of the c;? x; for which

g; evaluate to true can start reading messages in less than e time units, then

one of the first possible e; ?x; and its corresponding S; are executed;

if g0 evaluates to true and either eis not positive or none of thee; ?x; for which

g; are true can start reading in less than e time units, then S0 is executed;

if g0 evaluates to false, then the command waits until one of the c;?x; for

which g; are true can read messages. Then one of the first possible e;?x; and

its corresponding S; are executed.

A guard g; which is equivalent to true is often omitted in a guarded command.

Example 2.1.1 Observe that delay-values can he arbitrary expressions, for in­

stance, x:= y; [d?x--> y :=x Udelay x--> c!x], where the value of x in delay x is

obtained from executing the assignment x y. D

Example 2.1.2 By means of a guarded command, we can easily express a time­

out. For instance, [x > 0; c?y -+ x := y U delay 10,. skip] informally means that

if x > 0 and the input communication can take place in less than 10 time units

then the assignment is executed, otherwise after 10 time units there is a time-out

and skip is executed. D

Notice that the semantics of the guarded command G in this thesis differs from

that of Dijkstra for the case that all the boolean guards are false [Dij76], wbere it

is interpreted tbat the program aborts.

• *G indicates repeated execution of guarded command G as long as one of the

guards is true. When none of the guards is true, *G terminates.

• S1 jjS2 indicates parallel execution of S1 and S2 • No variabie should occur in both

S1 and S 2 , i.e., var(St) n var(S2) = !/l.

Hencefortb we use ::: to denote syntactic equality.

2.1.2 Basic Assumptions

In this chapter, we assume that there is no overhead for compound statements and a

delay e statement takes exactly e time units if the value of eis not negative. Furthermore

we assume given positive parameters I<a, Kc, and /(9 such that every assignment takes

Ka time units, each communication takes Kc time units, and the evaluation of the guards

16 CHAPTER 2. SYNCHRONOUS COMMUNICATION

in a guarded command takes K9 time units. Notice that, to avoid an infinite loop in

finite time, we assume I(9 > 0. These assumptions can be extended to more general

cases, for instance, assignment and communication take some time between a lower and

an up per bounds, etc ..

We also assume the maximal parallelism model for the execution of parallel composi·

tion, which means that each parallel process has its own processor. Therefore, a process

only waits when it tries to execute an input or output statement and the communication

partner is not available. Hence it is never the case tha.t one process wa.its to perform c!e

and, simultaneously, another process waits to execute c?x.

2.2 Compositional Semantics

To formally define the meaning of a. process, we give a compositiona.l semantics for our

programming language. Insection 2.2.1 wedefine a model to describe the computation

of processes. This semantic model is used in section 2.3 to interpret our specification

language. In section 2.2.2 we give the compositiona.l semantics which is used to define

validity of correctness formulae, that is, to define formally when a process satisfies a

specification. Finally, in section 2.2.3 we discuss some properties of the semantics.

2.2.1 Computational Model

In our semantics the timing behavior of a process is expressed from the viewpoint of an

external observer with his own doek. Let this doek range over a time domain TIME.

Thus, although parallel eomponents of a. system have their own, physical, local clocks,

the observahle behavior of a system is described in terms of a single, conceptual, global

doek.

Assume TIME { T E IR I T ~ 0}, where IR is the set of all reals. Thus the

time domain is dense (a doma.in is dense if between every two points there exists a

third point) and linearly ordered. The standa.rd arithmetical operators +, -, x, and

$ are defined on TI ME. To define the timing behavior of statement delay e, we

have to relate expressions in the programming langua.ge to our time domain. Since

we have assumed that delay e takes e time units if e is not negative, we also a.ssume

{ t? E V AL I!? ~ 0} Ç TIME.

Henceforth, we use i, j, ... to denote nonnegative integers, and r, f, r 0 , ••• to denote

values of TIME. For notational convenience, we use a special vahte oo with the usual

properties, sueh as oo iif; TIME and for all rE TIMEU{ oo }: T $ oo, r+oo = oo+r = oo,

etc.

A computation of a process is represente(l by a mapping which assigns to each point

2.2. COMPOSITIONAL SEMANTICS 17

of time during this computation a pair consisting of a state and a set of communication

records. The state represents values of variables at that point of time. The communi­

cation records denote the state of alfairs on the channels of the process. We use records

of the form (c, 19) to indicate that a communication occurs along channel c with value

19. Moreover, the model includes additional information that shows which processes are

waiting tosend or waiting to receive messages on which channels at any given time. Us­

ing this information, the formalism enforces minimal waiting in our maximal parallelism

model by requiring that nopair of processes is ever simultaneously waiting tosend and

waiting to receive, respectively, on a shared channel. The informal description above is

formalized in the following definitions.

Definition 2.2.1 (States) Thesetof states STATE is defined as thesetof mappings

from VAR to VAL: STATE= {sIs: VAR_... VAL}.

Thus a statesE STATE assigns toeach variabie x a value s(x).

Definition 2.2.2 (Variant) The variant of a state s with respecttoa variabie x and

. { 19 if y =x a value 19, denoted by (s: x>-+ 19), IS defined as (s: x>-+ t9)(y) = .
s(y) If y "1. x

Definition 2.2.3 (Communication Records) Thesetof communication records

GOM M is defined as:

COMM = {c! I c E CHAN} U {c? I c E CHAN} U {(c,19) I c E CHAN and 19 E VAL}.

Assume To E TIME and TI E TIME U { oo}. If T1 =I oo, let [T0 , T1] denote a closed

interval of time points: [ro, TI] = { T E TIME I To :::; T :::; TI}. Jf T1 = oo, then [To, TI]

is the same as [T0 ,oo) with [ro,oo) ={TE TIME I T?: To}. Similarly, (To,TI] denotes

a left-open and right-closed interval: (To, T1] = { T I To < T :::; TI} and [ro, TI) denotes

a left-closed and right-open interval: [To, TI) = { T I To :::; T < TI}. The closed intervals

will be used in the definition of a model, since we would like to observe the state and

communication behavior at the starting and terminating points of a process.

Then a model, representing a reai-time computa.tion of a process, is defined as follows:

Definition 2.2.4 (Model) LetToE TIME, T1 E T/MEU{oo}, a.nd T1 ?: T0 • A model u

is a mapping u: [ro,TI]-> STATE x p(COMM). Define begin(u) = To and end(u) =TI.

Consider a model u and a point T with begin(u) :::; T S end(u). Then u(T) =

(state, comm) with state E STATE a.nd comm Ç COMM. Hcnceforth we refer to

these two fieldsof u(T) by u(T).s a.nd u(T).c, respectivdy. lnformally, if u models a

computation of a process S, begin(u) and end(u) dcnote, resp., tlw starting and termi­

nating times of the computation of S (end(a) = oo if S does not terminate). Further­

more, u(begin(a)).s specifies the initia! state of the cornputa.tion, a.nd if end(u) < oo

18 CHAPTER 2. SYNCHRONOUS COMMUNICATION

then u(end(u)).s gives the final state. We will use ub to denote u(begin(u)), and if

end(u) < oo, ue to denote u(end(u)). In genera!, u(r).s represents the values of vari­

ables. The set u(r).c might contain a communication record (c,d), c!, or c? with the

following meaning, where c E CH AN:

• (c, 1?) E u(r).c iff value 1? is being transmitted along channel c at timer;

• c! E u(r).c iff S is wa.iting to send a.long cha.nnel c at time r;

• c? E u(r).c iff Sis waiting to receive along channel cattime r.

To make the model convenient for sequentia] composition, the c-field at the last point

is not used and then can have an arbitrary value. Only u" .s is interesting for the

specification and reasoning.

Define DCJIAN = CllAN U {c? I c E C/l AN} u {c! I c E CH AN}. Henceforth, we

need the following definitions.

Definition 2.2.5 (Channels Occurring in a Model) Thesetof (directional) chan­

nels occurring in a model u, denoted by dch(u), is defined as

dch(u) = Ubegin(a)$T<end(a) {dI c! E u(r).c} U {c? I c? E u(r).c} U

{ c I there exists a {) such that (c, 1?) E u(r).c}

Definition 2.2.6 (Projection onto Channels) Let cset Ç DCHAN. Define the pro­

jection of a model u onto cset, denoted by [u]cset, as follows: begin([u]cset) = begin(u),

end([u]caet) =.end(u), for any T, begin(u) :5 r :5 end(u), [u]cset(T).s = u(r).s, and

for any r', begin(u) :5 r' < end(u),

[u]cset(r').c { d I c! E u(r').c A c! E cset} U { c? I c? E u(r').c A c? E cset} U

{(c, 1?) I (c, 1?) E u(r').c AcE cset}

Definition 2.2. 7 (Projection onto Variables) Let vset Ç VAR. Define the projec­

tion of a model u onto vset, denoted by u! vset, as follows: begin(a! vset) =begin(er),

end(u! vset) end(u), for any r, begin(o-) :5 r < end(er), (er! vset)(r).c er(r).c,

and for any r', begin(a) ::5 r' :5 end(er), and any x E VAR,

(!)(') () { a(r').s(x) x E vset er vset T .s x =
erb.s(x) xrf.vset

Definition 2.2.8 (Concatenation) The concatenation of Lwo models a 1 and a2 , de·

noted by er1a 2 , is a model a- such that

• if end(a 1) oo, then a = 171 ;

2.2. COMPOSITIONAL SEMANTICS

• if end(ut) < oo, end(ut) begin(u2), and u}.s = u~.s, then u has domain

[begin(ut), end(u2)] and is defined as follows:

u(r) = { Ut(r) begin(u1):::; T < end(ut)
u 2(T) begin(u2) :::; r :::; end(u2)

• otherwise undefined.

19

Definition 2.2.9 (Concatenation of Sets of Models) The concatenation of two sets

of models Et and E2 are defined as follows:

SEQ(Et,E2) = {utu21 Ut EEt and u2 E E2 such that Ut0'2 is defined}

It is easy to see that SEQ is associative, i.e.,

SEQ(Et, SEQ(E2 , E3)) = SEQ(SEQ(E~> E2), E3).

Henceforth we use SEQ(Et, E2 , E3) to denote SEQ(Eh SEQ(E2 , E3)).

2.2.2 Formal Semantics

A good starting point for the development of a compositional proof system is the for­

mulation of a compositional semantics. In such a semantics the meaning of a statement

must be defined without any information ahout the environment in which it will be

placed. Hence, the semantics of a statement in isolation must characterize all poten­

tial computations of the statement. When composing this statement with (part of) its

environment, the semantic operators must remove the computations that are no Jonger

possible. To be able to select the correct computations from the semantics, any de­

pendency of an execution on the environment must be made explicit in the semantic

model.

The evaluation of an expression e, denoted by &(e), is a fundion &(e) :STATE-+

VAL defined by induction on the structure of e as follows:

• &(l?)(s) = 1?

• &(x)(s) = s(x)

• &(et+ ez)(s) = E(et)(s) + &(e2)(s)

• &(et e2)(s) = E(et)(s)- E(e2)(s)

• E(e1 x ez)(s) = E(e1)(s) x E(ez)(s)

The evaluation of a guard g, denoted by Q(g)(s), is defined by induction on the structure

of g as follows:

20 CHAPTER 2. SYNCHRONOUS COMMUNICATION

• Q(et < e2)(s) iff &(et)(s) < &(e2)(s)

• Ç(-.g)(s) iff not Q(g)(s)

• Q(gt V g2)(s) iff Q(g1)(s) or Ç(g2)(s)

The meaning of a process S, denoted by M(S), is a set of models representing all possible

computations of S starting at any arbitrary time.

Skip

Statement skip terminates immediately without any state change or communication.

M(skip) ={u I begin(u) = end(u)}

Assignment

An assignment x := e terminates after Ka time units (recall that every assignment

statement takes Ka time units to execute). All intermediate states before termination

are the same as the initia! state. The state at termination also equals the initia! state

except that the value of x is replaced by the value of e at the initia! state. The c-field is

empty during the execution period since the assignment does not (try to) communicate.

M(x := e) ={u I end(u) =begin(u)+ Ka, for any r, begin(u)~ r <end(u),

u(r).s = ub.s, u(r).c = ~' and ue.s = (ub.s: x 1-+ &(e)(ub.s))}

Delay

A delay e statement terminates a.fter e time units if e is not negative. Otherwise it

terminates immediately.

M(delay e) ={u I end(u) = begin(u) + max(O,&(e)(ub.s)), for any r,

begin(u) ~ T < end(u), u(r).s = ub.s, u(r).c = 0, and ue.s = ub.s}

Output

In genera!, in the execution of an input or output statement, there are two periods: first

there is a waiting period during which no communication partner is available (recall

that communication is synchronous) and, secondly, when such a partner is available to

communicate, there is a period (of Kc time units) during which the act u al communication

takes place. For an output statement c!e these two pcriods are represented by two sets

of models W ait(c!) and Send(c, e) defined below. Hence the semantics of c!e is defined

as

M(c!e) = SEQ(Wait(c!), Send(c, e)) with

2.2. COMPOSITIONAL SEMANTICS 21

Wait(c!) ={a I for any r, begin(a) ~ T < end(a), a(r).s = ab.s, a(r).c {c!}, and

if end(a) < oo, then a• .s = ab .s}

Send(c,e) ={a I end(a) begin(u) + I<0 for any r, begin(u) :5 r < end(u),

a(r).s = ab.s, a(r).c = {(c,f(e)(ub.s))}, and a•.s ab.s}

Input

To represent all potential computations of an input statement c?x, its semantics should

contain all possible roodels in which any possible value can he received for x. The

value of x at the final state equals to the value in the communication record. Thus the

semantics of c?x is defined as

M(c?x) = SEQ(Wait(c?),Receive(c,x)),

where Wait(c?) is similar to Wait(c!) and

Receive(c,x) {a I end(a) begin(a)+ Kc, there exists a fJ E VAL such that,

for any r, begin(a) ~ r < end(a), a(T).s = ab .s, a(r).c = {(c, fJ)},
and u•.s = (ab.s: x>--+ iJ)}

Sequentia} Composition

Using the SEQ operator defined before, sequentia) composition is straightforward:

Since SEQ is associative, sequentia! composition is also associative. Thus we can write

S1 ; S2; S3 without causing ambiguîty.

Guarded Command

For a guarded command G, first define

- { Vi=I9i if G = 1Ui=I9i -4 S;]
9 = Vi=o9i if G = [0i=1g;; -+ S;j]go; delaye-+ So]

Consicier G = [0i'=1g; -+ S;J. There are two possibilities: either none of the guards

evaluates to true and the command terminatcs after Kg time units, or at least one of the

guards yields true and then the corresponding statement S; is execntcd. Reeall that the

evaluation of the guards takes I<9 time units. In the scmantics below this is represented

by statement delay K9 •

M([0i= 1g;-+ S;]) ={a I 9(•g)(crb.s) and a E M(delay I<g)} U

{a I there exists a k, 1 :5 k :5 n, such that Ç(gk)(ab.s)

22 CHAPTER 2. SYNCHRONOUS COMMUNICATION

Next consider G = [Ui=1g;;c;?x; _.., S;Ugo;delaye _.., So].

There are four possibilities for an execution of G (see section 2.1). We first define two

a.bbreviations:

Wait(G) ={a I Q(g)(ab.s), for any r, begin(a):::; r < end(a), a(r).s = ab.s,

a(r).c {c;? I Q(g;)(ab.s), 1:::; i:::; n }, and if end(a)< oothen a•.s = ab.s}

C omm(G) = {a I there exists a k, 1 :::; k :::; n, such that Q (gk)(ab .s) and

a E SEQ(Receive(ck,xk),M(Sk))}

Using W ait(G), we define the following extra. abbreviations:

FinWait(G) {a I Q(g0)(ab.s), end(a)< begin(a)+ max(O, t'(e)(ab.s)), and

a E Wait(G)}

TimeOut(G) ={a I Q(g0)(ab.s), end(a) = begin(a) + max(O,t'(e)(ab.s)), and

AnyWait(G) ={a I Q(--.g0)(ab.s) and a E Wait(G)}

Then the sema.ntics of G is defined as follows:

M([0:'::1g;;c;?x; S;Ogo;delaye So]) =

{a I Q(..,g)(ab.s) a.nd a E M(delay K9)} U

SEQ(M(delay K9),FinWait(G),Comm(G)) u
SEQ(M(delay Kg), TimeOut(G), M(S0)) U

SEQ(M(delay K 9), AnyWait(G), Comm(G))

Iteration

a E Wait(G)}

For a model in the sema.ntics of the iteration statement *G, we have the following

possi hili ties:

• either it is the concatenation of a finite sequence of models from M(G) such that

the last model corresponds to an execution where aJI guards evaluate to faJse or it

represents a nonterminating computation of G,

• or it is the concatenation of an infinite sequence of models from M(G) that all

represent terminating computations in which not all guards yield faJse.

This leads to the following definition:

M(*G) = {a I there exist a k E IN, k ~ 1, and a 1 , ... , ak such tha.t a = a 1 · · · ak,
for any i, I :::; i:::; k, 0'; E M(G), for a.ny j, I :::; j:::; k- I, end(O'J) < oo,

2.2. COMPOSITIONAL SEMANTICS 23

Ç(g)(o'j.s), and if end(O'k) < oothen Ç(-.g)(ut.s) otherwise Ç(g)(O'i.s)}

U {ui there exists an infinite sequence of models u1 , 0'2 , .•• such that u = u1 u2 • • ·,

for any i~ 1, u; E M(G), end(u;) < oo, and Ç(g)(uf.s)}

A slight apology should be made for the semantics of *G. The semantics given above is

not fully compositional, because it cannot be determined by the semantics of G alone.

We still need to check if the guards of G are true.

Parallel Composition

The semantica of S1 IIS2 consistsof all models u such that there exist models o-1 E M(S1)

and o-2 E M(S2) and the c-fields of u is the point-wise union of the c-fields of u1 and o-2 ,

provided that the following requirements are fulfilled:

1. end(O') max(end(O't),end(uz)), to express that S1 11Sz terminates when both

processes have terminated.

2. Since communication is synchronous, S1 and S2 should communicate simultane­

ously on shared channels which conneet them.

3. In our execution model we assume maximal parallelism and thus two processes

should not be simultaneously waiting to send and waiting to receive on a shared

channel. Formally, for any c E dch(St) n dch(S2), and any T, begin(u) :5 r <
end(u), we should have -.(cl E u(r).c 1\ c? E u(r).c).

For the s-fields of o-, reeall that there are no shared variables, i.e., var(St)nvar(S2) = 0.

Hence the value of a variabie x during the execution of S1 IIS2 can be obtained from the

state of S; if x E var(S;), and from the initia! state otherwise. This leads to the following

definition for the semantics of parallel composition.

M(S1 IIS2) {u I dch(u) dch(St) U dch(S2), for i= 1, 2, there exist 0'; E M(S;)

such that

begin(u) begin(ut) = begin(u2), end(u) = max(end(o-t),end(o-2)),

{
o-;(r).c begin(O';) :5 r < end(ui)

[O']dch(S,)(T).c
0 end(u;) :5 T <end(u)

{
u;(r).s begin(u;):::; T :5 end(u;)

(0'! var(S;))(r).s
ui .s end(0';) < r :5 end(u)

for any x ;f. var(St) U var(S2), a.ny r, begin(u):::; r :5 end(u),

o-(r).s(x) u~.s(x),

and for any c E dch(S\) n dch(S2), a.ny r, begin(u) :5 r < end(u),

•(cl E u(r).c 1\ c? E u(r).c)}

We can prove that parallel composition is commutative and a.ssociative.

24 GRAPTER 2. SYNCHRONOUS COMMUNICATION

2.2.3 Properties of the Semantics

First we define a well-formedness property of a model.

Definition 2.2.10 (Well-Formedness) A model u, defined in section 2.2.1, is we/1-

formedifffor any c E CHAN, any iJ,iJ1,iJ2 E VAL, and any r,begin(u) ~ T < end(u),

the following formulae hold:

1. •(cl E u(T).cA c? E u(T).c),

(Minima/ waiting: it is not allowed to be simultaneously waiting to send and

waiting to receive on a particular channel.)

2. •[(c,iJ) E u(r).cA cl E u(r).c] A •[(c,iJ) E u(r).cA c? E u(r).c], and

(Exclusion: it is not allowed to be simultaneously communicating and waiting to

communicate on a given channel.)

3. (c,iJI) E u(r).cA (c,iJ2) E u(r).c--> iJ1 = iJ2.
(Uniqueness: at most one va.lue is transmitted on a partietdar channel at any point

of time.)

Then we have the following theorem.

Theorem 2.2.1 For any process S, if u E M(S) then

1. dch(u) Ç dch(S),

2. if x~ wvar(S),then for any r, begin(u) ~ T ~ end(u), u(r).s(x) = ub.s(x), and

3. u is well-formed.

By induction on the structure of S and the definition of well-formedness, this theorem

can he easily proved.

2.3 Specification Language

We define a specification language which is based on Explicit Clock Temporal Logic,

i.e., linear time tempora.! logic augmented with a globa.l doek variabie denoted by T.

Intuitively, T refers to the current point of time during an execution. We use start

and term to express, respectively, the starting and terminating times of a computation

(term = oo for a nonterminating computation). We also use first(x) and last(x) to

refer to the value of variabie x at the first and the last state of a computational model,

respectively. If the computation does not terminate, then last(x) has the initia! value

of x. Similar ideas have been used in, for instance, [Jon80] and [Jon90]. To specify

2.3. SPECIFICATION LANGVAGE 25

the communication behavior of processes, we use a primitive comm(c, vexp) to express a

communication along channel c with value vexp. We also use comm(c) to abstract from

the value communicated. Furthermore, the specification language includes primitives

wait(c!) and wait(c?) to denote that processes are waiting to communicate. SimHar to

the semantics, this is required to express maximal parallelism. By including the strong

until operator, U , from classica! temporallogic we obtain the standard morlal operators.

In order to give compositional proof rules for sequentia! composition and iteration, we

add the "chop" operator C and the "iterated chop" operator C* from [BKP84].

In the specification language, there are two kinds of expressions, i.e., vexp and texp,

to express values of type V AL and TIME U { oo}, respectively. A specification is

represented by <p. The syntax of this specification language is given in Table 2.2, with

{) E VAL, x E VAR, i-E TIME U {oo}, and c E CHAN.

Table 2.2: Syntax of the Specification Language in Chapter 2

Val Exp vexp ::= {) I x I first(x) I last(x) I max(vexPt,vexp2)

Time Exp

Specification

vexp1 + vexp2 I vexp1 vexp2 I vexp1 x vexP2

texp ::= i- I T I start I term I vexp I

11)"-T ,.-

texp1 + texp2 I texp1 - texp2 I texp1 x texP2

texp1 = texp2 I texp1 < texp2 I
comm(c, vexp) I comm(c) I wait(c!) I wait(c?)

'-P1 v '-P2 1 ...,'-P 1 '-P1 u '-P2 1 '-P1 c '-P2 1 '-P1 c· '-P2

Let texp be any expression of type TIME from the specification language. Define

var(texp) to be the set of all variables occurring in texp. Let t.p be any specification.

Define dch(t.p) to be the set of all directional channels, i.e., the set of c, d, or c?, for

c E CH AN, occurring in <p, and var(<p) to be thesetof all variables occurring in t.p.

The interpretation of specifications is defined over the computational model of section

2.2.1. First we define the value of expression vexp at model a and timeT ;:::: begin(u),

TE TIME, denoted by V(vexp)(u,r), as follows:

• V({))(u,r)=t?

• V(x)(u,r) {
u(-r).s(x) if T :5 end(a)

ue.s(x) if T >end(a)

• V(first(x))(u, r) = ub.s(x)

{
ue s(x) if end(u) < oo

• V(last(x))(u, r) = b. ,
17 .s(x) if end(u) = oo

• V(max(vexp1, vexp2))(o-, r) = max(V(vexpt)(o-, T), V(vexp2)(o-, T))

26 GRAPTER 2. SYNCHRONOUS COMMUNICATION

• V(vexp1 0 vexp2)(a, r) = V(vexpt)(u, r) 0 V(vexp2)(u, r), for 0 E { +, x}.

Next we define the value of time expression texp at model u and time r 2: begin(u),

rE TIME, denoted by T(texp)(u,r), as follows:

• T(f)(u,r) f

• T(T)(u, r) = r

• T(start)(u, r) =begin(u)

• T(term)(u, r) =end(u)

• T(vexp)(u, r) = V(vexp)(u, r)

• T(texp1 0 texP2)(u, r) = T(texpt)(u, r) 0 T(texp2)(u, r), for 0 E { +,-,x}.

The interpretation of a specification rp at model u and timer 2: begin(u), r E TIME,

is denoted by (u, r) p rp and defined by induction on the structure of r.p.

• (u,r) p texp1 = texp2 iffT(texpi)(u,r) = T(texP2)(u,r).

• (u,r) p texp1 < texP2 iffT(texpl)(u,r) < T(texp2)(u,r).

• (u, r} p cornm(c, vexp) iff T <end(u) and (c, V(vexp)(u, T)) E u(T).c.

• (u, r} p comm(c) iff T <end(u) and there exists a va.lue {) E VAL such that

(c, d) E u(r).c.

• (u, r} p wait(c!) iff T <end(u) and c! E u(r).c.

• (u, r} p wait(c?) iff r <end(u) and c? E u(T).c.

• (u, T) p 'Pt V rpz iff (u, r} p 'P1 or (u, r) F 'P2·

• (u, T} p -.rp iff not (u, T} p r.p.

• (a, r} p rp1 U r.pz iff there exists a Tz 2: r, such that (u, Tz} p rp2, and

for any Tt,T::; Tt < Tz, (u,TJ} p 'Pt·

• (u, r) p 'Pl C r.pz iff

- either (u, r) p rp1 and end(u)= oo

or there exist models u1 and a2 such that 0" = u1u2, r ::; end(ut) < oo,

(ut. r) p 'Pt. and (uz, begin(u2)) F 'P2·

• (a, r) f= 'P1 c· r.pz iff

2.3. SPECIFICATION LANGVAGE 27

- either there exist a k ?: 1 and models cr1 , ••• , cr~-; such that cr cr1 · · · crk,

(crt, T) I= CfJh T ~ end(O't) < oo, for any j, 2 ~ j ~ k-1, (crj, begin(<ij)) I= CfJh

end(crj) < oo, and if end(uk) < oothen (O'k,begin(u~.:)} I= cp2 , otherwise

(cr~-;, begin(uk)} I= CfJt>

- or there exist infinitely many models cr1, cr2 , o-3, ... such that o- = cr1o-2o-3 ... ,

end(O't)?: T, for any i?: 1, end(o-;) < oo, (o-llT) I= <p1, and for any j?: 2,

(<ij, begin(Uj)) I= 'PI·

The substitution of an expression vexp1 for a variabie x in an expression vexP2, denoted

by vexp2 [vexptf x], is defined as the expression obtained by replacing every occurrence of

x in vexP2 by vexpi. This notation wiJl be used in the axiom for assignment statement.

We also use the standard abbrevia.tions such as true = 0 0, <p1 A r.p2 = -.(...,'PI V

...,r.pz), 'Pt --+ r.pz -.r.pt V <p2, texp1 ~ texp2 = (texp1 = texpz) V (texp1 < texpz), etc ..

Furthermore we have the usual abbreviations from temporal logic:

• 0 cp true U r.p (eventually <p will be true)

• 0 r.p,(> -.cp (henceforth <p will be true)

• <p1 U <p2 (cp1 U r.p2) V 0 r.p1 (weak until: either eventually <p2 wil! hold and until

that point r.p1 holds continuously, or <p1 holds henceforth)

Next we define validity of specifications and correctness formulae of the form S sat <p.

Definition 2.3.1 (Valid Specification) A specification <p is valid, denoted by I= r.p,

iff (17, begin(i7)) I= <p for any model a.

For instance, I= T =start, I= x= first(x), and

I= term< oo A 0 (T term--+ x 5)--+ last(x) 5.

Definition 2.3.2 (Satisfaction) A process S sat.isfies a specification <p, denoted by

I= S sat <p, iff (u, begin(cr)} I= <p for any 0' E M(S).

We also say that S sat r.p hlods if I= S sat r.p.

We give a few simple examples to illustrate our specification langua.ge. General safety

propertiescan be specified, e.g.,

• Process S does not terminate: S sat tcnn oo.

Note that we could also use S sat 0 -.(T term).

• S does not perform any communication along channcl c: S sat 0 -.comm(c).

Some examples of reai-time safety propert.ies:

28 GRAPTER 2. SYNCHRONOUS COMMUNICATION

• If S starts its execution with x = 0, then S wiJl terminate in less than 5 time units

Vlith x= 8:

S sat x= 0---+ (term< start+ 5) 1\ (last(x)= 8).

• S waits to communicate on channel c and after communication on c it is waiting

to send on channel d:

S sat (wait(c) U (comm(c) UT= term)) C wait(d!).

• During the execution of S, variabie x has value 5 at 3 time units after the start of

the execution, after 5 time units x has value 8 and y has value 9, and finally after

7 time units process S terminates with x = 10 and y = 12:

S sat 0 [(T = start+ 3 ---+ x = 5) 1\ (T = start+ 5 ---+ x = 8 1\ y = 9) 1\

(T = start+ 7 ---+ x = 10 1\ y = 12)]/\ terni = start+ 7.

Liveness properties can also be expressed:

• S terminates: S sat term< oo. (Or, equivalently, S sat O(T =term).)

• S either communicates along channel c infinitely oftenor eventually it waits forever

tosend on c: S sat (0 Ocomm(c)) V (0 0 wait(c!)).

2.4 Proof System

In this section, we give a compositional proof system for the synchronous version of the

programming and specification languages. This proof system wil! take all valid ECTL

assertions as axioms. We start with axioms and rules which are generally applicable to

any statement. Next we axiomatize the programming langua.ge by formulating axioms

and rules for all atomie statements and compound progra.mming constructs.

Let vexp1 and vexp2 be expressions of type VAL. The well-formedness property of the

semantic models is axiomatized by the following axiom. For any finite cset Ç DCHAN,

Axiom 2.4.1 (Well-Formedness)

For any finite cset Ç DCHAN, S sat W Fcset, where

WFcset

MinWaitcset

Exclusioncset

Uniquecset

0 (MinWaitcset 1\ Exclusioncset 1\ Uniquecset)

A{c!,c?}Çcset --.(wait(c!) 1\ wait(c?))

A{c,c!}Çcset --.(comm(c) 1\ wait(c!)) 1\ A{c,c?}Çcset --.(comm(c) 1\ wait(c?))

Acecset corn.m.(c, vexp1) 1\ conun(c, ve.1:p2) ---+ vel: pi = vexp2

For any finite cset Ç DCJ/AN and vset Ç V AR, define

empty(cset) = Ac!Ecset --.wait(c!) 1\ Ac?Ecset --.wait(c?) 1\ Acecset --.comm(c) and

inv(vset) = Axevset x= first(x).

2.4. PROOF SYSTEM 29

The next general axiom expresses that a process does not (try to) communicate on

channels that do not syntactically occur in the process.

Axiom 2.4.2 (Communication lnvariance)

For any finite cset Ç DCH AN with cset n dch(S) 0, S sat 0 empty(cset).

Similarly, the proof system has an axiom to express that certain variables are not changed

by a process.

Axiom 2.4.3 (Variable Invariance)

For any finite vset Ç V AR with vset n wvar(S) 0, S sat 0 inv(vset).

Furthermore, we have the usual conjunction rule and consequence rule.

Rule 2.4.1 (Conjunction)
Ssat S sat <p2

S sat if'1 1\ <f!2

Rule 2.4.2 (Consequence)
S sat

S sat ;p2

Next we give axioms for the five atomie statements. Statement skip terminates imme­

diately.

Axiom 2.4.4 (Skip) skip sat term= start

The assignment axiom expresses that x := e terminatea after Ka time units and the

final value of x equals the value of e at the initia! state. If x occurs in the expression e,

the initia] value of x is needed to evaluate the value of e. We use first(x) to record the

initia! value of x.

Axiom 2.4.5 (Assignment)

x:= e sat (x= first(x)) U (T =term= start+ Ka A x e[first(x)fxj)

Example 2.4.1 With this axiom and the consequence rule we can derive, for instance,

x:= x+ 1 sat (last(x) = first(x) + 1) 1\ O(T =term= start+/(,,). 0

Example 2.4.2 We show that we can derive

x y + 4 sat y = 5-+ 0 (x = 91\ T =term= start+ Ka)·

By the assignment axiom and the conscquence rulc we obtain

x y + 4 sat O(x = y + 4/\ T =term= start+ Ka)·

Since y f/. wvar(x := y + 4), by the variabic invariancc axiom, wc have

x:= y + 4 sat 0 (y first(y)).

Since I= y 5-+ 0 (first(y) = 5), by the assumption, we have

30 CHAPTER 2. SYNCHRONOUS COMMUNICATION

f- y = 5 -+ D (first(y) = 5). Then by the conjunction rule and consequence rule, we

obtain

x := y + 4 sat y = 5 -+ D (y = 5).

Hence, by the conjunction rule and consequence rule again, we get

x y + 4 sat y = 5-+ <>(x 9 AT= term= .~tart+ Ka)· D

Statement delay e terminates after e time units if the value of e is not negative. Oth­

erwise it terminates immediately like skip.

Axiom 2.4.6 (Delay) delay e sat term start + ma x(0, e)

An output statement starts with waiting to send a message, and as soon as a commu­

nication partner is available the communication takes place during Kc time units. Note

that we use a weak until operator in the axiom below to allowan infinite waiting period

(i.e., deadlock) when no partner becomes available.

Axiom 2.4.7 (Output)

de sat wait(c!) U (T =term- Kc A (comm(c,e) UT= term))

Similarly, an input statementc'!x waits to receive a value along channel c. When the

communication finishes the value received is assigned to variabie x. Thus at the last

state of the execution model x possesses that value.

Axiom 2.4.8 (Input)

c'!x sat (x= first(x) A wait(c'!)) U

(T term Kc A ((x= first(x) A comm(c, last(x))) UT= term))

Using the C operator we can easily formulate an inference rulc for sequentia! composition.

Rule 2.4.3 (Sequential Composition)

Example 2.4.3 Con si der process x x+ 1; x := x+ 2. By the assignment axiom and

the consequence rule we have:

x:= x+ 1 sat last(x) = first(x) + 1 A term= start+ Ka, and

x:= x+ 2 sat last(x) = first(x) + 2 A term= start+ Ka.

Then the sequentia) composition rule leads to

x:= x+ 1; x:= x+ 2 sat

(last(x) first(x) + 1 A term, start+ Ka) C

(last(x) = first(x) + 2 A te1·m start+ I<a)·

By the consequence rule, we obtain

x:=x+l;x:=x+2 sat last(:c)=fi1·st(x)+3Aterm=start+21<a· D

2.4. PROOF SYSTEM 31

Now consider a guarded cammand G. Reeall that g is defined as (see section 2.2.2)

_ { Yf:t Ui if G = [0f=tY• --+ S,] u= Vi=o g; if G [I] f= 1g;; e; ?x; --+ S; 0 9oi delay e --+ So]

First we give an axiom which expresses that if none of the guards evaluates to true then

the guarded command terminates after I<9 time units. Furthermore we express that

there is no activity on the channels of G and no write-variable of G is changed during

the eva.lua.tion of guards. Define Eva[= term= start+ /{9 •

Axiom 2.4.9 (Guarded Command Evaluation)

G sat [(inv(wvar(G)) A empty(dch(G))) U (T =start+ /(9 A inv(wvar(G)))] A

(...,g --+ Eval)

Next consider a guarded cammand with purely boolean guards G [0i=1g; --+ S;]. If

at least one of the guards yields true then a.fter the evaluation of the guards one of the

statements S; for which g; evaluates to true is executed. This leads to the following rule.

Rule 2.4.4 (Guarded Cammand with Purely Boolean Guards)

S; sat "Pi, for i= 1, ... , n

[0;'=1 g; --+ S;] sat g --+ (Eva! C Vi=t g; A tp;)

Next we formulate a rule for G = [Df=t g;;c;?xi--+ S; U g0 ;delay e 80], using

Wait inv(wvar(G)) A empty(dch(G) \ {c1 '!, ... ,cn?}) A

(go--+T<start+max(O,e)) A l\i=1(g;<-+wait(c;?)),

lnTime = inv(wvar(G)) A T =term A (g0 --+ T <start+ max(O,e)),

EndTime = inv(wvar(G)) A g0 A T =term= start+ ma:r.(O, e),

Comm (Wait U InTime) C V'i=1 .g; A "Pi A comm(c;), and

TimeOut = (Wait U EndTime) C tp0 .

Rule 2.4.5 (Guarded Command with 10-Guards)

c;?x;; S; sat tp;, for i= 1, ... , n, 80 sat tp0

[l]f=I g;;e;?x;--+ S; 0 go;delay e--+ So] sat

g --+ (Eval C (Comm V TimeOut))

Observe that in the definition of GOM M we use g; A tp; A comrn(c;), where "Pi is such

that e; ?x;; S; sat tp;. In genera), "Pi describes two parts of the computation: a possible

waiting period for c; ?x; foliowed by a coomunîcation on channel c;, a.nd the execution

of S;. According to the definition of well-forrnedness, adding comm(ei) to i{) i excludes

the possibility of waiting on e;, and this is exactly what needeel in the execution of the

guarded cammand when the communication on c, should start immediately.

The inference rule for an iterated guarded cammand is as follows.

32 CHAPTER 2. SYNCHRONOUS COMMUNICATION

Rule 2.4.6 (Iteration)
G sat

Next consider parallel composition of S1 and S2• Suppose we have deduced specifications

'-Pl and '-P2 for, respectively, sl and S2. If '-PI and '-P2 do not contain term, then we have

the fo!Iowing simple rule.

Rule 2.4. 7 (Simple Parallel Composition)

contain term

provided dch(<p;) Ç dch(S;) and var(<pi) Ç var(S;), for i= l, 2.

If one of <p1 and <pz contains term, we have to take into account that thé termination

times of S1 and S2 are, in genera!, different. Observe that if S1 terminates after (or at the

sametime as) S2 then the model representing this computation satisfies <p1 A (<p2 C true).

Furthermore we have to express that the variables of 82 are not changed and there is

no activity on the channels of 82 after the termination of S2 • Similarly, for S1 and S2

interchanged. Then it leads to the following general rule for parallel composition.

Rule 2.4.8 (Genera) Parallel Composition)

Let tf;; D(inv(var(S;)) A empty(dch(S;))), for i= 1,2.

S1i1Sz sat

provided dch(<p;) Ç dch(S;) and var(<p;) Ç var(S,), for i= 1,2.

Example 2.4.4 Consider process c!5 11 c?x. Since we have assumed maximal paral­

lelism, the communication takes place immediately and hence this process should satisfy

comm(c, 5) U (T = term= start+ Kc A x= 5).

By the input axiom, output axiom, and the consequence rule, we obtain c!5 sat <p1 and

c?x sat <p2 with

<p1 =: wait(c!) U (T = tenn- I\c A (comm(c,5) UT= term)) and

<p2 =: wait(c?) U (T =term- Kc A (comm(c,last(x)) UT term)).

Suppose t/;1 D empty({ c, c!}) and !/;2 = D (inv({x}) A empty({ c, c?})).

Then the general parallel composition rule leads to

c!5ll c?x sat (<pt 1\ (<pz C t,b2)) V (<p2 A ('-PI C 1/;t)).
The well-formedness axiom and the conjunction rule allow us t.o add MinWait{c!,c?},

Exclusion{c,c!,c?}, and Unique(c} to ('PI A ('-P2 C t/;2)) V ('P2 A ('-PI C 1/JJ)).

Consider '-Pt A (<p2 C !/lz) A MinWait(c!,c?} A Exclusion{c,c!,c?} A Uniqtte{c)·

2.5. APPLICATION

It implies

[wait(c!) U (T =term- I<c A (comm(c,5) UT= term))] A

[(wait(c?) A ...,wait(c!) A -,comm(c)) U (comm(c, last(x)) A ...,wait(c!))J A Unique{c),

which implies

T term- I<c A (comm(c,5) UT= term) A last(x) = 5.

Since I= T = start, the above formula implies

comm(c, 5) U (T = term start+ Kc A x = 5).
Similarly, we can prove that

1.(12 A (<pi C 1/J1) A MinWait{c!,c?} A Exclusion{c,c!,c?} A Unique{c}->

comm(c, 5) U (T = term start+ Kc A x = 5).
Then, using the consequence rule again, we obtain

c!5ll c?x sat comm(c,5) U (T =term start+ Kc A x= 5).

33

0

Example 2.4.5 Consider process c!O; d!l 11 d?x; c?y. Since this process leads to dead­

lock,

we should be able to prove c!O; d!I 11 d?x; c?y sat 0 (wait(c!) A wait(d?)).

By the output axiom, the communication invariance axiom, and the consequence rule,

we have

c!O sat wait(c!) U comm(c) and c!O sat 0 -.comm(d).

Using the conjunction rule and the consequence rule, we obtain

c!O sat (wait(c!) A -.comm(d)) U (comm(c) A -,comm(d)).

Since ((wait(c!) A -.comm(d)) U (comm(c) A -.comm(d))) C tnte->

(wait(c!) A -.comm(d)) U (comm(c) A ...,comm(d)),

the sequentia! composition rule and the consequence rule lead to

dO; d!l sat (wait(c!) A ...,comm(d)) U (comm(c) A -.comm(d)).

Similarly, we have

d?x; c?y sat (wait(d?) A -.comm(c)) U (comm(d) A -,comm(c)).

Using the simple parallel composition rule, we obtain

c!O; d!l 11 d?x; c?y sat ((wait(c!) A -.comm(d)) U (comm(c) A -,comm(d))) A

((wait(d?) A ...,comm(c)) U (comm(d) A -.comm(c))).

Clearly this implies 0 (wait(c!) A wait(d?)) and hence, by the consequence rule,

c!O; d!l 11 d?x; c?y sat 0 (wait(c!) A wait(d?)). 0

2.5 Application

In this section we illustrate the use of our formalism by spccifying and verifying a smal!

part of an avionics systern. Deta.iled specifica.tions of the avionics systcm can he found

in [PWT90]. Here wc only consider the design of a rclia.blc device.

34 GRAPTER 2. SYNCHRONOUS COMMUNICATION

A device is a component which receives a request from a.nd sends data. to its envi­

ronment. A relia.ble device RD consists of a physical device PD and a handler H and is

depicted by the following tigure 2.1.

.pdata

preq

Fig. 2.1 R.elia.ble Device

After receiving a. request, the physical device PD either sends some data to its environ­

ment along channel pdata within a certain a.mount of time, or it fails to do so but will be

ready for the next request on channel preq within some time bound. When the handler

H receives a request from its environment a.long channel req, it will send a request to the

physical device PD along channel preq and then wait for PD to send data on channel

pdata. Then there are two possibilities:

• If PD functions correctly, it will be ready to send some data to H on channel pdata

within a certain amount of time. After H has received the data, it will send the

data to its environment on channel data.

• If PD does not function correctly, H will stop waiting aiter a certain period of

time and an approximation of the data will be computed by a component C inside

the handler. Then the a.pproximated data will be sent to the environment along

channel data.

Given a physical device, the problem is to construct a handler such that the composition

of the physical device and the handler is a reliable device. We wil! design a handler H

such that the parallel composition of PD and H, P D 11 H, behaves like RD, i.e., satisfies

the given specification of RD.

In this example, we make the following assumptions.

• We focus on the communication behavior of the system and not on how data is

produced. Thus we abstract from whether data. is precise or approximated and

ignore the data. when a communication takes place. Hence data will not appear in

any specification or process.

• As intherest of this chapter, communications are synchronous along unidirectional

channels and a communication takes I<c time units.

2.5. APPLIGATION 35

• Component C will take De ~ 0 time units to compute an approximation of the

data.

The specification of the physical device PD is given informally as follows.

1. Initially, PD is waiting to receive a request along channel preq.

2. When PD receives a request on channel preq, it takes Dpv ~ 0 time units to

process the request. Then either it is ready to send data on channel pdata and

after having sent data on pdata it is again ready for another request on channel

preq, or it is not ready for sending on pdata but it will he ready foranother request

on preq within DpQ ~ 0 time units.

The implementation of PD may he in hardware or in software. Since our method is

compositional, only the specification of PD is used to construct the reliable device. The

formal specification of PD is given as SP EG PD in the following way.

SPEGpv ([wait(preq?) U (comm(preq) UT term)] C

[term= start+ Dpv] C

[(wait(pdata!) U (comm(pdata} UT= term.)) V

(-.comm(pdata!) UT term :$ start+ DPQ)]) c• f al se.

The specification of the reliable device RD is informally stated as follows.

1. Initially, RD is ready to receive a request from the environment along channel req

within DRQ ~ 0 time units.

2. When RD receives a request on channel req, it wil! he ready to send the data to

the environment through channel data within DRD ~ 0 time units.

3. When RD has sent the data through channel data, it wiJl aga.in he ready to accept

the next request on channel req within DRQ time units.

The forma! specification of RD is defined as SP EG RD as follows.

SPEGRD ([term:::; start+ DRQ] C

[wait(req?) U (comm(req) UT= term)] C

[term:::; start+ Dnv] C

[wait(data!) U (comm(data) UT term)]) C* false.

Our aim is to find a handler H such that PDIIII sat SPEGnv. After luwing examined

the requirement of RD and the speeification of PD, we propose the following specification

for H.

1. Initially, H should be ready to rcceive a request. from the environment along channel

req within DRQ time units.

36 GRAPTER 2. SYNGHRONOUS GOMMUNIGATION

2. When H receives a request on channel req, it is immediately readytosend a request

toPDon channel preq. After the communication on preq finishes, H is allowed to

wait Do ;:::: 0 time units before it is ready to receive on channel pdata for at most

D1 time units. If a communication on pdata starts in less than Di time units, then

after this communication H is ready to send on channel data. If no communication

occurs on pdata in less than D 1 time units, H starts to compute an approximation

of the data by means of the component C and then is ready to send the data on

channel data.

3. When H has sent the data along channel data, it will again be ready to accept the

next request on channel req within DRQ time units.

The values of the constants Do and D1 wil! be determined later. These informal descrip­

tions can be formalized in our specification language as SP EG H.

SPECH =([term :5 start+ DRQ] C

[wait(req?)· U (comm(req) UT= term)] C

[wait(preql) U (comm(preq) UT term)] C

[term = start + D0] C
[(wait(pdata?) U (comm(pdata) UT term< start+ D1 +Kc)) V
((wait(pdata?) UT= term= start+ DI) C (term= start+ De))] C

[wait(datal) U (comm(data) UT term)]) C* false.

Then the hand Ier H is specified by H sat SP EG H. For the physical device PD we have,

by assumption, PD sat SPEGPD· To show that PDIIH sat SPEGRo, we apply the

parallel composition rule. Observe that although SPEGPD and SPEGH contain term,

we have SPEGpo C 1/J <--> SPEGpo and SPECH C 1/J <--> SPECH, for any formula 1/J.

Then by the general parallel composition rule, we obtain P DIIH sat SP EGpoi\SP EGH.

Let
cset {preq?, preq!,preq, pdata?, pdatal,pdata, req?, req,data!,data} and

WFD =: WFcset· By the well-formedness axiom, we have PDIIH sat WFD. Using the

conjunction rule, we obtain PDIIH sat SPEGpo 1\ SPEGH 1\ W FD. If we can prove

SPECpo 1\ SPECH 1\ W FD--> SPEGRD, then by the consequence rule, we obtain

PDIIH sat SPECRD· Hencewe have toprave SPEGpn/\SPECH/\W FD--> SPEGRD·

By camparing SPEGu with SPECRo, we see that the wa.iting time of H on channel

pdata has an upper bound of D1 +max(l<c, De)· lt remains todetermine an upper bound

on the waiting time of H on channel preq. Therefore we make the following observations.

1. For the first communication on preq H does not need t.o wait for PD since PD is

initially ready for preq.

2.5. APPLICATION 37

2. Let tpn denote the maximal amount of time for PD to he ready to receive along

preq after a. communica.tion on preq completes. Let tH denote the minimal amount

of time for H to he readytosend along preq aftera communication on preq finishes.

We will determine tpn and tH and then use them to derive an upper hound on

the waiting time.of H on preq. Aftera communication on preq ends, there are two

possihilities for PD:

• PD functions correctly, i.e. after Dpn time units it is ready to send on pdata.

In this case, we should require

Dpn <Do+ D~> (1)
i.e. H has to wait long enough to receive the data from pdata. If this re­

quirement is not satisfied, H will stop waiting for PD on pdata and start

component C to compute approximated data hefore PD is ready to send on

pdata. Then after a next communication on req H will start waiting to send

on preq whereas PD is still waiting to send on pdata. Hence this leads to a

deadlock.

After a communication on preq, H is ready to receive on pdata in D0 time

units. Thus, assuming (1), PD will start the communication on pdata after

max(Dpn, D0) and then he ready for the next request on preq. Hence tpn =
max(Dpn, Do)+ Kc.

Also H communicates on pdata after max(Dpn, Do) waiting time and then is

ready to send on data. After the communications on data and req H is again

ready for preq. Thus tH max(Dpn, Do)+ 3I<c·

Ohviously tpn < tH. Thus PD is ready for preq earlier than H is and then H

does not have to wait for PD on preq. Hence after a req communication, H

immediately sends along preq and the sending takes Kc time units. Next, as

above, a communication along pdata starts after max(Dpn, D0), which also

takes Kc time units, and then H is ready to send on data.

Thus in this case we obtain SPECRD provided

max(Dpn, Do)+ 2/(c ::; DnD· (2)

• Or PD does not function correctly, i.e. after Dpv it is not ready for pdata

but it will he ready for the next request on pre(/ within Dpq time units. In

this case, we have tpv = Dpn + Dpq.

Regarding H, after it has waited D0 + D1 time units for pdata it starts to

compute approximated data hy component C (which takes De time units)

and then is ready for channel data. Then we have tu = Do+ D1 +De+ 2Kc.

If tpv ::; tH, i.e. Dpn + Dpq ::; Do+ D1 +De+ 2I<c, then H does not

have to wait for PD on preq. In this case SPECpn 1\ SPECH 1\ WFD

38

leads to

CHAPTER 2. SYNCHRONOUS COMMUNICATION

([term$ start+ DRq] C
[wait(req?) U (comm(req) UT= term)] C

[term start+ I<c] C

[term start + D0] C

[term start+ D1 +De] C

[wait(data!) U (comm(data) UT= term)]) C*false

Hence, to obtain SP ECRv, we require I<c +Do+ D1 +De $ DRv, i.e.,

I<c +Do+ Dt $ Dnv. (3)

- If tpv > tH, i.e. Dpv + Dpq >Do+ Dt +De+ 2Kc, then H ha.s to wait

at most tpv-tH timeunits for PD on preq. Thus SPECpvASPECHA

WFD leads to

([term$ start+ DRQ] C

[wait(req?) U (comm(req) UT= term)] C

[term start+ tpv- tH + I<c] C

[term = start + D 0] C

[term= start+ D1 +De] C
[wait(data!) U (comm(data) UT= term)]) C* false

Therefore we have to require tpv- tH +Kc+ Do+ D1 +De $ Dnv, i.e.,

Dpv + Dpq- I<c $ DRD· (4)

Conditions (1), (2), (3), and (4) are the restrictions on the parameters to achieve the

required implication. By these restrictions, we only know the relation between D0 and

Dt. When we· implement H helow, we obtain the value of D0 and then the value of Dt

is determined a.s well.

Now we implement H in our programming language. We propose the following pro­

cess H.

H ::= *[req? --+ preq!; [pdata? --+ data! U delay D1 --+ C; data!]]

where process C is such that C sat term = start+ De.

We show that H sat SPECH. By the proof system, we can derive that H sat 'f!H with

'f!H = ([term= start + 1<9] C

[wait(req?) U (T =term- Kc A (comm(req) UT= tenn))] C

[wait(preq!) U (T term- Kc A (comm(preq) UT= term))] C

[term start+ K9] C

[(wait(pdata?) U (T term- Kc A (comm(pdata) U

T =term< start+ D1 +Kc))) V

((wait(pdata?) UT= term start+ DJ) C (term stm·t +De))] C
[wait(data!) U (T term- Kc A (comm(data) UT= term)]) C* false

2.6. SOUNDNESS AND COMPLETENESS 39

By comparing SPECH and 'PH, we can easily derive 'PH_,.. SPECH, i.e., H sat SPECH

and then process H is a correct implementation of the handler H, provided

DRq ~Kg (5)
and Do = K9 • Combining the conditions (1) through (4), we see that (1) and (3) are

equivalent to the following condition on D1 :

Dpv -Kg < Dt :5 DRD -Kc- Kg. (6)
We show that (Dpv - Kg, DRD - Kc - 1<9] is not an empty interval, i.e., D1 can be

found. We only have to prove that Dpv < DRv - Kc. Reeall Do K9 • If Dpv ~ D0 ,

by (2), we have Dpv + 2l<c :5 DRD and then, since Kc > 0, Dpv + Kc < DRD. If
Dpv < Do, by (2) again, we obtain K9 + 2Kc :5 DRv, i.e. Dpv + Kc < DRD. Thus the

condition (6) for D1 is reasonable.

Furtbermore, by D0 = Kg, the condition (2) can he replaced by the following (2'):

max(Dpv, K9) + 2Kc :5 DRD. (2')
Hence the final restrictions on the parameters are (2'), (4), (5), and (6).

2.6 Soundness and Completeness

In this section, we consider the soundness and completenessof the proof system in section

2.4. For the soundness of our proof system, we must show that every formula S sat <p

derivable in the proof system is indeed valid. We first give a few lemmas which wiJl be

used to prove the soundness. The proofs of theselemmascan be found in Appendix A.

Lemma 2.6.1 For any expression e from the programming language, any model u,

and any T ~ begin(u), t'{e)(u(r) . .s) = V(e)(u,r).

Lemma 2.6.2 For any boolean guard g from the progra.mming language, any model

u, and any T ~begin(u), Q(g)(u(r).s) iff (u, r) I= g.

Lemma 2.6.3 For any expression vexp of type V AL, any model u, any cset Ç

DCHAN, and any T::?: begin(u), V(vexp)(u,r) = V(vexp)([u]cset.T).

Lemma 2.6.4 For any expression vexp of type V AL, any model u, any vset Ç V AR,

and any T ~begin(u), if var(vexp) Ç vset, then V(vexp)(u, r) = l((vexp)(u! vset, r).

Lemma 2.6.5 For any expression texp of type TIME, any model u, any cset Ç

DCHAN, and any T 2: begin(er), T(texp)(u, r) = T(lexp)([u]cstt, r).

Lemma 2.6.6 For any expression te:n> of type TIME, any model a, any vset Ç V AR,

and any T ~begin(u), if var(tex71) Ç vset, Uwn T(texp)(u, r) = T(te.rp)(u! vset, T).

40 GRAPTER 2. SYNCIIRONOUS COMMUNICATION

Lemma 2.6. 7 For any cset Ç DCHAN and any specification rp, if dch(r.p) Ç es et, then

for any model a and any T 2: begin(a), (a, r} f= r.p iff ([a]cset 1 r) f= r.p.

Lemma 2.6.8 For any vset Ç VAR and any specification rp, if var(r.p) Ç vset, then

for any model a and any T 2: begin(a), (a, r) f= r.p iff {a! vset, r) f= r.p.

Given these lemmas, we have the following soundness theorem.

Theorem 2.6.1 (Soundness) The proof system insection 2.4 is sound.

To prove this theorem, we have to show that all axioms are valid and all inference

rules preserve validity, i.e., if the hypotheses of any rule are valid, so is the condusion.

For most axioms and inference rules, soundness follows directly from the definitions of

semantics and given lemmas. The detailed proofs can be found in Appendix B.

We would also like the proof system to be complete, i.e. if S sat <p is valid then it is

derivable from our proof system. Observe that the consequence rulerelies on implications

that are formulae in Explicit Clock Temporal Logic (ECTL), and hence the completeness

of our proof system also requires that every valid ECTL formula is provable. Since proof

systems for ECTL are beyond the scope of this thesis, we prove relative completeness:

Every valid specification is derivable in our proof system, assuming that any valid ECTL

formula can be proved.

We first give some lemmas which will be used in the completeness proof. The proofs

of these lemmas can be found in Appendix A.

Lemma 2.6.9 For any model 0' and any cset Ç DCH AN, dch(O') Ç èset iff 0' = (O']cset·

Lemma 2.6.10 For a.ny model 0' and any cset1 ,cset2 Ç DCHAN,

if {0', begin(O')) f= 0 empty(cset2 \ cset1), then [O']csct1ucset2 [a]cset1 •

Lemma 2.6.11 For any model 0' and any vset 1 , vset2 Ç VAR,

if {a, begin(O')} f= 0 inu(vset2 \ tJset 1), then al (u.~el 1 U vset2) = 0' l uset1.

Lemma 2.6.12 For any model a, if dch(O') Ç c,,et and (O',begin(O')) f= WF~set, then

0' is well-formed.

In order to prove the relative completeness of our system, we define a property of

specifications called preciseness.

Definition 2.6.1 (Invariant Variabie) A variabie a~ i~ i1wa1·iant with respect to a

model a iff for all T, begin(a)~ T cnd(O'), a(r).s(:1:) .s(1~).

2.6. SOUNDNESS AND COMPLETENESS 41

Definition 2.6.2 {Preciseness) A specification 1fl is precise fora statementS of the

programming language in sectien 2.1 iff

1. S sat 1f1 holàs, i.e., (a, begin(u)} I= lfl, fer any 11 E M(S);

2. If 11 is a well-formed model, dch(a) Ç dch(S), for any variabie x f/:. wvar(S), x is

invariant with respect toa, and (a,begin(u)) I= lfl, then 11 E M(S); and

3. dch(lfl) = dch(S) and var(lfl) = var(S).

A precise specificatien 1f1 for S thus charàcterizes all pessible cemputatiens of S: 1f1 is

valid forS, and any "reasonable" computation satisfying 1f1 is a possible cemputatien of

s.
We first prove that for any statement S a precise specificatien can he derived from

the axioms and inference rules (Theorem 2.6.2). We then show (in Theorem 2.6.3) that

any specificatien 1f12 which is valid for S can be derived from a precise specificatien lfll for

S and three predicates. Hence, relative cempleteness fellews directly (Theorem 2.6.4).

Theorem 2.6.2 If S is a statement from the programming language in section 2.1,

then a precise specification fer S cao be derived by using the proof system in section

2.4.

The proof of this theorem can be found in Appendix C.

Theorem 2.6.3 · If lflt is precise for S and 1f12 is valid for S, then

I= [lflt A WF.tch(.,.1) A 0 [empty(dch(lfl2) \ dch(lflt)) A inv(var(1f!2) \ var(lflt))]]-+ lfl2·

Proof: Let 1f11 be precise for S and 1f12 be valid for S. Consicier a model u. Assume tha.t

(a, begin(a)) I= lflt A W Fdch(~~>d A 0 [empty(dch(1f!2) \ dch(lflt)) A inv(var(1f!2) \ var(lflt))]

holds. We show (a, begin(u)) I= if12·

By (u, begin(u)} I= lflt, lemma 2.6.7leads to ([a]dch(~~>d• begin(u)) I= lflt· By lemma 2.6.8,

([u]dch(.,.!) i var(lflt),begin(a)} I= ifii· From (u,begin(a)) I= WFdch(;<>l), hy lemma 2.6.7,

we ohtain ([uJdch(;<>l), begin(u)) I= W Fdch(;<>l)· Then, by lemma 2.6.12, [u)dch(;<>>) is well­

formed. By definition, [a]dch(op!) ! var(lfld is also well-formed. Si nee lflt is precise for

S, we have dch(lfl1) dch(S) and var(1f!1) = var(S). By the definition of projection

onto variables, any variabie x'/:. wvar(S) is invariant with respect to [u]dch(;<>J) i var{lfll)·

Hence by the definition of preciseness, [u]dch('l'd ! var(ifii) E M(S).

From (u, begin(u)) I= 0 empty(dch(1f!2) \ dch(lfll)), lemma 2.6.10 leads to

[u]dch(~~>J)udch(;<>>) = [a)dch('1'1)· Since (a,begin(u)) I= Oinv(var(1f!2) \ var(lflt)), lemma

2.6.11 leadstoa! (var(lflt) U var(1f12)) a! var(1f11). Thus we obtain

[a]dch(;<>l)udch('Pl) ! (var(lfld U var(lfl2)) = [a]dch(.",l) l var(lfld· Therefore we have

42 GRAPTER 2. SYNCHRONOUS COMMUNICATION

[O']dch('l't)Udch('h)! (var(!pi) U var(!f2)) E M(S). Since 1p2 is valid forS, we obtain

([O']dch('l't)Udch('h) ! (var(~Pi) U var(!f2)), begin(q)) I= !f2· From var(!f2) Ç var(!ft) U

var(!f2), lemma2.6.8leads to ([O']dch('l't)udch(:n)• begin(q)) I= 1p2. By dch(IP2) Ç (dch(!f1)U
dch(ip2)), lemma 2.6.7leads to {O',begin(q)} I= lf12 • Hence this theorem holds. 0

Theorem 2.6.4 (Relative Completeness) The proof system insection 2.4 is rela­

tively complete.

Proof: For any process S, assume that specification lP is valid for S. We prove that

S sat <p is derivable in the proof system in section 2.4. By theorem 2.6.2, we have

S sat <p1 where 1p1 is a precise specification forS. By the well-formedness axiom, we ob­

ta.in S sat WFdch('l'•)· Since dch(ipt) dch(S), we have [dch(IP) \ dch(~P1)] ndch(S) == ~­
Then by the communication invariance axiom, we obtain S sat 0 empty(dch(lP) \

dch(!ft)). From var(ipt) var(S), we have [var(IP) \ var(IP1)] n var(S) == ~ and

thus [var(cp) \ var(cpt)] n wvar(S) == ~. By the variabie invariance axiom, we obtain

S sat 0 inv(var(cp) \var(cp1)). Then the conjunction rule and the consequence rule lead

toS sat !ftll W Fdch(<+>t) 11 0 [empty(dch(cp) \ dch(ipt)) 11 inv(var(cp) \ var(cpt))]. By the­

orem 2.6.3, [!f1 11 W Fdch(<+>d 110 [empty(dch(IP) \ dch(cpt)) 11 inv(var(!f) \ var(cpl))Jl--> cp

is va.lid and, by our relative completeness assumption, provable. Hence, by the conse­

quence rule, S sat lP is derivable in the proof system. 0

Chapter 3

Asynchronous Communication

In this chapter, we study, a verification theory for asynchronously communicating reai­

time systems. In section 3.1, wedefine the asynchronous version of our programming

language in which parallel processes communicate through asynchronous message pass­

ing. A compositional semantica is given in section 3.2. The asynchronous version of

the specification language is presented in section 3.3. A compositional proof system is

shown in section 3.4. The soundness and completeness issues are discussed in section

3.5.

3.1 Real-Time Programming Language

3.1.1 Syntax and Informal Semantics

Consicier a reai-time programming language in which parallel processes communicate

by sending and receiving messages along channels. A channel connects exactly two

processes. Communication is asynchronous, that is, a sender does not synchronize with

a receiver but sends its message immediately. Sirpilar to the programming language in

chapter 2, a reai-time statement delay e is added to suspend execution for a certain

period of time. Such a delay-statement mayalso occur in a guard of a guarded command.

Parallel processes do not share variahles. Nested parallelism is allowed.

Similar to chapter 2, let VAR he a nonempty set of variahles, CHAN be a nonempty

set of channel names, and VAL be a nonempty domain of values. The syntax of the

reai-time progra.mming language is givcn in ta.ble 3.1, with c,ci E CHAN, x, x; E VAR,

n E IN, and n ~ 1, where IN denotes thesetof all natura] numhcrs.

Notice that this programming language is similar to the programming language in

chapter 2 section 2.1, except three statements invalving communication. We give the

informal meaning of these three statements as follows:

Atomie statements

43

44 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Table 3.1: Syntax of the Programming Language in Chapter 3

Expression

Guard

Statement

e ::= {} I x I e1 + e2 I e1 - e2 I e1 x e2

g ::= e1 e2 I e1 < e2 I -,g I Ut V Y2

S ::= skip I x e I delay e I c!!e I c??x I
Sl;S2 I G I *G I StiiS2

Guarded Gommand G ::= [Dr=1g;-+ S;] I [0i=1g;;c;??x;-+ S;Ogo;delaye-+ So]

• c!!e sends the value of e to the buffer of channel c. We assume that there is an

(unbounded) buffer for every channel. Since the communication is asynchronous,

c!!e never waits for its communication partner.

• c??x reads a value from the buffer of channel c and assigns it to variabie x. If the

buffer is empty, c??x has to wait until a message arrives.

Compound statements

• The execution of a guarded oommand [0f=1g;;c;??x;-+ S;Ogo;delay e-+ S0] is

similar to the execution of [0~1 g;;c;?x;-+ S;0g0;delay e-+ S0] from chapter 2,

except that the communication in the guards here is asynchronous.

Similar to chapter 2, any statement in this programming language is called a process.

A write-variable is a variabie which occurs in a receive statement (i.e. c??x) or on the

left hand side of an assignment. Let S be any statement. We a.lso use var(S) and

wvar(S) to denote the set of variables and write-variables occurring in S, respectively.

We define ch(S) as the set of all channel narnes occurring in S, ich(S) as the set of

all input channel narnes occurring in S, and och(S) as the set of all output channel

narnes appearing inS. Notice that ich(S)Uoch(S) = ch(S) and ich(S)noch(S) denotes

thesetof internal channels. For instance, ch(c!!5) = och(c!!5) = {c}, ich(c!!5) = çS,

ich(c!!3; d??xllc??y) = {c,d}, and och(c!!3;d??xllc??y) {c}.

3.1.2 Basic Assumptions

Similar to chapter 2, we assume that there is no overhead for compound statements and

that a delay e statement takes exactly e time units if the value of e is not negative.

We also assume given positive parameters Ka and K9 such that each assignment takes

Ka time units and the evaluation of the guards in a gua.rded command takes K9 time

units. The new assumption here is that we assume a positive pa.rameter Kc such that

each sending takes Kc time units and each reading takes]{c time units. It is possible to

generalize these assumptions, for instance, sending and reading take different times.

3.2. COMPOSITIONAL SEMANTICS 45

In this chapter we also use the maximal pamllelism model to represent the situation

that each parallel process runs at its own processor. Hence any action is executed as

soon as possible. A process only waits when it tries to receive a message from a channel

but the buffer for that channel is empty.

3.2 Compositional Semantics

In this section, we give a compositional semantics for the programming language defined

insection 3.1. First wedefine a computational modelinsection 3.2.1. Then we describe

the formal semantics in section 3.2.2.

3.2.1 Computational Model

Similar to chapter 2, the timing behavior of a process is expressed from the viewpoint

of an external observer with his own doek. Thus we wiJl use the same time doma.in

TIME as defined in chapter 2, i.e., TIME { T E IR I r ~ 0}. We will also use the

notations defined there, for instance, [r0 , r1], denoting a closed interval of time points,

(To, T1], representing a left-open and right-closed interval, and so on.

Next wedefine a model representing a reai-time computation of a process.

Definition 3.2.1 (Model) Let r0 E TIME, r1 E TIMEU {oo}, and r1 ~ r0 • A model

<T is a mapping <T: [To,T1j---> STATE x p(COMM) x p(COMM), where

STATE= {sIs: VAR---> VAL} and COMM = {(c,!?) I c E CHAN and tJ E VAL}.

Define begin(<T) = To and end(<T) = r1 • Thesetof all moclels is denoted by MOD.

Consider a model <Tand aT E [begin(<T),end(<T)]. Then we have o-(r) (s,S,R) with

sE STATE, S Ç COMM, and R Ç COMM. Henceforth we refer to the three fieldsof

o-(r) by o-(r).s, o-(r).S, and <T(r).R, respectively. Informally, if o- models a computation

of a process P, begin(o-) and end(<T) denote, resp., the starting and terminating times

of this computation (end(u) oo if P does not termina.te). Furthermore, <T(begin(o-)).s

specifies the initia! state of the computation, and if end(u) < oo then <T(end(<T)).s gives

the final state. We wil! use o-6 to denote u(begin(<T)) and, if end(o-) < oo, u• to denote

u(end(<T)). In genera), <T(T).s represent.s the values of variables. Fora channel c and a

value tJ E VAL, a record (c, tJ) has the following meaning:

• (c, d) E <T(T).S iff process P or the environment of P has sent value fJ along c at

timer;

• (c, fJ) E <T(r).R iff process P has rcad value ;7 from (the buffer of) channel c at

timer.

46 GRAPTER 3. ASYNCHRONOUS COMMUNICATION

Note that, using the syntax of process P, we can observe if a message has been sent by

P itself or by its environment. For instance, if P =: c!!5 and u rèpresents an execution

of P, we are sure that if (c, 5) is in some S-field of u, val ue 5 is sent by P itself, si nee

it is assumed that each channel connects exactly two processes. On the other hand, if

P =: c?.?x and (c, 5) occurs insomeS-field of u, value 5 is sent by the environment of P.

In the description of the semantics we use the following definitions.

The definition about the variant of a state s is the same as the one in chapter 2.

Definition 3.2.2 (Input Channels Occurring in a Model) Thesetof input chan­

nels occurring in a model a, denoted by ich(u), is defined as

ich(a) = Ubegin(u)'!fr'!fend(u) {c I there exists a{) E V AL such that (c, '!?) E u(r).R}

Definition 3.2.3 (Prefix of a Model) A model u1 is a prefix of model u 2 , de­

noted by a 1 ;:: u2 , iff begin(ut) = begin(u2), end(uJ) $ end(a2), and for any T E

[begin(ut),end(at)], a1(r) = a2(r). Define u 1 --< u 2 as a 1 :: a 2 A end(ut) < end(a2).

Definition 3.2.4 (Concatenation of Models) The concatenation of two models a 1

and a2 , denoted by a1 0'2 , is a model a defined as follows:

• if end(O"t) oo, then u= u 1 ;

• if end(O"t) < oo, end(O"I) = begin(a2), and aî.s = u~.s, then 0' has domain

lb . () d()] d. d fi db () { u1(r) TE [begin(ai),end(O't)] egtn a 1 , en a2 an ts e ne y 0' T =
uz(r) TE (begin(u2), end(uz)]

• otherwise u is undefined.

Definition 3.2.5 (Sequence) A sequence q is a finite or infinite list of values. If it is

infinite, it takes the form of (t?h t92, ...) with iJ; E VAL, for any i ~ 1, and its length

lql is oo. If it is finite, it has the form of (t9t, ... , {)n) for some n ~ 0, n E IN, with

fJ; E VAL, for any i, 1 $ i $ n, and its length lql is n. If n 0, it is an empty sequence

and denoted by {). Thesetof all sequences is denoted by QU E.

For any nonempty sequence q, First(q) gives the first element of q. For any two

sequences q1 and qz, q1 · q2 is the concatenation of q1 and qz. If qz is a prefix of q1, q1 - q2

results in a sequence obtained by removing all elements of q2 from q1 , otherwise q1 - q2

is undefined.

Definition 3.2.6 (Buffer) A buffer is represented by a mapping which assigns toeach

channel a sequence representing the messages in the buffer of the channel.

Define BU F { b I b : C H AN .---. QU E} as the set of all buffers.

3.2. COMPOSITIONAL BEMANTICS 47

Thus b(c) specifies a sequence which represents the messages in the buffer of channel

c.

Next we define the sequence of messages being sent along channel c, by a process or

an environment, aftera model a, denoted by BufS(a)(c), as follows.

• BufS(a)(c) records every value {) for which there exists aT E [begin(a),end(a)]

such that (c, {)) E a(T).S.

• BufS(a)(c) is time-ordered, that is, if there exist T1 and T2 such that T1 < T2,

(c,{)I) E a(TI).S, and (c,{)2) E a(T2).S, then {) 1 appears before {) 2 in BufS(a)(c).

We can similarly define Buf R(a)(c) as the sequence of values being read by a process

along channel c after the computation of a, namely replacing a(T).S by a(T).R in the

corresponding places in the definition of BufS(a)(c).

In the semantics, we assign a set of models toeach statement, representing all possible

computations of that statement starting with an initia! buffer. To compute the resulting

buffer after a computation a with initia! buffer b, we give the following definition.

Definition 3.2.7 (Buffer of a Model) For any a E MOD, any c E Cl!AN, and any

b E BU F, the buffer of channel c after a computation a starting with initia! buffer b,

denoted by Buf(b,a)(c), is defined as Buf(b,a)(c) = (b(c)·BufS(a)(c))-BufR(a)(c).

Thus Buf(b,a)(c) representes the sequence of values which areleftin the buffer

of c after the execution of a which starts with initia! buffer b. The semantics of our

programming language will he such that, for any channel c and any a from thesemantics

of any statement S starting with any initia! buffer b, the sequcnce of messages being

read from c is a prefix of the sequence of messages being stored at the buffer of channel

c, i.e., Buf(b,a)(c) E QUE and thus Buf(b,a) E BUF.

We will use Buf(b, a1a2 · · · an) to denote Buf(Buf(- · · (Buf(b, ai), a2), · · ·), an)·

Definition 3.2.8 {Concatenation) For any F~> F2 E EU F-+ r(MOD), wedefine

CON(F1, F2) E BU F-+ r(MOD) by

CON(F1,F2)(b) = {a1a2l a1 E F1(b), a2 E F2(BuJ(b,aJ)), and Buf(b,aJ) E BUF}.

It is not difficult to see that CON is associative, i.e.,

CON(F~> CON(F2, F3))(b) = CON(CON(F1, F2), F3)(b).

Henceforth, we use CON(FI> F2 , F3)(b) to dcnote CON(F1 , CON(F2, F3))(b).

48 GRAPTER 3. ASYNCHRONOUS COMMUNICATION

3.2.2 Formal Semantics

The meaning of a process S, denoted by M(S), associates toeach element b E BU F, a

set of models repreaenting all possible computations of S starting at an arbitrary time

where the initia! contents of the buffer of each channel c is given by b(c). For any process

S and a buffer b E BU F, we define M (S)(b) by induction on the structure of S.

The evaluation of an expression e from the programming language insection 3.1 is a

function &(e) : ST AT E -+ V AL, which is defined similarly as in chapter 2 section 2.2.2.

The evaluation of a guard g from the language at a state s, denoted by Q(g)(s), is also

defined similarly as in chapter 2 section 2.2.2.

Befare giving the semantics, we need to make a general assumption about the S­

fields of any model. Since the S-fields of a model contain all the valnes sent to a process,

especially by its environment, we do not describe those S-fields in the semantics of the

process. Instead, they only need to obey the following assumption.

General Assumption

For any model o-, any c E CHAN, any r, begin(o-) :5 r :5 end(o-), and any '!91, '!92 E V AL,

the following holds:

(c, t7t) E o-(r).S 1\ (c, 172) E o-(r).S-+ t?t = '!92.

lnformally, this means that there can be at most one value being sent along a channel at

any time point. This assumption will be used in, for instance, a theorem concerning the

relative completenessof a proof system for this asynchronous version of the programming

language.

We first define a predicate Jdle(u), which expresses that all states are equal to the

initia! state and no message bas been read during the execution of u;

Definition 3.2.9 For any model n, Idle(o-) iff for any TE [begin(u), end(u)], u(r).s =

ub.s and u(r).R = (<).

Skip

Statement skip terminates immediately without any state change or communication.

The S-fields of any model of this statement indica.te the messages sent by its environment

and thus obey the general assumption.

M(skip)(b) = {o- J begin(u) end(o-) and Idle(u)}

Assignment

Statement x e assigns the value of e to variabie x and t.ermina.tes a.ft.er I< a time units.

All intermediate states before termination are the same as t.he initia! one. The state at

3.2. COMPOSITIONAL SEMANTICS 49

termination also equals to the initia! state except that the value of x is replaced by the

value of e evaluated at the initia) state. The R-fields of any model of this statement are

empty during the execution period since this statement does not receive messages. But

the S-fields show the messages sent by the environment and thus also obey the general

assumption.

M(x := e)(b) {u I end(u) begin(u) +Ka, for any u'-< u,Idle(u'),u'.R= fii, and

u•.s (ub.s: x f-+ C(e)(ub.s))}

Delay

M(delay e)(b) ={u I end(u) begin(u) + max(O,C(e)(u6.s)) and Idle(u)}

Send

Statement c!!e sends the value of e to the buffer of channel c. This is represented by

a record (c, D0), where D0 is the value of e, in the S-field at termination. But before

that point, there should be no record (c, t?), for any D E V AL, in any S-field, because c

is an output channel of .the statement itself and thus the environment cannot send any

message along c.

In order to express that no message should be sent along a set of channels during a

computation, we define the following predicate.

Definition 3.2.10 For any model u and any cset Ç C li AN, N omsg(u, es et) iff for any

c E cset, a.ny r E [begin(u), end(u)], and any D E V AL, (c, t?) f:. O"(r).S.

Furthermore, it is possible that the environment of c!!e scnds some value along another

channel d ;f= c during the execution of c!!e. Thus wc need the fol!Qwing definition, which

expresses that the projection of a model u onto a set of channel narnes cset at S-fields

is the same as O" except that the new S-fields contain only thosc records for which the

channel name belongs to cset.

Definition 3.2.11 (Projection onto Channels at S-Fields} Let cset Ç CHAN.

Define the projection of a model 0' onto cset at S-fields, denoted by [O"J~set> as follows:

begin([uJ~.1) begin(a), end([u]~•etl = end(a),

for any rE [begin(O"),end(u)], [0"]~ •• 1(T).s = O"(T).s, [uJ~set(T).R O"(T).R, and

[O"J! •• 1(T).S = {(c,D) I (c,D) E a(r).S and c E cset}.

The semantics of c!!e is then defined as:

M(c!!e)(b) {O" I end(O") begin(O") +Kc, for any 0"
1 -< O", l<lle(u'), Nomsg(u', {c}),

a•.s = 0'b.s, O"•.Jl = 0, and ([O"Jfc})'.S = {(c,C(e)(ub.s))}}

50 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Receive

During the execution of a receive statement c??x there are generally two periods: first

there is a waiting period during which the initia! buffer of c is empty and no message

has been sent by its environment along channel c. Next, when the initia! buffer of cis

not empty or some message has been sent by the environment along channel c, there is a

period of Kc time units during which the actual reading takes place. When the reading

finishes, x gets the first value from the buffer of channel c. Let

WRead(c??x)(b) ={u I ldle(u), for any u'-< u, Buf(b,u')(c) = (), and

if end(u) < oothen Buf(b,u)(c) =f:. ()}

and

Read(c??x)(b) ={u I end(u)= begin(u)+ K0 for any u'-< u, I die(u'),

u•.R = {(c,First(b(c)))}, and u•.s = (ub.s: x~--+ First(b(c)))}

Then thesemantics for c??x is defined as:

M(c??x)(b) = CON(WRead(c??x), Read(c??x))(b)

Sequential Composition

To give the correct semantics of St; S2 , the models of St and S2 should agree with each

other such that, if c is an output channel of St but not an output channel of S2 , then

(c, d}, for any '1.9 E V AL, should not be in any S-field of the model of S2 , because cis an

output channel of St; S2 and thus the environment of St; S2 cannot send any message

along c. If c is an output channel of S2 but not an output channel of S1 , a similar

reasoning holds. Let

Agree(u1 , u2, Sll S2) =: Nomsg(u~> och(S2) \ och(St)) A Nom.sg(u2, och(St) \ och(S2)).

Thesemantics of sequentia! composition is then defined as:

M(St; Sz)(b) =
{u1u2l u1 E M(St)(b),u2 E M(S2)(Buf(b,ut)), and Agree(Ut.U2,St,S2)}

Guarded Command

Define Gt = 11Ji=1g;-+ S;], G2 = [0i=1g;;c;??x;-+ S;0delay e So], jj = V:':1 g; for

G11 g = V'i:o g; for G2, and c = { c" ... , C11,} for G2.

Consider G1 first. Th ere are two possibilities for the execution of G1 : either none of

the boolean guards evaluates to truc and then this emumand terminates after evaluation,

or at least one guard g; yields true and then the conesponding sta.tement Si is executed.

Reeall that the evaluation of guards takes /{9 time units. During the evaluation

3.2. COMPOSITIONAL BEMANTICS 51

period, the S-fields of any model of G;, for i = 1, 2, should not contain any (c, !?) with

c E och(G;) and iJ E V AL, because the environment of G; cannot send any message to

och(G;) a.nd G; itself has not yet sent val u es to och(Gi). For i = 1, 2, define

Eval(G;)(b) {u I end(a) = begin(a) + K 9 ,Idle(a), and Nomsg(u,och(G;))}.

Then the semantics for G1 is given as follows.

M([0r=1g; S;})(b) ={u I Q(...,g)(ub.s) a.nd u E Eval(Gt)(b)} u
{u1u2 I there exists a k, 1 :::; k:::; n, such that Ç(gk)(ut.s),

Ut E Eval(Gt)(b), a2 E M(Sk)(Buf(b,ui)),

and Nomsg(u2 , och(G1) \ och(.S,.))}

During an execution of a guarded commanq [0~1g;; c; ??x; -+ S; Dooi delay e--> So], first

the guards g;, for i= 0, 1, ... , n, are evaJuated. Then,

• if none of the g; evaluates to true, then the command terminates;

• if g0 evaluates to true, e is positive, and at least one of the e;??x; for which g;

evaluate to true can start reading messages in less than e time units, then one of

the first possible c; ?? x; and its corresponding S; are executed;

• if g0 evaJuates to true and either eis not positive or none of the c;??x; for which

g; are true can start reading in less than e time units, then 80 is executed;

• if g0 evaluates to false, then the command waits until one of the c;??x; for which

g; are true can read messages. Then one of the first possible c; ??x; and its corre­

sponding S; are executed.

To give the semantics for G2 , we first define two abbrevia.tions:

Wait(G2)(b) ={ui Ç(g)(ub.s),Idle(u),Nomsg(a,och(G2)), for any u'--< u, any i,

1:::; i 5 n, either Ç(...,g;)(ub.s) or Buf(b,u')(c;) = (},
and if end(u) < oothen there exists a k, 1 :::; k :::; n, such that

Ç(gk)(ub.s) and Buf(b,u)(ck) ::/= {)}

Gomm(G2)(b) ={u I there exists a k, 1 $ k $ n, such that Ç(gk)(ub:s),

u E M(ci<)?xk; Sk)(b), a.nd Nomsg(a,och(G2) \ och(Sk))}

Notice that Wait(G2)(b) is similar to W Read(c??x)(b).

Using Wait(G2)(b), wedefine the following additional abbreviations:

FinWait(G2)(b) {u I Ç(g0)(ub.s),end(u) < begin(u) + nwx(O,t'(c)(ab.s)),

and u E Wait(G2)(b)}

Time0ut(G2)(b) {a1u2 I Ç(g0)(ur.s), end(ad= bcgin(ul)+m.a;~:(O,t'(e)(a!.s)), Idle(ut),

Nomsg(a1,och(G2)), for any c; E c, Buf(b,ut)(c;) = (},

52 GRAPTER 3. ASYNCHRONOUS COMMUNICATION

fY2 E M(So)(Buf(b, at)), and Nomsg(a2, och(G2) \ och(S0))}

AnyWait(G2)(b) {a I Ç(...,g0)(ab.s) and u E Wait(G2)(b)}

Then the semantics for G2 is given as follows.

M([IJr=1g;; c;??x;-+ S; IJ go; delay e-+ So])(b) =
{a I Qhg)(ryb,s) and a E Eval(G2)(b)} U

CON(Eval(G2), FinWait(G2), Comm(G2))(b) u
CON(Eva/(02), Time0ut(G2))(b) u
CON(Evai(G2), AnyWait(G2), Comm(G2))(b)

Iteration

For a model in the semantics of *G starting with a buffer b, there are two possibilities:

• either it is a concatenation of a finite sequence of models from M(G)(bi), forsome

b;, such that each model corresponds to an execution of G starting with b; and

either the last model represents a nonterminating computation of G or all boolean

guards evaluate to false at the initia! state of the last model,

• or it is a concatenation of an infinite sequence of models from M(G)(b;), forsome

b;, such that each model represents a terminating computation of G starting with

b; and not all boolean guards yield false at the initia! state of each model.

Thus we have the following semantics for *G.

M(fu)(b) = {q I there exist a k E IN, k 2: 1, and ub ... , fYk such that u = Ut • • · fYk,

fY1 E M(G)(b), for any i, 2:5 i :5 k, u; E M(G)(Buf(b,u1 • • ·O';_t)),

for any j, 1 :5 j :5 k -1, end(uj) < oo,Ç(g)(aj.s), and

if end(uk)< oothen Ç(...,g)(uz.s) otherwise Ç(g)(ai.s)}

U {a I there exists an infinite sequence of models Ut,a2 , •.• , such that

Parallel Composition

CJ O't0'2 · · ·, O't E M(G)(b), for any i 2: 2,

a; E M(G)(Buf(b, a 1 · · · a;- 1)), for any j 2: 1,

end(aj} < oo, and Ç(g)(aj.s)}

In order to define thesemantics of parallel composition, we first need a few definitions.

The first definition expresses that the projection of a model a onto a set of channel

narnes cset at R-fields is the same as a except that the new R-fields contain only those

records for which the channel name belongs t.o c.set.

3.2. COMPOSITIONAL SEMANTICS 53

Definition 3.2.12 (Projection onto Channels at R-Fields) Let cset Ç CHAN.

Define the projection of a model a onto cset at R-fields, denoted by [aJ:!et> as follows:

begin([aJ:!.t) = begin(a), end([a]~e~) = end(a),

for any TE [begin(u),end(u)], [u]~.t(r).s = u(r).s, [uJ~et(r).S u(r).S, and

[u]:!.t(r).R = {(c, 19) I (c, t?) E a(r).R and c E cset}.

The projection of a model 0' onto a set of variables vset is the same as u except that

if a variabie does not belong to vset then its value at all states is the same as its initial

value in a.

Definition 3.2.13 (Projection onto Variables) Let vset Ç VAR. Define the pro­

jection of a model u onto vset, denoted by a 1 vset, as follows:

begin(a 1 vset) = begin(u), end(u1 vset) = end(a), for any TE [begin(u),end(u)J,

(u 1 vset)(r).S = u(r).S, (u l vset)(r).R u(r).R, and for any x E VAR,

(u! vset)(r).s(x)
{

u(r).s(x) xEvset

ub.s(x) xrtvset

The semantics of Sti1S2 consists of all models a for which there exist models a1 E

M(SI) and u2 E M(S2) such that

• the S-fields of u are the same as those of O't and a2 because the S-fields contain

the messages that have been sent in the whole system;

• the R-fields of the projection of u onto ich(S;) at R-fields should be the same as

the corresponding R-fields of u;;

• the value of a variabie x during the execution of Stil S2 is obtained from the state of

a; if x E var(S;), and from the initia.! state otherwise, si nee var(St) nvar(S2) = 0;

• if St terminates before S2, the S-fields of a2 should not contain any {c, 17) with

c E och(St) and 17 E V AL after St has terminated, beca.use c E och(St) implies

c f/. och(S2) and the environment of StiiS2 cannot send any message to c either.

Similarly, for St and S2 interchanged. To express this property, we have the

following predicate Gons.

Definition 3.2.14 For any statements St, S2 , and any moelels a 1 , a 2 ,

Gons(at, u 2 , S11 S2) iff

• if end(O't):.:; end(a2), then for any c E och(S1), a.ny 1? E V AL, and any

TE (end(a1), end(u2)], (c, fJ) ~ a2(T).S;

• if end(a2) <end(ai), then for any c E och(S2), any iJ E V AL, and any

TE (end(a2),end(ut)], (c,t?) rf. a 1(r).S.

54 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

The initia! buffers of joint channels of S1 and 52 should not contain any message.
" Thus, given any initia! buffer b,

• if there exists acE ch(S1) n ch(S2) with b(c) =f. (), then M(S11IS2)(b) 0;

• otherwise M(Stll52)(b) =

{u I ich(u) Ç ich(St) U ich(S2), for i= 1, 2, there exist u; E M(S;)(b) such that

begin(u)= begin(u;), end(u)= max(end(u1), end(u2)),

for any r1 E [begin(u;), end(u;)], u(r1).S = u;(r1).S,

[u]f!h(s,)(rt).R = u;(rt).R, (u! var(S;))(rt).s u;(rt).s,

for any r2 E (end(u;), end(u)], [u]f!h(S;)(r2).R 0, {u! var\S,))(r2).s = uf.s,

for any x f/. var(St) U var(S2) and any TE [begin(u), end(u)],

u(r).s(x) = ub.s(x) = ur.s(x),

for any c E eh(St) n ch(S2), b(c) = (), and Gons(Ut, o-2, SI> S2)}

Similar to chapter 2, we alsodefine aso-called well-formedness property of the semantics.

Definition 3.2.15 (Weii-Formedness) A model u, defined in section 3.2.1, is well­

formed iff for any c E CHAN, any r, begin(u) s; T s; end(u), and any t?1, t? 2 E VAL,

the following holds:

• (c,t?t) E u(r).RA (c,t?2) E u(r).R-+ t?1 = {)2·

(Uniqueness: at most one vaJue is rcceived on a channel at a.ny time point.)

And then we also have the following theorem.

Theorem 3.2.1 For any process S and any buffer b, if u E M(S)(b), then

• ich(u) Ç ich(S),

• if x f/. wvar(S), then for any r, begin(u) $ r s; end(u), u(r).s(x) = ub.s(x), and

• u is well-formed.

This theorem can be easily proved, by induction on the structure of S.

3.3 Specifi.cation Language

Wedefine a specification languagc which is basedon Explicit Clock Temporal Logic, i.e.,

ordinary linear time temporallogic augmented with a global doek variabie denoted by

T. Intuitively, Trefers to the current point of time dnring an execution. We use start

and term to express the starting and terminating times of a computation respectively

(term= oo fora nonterminating computation). We also use first(x) and init(c) to

3.3. SPECIFICATION LANGVAGE 55

refer to the value of x at the first state of a computation and the initia) buffer of channel

c, respectively. Notice that last(x) (from the specification language in chapter 2) is not

needed here. To specify the communication behavior of processes, it is sufficient to use

two primitives send(c, vexp) and receive(c, vexp), which express sending and receiving

of expression vexp along channel c, respectively. To abstract from values, we also use

send(c) and receive(c). Similar to chapter 2, this specification language include the

strong until operator, u' the "chop" operator c' and the "iterated chop" operator c·.
In this specification language, there are three kinds of expressions, i.e., qexp, vexp,

and texp, to express values of type QUE, VAL, and TIME U {oo}, respectively. A
specification is denoted by r.p. The syntax of this langua.ge is given in tabel 3.2, with

w E QU E, c E C H AN, {) E V AL, x E V AR, and f E TIME U { oo}.

Table 3.2: Syntax of the Specification La.nguage in Chapter 3

Que Exp

Val Exp

Time Exp

Specification

qexp ::= w I init(c)

vexp::= {) I x I first(x) I Jirst(qexp) I max(vexpt,vexp2)

vexp1 + vexP2 I vexp1 vexP2 I vexp1 x vexp2

texp ::= f I T I start I term I vexp I
texp1 + texp2 I texp1 texP2 I texp1 x texp2

qexp1 qexp2 I texp1 = texp2 I texp1 < texp2

send(c,vexp) I send(c) I receive(c,vexp) I receive(c)

"P1 v 1P2 1 -.r.p I 1P1 u 1P2 1 1P1 c r.p2 I 1P1 c· "P2

Let exp he any expression from this specification language, i.e., exp can he some

qexp or texp. Define the input charmels of exp, denoted by i eh(exp), to he the set of

all channel narnes occurring iri init(c) in exp. Define the variables of exp, denoted by

var(exp), to he the set of all variables occurring in cxp. Let r.p be any specification.

Wedefine ich(r.p) to be thesetof all channel narnes occurring in init(c), receive(c), or

receive(c, vexp) in ip, forsome vexp. We alsodefine tJar(ip) to be thc set of all variables

occurring in if>·

Next we give the interpretation of this specification language. We first define the

value of a sequence expression qexp at model u, initia! buffer b, and time 1' ;::: begin(u),

1' E TIME, denoted by Q(qexp)(u,b,1'), as follows.

• Q(w)(O",b,1')=w

• Q(init(c))(u,b,1') b(c)

The value of expression vexp at model u, initia! buffer b, and timeT ;::: begin(u),

1' E TIME, denoted by V(vexp)(O",b,1'), is dcfined as follows.

56 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

• V(t?)(u,b,r)=t?
['

• V(x)(u,b,r) = { u(r).s(x) if r :5 end(u)
u•.s(x) if r >end(u)

• V(first(x))(u,b,r) = ub.s(x)

• V(first(qexp))(u, b, r) = FiT'st(Q(qexp)(u, b, r))

• V(max(vexPt, vexp2))(u, b, r) = max(V(vexpt)(u, b, r), V(vexP2)(u, b, r))

• V(vexp1 0vexP2)(u, b, r) = V(vexpl)(u, b, r)0V(vexp2)(u, b, r), for 0 E { +,-,x}.

The value of a time expression texp at model u, initial buffer b, and time r ;:::

begin(u), rE TIME, denoted by T(texp)(u, b, r), is defined as follows.

• T(f)(u,b,r) = f

• T(T)(u,b,r) r

• T(start)(u, b, r) begin(u)

• T(term)(u,b,r) end(u)

• T(vexp)(u, b, r) = V(vexp)(u, b, r)

• T(vexp10vexp2)(u, b, r) = T(vexpt)(u, b, r)0T(vexP2)(u, b, r), for 0 E { +,-,x}.

The interpretation of a specification r.p at model u, in i ti al buffer b, and time r ;:::

begin(u), r E TIME, denoted by (u, b, r} f= r.p, is defined by inductkm on the structure

of r.p.

• (u,b,r} f= qexp1 qexp2 iff Q(qexpi)(u,b,r) Q(qexp2)(u,b,r).

• (u, b, r} f= texp1 = texP2 iff T(texpt)(u, b, r) = T(texp2)(u, b, r).

• (u, b, r) f= texp1 < texp2 iff T(texp1)(u, b, r) < T(texpz)(u, b, r).

• (u,b,r) f= send(c,vexp) iff r :5 end(u) and (c, V(vexp)(u,b,r)) E u(r).S.

• (u, b, r) f= send(c) iff r :5 end(u) and there exists a() E VAL such that

(c,t?) E u(r).S.

• (u, b, r) f= receive(c, vexp) iff r :5 end(u) and (c, V(vexp)(u, b, r)) E u(r).R.

• (u, b, r) f= receive(c) iff T :5 end(u) and therc cxist.s a{) E VAL such that

(c,t?) E u(r).R.

3.3. SPEGIF/CATION LANGUAGE 57

• (0', b, r) f= 'PI V 'P2 iff (q, b, r) f= 'PI or (0', b, r) f= 'P2·

• (q, b, r) f= -.rp iff not (q, b, r) f= <p.

• (u, b, r) f= 'P1 U 'P2 iff there exists a r2 2: r, such that (0', b, r2) f= <p2, and for·all

Tt. T $ TI < r2, (u, b, TI) f= 'PI·

• (u, b, r) f= 'PI C 'P2 iff

either (u, b, r) f= 'PI and end(u) = oo,

- or there exist models u1 and u2 such that u u1u2 , T $ end(u1) < oo,

(uh b, r) f= 'PI, and (u2, Buf(b, ut), begin(u2)) f= 'P2·

• (u, b, r) F 'PI c· 'P2 iff

- either there exist a k 2: 1 and models u1 , • •• , uk such that u = u1 • • ·uk,

T $ end(u1) < oo, {ut. b, 7} f= 'PI> for all i, 2 i k 1, end(u;)< oo,

(u;, b;, begin(u;)} f= 'PI, if end(uk) < oo then (uk, bk, begin(uk)} f= <p2,

otherwise (uk, bk, begin(uk)) f= 'Ph and for all j, 2 $ j $ k,

bi Buf(b,ul ... ui_t),

or there exist infinite models u1, u2, u3, ... such that u u1 u2u3 ... ,

end(u1)? T, (u11 b,r) f= <p1 , for all i? 2, (u;,b;,begin(u;)) f= <p1 with

b; Buf(b,u1 • · ·u;_1), and for all j? 1, end(ui) < oo.

The substitution of an expression vexp1 for a variabie x in an expression vexpz,

denoted by vexp2 [vexpJ/x], is defined as thc expression obtained by replacing every

occurrence of x in vexp2 by vexp1 •

Moreover, we have the usual abbreviations from temporallogic, i.e., 0 <p, 0 <p, and

<p1 U <p2 • Their definitions can he found in chapter 2 section 2.3.

Definition 3.3.1 (Valid Specification) A specifica.tion <p is valid, denoted by f= <p,

iff (u, b, begin(u)) f= <p for any buffer band any model u.

To express that every computation of a process S satisfies an ECTL specification <p,

we use a correctness formula of the form S sat <p.

Definition 3.3.2 (Satisfaction) A process S satisfies a specification <p, denoted by

f= S sat <p, iff (u,b,begin(u)} f= <p for any bufferband any model u E M(S)(b).

The following are some examples of correctncss formullle in this spccification language.

• S never receives any message from channcl c and never terminates:

S sat (0,receive(c)) 1\ term= oo.

58 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

• If S starts its execution with x = 0, S will eventually terminate and x wil! have
('

value 10 at termination:

S sat first(x) 0 ~ 0 (T =term A x= 10).

• If the initia! buffer of channel c is empty and no message will he sent to channel

c, then S never receives any message from c:

S sat (init(c) =()A 0 '""send(c))--> 0 -.receive(c).

• lf the initial buffer of c is not empty, then S will eventually receive the first value

of the buffer for channel c:

S sat init(c) =f. () ~ Oreceive(c, jirst(init(c))).

3.4 Proof System

In this section, we give a compositional proof system for our programming language in

section 3.1. Similarly to chapter 2, this proof system will include all valid assertions of

ECTL as axioms. We first formulate some general axioms and then give axioms and

rules for each statement from the programming la.ngua.ge.

For any fini te cset Ç C H AN and fini te vset Ç V AR, define

norecv(cset) 1\cecset ...,receive(c), nosend(cset) = 1\cEcset -.send(c), and

inv(vset) = ÀxEvset x= first(x).

The first axiom axiomatizes the well-formedness property of the semantics.

Axiom 3.4.1 (Well-Formedness)

For any fini te cset Ç C H AN, S sat W Fc~et> where

W F,;!.t = 1\cEcset receive(c, vexpi) A receive(c, vexp2) ~ vexp1 = vexP2.

The next axiom expresses that if a channel is not an input channel of statementS,

S will never receive a message along that channel.

Axiom 3.4.2 (Receiving In varianee)

For any finite cset Ç GIJ AN with cset n ich(S) = 0, S sat 0 norecv(cset).

The variabie invariance axiom, the conjunction rule, and t.he consequence rule defined

in chapter 2 arealso included in t.he proof system.

The axioms for skip, assignment, and delay statements are the same as defined in

chapter 2.

Statement c!!e sends the value of e along channel c without waiting for its commu­

nication partner.

Axiom 3.4.3 (Send) c!!e sat -.send(c) U (1' term= start+ He 1\ scnd(c,e))

3.4. PROOF SYSTEM 59

Statement c??x reads the first value of the sequence of messages in the buffer of channel

c. If there is no message available, it has to wait until a message arrives.

Let 1/J he any specification. Define Await(1/J) ::= (-.tjJ) U (1/J AT = term).

We formulate an axiom for c?? x by using

W Recv(c??x) ::= D [x first(x) A ...,receive(c)] A Await[init(c) :f ()V send(c)]

and

Recv(c??x) ::=[x= first(x) A ...,receive(c)] U

[T =term= start+ I<c A receive(c; x) A x = first(init(c))]

Axiom 3.4.4 (Receive) c??x sat WRecv(c??x) C Recv(c??x)

Sequentia! composition 81 ; 82 expresses a sequentia! execution of 81 foliowed by S2•

Let tPl Dnosend(och(S2) \ och(S1)) and 1/J2 = Dnosend(och(S1) \ och(S2)).

Then we have the following rule for sequentia! composition.

Rule 3.4.1 (Sequentia) Composition)
S1 sat

Reeall that we have the following abbreviations (see section 3.2.2):

G1 = [~r=t9i-+ S;], G2 = [Qf=lg;;e;??x;-+ S;Ddelay e-+ So],

g = V'/=1 g; for Gl> g = V'i=o9i for G2, ê = {c; I gi} for G2.

To axiomatize guarded commands, wedefine some additional abbreviations:

Quiet(G;} ::= inv(wvar(G;)) A norecv(ich(G;)) A nosend(och(G;)), for i 1, 2,

Quiet(G2 \ j) inv(wvar(G2) \ { Xj}) A norecv(ich(G2) \ {ei}) A nosend(och(G2)),

for j = 1, ... , n,

and

Eval ::= term = start+ I<g.

First we give an axiom for the evaluation of guarded commands G1 and G2 •

Axiom 3.4.5 (Guarded Command Evaluation) For i = 1, 2,

G; sat [Quiet(G;) U (T =start+ l<g A Quiet(G;))] A hï-+ Eval]

Next we formulate a rule for G1 , by using

Exec = Vi=t g; A <p; AD nosend(och(GJ) \och(Si))

60 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Rule 3.4.2 (Guarded Command with Purely Boolean Guards)
"

S; sat ~.p;, for i = 1, ... , n

[Ui=t g;--+ S;] sat g--+ (Eval C Exec)

For G2 , we use the following a.dditional abbreviations:

Wait = g 1\ Await[VIin g; 1\ (init(c;) #()V send(c;))] 1\ 0 Quiet(G2)

Comm = V'/:1 g; 1\ 'Pi 1\ Onosend(och(Gz) \ och(S;))

FinComm = (g0 1\ term< start+ max(O, e) 1\ Wait) C Comm

TimeOut =[go 1\ 0 (Ac;Eëinit(c;) = () 1\ •send(e;)) 1\ term= start+ max(O, e) 1\

0 Quiet(G2)] C ['Po 1\ 0 nosend(och(G2) \ och(S0))]

AnyComm (•go 1\ Wait) C Comm

Rule 3.4.3 (Guarded Command with 10-Guards)

Statement *G denotes repeated execution of G if one of those g; in G is true. lts

execution can be expressed by using the C* operator.

Rule 3.4.4 (Iteration)
G sat 'P

Next consider parallel composition of St and S2• Suppose we have specifications 'PI and

~.p2 for, respectively, SI and S2 • If S1 terminates after (or at the sametime as) S2 then

the model repreaenting this computation of StiiS2 satisfies 'Pt /\(~.p2 C true). rurthermore

we have to express that the variables of S2 are not changed and there is no activity on

the channels of S2 after the termination of S2. Similarly, for St and S2 interchanged.

Let /Buf = Acech(SJ)nch(S2) init(c) = () and

t/;; 0 [inv(var(S;)) 1\ norecv(ich(S;)) 1\ nosend(och(S;))], for i= 1, 2.

The parallel composition rule is formulated as follows.

Rule 3.4.5 (Parallel Composition)

provided ich(~.p;) Ç ich(S;) and var(~.pi) Ç var(S;), for i 1, 2.

3.4. PROOF SYSTEM

Example 3.4.1 We prove that

c??xllc!t5 sat term start+ 2f(c /1. 0 (T term-+ x 5).

By the receive axiom, we have c??x sat cp1 with

cp1 = WRecv(c??x) C Recv(c??x), where

WRecv(c??x) = 0 [x first(x) /1. -.receive(c)] /1. Await[init(c) # 0 V send(c)J and

Recv(c??x) =[x= first(x) /1. -.receive(c)] U

[T =term= start+ Kc /1. receive(c, x) /1. x first(init(c))].

By the send axiom, we have c!!5 sat cp2 with

<p2 = ..,send(c) U (T =term= start+ Kc /1. send(c,5)).

61

Since ich(cp1) Ç ich(c??x), ich(cp2) Ç ich(c!!5), var(cp1) Ç var(c??x), and var(cp2) Ç

var(c!!5), by the parallel composition rule, we have

c??xllc!!5 sat IBufl\[(cptA(cp2 C 1/12))V(cp2/l.(cp1 C !,bJ))J

where

IBuf = init(c) = (),
1/11 = 0 [inv({x}) /1. norecv({c})], and

1/12 = Onosend({c}).

Cbserve that,

I Buf /1. Cf't /1. (ct>2 C 1/12) is equivalent to

init(c) = 0/1. [WRecv(c??x) C Recv(c??x)] /1.

[(...,send(c) UT=start+Kcl\send(c,5)) C Onosend({c})],

which implies

[(-.send(c) /1. init(c) =())U (T =term= start+ I<c /1. send(c,5))] C

[(x first(x) /1. ...,receive(c)) U (T =term= start+ Kc /1. receive(c, x) /1.

x= first(init(c)))],

and this leads to

term start+ 2/(0 /1. 0 (T = term-+ x = 5).

Furthermore, we have that,

I Buf /1. ct>2 /1. (Cf't C 1/11) implies

[...,send(c) U (T =term= start+ J(c /1. .send(c,5))] /1.

[WRecv(c??x) C Recv(c??x) C Onorecv({c})],

which implies

term= start+ f(c /1. [0 (T term = start+ f(c /1. send(c, 5)) C

0 (T term= start+ I<c /1. receivc(c, a:)) C 0 norecv({ c})],

and this leads to

term = start+ I<c /1. term ;::: start+ 2/(c,

which leads to false.

Combining these two cases, we obta.in

62 GRAPTER 3. ASYNCHRONOUS COMMUNICATION

/Bu/A[(y:tA(tp2C tP2))V(<p2/\(tpt C t/>1))]-+ term start+2l<cAO (T term-+ x= 5).

Hence, hy the consequence rule,

c??x!lc!!5 sat term= start+ 2l<c A 0 (T term-+ x = 5). 0

3.5 Soundness and Completeness

In this section, we discuss the soundness and completeness of the proof system in section

3.4. Regarding the soundness of the proof system, we must show that every formula

S sat tp derivahle in the proof system is indeed valid. We first give some lemmas

which will he used to prove the soundness. These lemmas can he proved similarly as

in Appendix A for those lemmas in chapter 2 section 2.6. The proofs for some new or

modified lemmascan he found in Appendix D.

Lemma 3.5.1 For any expression e from the programming language, any model u,

any buffer b, and any T ~ begin(u), f(e)(u(r).s) = V(e)(u,b,r).

Lemma 3.5.2 For any boolean guard g from the programming language, any model

u, any buffer b, and any T ~ begin(u), Q(g)(u(T).s) iff (u, b, r) I= g.

Lemma 3.5.3 For any expression qexp of type QU E, any es et Ç C H AN, and any

buffers b1 and ~. if ich(qexp) Ç csetand for any c E cset, b1(c) b2(c), then for any

model u and any r ~begin(u), Q(qexp)(u, bh r) = Q(qexp)(u, b2, r).

Lemma 3.5.4 For any expression qexp of type QU E, any model 0', any buffer b, any

cset Ç CHAN, and any T ~ begin(u), Q(qexp)(u, b, r) = Q(qexp)([u]~et• b, r).

Lemma 3.5.5 For any expression qexp of type QU E, any model u, any buffer b, any

vset Ç V AR, and any T ~ begin(O"), Q(qexp)(O', b, r) = Q(qexp)(u! vset, b, r).

Lemma 3.5.6 For any expression vexp of type V AL, any es et Ç C H AN, and any

buffers b1 and ~, if i eh(vexp) Ç es et and for any c E es et, b1 (c) b2 (c), then for any

model 0' and any T ~ begin(O"), V(vexp)(u, bh r) = V(vexp)(O', b2 , r).

Lemma 3.5.7 For any expression vexp of type V AL, any model u, any buffer b, any

cset Ç CHAN, and any T ~ begin(O"), V(vexp)(u,b,r) V(ve:~:p)([O']~et>b,r).

Lemma 3.5.8 For any expression vexp of type V AL, any model u, any buffer b, any

vset Ç VAR, and any T ~ begin(u), if var(vexp) Ç vset, then V(vexp)(a,b,r)

V(vexp)(u! vset,b,r).

3.5. SOUNDNESS AND COMPLETENESS 63

Lemma 3.5.9 For any expression texp of type TIME, any cset ç; CHAN, and any

buffers b1 and b2, if ich(vexp) Ç, csetand for any c E cset, b1(c) b2(c), then for any

model u and any T 2:: begin(u), T(texp)(u, bh r) = T(texp)(u, b2 , r).

Lemma 3.5.10 For any expression texp of type TIME, any model O", any buffer b,

any cset Ç, CHAN, and any T 2:: begin(C!), T(texp)(O",b,r) = T(texp)([C!]~.0 b,r).

Lemma 3.5.11 For any expression texp of type TIME, any model O", any buffer b,

any vset Ç, V AR, and any T 2:: begin(C!), if var(texp) Ç, vset, then T(texp)(C!, b, r) =
T(texp)(C!! vset,b,r).

Lemma 3.5.12 For any specification <p, any es et ç; C H AN, and any buffers b1 and

b2 , if ich(<p) Ç, csetand for any c E cset, b1(c) = b2(c), then for any model O" and any

T 2:: begin(u), (u,b-t,r) f= <p iff (C!,~,r) f= <p.

Lemma 3.5.13 For any cset Ç, CHAN and any specification <p, if ich(<p) Ç cset, then

for any model O", any buffer b, and any T 2:: begin(C!), (C!, b, r) f= <p iff ([C!J~et• b, r) f= <p.

Lemma 3.5.14 For any vset Ç VAR and any specification <p, if var(<p) Ç vset, then

for any model u, any buffer b, and any T 2:: begin(u), (u, b, r) f= <p iff (u! vset, b, r) f= <p.

For the soundness of this proof system, we have the following theorem.

Theorem 3.5.1 (Soundness) The proof system insection 3.4 is sound.

To formally prove this theorem, we have to show that all axioms are valid and all

inference rules preserve validity. For most axioms and inference rules, the soundness

can he proved similarly as in Appendix B for the proof system in chapter 2, i.e., by

following the definitions of thesemantics and given lcmmas. In Appendix E, we only

give the soundness proofs for receiving invariance,,send, receive, sequentia! composition,

and parallel composition.

Similarly to chapter 2, we only prove the relative completcness of the proof system

in section 3.4, i.e., every valid specification is deriva.ble in the proof system, provided

that any valid ECTL formula is provable.

We give a few lemmas which wiJl be used for the completeness proof. These lemmas

can be proved similarly as in Appendix A for lemmas from chapter 2.

Lemma 3.5.15 For any model u and any csct Ç, DCJJ AN, ich(u) Ç, cset iff

u= [uJ~et·

Lemma 3.5.16 For any model u, any buffer b, and any csell>cset2 Ç, DCHAN,

if (u, b, begin(C!)} f= D norecv(cset2 \ csett), then [C!],n.ct,umt2 [C!J~ct 1 •

64 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Lemma 3.5.17 For any model a, any buffer b, and any vseit,vset2 ~VAR,

if (a, b, b~in(a)) I= 0 inv(vset2 \ vseft), then a ! (vset1 U vset2) a l vset 1•

Lemma 3.5.18 For any model a, any buffer b, if ich(a) ~ cset and

(a, b, begin(a)) I= W Fc'!.n then u is well-formed.

Similar to chapter 2, we prove the relative completeness by using a property of

speci:fications called preciseness.

Definition 3.5.1 (Invariant Variable) A variabie x is invariant with respect to a

model u ifffor any r, begin(u) :5 T :5 end(a), u(r).s(x) = al>.s(x).

Notice that although this definition is the same as definition 2.6.1, they refer to different

computational models.

Definition 3.5.2 (Preciseness) A specification r,p is precise fora statementS of the

programming language in section 3.1 iff

1. S sat <.p holds, i.e., (a,b,begin(u)) I= r,p, for any bufferband any a E M(S)(b);

2. For any buffer band any well-formed model u, if ich(a) ~ ich(S), any variabie

x f. wvar(S) is invariant with respect toa, and (a,b,begin(a)) I= r,p, then

a E M(S)(b); and

3. ich(<.p) = ich(S) and var(<.p) var(S).

A precise specification r,p for S thus characterizes all possible computations of S: <.p is

valid forS, and any "reasonable" computation satisfying <.pis a possible computation of

s.
In Theorem 3.5.2, we first show that for any statement S a precise specification can he

derived from the proof system. Then, in Theorem 3.5.3, we prove that any specification

r,p2 which is valid for S can he derived from a precise specification 'f'1 for S and two other

predicates. Hence, in Theorem 3.5.4, relative completeness is proved easily.

Theorem 3.5.2 If Sis a statement from section 3.1, then a precise specification forS

ca.n he derived by using the proof system insection 3.4.

This theorem can he proved similarly as in Appendix C for theorem 2.6.2. In Appendix

F we give a precise specification for each statement from section 3.1.

Theorem 3.5.3 If r,p 1 is precise forS and r,p2 is valid for S, then

I= ['Pl A W F;~h('P,) 1\ 0 [norecv(ich(r,p2) \ ich(r,pt)) 1\ inv(var(r,p2) \ var(r,pJ))]]- 'P2·

3.5. SOUNDNESS AND COMPLETENESS 65

Proof: Let 'PI be precise forS and c.p2 be valid forS. Consicier a model a and a buffer b.

Assume that (a, b, begin(a)) f= 'PI AD [norecv(ich(c.p2)\ich(c.pt))Ainv(var(c.p2)\var(c.pt))]

holds. We prove (a, b, begin(a)) f= c.p2.

By (a,b,begin(a)) f= c.p11 1emma3.5.131eads to ([a]fch(cp,),b,begin(a)) f= 'PI· By lemma

3.5.14, ([a]fch(cp,)! var(c.pt),b,begin(a)) f= 'PI· From (a,b,begin(a)) f= WFi~h(..,,), by

lemma 3.5.13, we have ([a]fch(cp,)' b, begin(a)) f= W F;~h(cp,)' By lemma 3.5.18, [a]fch(cp!)

is well-formed. Then by definition, [a]fch(cp,) ! var(c.pi) is also well-formed. Since 'PI

is precise for S, we have ich(c.pi) = ich(S) and var(c.pi) = var(S). By the definition

of projection onto variables, any variabie x ~ wvar(S) is invariant with respect to

[a]fch(cpt)! var(c.pi)· Hence by the definition of preciseness, [a]fch(cp,)! var(c.pt) E M(S).

From (a, b, begin(a)) f= 0 norecv(ich(c.p2) \ ich(c.pi)), lemma 3.5.16 leads to

[a]fch(cpt)uich(cp2) = [a]fch(cp,)' Since (a, b, begin(a)) f= 0 inv(var(c.p2) \ var(c.pi)), lemma

3.5.17 leads to a ! (var(c.pt) U var(c.p2)) = a ! var(c.pt). Thus we obtain

[a]fch(cp!)uich(cp2)! (var(c.pt) U var(c.p2)) = [a]fch(cp!)! var(c.pi)· Therefore we have

[a]fch(cp!)uich(cp2)! (var(c.pt) U var(c.p2)) E M(S). Since 'P2 is valid forS, we obtain

([a]fch(..,!)uich('P2) ! (var(epi) U var(c.p2)), b, begin(a)) f= 'P2· From var(c.p2) Ç var(c.pt) U

var(cp2), lemma 3.5.14 leads to ([a]fch(cp,)uich(cp
2
), b, begin(a)) f= 'P2· By ich(<p2) Ç

(ich(cpi)Uich(c.p2)), lemma3.5.131eads to (a,b,begin(a)) f= c.p2. Hence this theorem

holds. D

Theorem 3.5.4 (Relative Completeness) The proof system in section 3.4 is rela­

tively complete.

Proof: For any process S, assume that specification c.p is va.lid for S. We prove that

S sat c.p is derivable in the proof system in section 3.4. By theorem 3.5.2, we have

S sat 'PI where 'PI is a precise specification for S. lly the axiom 3.4.1, we have

S sat WF;~h(cp!)' Since ich(c.pt) = ich(S), we have [ich(c.p) \ ich(c.pt)] n ich(S) = !IS.

Then by the receiving invariance axiom, we obtain S sat Dnorecv(ich(c.p) \ ich(c.pt)).

From var(c.pi) = var(S), we have [var(c.p) \ va1·(c.pt)] n var(S) = 0 and thus [var(c.p) \

var(epi)] n wvar(S) =!IS. By the variabie invariance axiom, we obtain

S sat 0 inv(var(c.p) \var(c.pt)). Then the conjunction rule a.nd the consequence rule lead

toS sat 'PI A W F;~h(cp,) A 0 [norecv(i eh(c.p) \i eh('PI)) Ainv(var(c.p) \var(c.pt))]. By theorem

3.5.3, [epi A W Fi~h(cp,) AD [norecv(i eh(c.p) \i eh(c.pt)) A inv(var(c.p) \var(c.pt))]]-+ c.p is valid

and, by our relative completeness assumption, provable. Hence, by the consequence rule,

S sat c.p is derivable in the proof system in section 3.4. 0

66 GRAPTER 3. ASYNCHRONOUS COMMUNICATION

Chapter 4

Atomie Broadcast Protocol

4.1 Introduetion

Computing systems are composed of hardware and software components which can fail.

Component failures can lead to unanticipated behaviour and unavailability of service.

To achieve a high availability of a service despite the presence of faults, a key idea

is to implement the service by replicating a server process on all processors [Cri90].

RepHeation of service state information among group memhers enables the group to

provide the service even when some of its memhers fail, since the remaining memhers

have enough information about the service state to continue to provide it. To maintain

the consistency of these replicated global states, any state update must be broadcast to

all correct servers such that all these servers observe the same sequence of state updates.

Thus a communication service is needed so that elient processes can use it to deliver

updates to their peers. This communication service is called atomie or 1·eliable broadcast.

We wil! refer to it as atomie broadcast. There are two sets of atomie broadcast protocols:

synchronous ones, such as [BD85,CASD85], and [Cri90], and asynchmnous ones, such

as [BJ87] and [CM84].

Synchronous atomie broadcast protocols assume that the underlying communication

delays between correct processors are bounded. Givcn this assumption, locaJ docks of

correct processors can be synchronized [CAS86]. Then the properties of synchronous

atomie broadcast protocols are described in termsof local clocks as follows [CASD85,

CASD89]:

• Termination: every update whose broadcast is initiated by a correct processor at

time T on its doek is delivered by all correct processors at time T + 6 on their

own clocks, where 6 is a positive constant and is called the braadcast terminalion

time.

• Atomicity: if a correct processor del i vers an update at time U on its doek, then that

67

68 CHAPTER 4. ATOMIC BROADCAST PROTOCOL

update wa.s initiated by some processor and is delivered by each correct processor

at time U on its doek.

• Order: all correct processors deliver their updates in the same order.

Synchronous atomie broadca.st protocols provide an upper bound for the broadcast ter­

mination time. Thus they can be used in reai-time applications where deadlines must

always be met, even in the presence of faults. On the other hand, asynchronous broad­

ca.st protocols do not a.ssume bounded message transmission delays between correct

processors. Thus they cannot guarantee a bound for the broadca.st termination time.

Therefore a.synchronous atomie broadca.st protocols are not suitable for critica! reai-time

applications.

We are interested in the forma! specification and verification of reai-time and fault­

tolerant systems. Since atomie broadca.st service is one of the fundamental issues in

fault-tolerance, we choose an atomie broadca.st protocol as our case study.

An informal description of an atomie broadca.st protocol, an implementation, and an

informal proof which shows that the implementation indeed satisfies the requirement of

this protocol are presented in [CASD85,CASD89]. In these papers, there is a series of

protocols each of which tolerates omission failures, timing failures, and authentication­

detectable byzantiae failures. As a starting point of verifying reai-time a.nd fault-tolerant

systems, we choose a fairly simp ie protocol which tolerates omission failures. Henceforth,

we use the term atomie braadcast protocol to refer to this protocol. We will follow the

idea.s of [CASD89] as closely as possible and compare our results with it in section 4.8.

The atomie broadcast service is implemented by replicating a server process on all

distributed processors in a network. Thus any elient process on any processor can use this

service. We allow more than one elient process located on one processor. Assume that

there are n processors in the network. Pairs of processors are connected by links which

are point-to-point, bi-directional, communication channels. A processor (link) is correct

if and only if it behaves as specified. In the atomie broadcast protocol, it is assumed

that only omission failures occur on processors and links. When a processor suffers an

omission failure, it ca.nnot send messages to other processors. When a link suffers a.n

omission failure, the messages traveling along this link may he lost. But those messages

received by a processor are correct in time and contents. It is also assumed that the

duration of message transmission between correct processors takes fini te time and local

clocks of correct processors are approximately synchronized. To send an update to its

peers, a elient process in i tiates the atomie broadcast server process located ·on the same

processor to atomically broadcast that update. After such a request, each server process

will deliver tha.t update to the elient processes located on the same processor. To achieve

the order property of the service, there is a priority ordering among all processors. If

4.1. INTRODUCTION 69

two updates are înitîated at different doek times, they will he delivered according to

the ordering of their inîtiation times. If they are înitîated at the same clock time on

different processors, they will he delivered according to the priority of their initîation

processors. The contiguration of the service is illustra.ted in the following figure 4.1.

\ \ deliver I
\ \ I I
\ \ I I
\ \ I I

initia.te \@/ ~:i~te- link

Process -+-----+
send/

processor receive

\
\
\
\

\
initia.te

\ deliver I
\ I
\ I

\ I
I

I
I

I

1 Ïnitiate

processor

Fig. 4.1 Atomie Broadcast. Serviet• Configuration

In general, to formally verify a system, weneed a proof theory which consistsof axioms

and rules ahout the system components. To he able to abstract from implementation

details, it is often convenient to have a compositional verification method. Composition­

ality enahles us to verify a system by using only specifications of its components without

knowing any internal informa.tion of those components. In particular, if the system is

composed of parallel components, the proof metbod should contain a parallel composi­

tion rule. Let S(p) denote the atomie broadca.st server process running on processor p,

r.p denote a specifica.tion written in a specification language hased on first-order logic,

and S(p) sat 'fl denote that server process S(p) satisfies specification 'fl· The parallel

composition rule sta.tes tha.t if server process S{p;} satisfies specifica.tion r.p; and 'fl; only

refers to the interface of p;, i.e., 'fli and 'fli do not interfere with each other, for any

i,j = 1, 2, ... , n and i :/ j, then parallel execution of S(p;) satisfies the conjunction of

the 'fli· This rule can be formalized as follows.

Parallel Composition Rule

S(p;) sat 'fl;, tp; only refers to the interface of p;, for i = 1, 2, ... , n

S(pi)II· · ·IIS(pn} sat Ai=1 'fl;

To prove that a component satisfies a weaker specification, we need a consequence rule.

Na.mely, if process S satisfies 'fl and 'fl implies .,P, then S a.lso satisfies .,P.

S sat 'fl, 'fl-+ .,P

S sat .,P
Consequence Rule

70 CHAPTER 4. ATOMIC BROADCAST PROTOCOL

Another useful rule is the conjunction rule, which shows that if process S satisfies r.p1

and r.p2 , then S also satisfies r.p1 A ip2 .

Conjunction Rule
S sat r.p1, S sat 'f>2

S sat 'Pt A 'f>2

Reeall that local clocks of correct processors are approximately synchronized. We show

that the verification of the protocol can be done compositionally by using specifications

in which timing is expressed by local doek values as follows.

• Insection 4.2, we specify the properties of the atomie broadcàst protocol in a spec­

,jfication language based on first-order logic. We call this the top-level specification

and denote it by ABS. Thus our aim is to prove S(pt)ll· · ·IIS(pn) sat ABS.

• In section 4.3, we axiomatize the required assumptions about the service eonfig­

uration, including underlying communieation mechanism, doek synchronization

assumption, and failure assumptions. We denote the conjunction of all these ax­

ioms by AX.

• In section 4.4, we define the properties of the atomie broadcast server proeess

running on processor p. We call this the server process specification and denote it

by Spec(p). The specification Spec(p) should only refer to the interface of processor

p. We assume S(p) sat Spec(p).

• By the parallel composition rule, we obtain S(pt)ll· · ·IIS(pn) sat /\i=1 Spec(p;).

Since S(pt)ll· · ·IJS(pn) also satisfies AX, we prove, insection 4.5, 4.6, and 4.7,

that

A'i=t Spec(p;) A AX -+ ABS.

Hence the consequence rule leads to S(pt)ll· · ·JJS(pn) sat ABS.

• We campare our results with [CASD89] in section 4.8.

4.2 Top-Level Specification

We formalize the top-level requirements of the atomie braadcast protocol in this section.

Let P he a set of processor narnes and L a. set of link names. We assume that all

processors and links have unique names. We u se p, q, r, s, ... to denote elements of P
and l, lh ... to denote elementsof L. Let G he the networkof processors and links,

G= PUL.

We assume that all real times range over a dense time doma.in called RT I ME and

the standard arithmetic operators+, -, x, a.nd S are defined on RTIME. We use

lower case letters, e.g. t, u, v, ... , to denote variables ranging over RT I ME.

4.2. TOP-LEVEL SPECIFICATJON 71

Each processor has access to a local doek. We denote by Cp a function which

represents the value of the local doek of processor p, i.e., Cp(t) is the value of the local

doek of p at real timet. Lef all doek values range over a domain called CV AL. We

assume that, for any T E CV AL, T ~ 0. Similarly, the standard arithmetic operators

+, -, x, and ::::; are defined on CV AL. We use capita! letters, e.g. T, U, V, ... , to

denote variables ra.nging over CV AL. We also use [U, V], [U, V), (U, V], and (U, V) to

express, respectively, dosed, half-open, a.nd open intervals of doek values.

The atomie broadcast service is implemented by a group of server processes replicated

on all processors in the network. When a elient process initiates a server process running

on processor p by sending a request of broadcasting update u, we call p the initiator of

u, i.e., we interpret it as p initiales u. Similarly, when the server process delivers a.n

update u to elient processes, we interpret it as p delivers u to elient processes.

To formally describe the properties of the atomie broadcast protocol, we define the

following primitives:

• correct(p) at t: processorpis correct at real timet, i.e., no omission failure occurs

on p at real time t.

• correct(/) at t: link l is correct at real timet, i.e., no omission failure occurs on l

at real timet.

• initiate(p, u) at t: processor p finishes with receiving a request of broadcasting

update u from a elient process located on pat real timet, i.e., p initiates u at real

timet.

• deliver(p, u) at t: processor p starts to send update u to elient processes loca.ted

on p a.t real timet.

Henceforth, we use the following abbreviations:

• correct(p) = Vt: correct(p) at t

• correct(l) Vt :correct(I) at t

In [CASD89], local doek values are used to express and reason about the properties of

the protocol. We would also like to use local doek values to describe and verify the

protocol. For any primitive <p at t, we definc thc following abbreviations:

• 'P atp T:::: 3t: 'Pat t 1\ Cv(t) = T

• <p beforep T 3To : '{! atp T0 1\ To < 1'

72 CHAPTER 4. ATOMIC BROADCAST PROTOCOL

• lf! inp I: 3T E I : r.p atp T, where I ç; CV AL.

In [CASD89], assumptions about the system are simplified. For instance, it is assumed

that message processing time on a correct processor is zero. In this paper, we will take

all possible times spent by a correct processor into account. Then the termination and

atomicity properties can only he described by using an upper bound and an interval,

respectively, insteadof precise time points as in [CASD89].

4.2.1 Termination

The property of termination is stated as follows: every update whose braadcast is initi­

ated by a correct processor s at doek value T will bedelivered at all correct processors

by doek value T + D1 on their own docks, where D1 is a positive constant and is also

the braadcast termination time.

In this paper, we take the convention that any free variabie occurring in a formula is

universally, outermostly, quantified. Thus the termination property is formally expressed

as follows:

TERM = correct(s) t\ correct(q) t\ initiate(s, o') ats T-+ deliver(q, a) byq T + D1

4.2.2 Atomicity

The atomicity property is described as follows: if a correct processor p del i vers an update

at doek value U, then that update was initiated by some processor s at some local time

Tand is delivéred by all correct processors at some local doek value between U- D2 and

U+ D2 , where D2 is a positive constant and indicates the difference of delivery times of

an update by two correct processors.

This property is formalized as follows:

ATOM = correct(p) t\ correct(q) t\ deliver(p,o) atp U-+

3s, T : initiate(s, a) at8 T t\ del i ver(q, a) Înq [U - Dz, U + D2]

The atomicity property claims that if any correct processor delivers an update a at time

U on its doek, then every correct processor wiJl deliver that update at more or less

the same time on its own doek, while the initiator of thàt update might happen to be

correct at the initiation time . This is the difference with the termination property.

4.2.3 Order

The property of order is expressed in [CASD89] as follows: all correct processors deliver

their updates in the same order.

4.3. SYSTEM ASSUMPTIONS 73

Intuitively, we understand the order property as follows. Let U be any doek value.

If a sequence of updates delivered by processor p before local time U is (a11 ••• , ak},

then there should exist a doèk value V such that (ai, ... , ak) has also been delivered

by any other processor q before local time V. Notice that U and V can be different.

Furthermore, there is no reason to exdude the possibility that more than one update

is delivered at the same time by a processor. Therefore the set of sequences of up­

dates should indude all possible sequences of updates in which those updates which are

delivered at the same time are interleaved.

We define the following abbreviation:

• -.deliver(p) inp I= -.3a: deliver(p, a) inp /.

Let IN denote thesetof all natura! numbers (induding 0). Let IN+ =IN\ {0}. We

define List(p, U) to be the set of all possible sequences of updates delivered by p before

local time U as follows.

Definition 4.2.1 For any processorpand any doek value U E CV AL, define

List(p, U) = { (ab a2, ... 'ak) I there exist k E IN+' UI' u2, ... 'uk E cv AL such that

UI::; u2::; ... ::; uk< U, deliver(p,a;) atp U;,

for all i= 1, 2, ... , k, -.deliver(p) inp (Ui, Ui+J),

for all j = 1, 2, ... , k- 1, and -.deliver(p) inp [0, UI).}

If we can prove that, for any two correct processors p and q and any doek value U, there

exists a doek value V such that List(p, U) is a subset of List(q, V), then symmetrically

we can also prove that for any U there exists a V such that List(q, U) Ç List(p, V).

Hence p and q deliver their updates in the same order. Then the order property is

formalized as follows:

ORDER= correct(p) 1\ correct(q)---> VU3V: List(p, U) Ç Lisl(q, V)

Notice that, by the definition of ORDER, if p delivers ai and a 2 at some doek value

ub then q also delivers 17I and 172 at some doek value vb a.lthough UI and VI can be

different.

The top-level specification of the protocol is the conjunction of these three properties.

Reeall that ABS denotes the top-level specification of the atomie braadcast protocol.

Thus,

ABS=: TERM 1\ ATOM 1\ ORDER.

4.3 System Assumptions

In this section, we axiomatize the assumptions about the syst.em.

74 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

4.3.1 Processors and Links

Wedefine the following primitive fora link l.

• link(l, p, q): l is a physical communication channel between p and q.

Definition 4.3.1 Define Link(p) as the set of links each of which connects p with

a.nother processor: Link(p) = {ll3q: link(l,p,q)}.

For a.ny p, q, and l, if l E Link(p), l E Link(q), and p :f;: q, then pand q are connected

by l. This is expressed by the following axiom.

Axiom 4.3.1 (Link) l E Link(p) 1\ l E Link(q) 1\ p :f;: q -+ link(I, p, q)

We also assume that a link connects at most two processors.

Axiom 4.3.2 (Point-to-Point) link(l,p, q) A link(l,p, r)--+ q = r
Let FP = {p I -.correct(p)} and FL = {I I -.correct(/)}. Define F FP U FL.

Thus F denotes the set of processors and links which are p.ot always correct, i.e., they

experience omission failures during an exenition of the protocol. We assume that during

a.ny protocol execution there can he at most m processors that suffer omission failures,

where mE IN.

One important assumption about the network is that during any execution of the

protocol all correct processors remain connected via correct links. Otherwise bounded

communication delays between correct processors cannot he guaranteed and thus the

protocol cannot provide any upper bound for the broadcast termination time. Reeall

that G is the set of all processors and links, i.e., G = P U L. Then G \ F {p I
correct(p)} U { l I correct(l)} and it denotes the set of correct processors and links. G \ F

ca.n be considered as a graph in which processors are vertices and links are edges. Thus

we have the following standard definitions (see, e.g. [Gou88]) with p, q EG\ F:

Definition 4.3.2

• A p- q walk in G\ F is a fini te alternating sequence of correct processors and links

that begins with p and ends with q and in which each link connects the processor

that precedes it in the sequence a.nd the processor tha.t follows it in the sequence.

• A p q path in G \ F is a p q walk in which no processor is repeated.

• The length of a path is the number of links in tha.t path.

• The distance betweenpand q, denoted by d(p,q), is the mininmm of alllengtbs of

p- q paths in G \ F. If there is no path betweenpand q, then d(p, q) is oo.

4.3. SYSTEM ASSUMPTIONS 75

• G \ F is conneeled if and only if there exists a path in G \ F between any two

processors in G \ F.

• When G \ F is connected, the diameter of G \ F is the longest distance between

any two processors in G \ F, i.e., max({d(p,q) I p,q EG\ F}).

Now we can give the axiom for connectivity.

Axiom 4.3.3 (Connectivity) G \Fis connected.

Given axiom 4.3.3, we assume that the diameter of G \ F is d.

4.3.2 Bounded Communication

We define two primitives:

• send(p, m, /) at t: processor p starts to send message m along link l at real timet.

• receive(p, m, /)at t: processor p finishes with receiving messagem along link lat

real timet.

The abbreviations defined in section 4.2 also hold for these two primitives.

Two processors connected by a link are called neighbors. When send(p, m, l) at t or

receive(p, m, l) at t holds, l must he a link connecting p and one of its neighbors. This

is expressed in termsof doekvalues by the following axiom.

Axiom 4.3.4 (N eighbor)

send(p, m, I) atq T V receive(p, m, l) atq T--+ l E Link(p)

Two processors can send messages to each other if they are connected by a link. The

communication between two processors is synchronous in the sense that the duration

of the transmission of a message is bounded by two positive constauts 1 and /j with

/,/jE CV AL and 1 ::; 6. Letpand q be two correct processors connected by a correct

link /. Let r he any correct processor to he used as refercnce. If p sends message m

along link l at doek value U according to the clock of r, then q will receive m along l at

some doek value in the interval [U+/, U+ 6] according to the doek of r.

Axiom 4.3.5 (Bounded Communication)

correct(p) 1\ correct(q) 1\ link(l,p,q) 1\ correct(/) 1\ correct(r) 1\ send(p, m, l) atr U--+

rcccivc(q,m,l) inr [U +1,U +6]

This axiom implicitly implies that the local doek function CP for correct processor p

should he monotonie.

Given bounded communication, the clocks of correct proceHsors can be a.ssumed approx­

imately synchronized.

76 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

4.3.3 Clock Synchronization

We a.ssume that when processors are correct their clocks are approximately synchronized

within a sufficiently small, positive, constant f,

Axiom 4.3.6 (Clock Synchronization)

correct(p) at t 1\ correct(q) at t-+ ICp(t)- Cq(t)l < f

It is trival to derive the following lemma.

Lemma 4.3.1 (Ciock Synchronization)

correct(p) 1\ correct(q)-+ IGp(t)- Cq(t)i < f

Given axiom 4.3.6 and lemma 4.3.1, we can easily prove the following lemma.s.

Lemma 4.3.2 For any primitive <p at t,
correct(p) 1\ correct(q) 1\ t.p inp [U, V] -+ <p inq (U-t:, V+~').

Proof: Assume that the premise of this lemma holds. From <p inp [U, V], by definition,

there exists aT such tha.t <p atp T 1\ TE [U, V]. Let t be such that C"(t) T. Then we

have <p at t 1\ G"(t) E [U, VJ. In termsof the doek of q, we obtain er. atq Cq(t). Since

correct(p) a.nd correct(q) hold, by the synchronization lemma 4.3.1, we have IGq(t)­

G"(t)l < t:, i.e., Gp(t) f < C9 (t) < C"(t) + f. Thus we obtain U € < Cq(t) < V+ e:,

i.e., Gq(t) E (U- f, V+ ë). Therefore we obtain <p inq (U- f, V+ t:). Hence this lemma

holds. 0

Lemma 4.3.3 For any primitive t.p at i,

correct(r) 1\ correct(p) atp T 1\ <p atp T -+ <p inr (T- €, 1' + €).

Proof: Assume that the premise of this lemma holds. Let t be such that Cp(t) T.
Then by a.ssumption, we have <pat t. In termsof the doek of r, we have <p atr C,(t).

From correct(p) atp T, we obtain correct(p) at t. Since correct(r) holds, by the syn­

chronization axiom 4.3.6, we have ICr(t)- Cp(t)i < c, i.e., Gp(t) f < C,(t) < C"(t) + f.
Then we obtain C,(t) E (T- f, 1' + €). Therefore we have t.p inr (T f, T + f). Hence

this lemma holds. o

Lemma 4.3.4 For any primitive <p at t,

correct(r) 1\ correct(p) atr T 1\ t.p atr T -+ t.p inp (T €, T + €).

This lemma can be proved similarly a.s lemma 4.3.3.

The bounded communication property is also expressed in terrus of local doek values in

the next lemma, which ca.n be proved by using axiorn 4.3.5 and lemma 4.3.2.

Lemma 4.3.5 (Bounded Communication)

correct(p) 1\ correct(q) A link(I, p, q) 1\ correct(I) 1\ send(p, m, l) atp U -+

receive(q, m, l) inq (U+ 1 c, U+ ti+ c)

4.3. SYSTEM ASSUMPTIONS 77

4.3.4 Failure Assumptions

The atomie broadcast protocol verified in this paper tolerates only omiss.ion failures.

When a processor suffers an omission failure, it cannot send out messa.ges. More pre­

cisely, if a processor p is not correct at real timet, then p is not able to send any message

m along any link l at time t. This is also called the fail silence property of processors.

We express this property in terrus of doek values by the following axiom.

Axiom 4.3. 7 (Fail Silence) --.correct(p) atq T -+ --.send(p, m, l) atq T

When a link suffers an omission failure, the messages entrusted on that link may be

lost. But if a message has been received by a processor along a (faulty) link, then that

message should have been correctly transmitted by that (faulty) link, i.e., that message

is not corrupted, there are no timing errors on the message sending and receiving, etc ..

Therefore, if a processor q receives a message m a.long link l at doek value V and q is

correct at V according to the doek of any correct processor r, then there exists another

processor p which has sent that message earlier along I at some time between [V -6, V -7]
according to the doek of r.

Axiom 4.3.8 (Only Omission Failure)

correct(r) A correct(q) atr V A receive(q, m, l) atr V-+

3p =# q : send(p, m, l) Înr [V - 6, V - 7]

We can a.lso express tbis property in termsof local doek Vél.lues on pand q.

Lemma 4.3.6 (Only Omission Failure)

correct(q) atq V A receive(q, m, l) atq V-+

3p =# q : [send(p, m, l) inp (V - 6 - 2t:, V

(correct(q) -+ send(p, m, l) inp (V - 6

Proof: Assume that the premise of the lemma holds. Consider any correct processor r.

From receive(q, m, l) atq V, since correct(q) atq V holds, by lemma 4.3.3, we obtain

receive(q, m, I) Înr (V- f, V+ t:). By definition, there exists a \11 E (V- t:, V+ f) such

that receive(q, m, l) atr \11 holds. Then by the only omission failure axiom 4.3.8, we

have 3p =# q: send(p, m, l) inr [\11-8, \11-7]. There must also exist a V2 E [\11-6, \11-ï']
such that 3p =# q : send(p, m, l) atr V2 • Then by the fail silence axiom 4.3. 7, we have

correct(p) atr \12. Thus by lemma 4.3.4, we obtain 3p =# q : send(p, m, l) inp (V2 -

e, V2 +~"),i.e., =# q: send(p, rn, l) inp (V- 8 2t:, V- 1 + 2t).

If correct(q) holds, by the only omission failure axiom 4.3.8, we have

3p =# q : send(p, m, l) inq [V- 8, V- 1]. Th en there cxists a V3 E [V- 8, V -7] such that

3p =j q : send(p, rn, 1) atq \.'a. By the fail silcncc axiorn 4.3.7, we obtain correct(p) atq \.'a.

78 CIIAPTER 4. ATOMIC BROADCAST PROTOCOL

Then by lemma 4.3.4, we have 3p :fo q: send(p, m, l) inp (V3 - t., Va+ c), i.e.,

3p :fo q : send(p, m, l) inp (V- 6 t, V- 1 + E).
Hence this lemma holds. 0

So far, we have given the required assumptions for the system.

4.4 Server Process Specification

For a.ny processor p, we chara.cterize the atomie broadcast server process running on p,

i.e., S(p), by the following requirements.

• lnitiation requirement.

When p initiates an update u at doek timeT, it will send message < T,p,u > to

all its neighbors immediately. When p bas waited long enough to be sure that all

correct processors have received that message, p will convey < T, p, u > to elient

processes.

Notice that, in the top-level specification, only delivery of updates is important

and thus primitive deliver(p, u) at t is used. In the server process specification,

information about the initiation timeTand the initiator sof an update u is needed

to implcment the top-level specification. Therefore we define another primitive

convey(p, < T, s, u >) at t as follows:

- convey(p, < T, s, u >) at t: processor p starts to send message < T, s, u > to

dient processes located on p at real time t.

Then the relation between deliver(p, u) at t and convey(p, < T, s, u >) at t is

dear:

deliver(p, u) at t = 3s, T : convey(p, < T, s, u >) at t

Assume that any correct processor can send a message to all its neighbors within

T, E CV AL time units and any correct processor can convey all the updates initi­

ated at the same doek time to elient processes within Tc E CV AL time units. Let

Tr E CV AL, T. ~ T., be the minimum time to ensure that all correct processors

have received a message containing an update after it is initiated. These parame­

ters wil! be used todetermine the values of D1 and D2 occurring in the top-level

specification.

We formalize the first property for p by Start(p) as follows:

Start(p) = initiate(p, IJ) atp T --+

4.4. SERVER PROCESS SPEGIF/CATION

1:/l E Link(p) : send(p, < T, p, a>, I) inp [T, T + T,] A

convey(p, < T, p, a >) inp [T + Tr, T + Tr + Tc]

• Relay requirement.

79

When p receives a message < T, s, a>, it will relay this message to all its neighbors

except the one which just sent this message to itself. But it will do so only if it

receives the message at some local time in the interval [T, T + Tr), si nee T is the

initiation time of a and Tr is the maximum time needed for every correct processor

to receive this message. Later, similarly as in the initiator's case, when its doek

reaches T + Tn p will convey < T, s, a > to elient processes. This property is

formalized by the following formula Relay(p):

Relay(p) = receive(p, < T, s, a >, l) atp U A U E [T, T + T,.) --+

1://1 E Link(p) \ { /} : send(p, < T, s, a >, 11) inp [U, U + T.] A

convey(p, < T, s, a >) inp [T + Tr, T + 1~ + Tc]

• Convey requirement.

If processor p conveys a message < T, s, a > at time U on its doek, then there

can be only two possibilities: either p initiated a itself at local doek value T with

U E [T + T., T + Tr +Tc], or p received the message < T, s, a > at some doek

value in the interval [T, T + Tr) and p ::/:. s A U E [T + 1~, T + 1~ +Tc] hol ds.

When p initiates a at local timeT or it receives < T, s, a > at some local time in

the interval [T, T + Tr), we say that p learns of message < T, s, a> and define an

abbreviation for it as follows:

Learn(p, < T, s, a >) = (initiate(p, a) atp TAp = s) V

(3/ : receive(p, < T, s, a >, /) inp [T, T + T,) 1\ p ::/:. s)

Then the requirement is formalized by the following formnla Origin(p):

Origin(p) convey(p,< T,s,a >) atp U--+

Learn(p, < T, s, a >) 1\ U E [T + 1~, T + 1~ + Tc]

• Ordering requirement.

If two messages are conveyed by processor p, then they will be conveyed in the order

of initiation times of updates contained in these two mcssages. If initiation times

are the same, then they will be convcycd a.ccording to the priority of initiators.

Therefore it is assumed that thcre is a tota.l order -< on thc set of processor narnes

P. This tota.l order specifies a priority ordering amoug processors.

Wedefine a lexicographica.l ordering C on pairs < T, s >.

80 CH.1PTER 4. ATOMIC BROADCAST PROTOCOL

Definition 4.4.1 For auy two pairs (Th si) a.nd (T11 s2),

(T" s1) C (T,, s,) iff (T1 < 12) V (T1 = T, 1\ s1 -< s,).

Then the fourth requirement is formalized by the foUowing formula. Sequen(p):

S;equen(p) = convey(p, < T1, .s1, u1 >) atp Vt A convcy(p, < T2 ; s 2, (!2 >) atp V2

-> (V1 <V, .., (T1,s,) C (Ti,_,,))

The requirements mentioned above are only for correct processors, i.e., they define the

standa.rd behaviour of ÇOrrect processors. Since we assume that processor:; ca.n only

suffer omi:ssion failures, we stiH necd to define wha.t is the acceptable behaviour for

fa.ulty processors. Thus we have the following requirement for any arbitrary processor

p.

• Failure requirement.

When p sends a message < Tt s 1 (j > to one neighbor at îocal time U, there can he

only two possibiJities: either p initiateel a itself a.t localtimeT and U E [T, T + T,J

holds, or p reçeived < T 1 s, a > a.t some local t.îme V and ccrrreci(p) atp V A U E

[V, V+ T,) 1\ V E [T, T + T,) holds. This requirement is expressed by the following

[ormula Source(p):

Source(p) scnd(p,< T,s,u >)) atp U-+

(initiate(p,<T) atp TA U E [T, T + T,) A p: s) V

311 , V : (rwoxve(p, < T, s," >, 11) atp V 1\ correct(p) atp V 1\

p '/. s A U E [V, V + T,] 1\ V E [T, T + T,))

When send(p, < T, s, q > 1 l} atp U holds1 by the fait silence a.xiom 4.3. 7, it impHes

that correci(p) at., U holds. But correct(p) atp U does not imply correci(p). lt

is quit.e possible tha.t p is fa.ulty at some other time. That is why t.his requirement

shouid be for a.ny processor p a.nd not. onJy for correct one.

Reeall t.hat Spec(p) denotes the specificatîon forserver process S(p). Thus,

Spec(p),; (correct(p) ~ Siari(p) 1\ Relay(p) 1\ Origiu(p) 1\ S<if'ten(p)] 1\ Source(p)

We assume that server process S(1J) sat.isfies specification Spec{p).

Axiom 4.4.1 (Server Process Specification) S(p) sat Spec(p)

Thus the behavior of a.ny processor p is specifled by thJs a.xiom and the fail silence axiom

4.3.7.

4.5 Verification of Termination

In this section, we prove that. thc terminat.ïon property of thc <ttomic broadca.<:t. protocol

follows frorn the axloms and lemmfW gïven in the prcviotJs section~-1, To make t.he próof

4.5. VERIFICATION OF TERMINATION 81

easier, we first gi\'e some additîonallemma.s.

The first lemma expresses that if a correct processor p receives a message < T, s~ a >
at loca.l time U in the interval [T, T + Tr), then its correct neighbor q·which ls not s will

receive < T,s,a >at local time V in the interval [T,U + T, + ó + tL provided i;?. c.

Lemma 4.1;.1 (Propagation) lf 1 ?. <, then

wrred(p) A correct(q) A link(I,, p, q) 1\ correcl(l2) i\ reeeive(p, < T,s, u >,IJ) atp U i\

U E [T, T + T,J Aq fis-> 31: receivc(q, < T, s,a >,I) in0 [T, U+ T, + 8 + e).

Proof: Assume that the premise of the lemma holds. Since reccive(p, < T,a~a >
, l!) atp U holds, there are two possibilities.

• lf lt ~ 1:: 1 then q is not the processor which just sent the message < T, 8, u > to

p. By Relay(p), p wilJ send the message < T,s 1 a > to all its neighbors except the

one tha.t just sent this message to ltself within T, time units, Hence p will send

< T, s, a > to q along link 12 and thus we have

send(p, < T, s,u >, 1,) inp [U, U+ T,J.
By definit.ion, there exists an U1 such that

send(p, < T,s,u >, 1,) alp U1 i\ U1 E [U, U+ T,J.
By the bounded cornmunication lemma 4.3,5) we obta.in

recewe(q, < T,p,u >, 12) inq (U1 + -y- e, U1 + 8 + <).

Since U1 2 U a.nd U~ 1') we have U1 2 T. It is assumed that i 2 c. Thus we

obtain U1 +t-e .2: T. Together wîth U1 ~U+ 1~, we obta.in

31: reeeive(q, < T, s, u >.1) in,1 JT, U+ T, + 5 + <).

• If l1 = 12, then p receives < T, p, a> from link 12 and tlms wc have

receive(p,< T,.s,u >,l:t) atp U.

Si nee correct(p) holds, by the only omissîon failure lemma 4.3.6, there exists a p1

such that

p1 fi p 1\ send(p.,< T,s,u >.l,) inp1 (U-h- e,U --y + <)

holds. By the ncighbor axiom 4.3.4, wc have I, E Link(p) A I, E Link(p1). Since

p cl p., by the link axîom 4.3.1, we obtain link(lz.p,p1). But it is assumed that

link(l1 ;p,q). Thus by the point-to-point axiorn 4.3.2, we obtain Pt = q. Thus

there exists a u2 such that

send(q, < T, s,u >, 1,) atq U, i\ U, E (U- 5 c, U 1 + <)

holds. Since q 'f s, by Sourcc(q), we obtain

31, V : (receit;e(q 1 < T, s! a >, l) atq V A cOrreet(q) at<1 V A

q'fsAU, E [V, V +1~]1\ V E JT,T+T,)).
From V :::; U, and U, < U -1+<, we ol>tain V < U -1+cand thus V < U+ T,+h+<.

Togetber with V ~ 1'1 we have

31: receive(q,< T,s,u >,1) in,1 [l',U + T, + h + {).

82 CHAPTER 4. ATOMIC BROADCAST PROTOCOL

Hence this lemma holds. 0

The intuition bebind this lemma is as follows. When a correct processor p receives a

message < T, s, u > at doek time U and it does not receive < T, s, u > from its correct

neighbor q, p will rela.y < T, s, u > to q within T, time units. That is, the latest doek

time at whicb p starts to send < T, s, u > to q is U + T,. Since p and q are correct

processors, the latest corresponding doek time to U + T. on q is U + T. + t. Sending

< T, s, u > from p to q takes at most 6 time units. Thus, the latest doek time at which

q receives < T, s, u > is U + T, + 6 + c. Figure 4.2 shows the timing relation between

the loca.l clocks of processors.

0

0
)

Fig. 4.2. Timing Relation Picture for Lemma 4.5.1

Reca.ll that d is the diameter of the graph consisting of all correct processors and links.

The following lemma shows that if Tr ~ (d- l)(T. +!i+ f) and '"f ~ t a.nd correct

processors initiates an update u at local timeT, then any other correct processor q will

receive < T, s, u> in the interval [T, T + d(s, q)(T. + li + t)).

Lemma 4.5.2 (Bounded Receiving) If Tr ~ (d- l)(T, +!i+ t) and '"f ~ t, then

correct(s) A correct(q) A initiate(s, u) at5 TA q =/= s ~

31: receive(q, < T, s, u>, l) inq [T, T + d(s, q)(T, + ó + t)).

Pro of: Assume that the premise of the lemma holds. We prove this lemma by induction

on the distance between s and q. Sinces =/= q, we start with d(s,q) = 1.

• d(s, q) = 1. Since both s and q are correct processors, by the definition of

d(s,q), they are connected by some correct link. Let l he that link. Then we

obta.in link(l,s,q) A correct(l). By the server process specification axiom 4.4.1

and correct(.s), we have Start(s). From Start(s) and initiate(s,u) at8 T, s

will send the message < T, s, u > to all its neighbors within T. time units.

Thus it will also send < T, s, u > to processor q along link !. Thus we have

send(s, < T, s,u >,/)ins [T, T + T,].
By definition, there exists a U such that

4.5. VERIFICATION OF TERM/NATION

send(s, < T,s,a >, l) at8 U I\ U E [T,T + T.].
By the bounded communieation lemma 4.3.5, we obtain

receive(q, < T, 8,a >, l) inq (U+ 'Y- ;;., U+ 6 + t).
Since it is assumed that 'Y:::: t, together with U:::: T, we obtain U+"'- c::::: T.
By U < T + T., we obtain

receive(q, < T, s, a>,/) inq [T, T + T, + 6 +~:),i.e.,

3/: reeeive(q, < T,s,a >,I) Înq [T,T + d(8,q)(T. + 6 + ë)).

83

• d(8, q) k + 1 with k :::: 1. By definition, there must ex i st a link /2 and a processor

q1 such that link(12, q1, q) I\ correct(12) I\ correct(qt) I\ d(s, qt) = k I\ d(qll q) 1

holds. By the induction hypothesis, we have

311 : receive(q1 , < T, s, q >, 11) inq1 [T, T + k(T. + 6 + f)).
By definition, there exists a Vi sueh that

3/t : (receive(qt, < T, s,a >, lt) atq1 Vi I\ V1 E [T, T + k(1~ + 6 + t))).

Since Tr:::: (d l)(T. + 6 + c) and d 2 k + 1, where dis the diameter of G \ F, we

obtain

k(T. + 6 + t) $ Tr and thus we have

311 : (receive(q11 < T, s, q >, lt) atq1 V1 I\ Vi E [T, T + Tr)).

Since 'Y:::: t, by the propagation lemma 4.5.1, we have

31: receive(q, < T, s, q >, l) inq [T, Vi + T, + 8 + t), i.e.,

31: receive(q, < T, s, a>, l) inq [T, T + (k + l)(T. + 6 + t)).

Hence we have proved

3/: receive(q, < T, s, q >, 1) inq [T, T + d(s, q)(T. + 6 + ~:)).

Hence this lemma holds. 0

This lemma can be informally explained as follows. When a correct processor s initiates

an update a at doek timeT, it will send message < T, s, q > to all its neighbors within

T. time units, i.e., the latest doek time at which 8 starts to send < T, s, a > to all its

neighbors is T + T •. Suppose q1 is a correct neighbor of s. Then the latest eorresponding

doek time to T + T. on q1 is T + T, + L Sending < T, s, q > from 8 to q1 takes at most 6

time units. Thus the latest doek time at which q1 receives < T, s, q > is T + T, + 6 + f.

Then q1 will relay < T, s, q > to all its neighbors except s within T, time units, i.e., the

latest doek time at which q1 starts to send < T, s, q > to its neighbors is T + 2T. + 6 + f.

Suppose q2 is a correct neighbor of q1 but q2 :/= s. Then the latest corresponding doek

time to T + 2T. + 6 + f on q2 is T + 2T. + 8 + 2€. Similarly, sending < T, s, a > from q1 to

q2 takes at most 6 time units. Thus the latest doek time at which q2 reeeives < T, s, q >
is T + 2T, + 26 + 2t. This procedure can go on until evcry correct processor has received

84 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

< T, s, t1 >. Figure 4.3 shows the timing rela.tion between the loca.l docks of processors.

c.
0 T : T+ T.

0

Cqz
0 T + 2T. + 26 + 2f

Fig. 4..3. Timing R.ela.tion Picture for Lemma 4.5.2

The next lemma shows that if a correct processor s initiates <1 at local doek time T,

then every correct processor q will convey < T, s, <1 > in the interval [T + T., T + T, +Tc]
according totheir own clocks, provided T.?: d(T, + é + f) a.nd "f ?: f.

Lemma 4.5.3 (Convey) If T. ?: d(T. + 6 + f) and 'Y?: f, then

correct(s) 1\ correct(q) 1\ initiate(s, <1) at5 T convey(q, < T, s, u >) inq [T + T., T +
T. + T.].

Proof: Assume that the premise of the lemma. holds. We prove this lemma in two cases.

• d(s,q} = 0. By definition, we have s = q. By the server process specification a.xiom

4.4.1 and correct(q), we have Start(q). From Start(q) a.nd initiate(s, <1) at5 T 1\s =
q, we obta.in

convey(q,< T,s,<1 >) inq [T + T.,T+ T, + T.].

• d(s,q) > 0. By definition, we have s :/= q. Since T. ?: d(T. + é + f) and 1 ?: t:, by

the bounded receiving lemma 4.5.2, we obtain

31: receive(q, < T, s, u>, I) Înq [T, T + d(s, q)(T. + é + E)), i.e.,

31: receive(q, < T, s,u >, l) Înq [T, T + T,).

By Relay(q), we obta.in convey(q, < T, s, u>) Înq [T + Tr, T + Tr + T.].

Hence this lemma holds. D

Next we prove tha.t the termination property follows from the a.xioms and lemmas given

before.

Theorem 4.5.1 (Termination) If T, ?: d(T. + é + t:), 'Y ?: f, and D1 ?: T. + T., then

correct(s) 1\ correct(q) 1\ initiate(s, u) at5 T-+ deliver(q, <1} byq T +Dl>

i.e., the termination property TERM holds.

4.6. VERIFICATION OF ATOMICITY 85

Proof: Assumethat the premise of this theorem holds. Since T, ~ d(Ta+b+f) and 1' ~ f,

by the convey lemma 4.5.3, we obta.in convey(q, < T, s, u>) Înq [T + T,, T + T, +Te].

By definition, we obta.in deliver(q, u) inq [T + Tr, T + T, +Tc]·

Since D1 ~ T + r + T0 , we have deliver(q,u) byq T + D1•

Hence this theorem holds. D

4.6 Verification of Atomicity

In this section, we prove the atomicity property of the atomie broadcast protocol. We

first show some lemmas which will help prove the atomicity property.

The next lemma states that if correct processor p receives message < T, s, u > at

some local time in the interval [T, T + T,), then that update u was initiated by processor

s at local timeT, provided 1' > 2e:.

Lemma 4.6.1 (Initiation) If 1' > 2f, then

correct(p) 1\ receive(p, < T, s, u>, l) Înp [T, T + T.)-+ initiate(s, u) at8 T.

Proof: Assume that the premise of the lemma holds. By definition, there exists a V
such that

correct(p) 1\ receive(p, < T, s, u >, l) atp V 1\ V E [T, T + T,) (1)
holds. By the only omission failure lemma 4.3.6, there exists a s1 and a Ut such that

St ;f: p 1\ send(sl! < T, s, u>, l) ats1 Ut 1\ Ut E (V 6- 2e:, V 1' + 2f). (2)

By Source(st), there exist lt and Vt such that

(initiate(St, u) at81 T 1\ St = s) V (3)
receive(s1 , < T, s, u>, lt) at81 Vi 1\ correct(sl) ats1 Vi 1\

St ;j: s 1\ Ut E [lti, Vi + T.)A Vt E [T, T + T,) (4)

hol ds.

If (3) holds, we have proved initiate(s,u) at8 T.

If (3) does not hold, then s1 is not the initiator of u and (4) holds.

By (l) and (4), we obta.in V E [T,T + Tr) and Vi E [T, T + T,).

From (2), we have Ut < V 1 + 2e:, i.e., V> Ut+ 1 2t. From (4), we have Ut ~ l/i.
Thus we obtain V > Vi + 1 2t, i.e., V Vi > 1- 2f.

From receive(sh < T, s, u >, 11) at81 Vi and correct(st) at81 V1 in (4), we obta.in by the

only omission failure lemma 4.3.6 another processor s2 ;j: s1• If s2 is not the initiator of

u, we follow the above steps and then obtain another processor s3 ;j: s2• This procedure

can continue until we obtain a processor .~k-t such that sll ... , sk-I are not the initiator

of u, where k E JN+ 1\ k ~ 2. Since k is arbitray and 1 > 2e, let k 2: (V- T)/(1'- 2t).

Then, for any i = 2, 3, ... , k- 1, there exist l; and V; such tha.t

86 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

s; ~Si-I 1\ receive(s;, < T, s, a>, I;) at8i V; 1\ correct(s;) at8i V; A

s;~s A V;E(T,T+T,) Alf;_, V;>Î-2€)

holds. From lf;_1 -V; > "/- 2t and V- V} > Î 2f, we obtain V V; > i("/ 2t), for

any i;;; 1,2, ... ,k 1. From receive(s~c- 1 ,< T,s,a >,l~c- 1) atsk-l V~c-to by the only

omission failure lemma 4.3.6, there exists a processor Sk ~ sk_ 1 such that

send(sk, < T, s, u>, l~c_t) in8k (Vk-1 - 6 2f, Vk-1 - 7 + 2f) holds.

By Source(sk), there exist l~c and Vk such that

(initiate(sk,u) at8k TA sk = s) V (5)

receive(sk, < T, s, (}' >, lk) atsk V~c A Sk ~ sA vk E (T, T + Tr) (6)
hol ds.

If (6) holds, similar as before, we ca.n derive V~c_ 1 V~c > 1-2e. From V- V; > i(7- 2e),

we obtain V V~c > k("'- 2t). Since 1 > 2e and k:?: (V T)/{"1- 2E), we have V~c < T

and thus (6) does not hold. Therefore (5) must holcl, i.e., s~c is the initiator of u. Hence

this lemma holds. D

Wedefine an ahbreviation Firstrec(p, < T, s,u >, 1} atp U,

is one of the first correct processors which have received < T, s, u > according to

their own clocks, as follows:

Firstrec(p, < T, s, u >, l) atp U = correct(p) A receive(p, < T, s, u >, l) atp U A

'Vp', l', U' : (correct(p') A p' ~ pA receive(p', < T, s, u >, l') atp• U' -> U' ~ U)

The next lemma shows that if p receives < T, s, u > at local time U, p is one of the first

correct processors which have received < T, s, u >, and s is faulty, then any processor q

which is not p and has sent < T, s, u > to p earl i er than U is a faulty processor.

Lemma 4.6.2 (Faulty Sender)

Firstrec(p, < T, s,u >, 11) atp U A -.correct(s) 1\ send(q, < T, s, a>, 12) atq V A

U > V 1\ q ~ p-> -.correct(q)

Proof: Assumethat the premise of the lemmaholds. From sen(l(q, < T, s, a >,/2) atq V,

by Source(q), we ohtain

(initiate(q,u) atq T 1\ q = s) V (1)

3l',U': (receive(q,< T,s,a >,I') atq U' A correct(q) atq U' AVE [U',U' + T,]). (2)

Then there exist two possihilities:

• if (1) holds, then q s and thus, by assumption, -.correct(q) holds;

• if (2) holds, we have V:?: U'. Sirree U> V, we obtain U> U'.

If correct(q) holds, by Firstrec(p,< T,,q,a >,I) atp U, we should have U'::;::: U

and thus it leads toa contradiction. Thus -.correct(q) holds.

4.6. VERIFICATION OF ATOMICITY 87

For both cases, we obtain •correct(q). Hence this lemma hol ds. 0

The following lemma shows that if p receives < T, s, u > at local time V, p is one

of the first correct processors which have received < T, s, u >, and s is faulty, then

V< T + m(T, + 8 + 2e), where mis the maximum number of faulty processors in the

network, provided 'Y ~ 2e.

Lemma 4.6.3 (First Correct Receiving) If 'Y ~ 2t:, then

Firstrec(p, < T, s, u>, l) atp V A ...,correct(s):; V < T + m(T, + 8 + 2e).

Proof: Assume that the premise of the lemma hol ds. From receive(p, < T, s, u >
, l) atp V and correct(p), by the only omission failure lemma 4.3.6, there exists a s1 and

a Ut such that

s1 ;:/:pA send(st, < T,s,u >,1) at81 Ut A Ut E (V 8- 2t:, V-"(+ 2t:)

holds. Thus we have

V < Ut + 8 + 2t: and Ut < V - 1 + 2t: .. (1)
Since Firstrec(p, < T, s, u >, l) atp V holds, by the faulty sender lemma 4.6.2, s1 is a

faulty processor, i.e., ..,correct(st) holds. By Source(st), there exist 11 and V1 such that

(initiate(st. u) at81 TA St =sA Ut E [T, T + T.)) V (2)

(receive(St,< T, s, u >, lt) at81 V1 A correct(st) at81 Vi A

St ;:/: s A Ut E [Vi, Vi + T,] A Vi E [T, T + T,)). (3)
holds. Then there are two possibilities.

• If (2) holds, then St is the initiator of u and we have Ut :5 T + T,.

From (1), we obtain V < T + T. + 8 + 2t.

Since •correct(s) holds, there is at least one faulty processor, i.e., the maximum

number of faulty processors m ~ 1.

Thus we obtain V < T + m(T, + 8 + 2t:).

• If (3) holds, then together with (1), we obtain

V < Vi + T. + 8 + 2t:. (4)

From receive(sb < T,s,u >, lt) at81 Vi and correct(st) at81 Vi, by the only omis­

sion failure lemma 4.3.6, there exist s2 and U2 such that s2 has sent < T, s, u > to

St along link lt at doek time U2.

Similar as before, we have u2 E (Vi - 8- 2t:, Vi- Î + 2t:}, i.e., u2 < VI - Î + 2t:.

Si nee it is assumed that 1 ~ 2t, we obtain U2 < Vi.
From (1), we have Ut <V- 1 + 2t. By 1 ~ 2E, we have U1 <V.

From (3), we have Vi :5 U1 and thus Vi < V. Therefore we obtain U2 < V.

Then by the faulty sender lemma 4.6.2, ...,correct(s2) holds.

By Source(s 2), we obtain a formula similar as (2) and (3).

88 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

If s2 is not the initiator of a, we follow the above steps and then obtain another s3

which is also a faulty processor, by the same reason as for s2• Since there are at

most m fa.ulty processors, we cannot continue this procedure infinitely. We must

obtain as~; with k s:; mandit is the initiator of a.

Thus we have faulty processors s11 ••. , Sk- 1 which are not the initiator of a. For

any i = 2, 3, ... , k- 1, by the only omission failure lemma 4.3.6 and Source(s;),

there exist l; and V; such that

s; "1. s;-t A receive(s;, < T, s, a>, l;) at8 • V; A correct(s;) at8 • V; As; ;/:. s A
1 1

Vi-t < V; + T, + 15 + 2f

holds. Then we obtain

Yt < vk-t + (k- 2)(T. + 8 + 2t). (5)

From receive(sk-1>< T,s,a >,l~ç_t) atsk-l VA:-1 and co1·rect(sk-t) at8k-l Vk-1>

by the only omission failure lemma 4.3.6, there exists a uk such that

Sk "1. Sk-1 A send(sk, < T, s, (J >, lk-d atsk uk A uk E (Vk-t- 8 2t, vk-t- Î + 2t:)

holds. Then we obtain Vk-t < Uk+ 6 + 2e.

Together with (5), we obtain

Yt <uk+ (k- 2)T. + (k- 1)(6 + 2t).

Since Bk is the initiator of a, by Source(sk), we have

initiate(sk,a) at8k TA sk sA Uk E [T, T + T,].
Together with (6), we obtain

\11 < T + (k- l)(T. + 6 + 2t:).

Combining (4) and (7), it results in V< T + k(T. + 8 + 2t:}.

Since k s:; m, we finally obtain V < T + m(T, + 8 + 2t).

(6)

(7)

Hence this lemma holds. 0

Here we give an intuitive explanation of the lemma 4.6.3 for the case m = 2. Assume that

s1 and s2 are faulty processors and connected by a link l. Suppose that s2 initiated an

update a at local timeT. As we have seen from the proof of thc lemma, s2 behaved in the

same way as a correct initiator. Namely, s2 will send the message < T, s2 , a > to all its

neighbors within T. time units according to its own doek. Wh en s1 receives < T, s2, a >
from s2 at some local time V, it is derived (by Source(s1)) tha.t correct(s1) at81 V holds.

By the only omission failure lemma 4.3.6, sending < T, s2 , a > from s2 to St takes at

most 6 + 2t: time units as measured on the doek of SJ. Thus the latest doek time at

which s1 receives < T, s2 , a > is T + T. + 8 + 2L Then s1 will relay < T, s2 , a > to

all its neighbors except s2 within T. time units according t.o its own doek, as a correct

processor will do. Suppose p is a correct neighbor of SJ. Since s1 is faulty and p is

correct, by the only omission failure lemma 4.3.6 again, sending < T, s2 , a > from St to

4.6. VERIFICATION OF ATOMICITY 89

p takes at most 6 + 2~ time units as measured on the doek of p. Thus the latest doek

time at which p receives < T, s2, u > is T + 2T, + 2fi + 4t. Then we have the following

figure 4.4, which is similar to figure 4.3, but the upper bound is slightly different.

0

0

0

T :T+T.
I
I
I

T+T. I T+2T&+ó+2t
I
I
I

f::2f ± {j=i
T+2T.+2fi+4t

Fig. 4.4. Timing Relation Picture for Lemma 4.6.3

' C.-:

)

c"

The following lemma shows that if p receives < T, s, u > at local time U in the interval

[T, T + T,), pis one of the first correct processors which have received < T, s, q >, and s

is faulty, then any other correct processor q wil! receive < T, s, e1 > at some loca.l time in

the interval [T, U +d(p, q)(T.+ó + t:)), provided T, ~ (d+m -l)(T. +ó) + (d+2m -l)t
and 'Y ~ 2co.

Lemma 4.6.4 (Correct Receiving) If T, ~ (d+m-l)(T. +ó) +(d+2m-l)t and

'Y ~ 2t, then

Fir strec(p, < T, s, u >, l') atp U A U E !T, T + T,) A -.correct(s) A correct(q) A p ~ q -+

3/: receive(q, < T, s, u>, l) inq !T, U+ d(p, q)(T, + ó + t)).

Pro of: Assume that the premise of the lemma holds. We prove this lemma by induction

on the distance betweenpand q. Since p ~ q, we start with d(p,q) = 1.

• d(p,q) = 1. By definition, pand q are oonnected by some correct link. Let that

link bel. Then we have link(l,p, q) A correct(l).

From Firstrec(p, < T, s, e1 >, l') atp U, by the only omission failure lemma 4.3.6,

there exist a P1 and a U1 such that

PI~ pA send(pi, < T,s,u >, n atpl UIA ul E (U- {j- co, U- 'Y + t)

holds. Since "Y ~ 2t:, we have 'Y > t. Thus we obtain U > U - 1 + t and tben

U > U1 • By the faulty sender lemma 4.6.2, we have •correct(pi). Tbus oorreet

processor q is not that sender p1•

By Relay(p), p wil! send < T,s,u > to q along link l within T. time units. Tbus

we have send(p, < T, s, e1 >, l) inp [U, U + T.].

90 CHAPTER 4. ATOMJC BROADCAST PROTOCOL

By definition, there exists an X such that

send(p, < T, s, 11 >, l) atp X 1\ X E [U, U+ T,)

holds. By the bounded communication lemma 4.3.5, we obtain

receive(q, < T, s, a>, l) inq (X+ 1- t, X+ 8 + t).
Since X~ U and U~ T, we have X~ T. By 1 ~ 2t, we obtain X+ 1- t ~ T.

Together with X < U + T., we have proved

3/: receive(q, < T, s, 11 >, l) inq [T, U+ T. +ti+ t), i.e.,

31: receive(q, < T, s, 11 >, l) Înq [T, U+ d(p, q)(T. +ti+ t)).

• d(p, q) k + 1 with k ~ 1. By definition, there must exist a processor q1 and a

link l2 such that corred(qt)l\correct(l2)1\link(l2 ,q1 ,q)l\d(p,qt) = kl\d(q1 ,q) = 1

holds. By the induction hypothesis, we have

3lt : receive(ql> < T, s, 11 >, lt) inq1 [T, U+ k(T. + 6 + t)).
By definition, there exists a Vl. such that

311 : (receive(qh < T, s, 11 >, lt) atq1 V} 1\ V} E [T, U+ k(T. + 6 + ~;))).
Since Firstrec(p, < T, s, a >,I') atp U and 1 ~ 2t holds, by the first correct

receiving lemma 4.6.3, we have U< T + m(T. +ti+ 2t). Thus we obtain

311 : (receive(qh < T, s, 11 >, lt) atq1 V} 1\ V} E [T, T+(k+m)(T.+6)+(k+2m)t)).

Since T, ~ (d + m- l)(T. + é) + (d + 2m- 1)t: and k S d -1 hold, we have

311 : (receive(q1 ,< T,s,a >,11) atq1 V} 1\ Vl. E [T,T+ T.)).

Since correct(q) and -.correct(s) hold, we obtain q ;f:. s.

By assumption, 1 ~ 2t. Then by the propagation lemma 4.5.1, we have

31: receive(q, < T, s, 11 >, /) Înq [T, V}+ T. + 6 + t), i.e.,

3/: receive(q,< T,s,a >,I) inq [T,U + (k + l)(T. +6 + t)).
Therefore we have proved

31 : receive(q, < T, s, a >, /) inq [T, U+ d(p, q)(T. + ti + t:)).

Hence this lemma holds. 0

Next lemma shows that if correct: processor p learns of < T, s, a >, then any correct

processor q also learns of< T,s,a >, provided T. ~ (d + m)(T. + 6) + (d + 2m)e and

ï > 2t:.

Lemma 4.6.5 (All Learn) If T, ~ (d + m)(T. + 6) + (d + 2m)e and Î > 2t, then

correct(p) 1\correct(q) 1\ Learn(p, < T,s,a >)--> Learn(q, < T,s,a >).

Proof: Assume that the premise of Lhe lemma hol ds. By Learn(p, < T, s, 0' >), we have

(initiate(p,O')atpT/\p:s)V (1)

311 : (receive(p, < T, s, a >, 11) inp [T, T + 1~) 1\ p ;f:. 8) (2)
From (2), si nee Î > 2t, by the init.iation lemma 4.6.1, we obtain initiale(.s, 0') at8 T.

4.6. VERIFICATION OF ATOMICITY

Since either (1) or (2) hold, we obtain initiate(s,u) at8 T from the premise.

We have to prove Learn(q, < T, s, u>), i.e., the following formula holds:

(initiate(q,u) atq T /1. q Es) V

(3/2 : receive(q, < T, s, u >, 12) Înq [T, T + T,) /1. q :1; s).

There are two possibilities:

• if sE q, then we have initiate(q, u) atq T /1. q s holds, i.e., (3) holds;

• if s :1; q, we prove that (4) holds by the following two cases.

91

(3)

(4)

1. If correct(s) holds, since Tr ;:: (d + m)(Ts + 8) + (d + 2m)e a.nd 1 > 2e, by

the bounded receiving lemma 4.5.2, we obtain

312: receive(q, < T, s, u>, lz) inq [T, 1' + d(s,q)(Ts + 8 + €)), i.e.,

312 : receive(q, < T, s, u>, 12) inq [T, T + 1~) /1. q :1; s,

i.e., (4) hol ds.

2. lf -.correct(s) holds, then by receive(p, < T, s, u>, lt) inp [T, T + Tr), there

exists a processor p1 which is one of the first correct processors that have

received < T, s, u > in the interval [T, T + T,) according to their own clocks.

Thus, there exist /3 and U such that

Firstrec(p1 , < T,s, u>, 13) atp1 U /1. U E [T, T + T,) holds.

Since 1 > 2~:, by the first correct receiving lemma 4.6.3, we obtain that p1

receives < T, s, u> at local time U with U < T + m(Ts + 8 + 2e).

Then we have also two cases:

- if q E Ph then by Firstrec(pt, < T, s, u >,la) atp U, we have

receive(q, < T, s, u>, la) inq [T, T + m(Ts + li + 2e)), i.e.,

312 : receive(q, < T, s, u>, 12) Înq [T, T + m(T. + 8 + 2E));

if q :1; p1 , since 1 > 2e, by the correct receiving lemma 4.6.4, we have

: receive(q, < T, s, u>, 12) Înq [T, U+ d(p, q)(T. + li + e)), i.e.,

: receive(q, < T, s, u>, 12) inq [T, T + m(T. + li + 2e) + d(p, q)(T8 +
8 + e)).

Combining both cases, si nee d(p, q) ~ d, we obtain

312 : receive(q, < T, s, u>, !2) inq [T, T + (d + m)(T. + li) + (d + 2m)t}

Since T,;:: (d + m)(T. + li) + (d + 2m)e, together with s :1; q, we have

(312 : receive(q, < T, s, u >, lz) Ïnq [T, T + Tr) /1. q :1; s).

Thus for both cases, (4) holds.

Hence this lemma holds. 0

92 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

Next lemma. expresses tha.t if correct processor p conveys < T, s, u > at some local time

U, then any correct processor q conveys < T, .s, u> in the interval [T + T., T + T, +Tc],

provided T~ ~ (d + m)(T, + 6) + (d + 2m)t and 1 > 2L

Lemma 4.6.6 (All Convey) If T, ~ (d + m)(T. + 6) + (d + 2m)c and 1 > 2~:, then

correct(p) A corred(q) A convey(p, < T, s, a>) atp U-+

convey(q, < T, s, a >) inq [T + TroT+ T, + Tc].

Proof: Assume tha.t the premise of this lemma holds. By the server process specifica­

tion axiom 4.4.1 and corred(p), we have Origin(p). From Origin(p) and

convey(p, < T, s, a>) atp U, we obtain Learn(p, < T, s, a>). Since T, ~ (d + m)(T, +
6) + (d + 2m)t a.nd 'Y > 2~:, by the alllearn lemma 4.6.5, we have

Learn(q, < T,s,u >),i.e.,

(initiate(q,a)atqTAq s)V

(31: receive(q, < T,8,u >,1) inq [T,T + T.) A q '# s).

If (1) holds, by Start(q), we have convey(q, < T, s, a>) inq [T + T" T + T. +Tc].

If (2) holds, by Relay(q), we have convey(q, < T, s, 0' >) Înq [T + T" T + T, +Tel·

Thus for both cases, we obtain convey(q, < T, s, a >) inq [T + T" T + Tr + Tc].
Hence this lemma holds.

(1)
(2)

0

Next we prove a theorem which shows that the atomicity property follows from the

a.xioms a.nd lemmas given before.

Theorem 4.6.1 (Atomicity) If Tr ~ (d + m)(T. + 6) + (d + 2m)f, 'Y > 2t, and

D2 ~Tc, then

correct(p) A correct(q) A deliver(p,a) atp U-+

3s, T : initiate(s, a) at8 T A del i ver(q, a) Înq [U - D2 , U + D2],

i.e., the a.tomicity property ATOM holds.

Proof: Assume that the premise of the theorem hol ds. From deliver(p, a) atp U, by

definition, there exist 8 and T such that convey(p, < T, s, a >) atp U hol ds. By the server

process specification a.xiom 4.4.1 and corred(p), we have Origin(p). By Origin(p), we

obtain

Learn(p, < T, s, a >)A U E (T + T" T + T. +Tc], i.e.,

((initiate(p, a) atp TAp .5) V

(31 : receive(p, < T, s, a >, l) inp [T, 1' + 1',) A p '# s)) A

u E IT + T., T + TT + Tc].

From (1), we have initiate(s,a) at5 T.

(1)

(2)

(3)

From (2), si nee 'Y > 2t:, by the init.iation lemma. 4.6.1, we obt.ain initiale(s, a) ats T.

Thus for both cases, we have

4. 7. VERIFICATION OF ORDER 93

3s, T: initiate(s, u) at8 T. (4)
From convey(p, < T, s, er >) atp U, since T, ;::: (d + m)(T. + 6) + (d + 2m)e and 'Y > 2e,

by the all convey lemma 4.6.6, we have

convey(q, < T, s, u>) Înq [T + T" T + T, +Tc]·

From (3), we have T E [U T, Tc, U-T,].

Hence we obtain convey(q, < T, s, u>) inq [U- Tc, U+ Tel·

By definition, we obtain deliver(q, u) inq [U- T0 U+ Tc]·
Since D2 ;::: Tc, we have

deliver(q, u) Înq [U - D2 , U + D2].

Combining (4) and (5), this theorem holds.

4. 7 Verification of Order

(5)
D

The order property of the atomie broadcast protocol will be proved in this section. We

first give two lemmas which will be used to prove the order property.

The following lemma shows that, for any correct processors p and q, if p conveys

< T, s, u > at local time U, q conveys < T, s, u > at local time V, and no update is

delivered by p in the interval [0, U), then there is also no update delivered by q in the

interval [0, V), provided Tr;::: (d + m)(T. + 8) + (d + 2m)e and "Y > 2e.

Lemma 4.7.1 (First Delivery) If T,;::: (d + m)(T, + 8) + (d + 2m)e and "Y > 2e,

then

correct(p) 1\ convey(p, < T, s, u >) atp U 1\

correct(q) 1\ convey(q, < T, s, u >) atq V 1\

...,deliver(p) inp [0, U)-+ ...,deliver(q) inq [0, V).

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) inq [0, V)

holds. By definition, there exist s0 , To, and Vo such that

convey(q, < T0 , s0 , u0 >) atq Vo 1\ Vo E [0, V) hol ds.

By assumption, we have convey(q, < T, s, 0' >) atq V.

From Vo <V, by Sequen(q), we obtain (To, so) C (T, s).

Since Tr 2::: (d + m)(T. + 6) + (d + 2m)t and Î > 2e, by the all convey lemma 4.6.6, we

have convey(p, < T0 , s0 , cro >) inp [T + T., T + Tr + Tc], i.e., there exists a Uo E CV AL

such that convey(p, < T0 , s0 , cr0 >) atp U0 holds.

By assumption, we have convey(p, < T, s, u >) atp U.

Since (To,so) C (T,s), by Sequen(p), we obtain Uo <U.

From Uo E CV AL, we have Uo 2 0 and thus Uo E [0, U).
Therefore we obtain convey(p, < T0 , s0 , <70 >) atp U0 1\ Uo E [0, U), i.e.,

deliver(p, u0) inp [0, U).

CHAPTER 4. ATOMIC BROADCAST PROTOCOL

But by assumption, we have -.deliver(p) inp [0, U).

Thus it leads to contradiction and then deliver(q) inq [0, V) does not hold, i.e.,

-.deliver(q) Înq [0, V) holds.

Hence this lemma holds. 0

Next lemma shows that, for any correct processors p and q, if p conveys < T1 , s1 , q 1 >
at doek time U1 and < T2 , s2 , <12 > at doek time U2 , q conveys < T., s1 , <11 > at doek

time Vi and < T2 , s2 , <12 > at doek time V2 , and there is no update delivered by p in

the interval (U.,U2), then there is also no update delivered by q in the interval (Vi, V2),

provided Tr 2:: (d + m)(T. + h) + (d + 2m)c and "{ > 2t.

Lemma 4.7.2 (No Delivery) If Tr 2:: (d + m)(T. + 6) + (d + 2m)f and "'> 2f, then

correct(p) 1\ convey(p, < r., St, G"t >) atp Ut 1\ convey(p, < T2, s2, (12 >) atp u2 1\

correct(q) 1\ convey(q, < T11 s.,q1 >) atp Vi 1\ convey(q, < T2 ,s2 ,<T2 >) atp ~ 1\

-.deliver(p) inp (Ut,U2) -t -.deliver(q) inq (Vi, V2).

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) inq (Vt, V2)

holds. By definition, there exist s and T such that convey(q,< T,s,u >) inq (Vi, V2)

holds. Then there exists a V such that convey(q, < T, s, ri >) atq V 1\ V E (Vi, V2)

hol ds.

By assumption, we have convey(q, < Th s1o (J1 >) atp Vi.
Since Vi <V, by Sequen(q), we obtain (Tt,St) C (T,s).

Simila.rly, from assumption, we have convey(q, < T2 , s2 ,<T2 >) atp V2 •

Since V<~. by Sequen(q) again, we obtain (T,s) C (T2 ,s2).

From convey(q, < T,s,q >) atq V, since Tr 2:: (d + m)(1~ + 6) + (d + 2m)E and "{ > 2~:,
by the all convey lemma 4.6.6, we have convey(p, < T, s, (J >) inp [T + T" T + Tr +Tc],

i.e., there exists a U such that convey(p, < T, s, (J >) atp U hol ds.

By assumption, we have convey(p, < Tt. St. <Tt >) atp U1 .

Since (T.,st) C (T,s), by Sequen(p), we obtain Ut< U.

Simila.rly, from assumption, we have convey(p, < T2 , s2 , (12 >) atp U2 •

Since (T,s) c (T2,s2), by Sequen(p), we obtain U< U2.

Thus we obtain convey(p, < T, s, q >) atp U 1\ U E (Ut, U2).

By definition, we have delivcr(p,q) inp (UI>U2).

But from assumption, we have -.delivcr(p) inp (Ut.U2).

Thus it leads to contra.diction and then deliver(q,q) inq (Vi, l/2) does not holds,

i.e., -.deliver(q) inq (Vi, V2) holds.

Hence this lemma holds.

Next we prove, by the following theorem, that the order property holds.

0

4. 7. VERIFICATION OF ORDER 95

Theorem 4.7.1 (Order) If Tr;::: (d + m)(Ts + 8) + (d + 2m)t and 1 > 2t, then

correct(p) À correct(q) --+ V'U3V : List(p, U) Ç List(q, V),

i.e., the order property holds.

Pro of: For any doek value U E CV AL, assume (uh u2, ... , uk) E List(p, U). By

definition, there exist k E JN+, U11 U2 , ... , Uk such that Ut $ U2 $... $ U,. < U,

deliver(p,u;) atp U;, for i:::::: 1,2, ... ,k, -.deliver(p) inp (Ui,Ui+t), for j == 1,2, ... ,k-1,

and -.deliver(p) inp [O,Ut)· From deliver(p,ui) atp U;, there exist s; and T; such that

convey(p, < T;, s;, u; >) atp U; holds. Let V = U+ Tc; We prove that, by induction on

k, there exist l/i, \12, ... , V,. such that l/i $ V2 $... $V,.< V,

convey(q,< T;,s;,u; >) atq V;, for i= 1,2, ... ,k, -.deliver(q) inq (ltJ,ltJ+t), for j =
1,2, . .. ,k-1, and ...,deliver(q) Înq [0, l/i) hold.

• k = 1. By assumption, we have convey(p, < T1 , s1 , u1 >) atp U1 and

-.deliver(p) inp [0, Ut).

Since T, 2: (d + m)(T. + 6) + (d + 2m)E and 1 > 2t, by the all convey lemma 4.6.6,

we obtain convey(p, < Tt, St, O't >) inp [Tt + T., T1 + Tr + Tc] and

convey(q, < Tt, St, O't >) inq [Tt + T., Tt + Tr +Tc].

Thus we have Ut E [Tt + T., T1 + T, +Tc]· Since Ut <U, we obtain T1 + Tr <U.

There exists a lli E CV AL such that

convey(q, < T1, St, Ut >) atq lli À lli E [Tt + T., Tt + Tr +Tc] holds.

Then we have l/i $ Tt + T, +Tc and thus l1i < U+ Tc, i.e., l1i < V.

By the first deliver lemma. 4. 7.1, we also obtain -.deliver(q) Înq [0, Vt).

• k > 1. By the induction hypothesis, there exist l/i, V2 , ••• , V,._1 such that V1 $

V2 $... $ V"_1 , convey(q, < T;, s;,u; >) atq V;, for i 1, 2, ... , k- 1,

-.deliver(q) inq (Vj, "J+1), for j 1, 2, ... , k- 2, and ...,deliver(q) Înq [0, lli) hold.

By assumption, we have convey(p, < Tk, s,., uk >) atp U".

By the all convey lemma 4.6.6, we obtain that there exists a Vk such that

convey(q, < Tk, Sk, O'k >) atq V,. À vk E [Tk + T., Tk + Tr +Tc] holds.

Since Uk-t $ Uk, we prove Vk-t $V" by the following two cases.

1. Assume Uk-t < U". By assumption, we have

convey(p, < n-h Sk-1> O'k-l >) atp uk-1 and convey(p, < Tk, sk, O'k >) atp U~o.

Since Uk-l < Uk, by Sequen(p), we obtain (Tk-h s,._t) C: (Tk, Bk)·

From the induction hypothesis and above, we have

convey(q, < Tk-1> sk-t. O'k-1 >) atq Vk- 1 and convey(q, < T,., s,., O'k >) atq V,..

Since (Tk-t,Sk_t) c: (T~<;,Sk), by Sequen(q), we obtain vk-1 < vk.

2. Assume Uk-1 = Uk.

Suppose Vk-l < V,.. Similar as above, we obtain U"_1 < Uk which does not

96 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

hold.

Suppose Vk-1 > Vk. Similarly, we obtain Uk- 1 > Uk which also does not hold.

Therefore only V~,;_ 1 V~; holds.

Combining these two cases, we obtain V~;_ 1 5 V".

Similar as the case for k = 1, we have Uk E [T~; + Tn Tk + T, +Tc] and Uk < U.

Thus we obtain Tk + T, <U. Since V~; 5 Tk + T, +Tc, we have Vk <U+ Tc, i.e.,

vk <V.
By assumption, we have -.deliver(p) Înp (U~;- 1 , Uk)·
Then by the no delivery lemma 4.7.2, we obtain -.deliver(q) Înq (Vk_ 1 , Vk).

Hence we have proved that there exist V}, v;, ... , V,.. such that V1 ::; V2 5 ... 5 V,.. < V,

convey(q,< T;,s;,d; >) atq v;, for i= 1,2, ... ,k, -.deliver(q) inq (Vj,\lj+1), for

j 1, 2, ... , k- 1, and ..,deliver(q) inq [0, V}) hold.

Since convey(q, < T;, s;, u; >) atq v; implies del i ver(q, ui) atq v;, we obtain

deliver(q,u;) atq v;, for i= 1,2, ... , k.

Therefore we have {ut.u2 , ••• ,u~;) E List(q, V).

Hence for any U there exists a V, i.e., V= U+ Tc, such that List(p, U) ç; List(q, V).

Thus this theorem holds. D

We have proved that, if T, ~ (d + m)(T. + ö) + (d + 2m)~:, 1 > 2e, D1 ~ Tr +Tc, and

D2 ~ Tc, then the termination, atomicity, and order properties hold. Since Tr is the

minimum time to ensure that all correct processors have receivecl a message containing

an updates a.fter it is initiated, we take T, = (d + m)(T. + ö) + (d + 2m)~:. Since D1

is the broa.dcast termination time, it shoulcl be as smal! as possible and thus we take

D1 = Tr +Tc. Similarly, since D2 indicates the difference of delivery times of an update

by two correct processors, it should be also as small as possible and therefore we take

D2 =Tc.

Reeall that AX is the conjunction of all axioms for the system, Spec(p;) is the

specification for the server process running on processor p;, and ABS is the top-level

specification of the protocol, i.e., ABS:::: TERMAATOMA ORDER. Hence we have

proved N/=1 Spec(p;) A AX --.. ABS, provided T, (d + m)(T, + ö) + (d + 2m)t,

Î > 2f, Dt == T. + T"' and D2 = 1~.

4.8 Comparison

Comparing our paper with [CASD89], the basic ideas of proving properties of the pro­

tocol are similar. The assumptions and proofs prcsented in [CASD89] are simplilied and

informal. For instance, it is assumed there that when a correct processor p initiates

4.8. GOMPARISDN 97

an update, it takes zero time units for p to send a message to all its neighbors. In

our framework, it takes at most T, time units. Similarly, when p receives a. message,

[CASD89] a.ssumes zero time units for p to relay the message to its neighbors, but we

a.ssume at most T, time units. We also assume that p will take at most Tc time units to

convey updates initiated at the same doek time to elient processes.

Reeall that dis the diameter of the graph consisting of all correct processors and links,

m is the maximum number of faulty processors in the network, ó is the upper bound of

message transmission delay between two correct processors a.s mea.sured on any correct

processor, and t is the maximum deviation of local docks of correct processors.

The minimum time to ensure that all correct processors have received a message

containing an update after it is initiated is T, in our paper with T, (d + m)(T. +
ó) + (d + 2m)t, which is more detailed than that in [CASD89], where it is ó. with

ó. = (d + m)ó + t:. If we a.ssume T, 0, then we have T. (d + m)ó + (d + 2m)t:

and thus Tr is similar a.s ó. except the part concerning t:. Consequently, the broadca.st

termination time in our framework, which is D1 with D1 = T. + Tc, is not exactly the

same a.s that in [CASD89], which is ó.. If we also a.ssume Tc 0, then we have D1 T.

and thus D1 is similar a.s ó..

In this paper we express the termination property by using deliver(q, u) byq T + D1

insteadof deliver(q, u) atq T + D1 • In the termination theorem 4.5.1, we have proved

that if initiate(s,u) at8 T, then deliver(q,u) Înq [T + T.,T + T, +Tc]· If we assume

Tc = 0, since D1 = T.+ Tc, we obtain deliver(q, u) atq T + D1• Therefore the termination

property described here can be reduced to that in [CASD89] if Tc 0.

Similarly, if Tc = 0, then the atomicity property expressed in this paper can also be

reduced to that in [CASD89]. In the atomicity theorem 4.6.1, we have proved that if

deliver(p, u) atp U, then deliver(q, u) Înq [U- Tc, U+ Tel· If Tc =.0, then we obtain

deliver(q,u) atq U.

To prove the atomicity property, we necd to show that if a correct processor p delivers

u at some time U, then u was initiated by some processors at some doek timeT. This

is not proved in [CASD89]. We haveprovedit in lemma 4.6.1 by using a.vailable timing

information. There we need a lower bound for message transmission delay between two

correct processors. Thus we add a lower bound "'(in the bounded communication axiom

4.3.5. This lower bound is also used in other lemma.s, e.g. the propagation lemma 4.5.1

and the first correct receiving lemma 4.6.3.

The behavior of any processor p is specified by the fail silence axiom 4.3. 7 and the

server process specification axiom 4.4.1. Notice that axiom 4.3.7 and formula Soorce(p)

hold for any arbitrary processor p, i.e., even if p is faulty. To prove the atomicity

property, we have to show that if a correct processor p delivers an update u a.t local

time U, then u wa.s initiated by some processor and u wil! be delivered by each correct

98 GRAPTER 4. ATOMIC BROADCAST PROTOCOL

processor in the interval [U -D2 , U +D2] according totheir own clocks. By the initiation

lemma 4.6.1 and Origin(p), we can prove that there exists a processor s which initiates

u at some local timeT. If sis correct, by the server process specification axiom 4.4.1, we

have Start(s), Relay(s), a.nd Origin(s). Then we ca.n derive that each correct processor

will deliver u in the interval [U- D2 , U+ D2]. But if s is not correct, all we have is

Source(s) and axiom 4.3.7. Then we ca.n only use them and other axioms to reasou

backwards to prove the atomicity property. This idea. is represented in the first correct

receiving lemma 4.6.3.

In [CASD89], it is required that a processor will relay a message to its neighbors

only if it receives the message for the first time. We do not require this in our paper.

When a processor receives a message it will alwa.ys relay the message to its neighbors.

The requirement in [CASD89] is to make the server process more efficient and avoid

memory overflow. Since we focus ourselves on the correctnessof the protocol, this is not

oonsidered here.

An assumption mentioned in [CASD89], but not in this paper, is that the resolution

of processor clocks is fine enough so that separate doek readings yield different va.lues.

This is an assumption for the implementation of the protocol. In this paper, we only

express those assumptions needed for our verification and nothing more. Therefore

another assumption of [CASD89], namely that there is a finite bound on the number of

messages any processor can send per time unit, is also not included.

Just before the deadline of this thesis, we received the comments on this chapter from

the first author of [CASD89]. According to [Cri93], the doek synchronization assumption

can he made to allloca.l clocks of processors, not only to loca.l clocks of correct processors,

since we only a.llow omission failures in the protocol. If a loca.l doek could suffer from

omission failures, the processor having that doek could exhibit Byza.ntine behavior (e.g.

timestamp different updates with the sametimestamp). Thus the doek synchronization

axiom 4.3.6 can be strengthencel as

Lemma 4.3.1 then can he removed.

Ha.ving done this, some axioms and lemmas eau be simplified and their proofs will

he easier. For instance, the only omission failure axiom 4.3.8 wil! look like

corred(q) atr V 1\ receive(q,m,l) atr V-. :lp i. q: send(p,rn, I) inr [V 6, V- 1]

And the only omission failure lemma 4.3.6 wil! become

corred(q) atq V 1\receive(q, m, I) atq V -. :lp i. q : send(p, m, l) inp [V -6 -€, V -l+t].

Chapter 5

Conclusions

5.1 Summary

In chapters 2 and 3 of this thesis, we developed two versions of a formalism to specify

and verify reai-time systems, one of which was for synchronously communicating reai­

time systems and the other was for asynchronously communicating reai-time systems.

We started with two versions of an Occam-like programming language. One version

contained synchronous communication primitives and the other included asynchronous

communication primitives. We gave a compositional semantics for this programming

language. The specification language (also with two versions according to the commu­

nication mechanism) for systems written in this programming language was based on

Explicit Clock Temporal Logic (ECTL). A compositional proof system was formulated

for each version of the programming and specification languages. These two proof sys­

tems were shown to be sound with respect to the semantics and relatively complete with

respect to a proof system for ECTL. We also demonstrated the use of the formalism

for synchronous communication by specifying and verifying a small part of an avionics

system.

In chapter 4, we specified and verified an atomie broadcast protocol tolerating omis­

sion failures. As we saw in this thesis, using ECTL-based formalism to reason about

properties was not easy. We would like to descri he the protocol in an intuitive and infor­

mal way. Therefore the specification language for the protocol was not based on ECTL

but on first-order logic. We described the top-level requirements of the atomie broadcast

protocol and the server process in the specification language. We also axiomatized the

lower level communication mechanism, doek synchronization assumptîons, and failure

assumptions. Thereafter we proved, by using an assertional, compositional approach,

that parallel execution of the server processes on a networkof distributed processors sat­

isfied the top-level specification of the protocol. Hence we formally verified the protocol

99

100 GHAPTER 5. GONGLUS/ONS

which was only informally proved in [CASD89]. This increased our confidence that the

properties of the protocol were indeed guaranteed by the parallel execution of the server

processes.

Notice that, in the top-level specification of the protocol, in the axioms about the

service system, and intheserver process specification, we used local doekvalues instead

of global doek values. An essential idea of the atomie broadcast protocol was that the

messages used to braadcast among processors contained time stamps which recorded

the initiatien time of updates. These time stamps were in terms of local clocks and

were used to achieve the so-called order property of the protocol. Following [CASD89],

other properties of the system, for instanee the bounded communication axiom and the

only omission failure axiom, were also expressed using local clocks. This suggested that

reasoning ahout the protocol in terms of local docks would be easy and natura]. After

verifying the protocol, this turned out to be true. The doek synchronization assumption

for correct processors made the specificatien and verification of the protocol in terms of

local clocks values meaningful. This is new in real-time specification and verification,

since many formal methods only use global doek values, see e.g. [BHRR91].

Also observe that the formal metbod we used is compositional. This enables us to

use only the specification of the server process to verify the protocol, without knowing

any implementation details of the server process. Thus we can separate the concern of

implementing the server from the concern of forma! verification of the protocol.

As we have seen from this thesis, specifying and verifying reai-time fault-tolerant

systems are not easy. Applications of the ECTL-based proof systems show that proving a

simple process correct needs a lot of effort. Moreover, the specification language contains

the chop operator C and the iterated chop operator C* which make the reasoning even

more difficult. However, in [RP86] there are some nice axioms and rules for the chop

operator, for example: ('f't C 'f'2) C <p3 <f't C ('f'2 C <f'3), ('f'I V 'f'2) C <p3 <f'l C 'f'3 V 'f'2 C 'f'3,

<p1C(<p2 V<p3) = <p 1 C<p2 V <p1C<p3, etc., where <p;, for i= 1, 2,3, are formulae interpreted

over sequences of states. Furthermore, one of our aims in this thesis is to formulate a

compositional proof systern which can provide elegant rules for compound statements

including sequential compositîon and iteratîon. As shown in the thesis, it is reasonably

easy to derive properties from forrnulae containing chop operators in an intuitive way or

by reasoning at the semantic level.

5.2 Related Work

We mention some research results which are rela.ted to our work. In [Lam83a], interest­

ing examples, e.g., the alternating bit protocol, are specified using gcneralized temporal

logic (i.e., with predicates), but time is not considcred. Compositional proof systems

5.2. RELATED WORK 101

based on temporallogic can be found in [8KP84,8KP85,NDG086], where time is also

not concerned. Untimed modular verification of communication protocols (induding the

alternating bit protocol) using temporallogic and history variables is shown in [H083].

How to compose untimed specifications are extensively discussed in [AL90], where the

precise distinction between a system and its specification is examined. In (AL92), prob­

Ieros arised in reai-time systems are addressed and a formal framework provided by

TLA (the Temporal Logic of Actions) is used to study these problems. A state-based,

compositional semantics for reai-time programs is proposed in (GJ88], where it roodels

termination, failure, divergence, deadlock, and startvation. A distributed reai-time arbi­

tration protocol is verified compositionally in [Hoo93], which follows the sameprinciple

presented in this thesis. Reai-time extensions of CCS [Mil89] are proposed in [MT90,

Yi91]. A hierarchy of untimed and timed roodels fór CSP [Hoa85] is presented in [Ree89],

which enables one to reason about concurrent processes in a uniform fashion with the

minimum of complexity. A complete set of inference rul es for reasoning about timed CSP

processes is given in [DS89]. Untimed process algebra for synchronous communication

in [8K84] is extended with reai-time in [8891]. Another algebra for timed processes is

suggested in [NRSV90J. A calculus of durations to reason about design and requirements

for reai-time systems, which is an extension of Interval Temporal Logic, can be found

in [CHR91]. This calculus is used in [CHRR92] to express specifications for shared pro­

cessors. Process algebras dea.ling with asynchronous communicatiom mechanism appear

in [Mil83,8KT85,JJH90,8892]. A trace-based modeland proof system for asynchronous

networkis presented in [Jon85]. A compositional semantics for an asynchronous version

of CSP can be found in [8H92].

There is also some progress on the specification a.nd verification of (real-time and)

fault-tolerant systems. A rigorons programming approach for fault-tolerant systems is

presented in [Cri85], where only sequentia! programs are considered. A compositional

proof system for fault-tolerant programs written in a CSP-like language are shown

in [JMS87]. Mechanica! verification of a 8yzantine fault-tolerant a.lgorithm for doek

synchronization is described in. [RH9l,Sha.92]. A reliable braadcast protocol proposed

in [CM84] is formally verified in [Yod92], where the so called "modal primitiverecursive"

fundions are used. In [Pel91] CSP is used to design and verify fault-tolerant systems.

Deontic logic is applied in [Coe92] to specify layered fault-tolerant systems in a natura!

way. A compositiona.l semantics for fault-tolerant reai-time systems appears in [CH92],

where the occurrence of failures are allowed and the effect of these fa.ilures is described in

the reai-time beha.vior of programs. Fault-tolerant reai-time systems are specified using

"Minima! Three-Sorted Modal Logic" in [CW92]. A trace-based compositional network

proof theory for fault-tolerant systems is shown in [SH93], where the fault hypothesis

which specifies the class of fanlts that must he tolerated is an important feature. This

102 CHAPTER 5. CONCLUSIONS

is a.lso a key point in a traced-based compositional framework for refinement of fault­

tolerant system proposed in [SC93J. Exception handling in process algebra can be found

in [BCG92], where ACP [BK84] is extended with an exception handling construct and

the theory is applied to an fault-tolerant system presented in [Pel91].

Appendix A

Proofs of Lemmas in Chapter 2

Proof of Lemma 2.6.1

Consicier any expression e from the programming language, any model u, and any r ~

be9in(u). We prove &(e)(u(r).s) V(e)(u, r) by induction on the structure of e.

• e = t'J. &(t?)(u(r).s) = {} = V(t'J)(u, r).

• e =x. &(x)(u(r).s) u(r).s(x) V(x)(u, r).

• e e1 0 e2 , where 0 E { +,-,x}. By the induction hypothesis, we have, for

1,2, &(e;)(a(r).s) = V(e,)(u,r). Then &(e1 0 e2)(u(r).s)

&(e1)(u(r).s) 0 &(e2)(u(r).s) =V(el)(u, r) 0 V(e2)(u, r) = V(e1 0 e2)(u, r).

Proof of Lemma 2.6.2

Consicier any boolean guard 9 from the programming language, any model u, and any

r ~ be9in(u). We prove Ç(9)(u(r).s) iff (u, r) by induction on the structure of 9·

• 9 = e1 = e2 • Ç(e1 = e2)(u(r).s) iff &(eJ)(a(r).s) = &(e2)(u(r).s) iff,

by lemma 2.6.1, V(e1)(u, r) = V(ez)(u, r) iff (a, r) f= e1 ez.

• 9 = e1 < ez. Similar to the proof for g e1 = ez.

• 9 = -.91 . Ç(-.gt)(a(r).s) iff not Ç(9J)(u(r).s) iff, by the induction hypothesis,

not (u, r) f= 91 iff (u, r) f= -,91·

• 9 = 9t V 9z· Q(gt V 92)(u(r).8) iff Ç(9t)(u(r) .s) or Ç(g2)(a(r).s) iff, by the induction

hypothesis, (a, r) f= 91 or (a, r) I= 9z iff (a, r) f= 91 V 92·

103

104 APPENDIX A. PROOFS OF LEMMASIN GRAPTER 2

Proof of Lemma 2.6.3

Consider any expression vexp of type VAL, any model u, any cset Ç DCHAN, and

any T ~ begin(u). We prove V(vexp)(u,T) V(vexp)([u]cset,T) by induction on the

structure of vexp.

• vexp=.{). V(#)(u,T)=# V({))([u]cset,T).

• vexp =x. By definition, if T::; end(u), then u(T).s(x) [u]cset(T).s(x), Le.,

if T::; end([u]cset), then V(x)(u,T) = V(x)([u]cset,T).

If T >end(u), then V(x)(u, T) u•.s(x) = [!7]~ •• 1.s(x), Le.,

if T > end((u]cset), then V(x)(u, T) V(x)([!7]cset, T).

Hence V(x)(O',T) V(x)([!7]cset.T).

• vexp = first(x). V(first(x))(u, T) = ub.s(x) = [!7]~ •• 1.s(x) = V(first(x))([a]c••t. r).

• vexp =. last(x). If end(u) < oo, then V(last(x))(u,T) = u•.s(x) = [!7]~ •• 1.s(x) =
V(last(x))([a]cset, r). If end(u)= oo, then V(last(x))(O', r) 0'

0.s(x) [!7]~ •• 1.s(x)

= V(last(x))([!7]cset> r).

• vexp = max(vexp11 vex1J2). By the induction hypothesis, we have, for i 1, 2,

V(vexp;)(a,T) V(vexp;)([!7]cse1,T). Then

V(max(vexpl! vex1J2))(<7, T) = max(V(vexpt)(O', T), V(vex1J2)(<7,.T))

= max(V(vexpi)([a]cset, T), V(vexp2)([a]cset 1 r)) = V(max(vexp1, vex1J2))([!7]cset> T).

• vexp = vexp1 0 vex112, where 0 E { +,-,x}. By the induction hypothesis,

we have, for i 1, 2, V(vexp;)(u, r) = V(vexp;)([u]cset> r). Thus

V(vexp1 0 vexp2)(!7, T) V(vexpt)(u, T) 0 V(vexp2)(!7, r)

= V(vexpt)([a]cset 1 T) 0 V(vex1J2)([a]cset 1 T) = V(vexp1 0 vexp2)([!7]cset> T).

Proof of Lemma 2.6.4

Consider any expression vexp of type VAL, any model u, any vset Ç VAR, and any

T ~ begin(a). We prove, by induction on vexp, that if var(vexp) Ç vset, then

V(vexp)(O', r) = V(vexp)(q! vset, T).

• vexp =. t?. V(t?)(<7, T) = # V(t?)(!7! vset, r).

• vexp =.x. var(vexp) {x} and thus x E vset. By definition, if T $ end(O"),

then O'(T).s(x) (!7! vset)(r).s(x), i.e., if T::; end(O" l vset), then V(x)(u, r) =
V(x)(u! vset, r). lf T > end(u), then V(x)(O', r) = ue.s(;1:) (u l vset)".s(:c),

i.e., if T > end(u! vset), then V(x)(O',T) = V(x)(O' l vset, r).

Hence V(x)(<7, r) = V(x)(q! vset, r).

105

• vexp = first(x). var(vexp) {x} and then x E vset. Thus V(first(x))(u,r) =

ub.s(x) (al vset)b.s(x) = V(first(x))(a l vset,r).

• vexp = last(x). var(vexp) = {x} and then x E vset. If end(a) < oo, then

V(last(x))(a, r) a•.s(x) (al vset)'.s(x) = V(last(x))(u! vset,r).

If end(a) = oo, then V(last(x))(a,r) = ub.s(x) =(al vset)b.s(x) =
V(last(x))(a l vset, r).

• vexp = max(vexpt, vexp2). For i= 1, 2, var(vexp;) Ç var(vexp) Ç vset. Then by

the induction hypothesis, V(vexp;)(u,r) = V(vexp;)(a l vset,r). Then

V(max(vexpt, vexP2))(a, r) max(V(vexpl)(u, r), V(vexP2)(u, r)) =
max(V(vexpt)(a! vset, r), V(vexp2)(a! vset, r))

V(max(vexp1,vexp2))(u! vset,r).

• vexp = vexp1 8 vexP2, where 8 E {+,-,x}. For i

var(vexp) Ç vset. Then by the induction hypothesis,

V(vexp;)(a,r) = V(vexp;)(a! vset,r). Thus

V(vexp1 8 vexp2)(u, r) V(vexpi)(a, r) 8 V(vexp2)(u, r)

1,2, var(vexp;) Ç

V(vexpt)(u! vset, r) 8 V(vexP2)(a! vset, r) = V(vexp1 8 vexp2)(u! vset, r).

Proof of Lemma 2.6.5

Consider any expression texp of type TIME, any model u, any cset Ç DCHAN, and

any r ;::: begin(u). We prove T(texp)(u, r) = T(texp)([u]cset. r) by induction on the

structure of texp.

• texp f. T(f)(u,r) = f = T(f)([a]cset,r).

• texp = T. T(T)(u, T) T = T(T)([u]cset, T).

• texp start. T(start)(u, r) =begin(u)= begin([u]csed = T(start)([u]cset, r).

• texp: term. T(term)(a,r) end(cr) end([a]csed T(term)([u]cset.T).

• texp = vexp. By lemma 2.6.3, we have V(ve:rp)(cr, r) = V(vexp)([u]cset, r).

Then T(vexp)(cr,r) = V(vexp)(u,r) = V(veX]>)([u]cset,T) T(vexp)([u]c8et,r).

• texp texp1 0 texp2 , where 0 E { +,-, x}. By the incluction hypothesis,

we have, for i= 1, 2, T(texpi)(u, r) = T(texp;)([u]cact• r). Then, by definition,

T(texp1 0 texp2)(cr, r) T(te;q)J 0 texp2)([a]cset• r).

106 APPENDIX A. PROOFS OF LEMMASIN CHAPTER 2

Proof of Lemma 2.6.6

Consider any expression texp of type TIME, any model u, any vset Ç VAR, and any

r;::: begin(u). We prove, by induction on texp, that if var(texp) Ç vset, then

T(texp)(u, r) == T(texp)(u! vset, r).

• texp:f. T(f)(u,r) f=T(f)(u!vset,r).

• texp = T. T(T)(u, r) T = T(T)(u! vset, r).

• texp: start. T(start)(a,r) = begin(u) = begin(a! vset)

T(start)(a ! vset, r).

• texp: term. T(term)(a,r) end(u) end(u! vset) T(term)(a! vset,r).

• texp: vexp. var(texp) = var(vexp) and thus var(vexp) Ç vset. By lemma2.6.4,

V(vexp)(a, r) = V(vexp)(a! vset, r). Then

T(vexp)(a, r) = V(vexp)(a, r) V(vexp)(u! vset, r) = T(vexp)(a! vset, r).

• texp = texp18tex!J2, where 8 E { +,-,x}. For i= 1, 2, var(texp;) Ç var(texp) Ç

vset. By the induction hypothesis, T(texp;)(a,r) = T(texp;)(e1! vset,r). Then,

by definition, T(texp1 8texp2)(u,r) = T(texp1 8texp2)(u! vset,r).

Proof of Lemma 2.6. 7

Consider any cset Ç DCHAN and any specification t.p. We prove that if dch(t.p) Ç cset

then, for any model CT and any r;::: begin(u), (u, r} I= '{i iff ([C1]cset, r} I= t.p, by induction

on the structure of t.p.

• t.p = texp1 == tcx!J2. {a, r} I= texp1 = teXJ"I<J iff T(texpJ)(u,7) = T(texp2)(u, 7) iff,

by lemma2.6.5, T(texpt)([u]cset 1 T) = T(texp2)([u]cset,r) iff ([a]cset 1 T) I= texp1 =

iCXJJ2.

• '{i= texPt < tex!J2. Similar to the proof for i.p = texp1 texp2 •

• t.p = comm(c, vexp). dch(~.p) = {c} and thus c E c.~et. I-Ience (e1, r) I= comm(c, vexp)

iff r < end(a) and (c, V(ve.1:p)(a, r)) E u(r).c iff, by definition and lemma 2.6.3,

7 < end([u]cset) and (c, V(vexp)([u]cset• r)) E [a]cset(r).c iff

((u]cset.T} I= comm(c,vexp).

• '{i= comm(c). dch(~.p) {c} and thus c E cset. Hence (O", r) I= comm(c) iff

7 < end(u) and there exists a value {) such that (c,11) E a(r).c iff T < end([u]cset)

and there exists a value 1J such that (c, t'J) E (u]csct(T).c iff ((u]csch r) I= comm(c).

107

• r.p wait(c!). dch(r.p) {c!} and then c! E cset. Hence (u,r) F wait(c!) iff

T < end(er) and c! E er(r).c iff T < end([er]cset) and c! E [er]cset(r).ciff

([er]cset 1 r) F wait(c!).

• r.p wait(c?). dch(r.p) {c?} and then c? E cset. Hence {er, r) F wait(c?) iff

T <end(er) and c? E er(r).c iff T < end([er]cset) and c? E [er]cset(r).c iff

{[u]cseh r) F wait(c?).

• r.p = r.p1 Vr.p2 . For i= 1,2, we have dch(r.p;) Ç (dch(r.pi)Udch(r.p2)) = dch(r.p) Ç cset.

Hence (er, r) F 'PI Vr.pz iff {er, r) F 'PI or (er, r} F r.p2 iff, by the induction hypothesis,

{[er]cset, r) F 'Pl Of ([er]cset, r) F '{>2 iff ([er]cset• r} F '{>tV \f2·

• r.p = -.r.p1 and r.p <.p1 U r.p2• Similar to the proof for <.p = r.p1 V r.p2 •

• r.p = r.p1 C r.p2 • For i 1,2, we have dch(r.p;) Ç dch(r.p) Ç cset.

Hence (er, r) F '{>t C '{>2 iff

- either (u, r) I= <.p1 and end(er)= oo iff, by the induction hypothesis,

{[u]cse!) r) F 'PI and end([er]cset) = 00 iff ([u]cset, r) F 'PI c '{>2;

- or there exist models u1 and er2 such that er = u1u2 , r :5 end(ut) < oo,

(ubr} I= 'Pil and (erz,begin(u2)) F r.pz iff, by the induction hypothesis,

there exist models er1 and Uz such that er = er1 erz, {[ert]cset, r) F '{>t, and

([erz]cset, begin(erz)) F '{>2 iff, there exist models [udcset and [uz]cset such that

[ericset hlcset[er2]cset. ([udc••t. r) I= 'Pt. and ([er2]c••fl begin([erz]cs.d) I= 'P2 iff

([er]cset, r) F 'Pt C 'P2·

• r.p = r.p1 C* <.pz. Similar to the proof for <.p r.p1 C 'P2·

Proof of Lemma 2.6.8

Consider any vset Ç VAR and any specification r.p. We prove, by induction on r.p,

that if var(r.p) Ç vset then, for any model er and any T ~ begin(er), (u,r} F r.p iff

(u l vset, r) F r.p .

• '{> = texpl teXPz. ror i= 1,2, var(texpi) ç var(r.p) ç vset. Hence

{er, r) F texp1 texp2 iff T(texpt)(er, r) = T(texpz)(er, r) iff, by lemma 2.6.6,

T(texpt)(er! vset, r) = T(te:r;p2)(0' l vset, T) iff (u ! vset, r) F texp1 = texp2 •

• r.p = texp1 < texp2 • Similar to the proof for r.p = texp1 texp2 •

• <.p = comm(c, vexp). var(vexp) var(<.p) and thus var(vexp) Ç vset. Hence

(o-, r) F comm(c, vexp) iff T < end(a) and (c, V(vexp)(a, r)) E er(r).c iff, by

108 APPENDIX A. PROOFS OF LEMMAS IN CIIAPTER 2

definition and lemma2.6.4, r < end(a l vset) and

(c, V(vexp)(a l vset, r)) E (al vset)(r).c iff (al vset, r) f= comm(c, vexp).

• <p :::: comm(c). (a, r} f= comm(c) iff r < end(a) and there exists a value iJ such

that (c, 17) E a(r).c iff T <end(al vset) a.nd there exists a value i) such that

(c, t?) E (al vset)(r).c iff {al vset, r) f= comm(c).

· • <p = wait(c!). (a, r) I= wait(c!) iff T <end(a) a.nd c! E a(r).c iff r <end(al vset)

and c! E (al vset)(r).ciff (al vset,r) f= wait(c!).

• <p = wait(c?). (a, r) I= wait(c?) iff T <end(a) a.nd c? E a(r).c iff

T <end(al vset) and c? E (al vset)(r).c iff (al vset, r) f= wait(c?).

• <p:::: <p1 V <pz. For i 1,2, var(<p;) ~ var(<p) ~ vset. Hence (a,r) I= <p1 V <p2 iff

(a, r} I= <p1 or (a, r} I= <p2 iff, by the induction hypothesis, (a l vset, r) I= <p1 or

(a l vset, r} I= 1./)2 iff (a ! vset, r} f= 1./)t V 1./)2·

• <p:::: -.~.p1 and <p = <p1 U <p2• Similar to the proof for <p <p1 V 1./)2·

• <p:=<p1 C <p2 . Fori 1,2,var(<p;)~var(<p)~vset. Hence(u,r) l=cp1 C <p2 iff

- either (a, r} f= <p1 and end(a)= oo iff, by the induction hypothesis,

{a l vset, r) f= <p1 and end(a! vset) = oo iff (a l vset, r} f= 1./)1 C <p2;

- or there exist models u1 a.nd u2 such that u = a 1a 2 , T :5 end(a) < oo,

{a1; r} I= 'PI> and (a2 , begin(u2)) f= <p2 iff, by the in duetion hypothesis, there

exist models u1 and u2 such that u u1a 2 , (a1 l vset, r} f= <ph and (a2 l

vset, begin(a 2)} I= <p2 iiT, there exist models a 1 l vset and a 2 l vset such that

al vset =(at l vset)(u2l vset), (ut l vset, r) f= <p1, and

(u2 ! vset, begin(a2 l vset)) I= <pz iff (u l vset, r) f= ip1 C 'P2·

• <p :::: <p1 c· <p2• Similar to the proof for <p :::: <p1 C <p2•

Proof of Lemma 2.6.9

Consider any model a and cset ~ DCHAN. We prove that dch(u) ~ cset iff a [a]cset·

By the definition of projection ont.o variahles, begin(u) begin([u]csed, end(u) =

end([u]cset), and for any Th begin(a) :S Tt :S end(u), u(rt).s = [u]cset(rt).s. Then

we only have to prove tb at, for any r, begin(u) :S r < end(u), dch(u) ~ es et iff

a(r).c = [a]cset(r).c.

Let c E CHAN and {) E VAL. By definition, for any r, begin(u)$ T <end(u),

and

[u]cset(T).c = {cl I c! E ~:r(r).c i\ dE cset} U {c? I c? E a(r).c i\ c? E cset} U

{(c,iJ) I (c,1~) E a(r).ci\ c E cset}

dch(a) Ubegin(o-)~T<end(") {c! I cl E a(r).c} U {c? I c? E u(r).c} U

{ c I there exists a {) such that (c, t?) E a(T).c}

109

Assume dch(u) Ç cset. We show u(r).c = [u]cset(T).c, for any T, begin(u) :5 T <
end(u). If c! E u(r).c, then d E dch(u). By the assumption, c! E cset and thus

c! E [u]cset(r).c. Similarly, if c? E a(r).c then c? E {u]cset(r).c, and if (c, iJ) E u(r).c, then

(c,t9) E [u]cset(r).c. Thus u(r).c Ç [~:r]cset(r).c. On the other hand, if c! E [u]cset(r).c,

then c! E u(r).c. If c? E [a]cset(r).c, then c? E u(r).c. If (c, !?) E [u]cset{T).c, then

(c, t?) E a(T).c. Therefore [o-]cset(T).c Ç a-(T).c. Hence a-(T).c = [o-]cset(T).c.

Now assume a(r).c =.; [o-]cset(r).c, for any r, begin(~:r) $ r <end(a-). We prove dch(a) Ç

cset. Consider any cl E dch(u). By definition, there exists ar, begin(u)$ T < end(a),

such that cl E o-(r).c. By the assumption, c! E [O']cset(r).c a.nd then c! E cset. Similarly,

if c? E dch(u), then c? E cset, and if c E dch(o-), then c E cset. Hence dch(a) Ç cset.

Hence the lemma holds.

Proof of Lemma 2.6.10

Consider a model u and two sets csetil cset2 Ç DCHAN. We prove that

if (a,begin(u)) p Oempty(cseh \csett), then [a]c .. t,ucset2 = [o-]cset1 •

By the definition of projection onto channels, begin([o-]csct1ucset2) = begin([a]csetJ,

end([a]cset1ucset2) end([a]cset1), and for any T, begin(o-) $ T $ end(u),

[O']cset 1ucset2 (r).s = o-(r).s = [o-]cset 1 (r).s. Then we only have to prove, for any r,

begin(a) $ T < end(u), [o-]cset1ucset2 (r).c [o-]cset 1 (T).c.

Since cset1 U csetz cset1 U (cset2 \ cset1), we obtain [O']cset 1uc.,ct2 [O']cset1u(cset2 \cset1)

and then [a]cset,Ucset2 (T).c = [a-]cset1U(cset2 \cset!)(T).c = [o-]cset1 (r).c U [a](cset2 \csett)(r).c.

We show [o-](cset 2 \csctt)(r).c = 1/S.

Assume (a, begin(a-)) p 0 empty(c.set2 \es et I). For any c E cset2 \ cset 1, by definition,

we have (O",begin(o-)) p 0---.comm(c). Thus, for any r, begin(o-) $ T < end(u), and for

any value {) E VAL, (c,iJ) ~ o-(r).c. Thus (c,!?) ~ [o-](c . .et2 \csetl)(r).c. Similarly, for any

c! E csetz \ csett, we obtain d ~ [a](cset2 \csetl)(r).c, and for any c? E csetz \ cset1, c? ~

[o-](cset,\csett)(r).c. Hencc [o-](cset,\cscti)(T).c = 0 and then [o-]cset,ucset2(r).c = [O']cset,(T).c.

Thus the lemma hol ds.

110 APPENDIX A. PROOFS OF LEMMASIN GRAPTER 2

Proof of Lemma 2.6.11

Consider a model q and two sets vset1 , vset2 Ç VAR. We prove that

if (q, begin(q)} F 0 inv(vset2 \ vsett), then u l (vset1 U vset2) =u l vset1 •

By the definition of projection onto variables,

begin(u! (vset 1 U vset2)) =begin(u! vsetl),

end(u! (vset 1 Uvset2)) = end(u! vsett), and for any r, begin(u) s; r s; end(u),

(u! (vset1 U vset2))(r).c =(u l vsett)(r).c.

We only have to prove (q! (vset 1 U vset2))(r).s (u! vsett)(r).s.

. . { u(r).s(x) if x E vset1 U vset2 BY defimtton, we have (u l (vsett Uvset2))(r).s(x) = b •
q .s(x) otherwtse

If x E vset1 U vset2 , since vset1 U vset2 vset1 U (vset 2 \ vset1), we have x E vset1 or

x E vset2 \ vset1. Assume (u,begin(u)) F Oinv(vset2 \ vset1). Then for any x E

vset2 \ vsett, any r, begin(u) S:: r s; end(u), we obtain u(r).s(x) = ub.s(x).

{
q(r).s(x) if x E vset1

Thus, (u l (vset1 U vset2))(r).s(x) = b •
u .s(x) otherwtse

Hence (q! (vset 1 U vset2))(r).s =(u l vsett)(r).s and thus this lemma holds.

Proof of Lemma 2.6.12

Consider a model u. We prove that if dch(u) Ç cset and (u, begin(u)) F W Fcset, then

u is well-formed.

Assume (q, begin(q)} F W Fcaet· Then

{u, begin(u)} F 0 (MinWaitcset (\ Exclusioncset A Uniqttecsed· Hence, for any T ;:::

begin(u),

1. (q,r} F -.(wait(c!) A wait(c?)), for any {c!,c?} Ç cset;

2. (q, r) F -.(comm(c) A wait(c!)), for a.ny {c, c!} Ç es et, a.nd

(q, r) F -.(comm(c) A wait(c?)), for any { c, c?} Ç es et;

3. (u, r} F comm(c, vexpt) A comm(c, vexp2)-> vexp1 vexp2 , for any c E cset.

Given the interpretation of specifications (section 2.3), this implies, for any r 2 begin(q),

1. -.(c! E u(r).c Ac? E q(r).c), for any {c!,c?} Ç cset;

2. There does not exist a value t? E VAL such that

(c,t?) E u(r).cAc! E u(r).cor (c,1?) E u(r).c/\c'? E q(T).c.

Thus, for a.ny vahte {} E VAL,

..,((c,d) E u(r).cl\ c! E u(r).c), for any {c,c!} Ç cset, and

-,((c,d) E u(r).c/\ c? E u(r).c), for any {c,c?} Ç cset;

3. (c, V(vexp1)(u, r)) E u(r).c 1\ (c, V(vexJJ2}(u,r)) E u(r).c-+

V(vexpl)(u, r) = V(vexp2)(~, r), for any c E cset.

111

Since vexp1 and vexp2 are arbitrary expressionsof type VAL, let t7t. d2 E VAL be

such that 1J1 = vexp1 and {h = vexp2 • Hence d1 = V(vexpl)(u, r) and

d2 = V(vexp2)(u, r). Thus, for any T;::: begin(u),

(c,t7I) E u(r).c 1\ (c,d2) E u(r).c-+ d1 = '172, for any cE cset.

Notice tha.t if c! cf; cset then, by dch(u) Ç cset, we have c! cf; dch(u) and thus c! tf. u(r).c,

for any r, begin(u) ~ T < end(u). Similarly, if c? cf; cset then c? f/:. u(T).c and if c tf. cset

then, for any value t7 E VAL, (c,d) f/:. u(r).c. Thus, for any c E CHAN, for any values

iJ,ih,fJ2 E VAL, and for any T, begin(u) ~ r < end(u), we have:

1. -.(cl E u(r).c 1\ c? E u(r).c);

2. ...,((c, fJ) E u(T).c 1\ c! E u(T).c) and -.((c, t?) E u(T).c 1\ c? E u(T).c);

3. (c, -91) E u(r).c 1\ (c, fJ2) E u(r).c-+ iJ1 = tlz.

Hence u is well-formed.

112 APPENDIX A. PROOFS OF LE1VfMAS IN CHAPTER 2

Appendix B

Soundness of the Proof System

Chapter 2

• lll

To prove the soundness of a proof system, we must show that every axiom in the proof

system is indeed valid and every inference rule preserves validity, i.e., if the hypotheses

of an inference rule are valid, so is the conclusion.

Well-Formedness

Consider any procee S and any finite set c.set Ç DCHAN. We prove that the well­

formedness axiom 2.4.1 is valid.

For any q E M(S), by theorem 2.2.1, q is well-formed, that is, for any r, begin(q) :5
T < end(q), any c E CHAN, and any {Jh fJ2 , {} E VAL, we have:

1. -,(c! E q(r).c/\ c? E q(r).c),

2. -.((c,{J) E q(r).c/\ c! E u(r).c) 1\ -.((c,{}) E u(r).c/\ c'! E u(r).c), and

For any expressions vexp1 and vexP2 of type VAL and any r, begin(u) :::; T < end(q),

we have V(vexpJ)(u, r) E VAL and V(vexp2)(u, r) E VAL. Since {} 1 and tJ 2 are arbitrary

values in VAL, we can replace {} 1 and {} 2 by V(vexpt)(u, r) and V(vexPz)(u, r), respec­

tively. Thus, for any T, begin(0') :5 T < end(er), any {) E VAL, and any expressions

vexph vexPz, we have:

1. ..,(c! E q(T).c 1\ c? E q(T).c), for any c with { c!, c?} Ç cset,

2. -.((c, {}) E u(T).c 1\ c! E q(T).c), for any c with { c, c!} Ç cset,

-.((c,{}) E q(r).c/\c? E u(r).c), for any c with {c,c?} Ç cset, and

113

114 APPENDIX B. SOUNDNESS OF THE PROOF SYSTEM IN CHAPTER 2

3. (c, V(vexp1)(u,r)) E u(r).c A (c, V(vexp2)(u,r)) E a(r).c-+

V(vexPJ)(u, r) = V(vexP2)(u, r), for any c E cset.

By the interpretation of specifications, we obtain that, for any r, begin(a) :5 r < end(a),

any iJ E VAL, and any vexPl and vexp2:

1. (u, r) I= 1\{ct,c?}Çc..et -.(wait(c!) A wait(c?));

2. (u, r) I= 1\{c,c!}Çc..et -.(comm(c) A wait(c!)) A À{c,c?}Çcset -.(comm(c) A wait(c?));

3. (u, r) I= Acec8et comm(c, vexPJ) A comm(c, vexP2)-+ vexp1 = vexP2.

Furthermore, for any r 1
;::: end(u), any c E cset, and any vexp, we have

(u, r') I= -.wait(c!) A -.wait(c?) A -.comm(c) A -.comm(c, vexp).

Thus, for any r;::: begin(u), and any vexPJ and vexp2 , we obtain:

1. (u, r) I= À{c!,c?}Çuet -.(wait(c!) A wait(c?));

2. (u, r) I= À{c,c!}Çuet -.(comm(c) A wait(c!)) A À{c,c?}Çcset -.(comm(c) A wait(c?));

Thus, hy definition, (u,begin(u)} I= D(MinWaitcset A Exclusioncset A Uniquecset) and

then (u, begin(u)) I= W Fc••t· Hence, axiom 2.4.1 is indeed valid.

Communication lnvariance

Consider any process S and any set cset Ç DCHAN such that cset n dch(S) = 0. We

prove that the communication invariance axiom 2.4.2 is valid.

For any u E M(S), by theorem 2.2.1, we ohtain dch(u) Ç dch(S) and then

csetndch(u) = 0. Thus, hy definition of dch(a), for any r, begin(a) :5 r < end(u), we

have:

1. If c E cset, then there does not exist any vahte {) such that (c, {)) E u(r).c;

2. If c! E cset, then c! f/_ u(r).c;

3. If c? E cset, then c? f/_ u(r).c.

Thus, for any r, begin(u) :5 T <end(a), we obtain:

1. (u, r) I= -.comm(c), for any c E cset;

2. (u, r) I= -.wait(c!), for any c! E cset;

3. (o-, r) f= -.wait(c?), for any c? E es et.

Furthermore, for any c E CHAN and any 7 1 2 end(u),. we have

(o-, r') f= -.comm(c) A -.wait(c!) A -.wait(c?).

Thus, for any T 2 begin(o-), we have (o-, r) f= empty(cset) and then

(u, begin(o-)) f= 0 empty(cset).

Hence axiom 2.4.2 is valid.

Variabie Invariance

115

Consicier any process S and any vset Ç V AR with vset n wvar(S) = 0. We prove that

the variabie inva.riance axiom 2.4.3 is valid.

For any <1 E M(S), any x E vset, a.nd a.ny T, begin(o-) ~ T ~ end(u), by theorem

2.2.1, we obtain u(r).s(x) = ub.s(x). Then, by definition, we obtain V(x)(o-,r) =
V(first(x))(u,r) and thus (u,r) f= x = first(x). For any T

1 > end(u), by defini­

tion, we have V(x)(u,r') = ue.s(x) ub.s(x) V(first(x))(o-,T'). Then we obtain

(o-, r') f= x = first(x). Hence, for any T 2 begin(o-), we have (u, r} f= x first(x),

i.e., (o-,begin(u)) f= O(x first(x)). Since x E vset, we have (o-,begin(u)} f=
AxEvset 0 (x= first(x)), i.e., {u, begin(o-)} f= 0 AxEvset(x = first(x)). Hence we obta.in

(o-, begin(o-)) f= 0 inv(vset) and thus axiom 2.4.3 is valid.

Conjunction

We prove that the conjunction rule 2.4.1 preserves va.lidit.y.

Assume that S sat <p1 and S sat <p2 are va.lid. For any u E M{S), we obtain

(u, begin(o-)} f= <p1 . Similarly, we have (u, begin(u)} f= <p2 . Hence we obtain

(11, begin(u)) f= <p1 A <p2 , i.e., rule 2.4.1 preserves validity.

Consequence

We prove tha.t the consequence rule 2.4.2 preserves va.lidity.

Assume that S sat <p 1 and <p1 _.... <p2 are valid. For any u E M(S), we obtain

(u,begin(u)} f= <p1 • By the implication, we have (u,bcgin(u)} f= <p2 • Thus rule 2.4.2

preserves validity.

116 APPENDIX B. SOUNDNESS OF THE PROOF SYSTEM IN CHAPTER 2

Skip

We prove that the skip axiom 2.4.4 is valid.

Consider any u E M(skip). We have begin(u) = end(u) and then

(u, begin(u)} I= term start. Hence axiom 2.4.4 is valid.

Assignment

We prove that the assignment axiom 2.4.5 is valid.

For any u E M(x := e), for any r, begin(u) ~ T < end(u), we obtain u(r).s(x) =

a0.s(x). By definition, we have (a, r} I= x = first(x). From the semantics, we

have ae.s(x) = &(e)(ab.s). By lemma 2.6.1, we obtain V(x)(O',end(a)) t'(e)(O'b.s)

V(e)(O', begin(a)). By definition, we have V(e)(<1, begin(a)) = V(e[first(x)/x])(a, begin(O'))

= V(e[first(x)/x])(a, end(a)). Hence V(x)(0', end(<1)) V(e[first(x)/x])(0', end(a))

and then (u,end(u)) I= x= e[first(x)/x]. Since end(O') = begin(a) +Ka, we obtain

(<1, end(u)) I= term= start+ I< a and (<1, end(<1)} f= T =term. Thus, we obtain

(u,begin(u)) I= (x first(x)) U (T term start+ IC 1\ x e[first(x)fx]), i.e.,

axiom 2.4.5 is valid.

Delay

We prove that the delay axiom 2.4.6 is valid.

Consider any a E M(delay e). By lemma 2.6.1, &(e)(<1b.s) V(e)(u,begin(u)). Since

u E M(delay e), we have end(u) begin(u)+ max(O,&(e)(O'b.s)). Hence we obtain

end(u) begin(O') + max(O, V(e)(<1, begin(<1))) and then

(u, begin(u)) I= term= start+ max(O, e), i.e., axiom 2.4.6 is valid.

Output

We prove that the output axiom 2.4.7 is valid.

Consider a.ny 0' E M(c!e). Then there are two possibilities:

1. either end(<1) oo a.nd u E Wait(c!), i.e., for a.ny T 2:: begin(a),

u(r).comm {c!};

2. or thereexist models O'J and u2 such that a u1u2 , u1 E Wait(c!), a 2 E Send(c,e),

and end(u1) < oo. That is, there exists aT E TIME such that, end(at)= r, for

117

any Tt 1 begin(ai) :5 Tt < end(at), at(TI).s = ar.s, CTt(Tt).c = {c!}, af.s at.s,

end(az) = begin(a2) + I<c, for any Tz, begin(crz) :5 r2 < end(a2), a2(r2).c =

{(c,&(e)(a~.s))}, a2(r2).s a~.s, and a2.s =a~·~·

That is,

L either end(a)= oo and, for any r ~begin(a), (a, r) f= wait(c!), i.e.,

(a, begin(a)) f= D wait(c!);

2. or, from a = a 1a 2 , we can derive that there exists a r E TIME such that, for

any T~t begin(a) :5 r1 < r, (a,r1) f= wait(c!). Since end(a1) < oo, we obtain

begin(a2) = end(a1) T. By lemma 2.6.1, for any r2 , T :5 r2 <end(a), &(e)(a~.s)

V(e)(a2 ,begin(a2)) V(e)(a2,r2). Thus we have (a,r2) f= comm(c,e). Since

end(a2) = begin(az) +Kc, we obtain end(a) 7 +Kc and then (a, 7) I= T =
term- Kc as wellas (a, end(a)) I= T =term. Therefore we have

(a,begin(a)) I= wait(c!) U (T =term- Kc{\ (comm(c,e) UT= term)).

Hence we obtain (a,begin(a)) f= wait(c!) U (T term- Kc f\ (comm(c,e) UT=

term)), i.e., axiom 2.4.7 is valid.

Input

We prove that the input axiom 2.4.8 is valid.

Consider any a E M(c?x). There are two possibilities:

1. either end(a) oo and a E Wait(c?), i.e., for any 7 ~ begin(a), a(7).c = {c?},

and a(7).s = ab.s;

2. or there exist models a 1 and a2 such that a = a 1 a 2 , a 1 E W ait(c?), a2 E

Receive(c, x), and end(at) < oo. That is, there exists a 7 E TIME such that,

end(a1) r, for any T1> begin(ai) :5 T1 <end(at), a 1(r1).s at.s, a 1(rt).c = {c?},

ai.s = a~.s, end(a2) = begin(a2) + l<c, there exists a value {} E V AL such that,

for any 72 , begin(a2) :5 r 2 < end(a2), a 2(72).c = {(c, 1?)}, a 2(r2).s = a~.s, and

a2.s = (a~.s : x i-+ tJ).

That is,

1. either end(a) oo, for any r ~begin(a), (a, r) I= wait(c?) and

(a,7) I= x first(x), i.e., (a,begin(a)/ I= D(x .fi1·st(x)f\wait(c?));

2. or, from er a1a 2 , we obtain begin(a2) = cnd(aJ) = r. Thus for any Tt,

begin(a) :5 7 1 < r, (a, r1) f= x first(x) f\ wait(c?), for any r2 , r :5 72 <

118 APPENDIX B. SOUNDNESS OF THE PROOF SYSTEM IN GRAPTER 2

end(u), (u,r2 } f= x first(x) A comm(c,l?). Since end(u2) = begin(u2) +Kc,

we obta.in end(u) T + Kc and then (u, r) f= T = term - Kc as .well as

(u, end(u)} f= T term. Hence we have (u, r) f= T = term Kc A ((x =

first(x) A comm(c,l?)) UT= term). From O"".s(x) =iJ, by definition, we ob­

tain that, for any r2,r :5 Tz < end(O"), V(last(x))(O',Tz) = d. Thus we have

(u,r} f= (x = first(x) A comm(c,last(x))) U T = term. Therefore we ob­

ta.in (u,begin(u)) f= (x first(x) A wait(c?)) U (T term- Kc A ((x =

first(x) A comm(c, last(x))) UT= term)).

Hence we have (u,begin(O')} f= (x= first(x) A wait(c?)) U (T =term- I<c A ((x=

first(x) A comm(c, last(x))) UT= term)), i.e., axiom 2.4.8 is valid.

Sequentia! Composition

We prove that the sequentia! composition rule 2.4.3 preserves validity.

Assume that SI sat 'PI and Sz sat r.p2 are valid. We show that S1; S2 sat 'PI C t.pz is

also valid. Consider any u E M(SI;S2). Then there exist O'I E M(SI) and u2 E M(S2)

such that u= UIUz. By definition, end(ui)~ begin(ui)· From sl sat 'PI and Sz sat r.pz,

we obtain (uh begin(u1)) f= t.p1 and (u2 , begin(uz)) f= r.p2 . By the definition of the C
operator, we have (u, begin(ut)) f= (/)I C r.p2 , i.e., (u, begin(i7)} f= r.p1 C r.pz. Hence, rule

2.4.3 preserves validity.

Guarded Command with Purely Boolean Guards

Consider G = IOi=1g; -+ Si]. We prove that the guarded command evalua.tion axiom

2.4.9 is valid for G.

For any u E M(G), there are two possibilities:

1. either Ç{-.g)(O'b.s) and a E M(delay K9);

2. or there exists a. k, 1 :5 k :5 n, such that Ç(gk)(ab.s) and a E M(delay K9 ; Sk)·

That is,

1. either, from Ç(-.g)(ub.s), by lemma 2.6.2, we obtain (u, begin(a)} f= -.g. Since

a E M(delay Kg), we have end(u) begin(a)+ /{9 and then

{u, begin(u)) f= term start+ Kg. Reeall Eval =term= start+ Kg· Hence we

have (u, begin(a)) f= --.9 -7 Eval.

From the sernantics, for any r1 , begin(a) $ r1 $ end(a), we have a(r1).s = ab.s

and then (u, 1'J} f= 1\xewvar(G) x = fiT· st(x), i.e., (a, TJ} f= inv(wvar(G)). A lso, for

119

any r2 , begin(a) :S: Tz < end(a), we have a(r2).c 0, i.e.,

(a, Tz) f= Àc!Edch(G) -.wait(c!) 1\ Àc?Edch(G) -.wait(c?) 1\ Àcedch(G) •comm(c).
Thus we obtain (a, Tz} f= empty(dch(G)). We also have (a, end(a)} f= T =

start+ /(9 • Then we have

(a, begin(a)) f= (inv(wvar(G))I\empty(dch(G))) U (T = start+/(9 1\inv(wvar(G))).

Therefore we have

(a, begin(a)) f= [(inv(wvar(G))I\empty(dch(G))) U (T = start+/(9 1\inv(wvar(G)))]

/\(-.g -+ Eval);

2. Or, by Ç(gk)(ab.s), we obtain Ç(g)(ab.s) and then (a,begin(a)) f= g. Then we

have (a, begin(a)) f= -._g-+ Eval. Since a E M(delay K9 ; Sk), there exist models

a 1 E M(delay Kg) and a 2 E M(Sk) such that a a 1a 2 . From a 1 E M(delay Kg),

we obtain the same result as previous case, i.e.,

(<r1 ,begin(at)) f= (inv(wvar(G))I\empty(dch(G))) U (T = start+K91\inv(wvar(G))).

Thus we obtain

(a,begin(<r)) f= [(inv(wvar(G))I\empty(dch(G))) U (T = start+I<gl'linv(wvar(G)))]

/\(•g -+ Eval).

Hence we conclude that axiom 2.4.9 is indeed valid for G [0~t9i-+ S;].

Next we prove tha.t the guarded command with purely boolean guards rule 2.4.4 preserves

validity.

Assume S; sat 'Pi are valid, i= 1, 2, ... , n. Consider a.ny <rE M(G).

1. If Ç(o.g)(<r".s) holds, then we have (<r, begin(<r)} f= -.g a.nd then

(a, begin(<r)) f= [J -+ (Eval C V'/=1 9i 1\ 'Pd ·

2. If Ç(gk)(<rb.s) holds, then we obtain Q(g)(<rb.s) and then (<r,begin(<r)) f= g.
Since <r E M(delay 1<9 ; Sk), there exist roodels <r1 E M(delay K9) and <r2 E

M(Sk) such that a= <r1a2 • Thus we have end(at) = begin(<r1) + /(9 and then

(<r11 begin(<rt)) f= Eval. From the assumption, Si sat 'Pi are valid, i = l, 2, ... , n.

Since <r2 E M(Sk), we have (<r2 ,begin(<r2)) f= 'Pk· From Ç(gk)(<rb.s), we obtain

Ç(gk)(<r~.s) and then (a2,begin(az)) f= 9k· Thus we have (az,begin(<r2)} f= gki\'Pk

and then (<r2 , begin(<r2)) f= V'/=1 g; 1\ 'Pi· Since begin(at) $; end(<rt) < oo, by the

def'inition of the C operator, we obtain {a, begin(a1)} f= Eval C V'/=1 g; 1\ '{);, i.e.,

(<r, begin(<r)) f= Eval C Vi=t g; 1\ <.p;.

Thus we have (a, begin(a)} f= [J -+ (Eval C V'/=1 b; 1\ 'Pi)·

Hence rule 2.4.4 preserves validity.

120 APPENDIX B. SOUNDNESS OF THE PROOF SYSTEM IN CHAPTER 2

Guarded Command with 10-Guards

Consider G = [Ui=1g;; c;?x; ---+ S; 0 g0 ; delay e---+ So]. We first prove that the guarded

command evaluation axiom 2.4.9 is also valid for G.

Let a E M(G). There are four possibilities:

1. Q(-.g)(a6.s) and 0' E M(delay 1<9);

2. or 0' E SEQ(M(delay I<9),FinWait(G),Comm(G));

3. or a E SEQ(M(delay K 9),Time0ut(G),M(S0));

4. or a E SEQ(M(delay K9),AnyWait(G),Comm(G)).

Following the proof of axiom 2.4.9 for the case G = !Ui::1g; -+ S;], we conclude that

axiom 2.4.9 is also valid for G [Qi=1g;;c;?x;---+ S; 0 g0 ;delay e---+ S0].

Next we prove that the guarded command with io.guards rule 2.4.5 preserves validity.

Assume c;? x;; S; sat <p;, i 1, 2, ... , n and S0 sat <po are valid.

L If Q(-.g)(a6.s), then we have (0', begin(q)) f= -.g. Thus we obtain

(0', begin(a)} f= g-+ (Eval C (Comm V TimeOut)).

2. If a E SEQ(M(delay I<9), FinWait(G), Comm(G)), then there exist models

a 1 E M(delay K 9), cr2 E FinWait(G), and 0'3 E Comm(G) such that a= 0'10'2a 3 •

From 0'1 E M(delay I<9), we obtain end(at) begin(O'i) + K9 and then

(O'hbegin(O'J)) f= term= start+ K9 , i.e., (0'1 ,begin(0'1)) f= Eval.

From 0'2 E F'inWait(G), we obtain end(0'2) < begin(a2) + max(O,E(e)(a~.s)),
Q(go)(O'~.s), for any r2, begin(0'2) :S: r2 < end(a2), u2(r2).s 0'~.s,

0'2(r2).c = {c;? I Q(g;)(a~.s), 1 :S: i :S: n}, and O'~.s u~.s. Then for any

r~, begin(a2) :S: r~ :S: end(cr2), we have (a2,rn f= inv(wvar(G)). For any r2 ,

begin(cr2) :S: r2 < end(a2), we obtain (a2 ,r2) f= empty(dch(G) \ {c1?, ... ,c"?}).

By assumption, we have c;? E a 2(r2).c iff Q(gi)(a~.s), for any i, 1 :S: i :S: n. Then we

have (0'2 , r2) f= wait(c;?) iff (a2 , begin(a2)) f= g; iff (a2 , r2) f= g;. Thus we obtain

(112,r2} f= l\i=1 g; +-+ wait(c;?). From en.d(a2) < begin(112)+max(O,t'(e)(u~.s)),
we have, for any r~, begin(u2) :S: T~ :S: end(u2), (a2 ,r~) f= T < start+max(O,e).

From Ç(g0)(a~.s), we have (u2 ,r~) f= g0 and then (a,begin(a)) f= g. Thus

(a2 , r~) f= g0 ---+ T < start+max(O, e). It is obvious that (a2 , end(a 2)) f= T = term

holds. Hence we obtain

(a2 ,begin(u2)} f= [(inv(tlmm·(G)) 1\ empty(dch(G) \ {c1?, ... ,en?}) 1\ (go-+ T <
start+ max(O,e)) 1\ l\~ 1 (g; +-+ wait(c;'?))] U (inv(wvar(G)) 1\ T term 1\ (go-+

T <start +max(O,e))), i.e., (0'2 ,begin(0'2)) f= Wait U lnTirne.

121

From a 3 E Comm(G), there exists a k, I $ k $ n, such that Ç(gk)(a;.s) and

a3 E SEQ(Receive(c,, xk), M(S,.)). Then {a3, begin(a3)) F gk, a3 E M(c,.,?xk; Sk),

and (a3,begin(a3)} F comm(ck)· By assurnption, ck?xk;Sk sat 'Pk is valid. Thus

we have (a3 , begin(u a)} F i.fk and then (u a, begin(O'a)} F g,. 1\ i.fk 1\ comm(c,.).

Hence we obtain (0'3, begin(0'3)) F V'i=1 g; 1\ <p; 1\ comm(c;).

Then we have (azaa, begin(uz)) F (Wait U InTime) C Vi=I g; 1\ <p; 1\ comm(e;),

i.e., (az0'3, begin(u2)} F Comm.

By 0' = a 1a 2a3, we obtain (0', begin(O')) F Eva[C Comm.

Hence we have (a, begin(a)} F g-+ (Eva! C Comm);

3. If 0' E SEQ(M(delay Kg), TimeOut(G), M(S0)), there exist models

0'1 E M(delay Kg), 0'2 E TimeOut(G), and u3 E M(S0) such that u= u1 u20'3 .

a1 E M(delay Kg) implies (a1 ,begin(111)} F Eva!.

O'z E TimeOut(G) implies Ç(go)(u~.s) and end(a 2) begin(u2)+max(O, &(e)(a~.s)).

Thus we have (u2 , begin(a2)} F g0 and then (a, begin(a)) Fg. By lernma2.6.1, we

have end(a 2) = begin(a2)+rnax(O, &(e)(4s)) begin(a2)+rnax(O, V(e)(a2 , end(0'2)))

and then (a2 ,end(a2)} FT= term= start+ max(O,e). Similar to previous

case, we can also derive that, for any r2 , begin(u2) $ r2 < end(a2), (0'2,r2 } F
empty(dch(G) \ {ci?, ... ,cn?}) 1\ (go -+ T < start+ max(O,e)) 1\ A.i=1(g; +->

wait(c;?)), and for any r~, begin(u2)::; r~::; end(u2), {a2 , r~} F inv(wvar(G))I\g0 •

Hence, we obtain (u2 ,begin(a2)) F Wait U EndTirne.

Since So sat <po is valid, we have {u3 , begin(a 3)} F 'Po·

Thus we obtain (a2a 3 , begin(a 2)) F (W ait U EndTime) C t.p0 , i.e.,

(uzaa, begin(uz)} F TimeOut.

By a u1 u2u3 , we have (u, begin(a)) F Eval C TimeOut.

Hence we obtain (a, begin(a)) F g-+ (Eval C TirneOut);

4. If a E SEQ(M(delay Kg),AnyWait(G),Comm(G)), then there exist models

0'1 E M(delay Kg), u 2 E AnyWait(G), and a3 E Comm(G) such that a a 1a 20'3 •

0'1 E M(delay I<9) implies (ahbegin(a!)) F Eval.

O'z E AnyWait(G) implies Q(-,g0)(a~.s) and then we have (a2 ,begin(t1'2)} F -.g0 •

Thus we have (a2 ,begin(a2)) f= g0 -+ T <stad+ max(O,e). From the seman­

tics, we obtain Ç(g)(a~.s) and then (u2 ,begin(u2)) F. g, i.e., (u,begin(u)) F jj.

Sirnilar to previous cases, we can dcrivc that, for any r 2 , begin(0'2) $ T2 <
end(az), (a2,r2} F empty(dch(G) \ {ct?, ... ,c"?}) A A'i:1(g; <--> wait(c;?)}, for

any r~, begin(a2) $ r~ ::; end(a2), (a2 ,r~) F inv(wvar(G)) 1\ (go -+ T <
start+ max(O, e)), and (a2 , end(a2)) F T = term. If end(a2) = oo, we have

(0'2 , begin(a2)} F 0 Waii. Jf end(a2) < oo, we obtain

(a2 , begin(a2)) F Wait U lnTimc. Hence we have

122 APPENDIX B. SOUNDNESS OF THE PROOF SYSTEM IN GRAPTER 2

(u2 , begin(u2)) f= Wait U /nTime.

U3 E Comm(G) implies (u3, begin(u3)} f= Vi=1 g; /\ ip; /\ comm(c;).

Thus we obtain (u2u3, begin(u2)) I= (W ait U InTi me) C V'(=1 g; /\ ip; /\ comm(c;),

i.e., (u2u3,begin(u2)) f= Comm.

By u= u1u2u3, we have (u, begin(u)) I= Eval C Comm.

Hence we have {u,begin(u)) f= g-+ (Eval C Comm).

Hence rule 2.4.5 preserves validity.

Iteration

We prove that the iteration rule 2.4.6 preserves validity.

Assume G sat 'P is valid. We prove that *G sat (g /\ lP) C* (-.9 A lP) is also valid.

Consider any u E M(*G). There are two possibilities:

1. either there exist a k € IN, k 2: 1, and models u1 , u 2, ••• , uk such that u =

u1u2 ••• uk, for all i, 1 ::; i::; k, u; € M(G), for all j, 1 ::; j ::; k- 1, end(ui) < oo,

Q(g)(u~.s), and if end(u~~:) < oothen Q(..,g)(ui.s) otherwise Q(g)(uZ.s),

2. or there exist an infinite sequence of models u1, u2, ... such that u= u1u2 ... , for

all i 2: 1, u; € M(G), end(u;) < oo, and Q(g)(uf.s).

Since G sat tp is valid, we obtain (u;, begin(u;)) I= tp, for all u; € M (G). Then,

1. either there exist a k € IN, k 2: 1, and models u~o u2 , ••• , uk such that

u = U1t12···uk, for all j, 1 ::; j ::; k- 1, {uj,begin(uj)} f= tp, end(ui) < oo.

From Q(g)(u~.s), by lemma 2.6.2, (ui, begin(u;)) f= g. Then (u;,begin(ui)) I=
gA tp. If end(uk) = oo, from Ç(g)(ui.s), we obtain (uk,begin(uk)} f= [J. By

(uk,begin(u")) f= tp, we obtain (uk,begin(uk)) f= !JA lP· IC end(uk) < oo, by

Q(-.g)(ui.s), we have (u~~:, begin(uk)) f= -.g /\ tp;

2. Orthere exist an infinite sequence of models Ut. u2, ••. such that u= u1u2 ••• , for

all i 2: 1, (u;, begin(u;)) f= tp, end(u;) < oo, and (u;, begin(u;)) f= [J. Thus, for all

i 2: 1, we obtain (u;, begin(u;)) I= 9 A lP·

By the definition of the C* operator, we obtain (u, begin(q)) i= (.9 A lP) C* { -.g /\ cp), i.e.,

rule 2.4.6 preserves validity.

Parallel Composition

We prove that the general parallel composition rule 2.4.8 preserves va.lidity. Then the

simple parallel composition rule 2.4.7 preserves validity as wcll.

123

Assume S; sat tp;, 1/J; = 0 [inv(var(S;)) A empty(dch(S;))], dch(cp;) Ç dch(S;), and

var(<p;) Ç var(S;), for i = 1, 2. We show the validity of S1IIS2 sat (<p1 A (<p2 C 1/J2)) V

(<p2A (<f't C 1/Jt)). Consicier any a E M(StJIS2)· Then dch(a) Ç dch(SI) U dch(S2), and

for i E {1,2}, there exist a; E M(S;) such that begin(a) begin(a1) = begin(a2),

end(u) max(end(ut),end(u2)). Suppose end(at);::: end(a2). Then end(u) = end(ui).

We prove (u,begin(u)) I= <f'tA (cpzC 1/J2).

• First we prove (u, begin(u)) I= <p1 • From the semantics, we have that, for any

r, begin(ut) $ T < end(ut), [u l var(S1)]dch(S1)(r).c Ut(r).c, for any T
1
,

begin(a1) $ T
1 $ end(ut), [u l var(St)]dch(Sl)(r').s a1(r').s. Since

begin([u ! var(St)]dch(St)) begin(u) = begin(ut), end([a l var(St)]dch(S1)) =
end(u) end(a1), we obtain [u l var(St)]dch(SI) a 1 . Since u1 E M(St) and

St sat <f't> we have ([al var(St)]dch(SJ), begin(u)) I= 'Pt· Since dch(cpt) Ç dch(St)

and var(<pt) Ç var(St), lemma 2.6.7 and lemma 2.6.8lead to {u, begin(a)) I= <p1•

• Next we prove (u, begin(u)) I= 'f!z C 1/J2.

- If end(a2) = oo, since end(u)= end(ut);::: end(u2 }, we have end(a2) end(a)=

oo. Similarly, we can derive (u,begin(u)) I= cp2 • By the definition of the C

operator, we obtain (u, begin(u)) I= 'f!2 C 1/J2;

- If end(u2) < oo, from S2 sat 'P2 and u2 E M(S2), we obta.in (u2, begin(a2)) I= 'P2·

We define a model a3 such that begin(u3) = end(a2), end(u3) end(a),

for any r, begin(aa) $ T < end(u3), aa(r).c [u]dch(~)(r).c, for any T
1
,

begin(a 3) $ r' $ end(u3), a 3 (T).s = a2 .. s. Th en we have (u3 , r') I= inv(var(S2)).

For any rf > end(a3), we also have (a3, r{) I= inv(var(S2)). Hence we

obtain (u3 , begin(u3)) I= 0 inv(var(S2)). From the semantics, for any r,

end(u2) $ T < end(u), [u]dcll(Sz)(r).c ç,j. That is, for any r, begin(u3) $

T < end(a3), u3 (r).c = ç,j. Thus we have (a3 , r) I= empty(dch(S2)). For

any r1 > end(u3), we also have (u3 ,r1) I= empty(dch(5'2)). Then we obtain

(u3 , begin(u3)) I= 0 empty(dch(S2)). Thus we have

(u3, begin(u3)) I= 0 [inv(var(S.)) A empty(dch(S2))], i.e., {a3,begin(u3)) I=
1/J2. By the definition of the C operator, we obtain (a2u3, begin(u2)) I= <p2C'IjJ2•

Next we prove [a! var(S2)]dch(Sû u2a3. Let a= [u l var(S2)]dch(Sz)·

By definitions, we have

(())({
u2(r).s begin(a2) ~ T $ end(u2)

o-(r).s al var s2 r).s =
u3(r).s end(u2) < T ~ end(a)

a(r).c [I () {
u 2(r).c begin(u2) $ T < end(u2)

U dch(Sz) T .C =
u 3 (r).c end(u2) ~ T < end(a)

124 APPENDIX B. SOUNDNESS OF TliE PROOF SYSTEM IN CliAPTER 2

Hence ii u2u3. Thus ([u! var(Sz)]dch(S2),begin(uz)) F r.pz C 1/Jz. Since

dch(r.p2) Ç dch(Sz) and var(r.p2) Ç var(S2), we have dch(r.p2 C 1/Jz) Ç dch(S2)

and var(r.p2 C 1/;2) Ç var(S2). Then lemma 2.6.7 and lemma 2.6.8 lead to

{u, begin(u)) F <pz C 1/Jz.

Therefore we have proved (u, begin(u)) F '-PI 1\ (r.pz C 1/J2).
Similarly, for end(ui)< end(u2), we can show (u, begin(u)) F r.p2 /\ (r.p1 C 1/;1).

Hence the general parallel composition rule 2.4.8 preserves validity.

Appendix C

Preciseness of the Proof System

Chapter 2

• In

To prove the preciseness theorem 2.6.2, we show that for any statement S we can prove

S sat 'fi where 'fi is precise for S, namely,

1. S sat 1.fi holds, i.e., (u, begin(a-)) I= i.p, for any a- E M(S};

2. If a- is a well-formed model, dch(o-) Ç dch(S), for any variabie x t/. wvar(S), x is

invariant with respect toa-, and (u, begin(a-)) I= i.p, then a- E M(S); and

3. dch('f!) = dch(S} and var('f!) var(S).

By induction on the structure of S, we show that, for any statement S, S sat 'fi holds

where 1.fi is precise for S.

For all the cases, the proof of the first requirement follows from the soundness theorem

(Theorem 2.6.1) and the proof of the third requirement is easy. Hence we only give here

the proof of the second requirement.

Skip

By the skip axiom, skip sat term start. We show that term start is precise

for statement skip. Consider a well-formed model a- such that (u, begin(a-)) I= term=

start. Then we have end(a-) begin(a-) and hence a- E M(skip). Hence term= start

is precise for skip.

Assignment

Let 1.fi = (x = first(x)) U (T = term = start+ Ka 1\ x = e[first(x)fx]). By the

assignment axiom, x e sat 'fi· We show that 1.fi is a precise specifica.tion for x e.

125

126 APPENDIX C. PRECISENESS OF THE PROOF SYSTEM IN GRAPTER 2

Consider a well-formed model u such that dch(u) Ç dch(x := e) and any variabie

y ~ wvar(x := e) is invariant with respect to u. Thus we obtain dch(u) !0, i.e., for any

Tt. begin(u) 5 r1 < end(u), u(r1).c p. Furthermore, for any variabie y :j; x, for any

r2 , begin(u)$ T2 $end(u), we have u(T2).s(y) = ub.s(y). Assume (u, begin(u)) f= <p.

Then we obtain end(u) = begin(u) +Ka and, for any T1 , begin(a) :::; T1 < end(u),

u(r1).s(x) u 6.s(x), and ue.s(x) V(e[first(x)jxl)(a,end(a)). By definition, we

have V(e[first(x)fx])(u, end(u))= V(e[first(x)/x])(a, begin(a)) = V(e)(u, begin(a)) =
C(e)a6.s. Thus, for any Th begin(a) $ T1 < end(a), a(r1).s = ub.s, ae.s = (ub.s: x~--+

C(e)u6.s). Hence u E M(x := e). Thus <pis a precise specification for x:= e.

Delay

Let <p =term start+ max(O, e). By the delay axiom, delay e sat <p. We show that <p

is a precise specification for delay e. Consider a wel!-forn1ed model u such that dch(a) Ç

dch(delay e) and any variabie y i wvar(delay e) is invariant with respect to u. Thus we

obtain dch(u) = 0, i.e., for any Tt, begin(u):::; T1 < end(u), u(r1).c = !0. Furthermore,

for any r2, begin(u)$ r2 $end(u), we have u(r2).s ab.s. Assume (u, begin(u)) f= <p.

Thus end(a) begin(u) + max(O, V(e)(u,begin(u))) = begin(u) + max(O,t'(e)(ub.s)).

Hence a E M(delay e). Therefore <pis a precise specification for delay e.

Output

Let <p = wait(c!) U (T =term~ /(cl\ (cornm(c, e) UT= term)). By the output axiom,

c!e sat <p. We show that <p is precise for c!e. Consider a well-formed model u such

that dch(a) Ç dch(c!e) and any variabie y 1:. wvar(c!e) is invariant with respect to u.

Then we obtain dch(u) Ç { c, c!} and, for any variabie y, any T, begin(u) $ r :::; end(u),

u(r).s(y) = ub.s(y). Hence u(r).s ub.s. Assume (u,begin(u)) f= e.p. Then there are

two possibilities:

• either {u,begin(u)} f= Dwait(c!),

• or {u, begin(u)) f= wait(c!) U (T term~ I<c 1\ (cornm(c, e) UT= term)).

That is,

• eitherfor any T ~ begin(u), (u,T} f= wait(c!), i.e., r < end(u) and thus end(u) =

oo. By definition, for any T ~ begin(u), cl E u(T).c. Si nee u is a well-formed model,

for any value {) E VAL and any T, begin(u) $ r < end(a), -.(c! E u(r).c 1\ c? E

u(r).cand -.(c! E u(r).c/\(c,t9) E u(T).c) are valid. Then we obtain u(r).c {c!}.

Together with u(r).s ub.s, we have a E M(c!e);

127

• or there exists a r :2': begin(a), r E TIME, such that, for any r1, begin(a) $ r1 < T,

(a, Tt) I= wait(c!) and (a,r) I= T =term- Kc A (comm(c,e) UT term). We

split a into two models a 1 and a 2 such that a ::= a 1a 2 with end(at) r. Thus

begin(a2) = end(ai) = T. Then we obtain that, for any Tt. begin(a1) $ r 1 <
end(a1), a 1 (ri).c = {c!}. Together with a(r).s = ab.s, for any r, begin(a) $

T $ end(a), we obtain a 1 E W ait(c!). From (a, r) I= T term - Kc, we obtain

T = end(a)- I<c and then end(a2) = T +Kc begin(a2) + I<c. From (a,r) I=
comm(c, e) UT= term, we can derive that, for any r2 , begin(a2) S r2 < end(a2),

(c, V(e)(a2,r2)) E a 2 (r2).c. By the well-formedness of a and the invariance of

variables, a 2(r2).c = {(c, V(e)(a2 , begin(a2)))} {(c,f(e)a~.s)}. Together with

a(r).s = ab.s, for any r, begin(a) $ T $ end(a), we obtain a2 E Send(c,e) and

hence a E M(c!e).

Therefore r.p is precise for de.

Input

Let r.p :=(x= first(x)Await(c?)) U (T term-I<cA((x first(x)Acomm(c, last(x)))

U T = term)). By the input axiom, c?x sat r.p. We show that r.p is precise for

c?x. Consicier a well-formed model a such that dch(a) Ç dch(c?x) and any variabie

y ~ wvar(c?x) is invariant with respect toa. Then dch(a) Ç {c,c?} and, for any

r, begin(a) $ T S end(a), for any variabie y 'f: x, a(r).s(y) = ab.s(y). Assume

(a, begin(a)) I= r.p. There are two possibilities:

• either (a, begin(a)) I= 0 (x= first(x) Await(c?));

• or (a, begin(a')) I= (x Jirst(x) A wait(c?)) U [T =term- I<c A ((x= first(x) A

comm(c,last(x))) UT term)].

That is,

• either end(a) oo, for any T :2': begin(a), a(r).s(x) = ab.s(.r), and c? E a(r).c.

trom the invariance of variables different from x and thc wcll-formedness of a, we

obtain, for any r ;:::: begin(a), a(r).s = erb.s and a(r).c = { c?}. Hence a E M(c?x);

• or there exists ar :2': begin(a), rE TTME, such that, for any Tt, begin(er)$ r1 < r,

(a, r1) I= x first(x) A wait(c!) and {er, r) I= T =term- Kc A ((x first(x) A

comm(c,last(x))) UT= term). We split a into two models a 1 and a2 such that

er er1er2 with end(al) r. Then begin(a2) = end(aJ) = r. We obtain that, for

any r1 , begin(at):::; r1 <end(at), er1(rt).s = er~.s, er1(rJ).c = {c?}. From (a, r) I=
T term- IC, we have T = end(a)- I<c and thus end(az) = begin(er2) + I<c.

128 APPENDIX C. PRECISENESS OF THE PROOF SYSTEM IN GRAPTER 2

We can also derive that, for any 7 2 , begin(u2) :5 7 2 < end(u2), (u2, 7 2) f= x =
first(x) A comm(c,last(x)). Together with· the in varianee of variables different

from x, wethen have u2(r2).s u~.s. Since u = u 1u 2 and uf.s(x) u~.s(x),

we obtain u~.s = ut.s. Thus u 1 E Wait(c?). By definition, V(last(x))(u2,r2)

ui.s(x). Let {) u~.s(x). Hence by the well-formedness of u, we obtain, for any

1"2, begin(u2) :5 r2 < end(172), u2(72).c = {(c, iJ)}. Furthermore, we also have

ui.s = (u~.s: x 1-t iJ). Hence 172 E Receive(c,x) and then 17 E M(c?x).

Hence !.p is precise for c?x.

Sequentia! Composition

Consider s = SI; s2. By the induction hypothesis, we can derive SI sat 'Pl and

S2 sat ~.p2 , where ~.p 1 and ~.p2 are precise for S1 and S1o respectively. By the commu­

nication invaria.nce a.xiom, we obta.in

St sat 0 empty(dch(S2) \ dch(St)) and S2 sat 0 empty(dch(SJ) \ dch(S2)).

By the variabie invariance axiom, we obtain

St sat 0 inv(wvar(S1 ; S2) \ wvar(SJ)) and S 2 sat o inv(wvar(S1; S2)\ wvar(S2)).

Then, using the conjunction rule, we have

S 1 sat 'Pl A 0 (empty(dch(S2) \ dch(S1)) A inv(wvar(S1 ; S2) \ wvar(S1))) and

S2 sat ~.p2 A 0 (empty(dch(St) \ dch(S2)) A inv(wvar(S1 ; S2) \ wvar(S2))).

Hence, by the sequentia! composition rule, SI; s2 sat r.p with

r.p = [!fJt A 0 (empty(dch(S2) \ dch(S1)) A inv(wvar(S1 ; S2) \ wvm·(S1)))] C

[!fJ2 A 0 (empty(dch(S1) \ dch(S2)) A inv(wvar(S1 ; S2) \ wvar(S2)))].

We prove that !.p is precise for SI; s2.
Consider a well-formed model u such that dch(u) Ç dch(S1;S2) and any variabie

y f. wvar(S1;S2) is invariant with respect to 17. Assume (u,begin(u)) f= 'P· There

exist u 1 and u 2 such that u= 171u 2 , end(171) > begin(17),

(u11 begin(ut)) f= ~.p 1 A 0 (empty(dch(S2) \ !lch(St)) A inv(wvar(S1 ; S2) \ wvar(S1))), and

(u2 ,begin(u2)) f= !.pz A O(empty(dch(St) \ dch(Sz)) A inv(wvar(S1 ; S2) \ wvar(Sz))).

From (1711 begin(uJ)) f= 0 empty(dch(S2) \ dch(St)), lemma 2.6.10 leads to

[u]dch(Sl)udch(S2) [u]dch(St)· From dch(u) Ç dch(St; Sz) dch(St) U dch(Sz) and

u UtUz, we obtain dch(ut) Ç dch(St) U dch(82). Thus, by lemma 2.6.9, we have

Ut = [17t]dch(S1)udch(S2) [17t]dch(SJ). By lemma. 2.6.9 again, we obtain dch(U1) Ç dch(St).

From (171 ,begin(u1)) f= Dinv(wvar(S1 ;Sz) \ wvar(SI)), we know that any variabie

x E wvar(St; Sz) \ wvar(SI) is invariant with respect to u 1 . By the assumption, any

variabie y f. wvar(S1 ; S2) is inva1·iant with respect to u. Thus any variabie z f. wvar(S1)

is invariant with respect to u1 • Since u is well-formed, both <71 and 172 are also well-

129

formed. Together with (O"t> begin(O"I)) ~ 'Pl and the preciseness of 'PI for sh we ob­

tain 0"1 E M(S1). Similarly, (!2 E M(S2). By O" 0"10"2 and the definition of SEQ,

(! E M(S1 ; S2). Then <.pis precise for S1 ; S2.

Guarded Cammand with Purely Boolean Guards

Consicier G [l)f=1g; --+ S;]. By the induction hypothesis we can derive S; sat <.p;,

i= 1, ... n, where <.p; is precise for S;. By the variabie invariance axiom,

S; sat Oinv(wvar(G) \ wvar(S;)). By the communication invariance axiom,

S; sat 0 empty(dch(G) \ dch(Si)). Th en by the conjunction rule, we have

S; sat <.p; A 0 (inv(wvar(G) \ wvar(S;)) A empty(dch(G) \ dch(S;})).

By the guarded command evaluation axiom, the guarded command with purely boolean

guards rule, and the conjunction rule, we obtain G sat <.p with

<.p = [(inv(wvar(G)) A empty(dch(G))) U (T =start+ Kg 1\ inv(wvar(G)))jl\

(...,g --4 Eval) A [g--+ (Eval C Vf=1 (g; A 'Pi 1\0 (inv(wvar(G) \ wvar(S;))I\

empty(dch(G) \ dch(S;)))))]

We prove that <.p is precise for G.

Consicier a well-formed model O" such that dch(O") Ç dch(G) and any variabie y çf:.

wvar(G) is invariant with respect to O". Assume (O", begin(O')) ~ t.p. We prove that

O" E M(Oi=1g;--+ S;). By assumption, thereexists aT~ begin(O") such that ((!, r) ~ T

start+l<gl\inv(wvar(G)) and, for any r11 begin(O") ~ r1 < r, (O",r1) ~ inv(wvar(G))t\

empty(dch(G)). Then we have T = begin(O") +Kg and, for any rr, begin(O') ~ rf :::;

r, any y E wvar(G), O'(r{).s(y) = O'b.s(y). Together with the invariance of vari­

ables y çf:. wvar(G), we obtain O'(r{).s = (!b.s. Since dch(O") Ç dch(G) and (O",r1) ~

empty(dch(G)), we obtain (!(rt).c = 0.

Next consider the validity of g. There are two possibilities.

• If ((!,begin((!))~...,[}, lemma 2.6.2 implies 9(.....,g)((!b.s). By assumption,

((!,begin(u)) ~term= start+ /{11 and hence end(O") = bcgin(u) + /(9 • Thus,

end((!) r =begin((!)+ K 9 and then 0' E M(delay K9).

• lf (0', begin((!)}~ g, then (O", begin(O")) ~ (tcnn =stad+ /\9) C

Vi:_1 (g; A 'Pit\ 0 (inv(wvar(G) \ wvar(S;)) 1\ empty(dch(G) \ dch(S;)))).

By definition of the C operator, there exist modcls 0'1 and (!z such that O" =
(!1(!2 , (0' 11 begin((!1)} ~ term. =start+ Kg, and (0"2 ,bcgin(0"2)) ~ Vi:_ 1(g; t\

'Pit\ D (inv(wvar(G) \ wvar(S;)) t\ empty(dch(G) \ dch(S;)))). Thus end((!t)

begin(O"t) + /{9 • From begin(O') = begin(O'I), we obtain 0'1 E M(delay K9).

Since end(al) < =, by the definition or .,.1.,.2 , wc have end(.,.J) = begin((!2)

and (!i-s = (J~.s. Furthermore, thcre must cxist a k, 1 :::; k :::; n, such that

130 APPENDIX C. PRECISENESS OF THE PROOF SYSTEM IN CHAPTER 2

(a2 , begin(a2)} I= 9k /\'fik 1\0 (inv(wvar(G) \ wvar(S;)) 1\empty(dch(G) \ dch(Sk))).

From (o2 ,begin(o2)} I= 9k, by lemma 2.6.2, Ç(gk)(o~.s). From (a2 ,begin(a2)} I=
Oinv(wvar(G) \ wvar(Sk)), any variabie x E wvar(G) \ wvar(Sk) is invariant

with respect to o2 • By assumption, any variabie y t}. wvar(G) is invariant with

respect to a. Thus, any variabie z t}. wvar(Sk) is invariant with respect to

a 2 • From (a2 ,begin(a2)) I= Oempty(dch(G) \ dch(Sk)), lemma 2.6.10 leads to

[o2]dch(G)udch(S0) [oz]dch(So)· Since dch(G)Udch(Sk) dch(G), we obtain [oz]dch(G)

= [a2]dch(S•)· From a= a1o2 and dch(o) Ç dch(G), we have dch(a2) Ç dch(G). By

lemma 2.6.9, it implies a2 = (az]dch(G) and then 02 = (az]dch(S•)· By lemma 2.6.9

again, we obtain dch(o2) Ç dch(Sk). Since a is a well-formed model, o1 and o2 are

also well-formed. Together with (a2 , begin(o2)) I= '{ik and the preciseness of 'Pk for

S~c, az E M(Sk)· By a= a1o2 and Ut E M(delay K 9), we obtain Ç(gk)(ab.s). By

the definition of SEQ, we have oE M(delay](9 ; Sk)·

Both cases leadtoa E M([0i=t9i--+ S;]). Hence r.p is precise for 10~1 b;--+ Si].

Guarded Command with 10-Guards

Consicier G := [0i=1g;;c;?x;--+ S; 0 g0 ;delay e-> S0]. By the induction hypothesis, we

have c;? x;; S; sat r.p; and S0 sat r.p0 , where 'Pi is precise for c;? x;; S;, i 1, 2, ... , n, and

'Po is precise for S0 • By the variabie invaria.nce axiom, the communication invariance

axiom, and the conjunction rule, we obtain

c;?x;; S; sat 'Pi 1\0 (inv(wvar(G) \ wvar(c;?x;; S;)) 1\ empty(dch(G) \ dch(c;?x;; S;))).

Similarly, we have S0 sat 'Po 1\ 0 (inv(wvar(G) \ wvar(S0)) 1\ empty(dch(G) \ dch(So))).

By the guarded rommand evaluation axiom, the guarded command with 10-guards rule,

and the conjunction rule, we obtain G sat 'Ij; with

'Ij;:= [(inv(wvar(G)) 1\ empty(dch(G))) U (T =start+]{9 1\ inv(wvar(G)))]I\

(..,g-> Eval) 1\ (g-> (Eva/ C (NComm V NTimeout))]

where

NComm := (Wait U lnTime) C 'lj;1 , NTimeOut (W ait U EndTime) C 'lj;2

with

.,P1 = Vi'=1[gi 1\ 'Pi 1\ comm(ci) 1\ 0 (inv(wvar(G) \ wvar(c;?x;; S;)) 1\

empty(dch(G) \ dch(c;?x;; S;)))]

'lj;2 :='Po 1\0 (inv(wvar(G) \ wvm·(So)) A empty(dch(G) \ dch(So)))

We prove tha.t 'Ij; is precise for G.

Consicier a well-formed model o such that dch(a) Ç dch(G) and any variabie y €/.

wvar(G) is invariant with respect toa. A ss urne (a, begin(<J)) I= 'Ij•. We prove a E M(G).

Similar to the preciseness proof for G := [IJ i=1g; --+ Si], wc have that, for any rb

131

begin(cr) :::; r1 < begin(cr) + K9 , crh).c = 0, and for any r:, begin(cr) :::; r; :::;

begin(u)+ K9 , cr(r:).s crb.s.

Next consider the validity of g. There are two possibilities.

• If (cr,begin(cr)) I= ~g, lemma 2.6.2leads to Ç(-.g)(crb.s). By assumption, we have

(cr,begin(cr)) I= term= start+ K9 and then end(cr) begin(cr) + K9 • Then we

obtain erE M(delay Kg)· Hence erE M(G).

• If (er, begin(u)) I= g, then we have (er, begin(u)) I= (term= start+ K9) C

[((Wait U InTime) C '1/Jt) V ((Wait U EndTime) C 'ifJ2)].

For this case, consider the further three possibilities.

1. If (cr,begin(cr)} I= (term= start+ K9) C ((Wait U InTime)C '1/JJ), then there

exist models cr1 and cr2 such that er cr1 o-2 , (uh begin(crJ)) I= term= start+ I<9 ,

and (cr2 ,begin(o-2)} I= (Wait U InTime) C 'ifJ1 • Then we have end(cri)

begin(cri) + I<9 • By begin(o-) begin(cr1), we obtain o-1 E M(delay Kg)·

Furthermore, there exist models CTzt and crn such that cr2 = o-21 crzz,

(cr211 begin(cr2I)) I= Wait U lnTime, and (cr22 ,begin(cr22)) I= 7/J1 . We prove that

cr21 E FinWait(G) U AnyWait(G) and cr22 E Comm(G).

By definition, there exists a r2 ;::: begin(o-21) such that (cr21 , r2) I= inv(wvar(G)) A

(T = term) A (g0 --> T < start + max(O, e)) and for any r~, begin(cr21) :::; r~ < Tz,

(cr21, r~} I= im1(wvar(G)) 1\ empty(dch(G) \{cl?, ... , en?}) A (go --> T < start+

max(O,e)) 1\ A'i=1 (g; ;-+ wait(c))). Then we obtain end(cr2J) = r2 and, for any

y E wvar(G), for any r~', begin(cr21) :::; r~' :::; r2 , cr21 (r;').s(y) = cr~1 .s(y). To­

gether with the in varianee of variables y t/: wvar(G), we obtain cr21 (r~').s = cr~1 .s.

Since er is a well-formed model, so are cr21 and cr22 • From above, we obtain

CTz1 (r~).c = {c;? I Ç(g;)(o-~1 .s),l:::; i:::; n}. By assumption, (o-,begin(cr)) I= jj.

By lemma 2.6.2, Ç(g)(crb.s) and hence Ç(.g)(cr~ 1 .s).
If (cr21,begin(cr21)) I= go, lemma2.6.2leads to Ç(go)(a~1 .s). From (cr21>r2} I= 9o-+

T <start+ max(O,e), we obtain r2 < begin(o-21} + max(O,t'(e)(cr21 (r2).s)). Then

we have end(cr2J) < begin(cr21)+ rnax(O,t'(e)(o-~ 1 .s)) and then cr21 E FinWait(G).

If (o-2t.begin(cr2J)) I= ..,go, we obtain O"zJ E AnyWait(G).

Next consider cr22 . Since (a22 , begin(CTzz)) I= 7/J1 , there exists a k, 1 :::; k :::; n, such

that (cr22 , begin(cr22)) I= gk À 'fik 1\comm(ck) 1\0 (inv(wvar(G) \ wvar(q?xk; Sk)) 1\

empty(dch(G) \ dch(c~?xk; Sk))). From lemma 2.6.2, we have Ç(gk)(cr~2 .s). From

(cr22 , begin(a 22)) I= 0 (inv(wvar(G)\wvar(ck ?xk; Sk))), any variabie x E wvar(G)\

wvar(ck ?xk; Sk) is invariant with respect to o-22 . 13y assumption, any variabie y t/:
wvar(G) is inv<1.riant with respect toa. Thus, any variabie z ~ wvar(ck?xk; Sk) is

invariant with respect to O"zz. By lemma 2.6.1 0, [an]drlt(G)udch(c• ?x.;S•) [cr;z]dch(c• ?x.;S•)

132 APPENDIX C. PRECISENESS OF THE PROOF SYSTEM IN GRAPTER 2

and then [t:rzz]dch(G) [uzz]dch(ck ?x.;S•)· Using dch(a) Ç dch(G), we obtain

dch(azz) Ç dch(u) Ç dch(G). By lemma 2.6.9, an = [an]dch(G)· Thus,

0"22 = [a2z]dch(c,.?x.;S•)· By lemma 2.6.9 again, we have dch(a22) Ç dch(ck?xk; Sk)·

Together with the well-formedness of a 22 , (az2 , begin(u22)) I= 'Pk, and the precise­

ness of 'Pk for ck?xk;Sk, we obtain an E M(ck?xk;Sk)· Since M(q?xk;Sk) =

SEQ(M(ck?xk), M(Sk)) and (uzz, begin(uz2)) I= comm(ck), we have

Uzz E SEQ(Receive(ck,xk), M(Sk)). Thus we obtain a22 E Comm(G).

By t:Tz UztUz2, we obtain

u2 E SEQ(FinWait(G), Comm(G)) u SEQ(AnyWait(G), Comm(G)).

By u= u1az and u1 E M(delay K 9), we have

u E SEQ(M(delay K 9),FinWait(G),Comm(G)) u
SEQ(M(delay K9),AnyWait(G),Comm(G)) and hence u E M(G).

2. If (u, begin(u)) I= (term = start+ I<9) C 0 W ait, there ex i st u1 and a2 such that

u = u1u2 , (ut, begin(at)) I= term = start + K 9 , and (u2 , begin(u2)) I= 0 W ait.

Then Ut E M(delay /{9). From {a2 ,begin(u2)) l= OWait, we obtain that, for

any Tz ;:.::: begin(uz), (t:rz, Tz) l= Wait. Hence we have (az, rz) l= go -> T <
start+max(O, e). If {az, rz) l= go, we obtain r2 < begin(uz)+max(O, t:(e)(u(Tz).s)).

But it can not be true. Hence (u2,r2) f=,90· By lemma 2.6.2, Ç(•g0)(uz(Tz).s)

and then Ç(•g0)(u~.s). Next we prove end(a2) = oo. Suppose end(a2) < oo. By

definition, for any r3 ;:.::: end(u2), we have {u2,r3) l= empty(dch(G)). By assump­

tion, (u,begin(a)) l= g. Since Ç(-.g0)(ab.s), there exists a k, 1 $ k $ n, such that

(u,begin(u)) l= 9k· Then, for any Tz? begin(a2), (u2 ,rz) I= wait(ck) and hence

{a2 , r2} l= ..,empty(dch(G)). This contradiction leads to end(u2) = oo. We also

have u2 (r2).s u~.s and a2(r2).c = {c? I Ç(g;)(u~.s), 1 i n}. Hence

t:r2 E AnyW ait(G).

We can easily find a model which belongs to Comm(G). Let u3 be a model such

that a3 E Comm(G). By the definition of SEQ, we have

0"20"3 E SEQ(AnyWait(G),Comm(G)). Since end(a2) = oo, we have O"z173 u2.

Thus

a2 E SEQ(AnyWàit(G), Comm(G)).

Together with u= a1a2 and a1 E M(delay I<9), we obtain

u E SEQ(M(delay I<9),AnyWait(G),Comm(G)) and hence a E M(G).

3. If (a,begin(u)) l= (term= .~tart+ I<9) C ((Wait U EndTime) C "P2), there

exist u1 and u2 such tha.t u u1a2 , (ul> begin(a1)) l= tenn = stad+ l<g, and

(u2 ,begin(u2)) I= (Wait U EndTimc) C '4>2 • Thus u1 E M(delay K9).

Furthermore, there exist models 0"21 a.nd a22 such tha.t u2 = Uzt a22,

{a21 ,begin(u2t)) l= Wait U EndTime, a.nd (a22 ,begin(a22)) f= 'fj;z. We prove that

133

o-21 E TimeOut(G) and o-22 E M(S).

By definition, there exists a Tz ;::-:: begin(a21) such that (a21 ,72) f= EndTime and,

for any 7~, begin(azi) :5 7~ < 'Tz, (azt,r~} f= Wait. Then we have (a211 72} I=
inv(wvar(G)) I\ g0 I\ T = term start + max(O, e). Then end(a 2t) = r2 =
begin(a21)+max(O, &(e)(a21 (7 2).s)) and, by lemma 2.6.2, Ç(g0)(a21 (r2).state). We

also have that, for any r~', begin(o-21) :5 r~' :5 r2 , a21 (rf).s = a~1 .s and, for any r~,

begin(azt) :5 r~ < Tz, 1Tzt(r2).c {c;? I Ç(g;)(o-~1 .s), 1 :5 i :5 n}. Thus end(o-21) =

begin(a2t)+ max(O,t.'(e)(o-~ 1 .s)) and Ç(go)(a~1 .s). Henceo-21 E TimeOut(G).

Next consider o-22 • Since (a22 , begin(1122)) f= 'ljJ2 , any variabie x E wvar(G) \

wvar(S) is invariant with respect to 1122 • By assumption, any variabie y t/. wvar(G)

is invariant with respect to o-. Hence, any variabie z t/. wvar(S) is invariant

with respect to O'zz. By lemma 2.6.10, [o-zz]dch(G)udch(S) = [o-zz]dch(S) and then

[azz]dch(G) = [addch(S)· Using dch(a) Ç dch(G), we have dch(a22) Ç dch(a) Ç

dch(G). By lemma 2.6.9, 0'22 [o-zz]dch(G) and hence i7zz = [azz]dch(S)· By

lemma 2.6.9 again, dch(a22) Ç dch(S). Tagether with the well-formedness of o-22 ,

{0'22, begin(O'n)) f= i.po, and the preciseness of i.po for So, we obtain u22 E M(S).

By O"z O'ztlTzz, we have O"z E SEQ(TimeOut(G),M(S)).

By 11 o-1u2 , we obtain o-E SEQ(M(delay I<9),Time0ut(G),M(S)) and hence

o-E M(G).

Thereforeall thecases lead toO' E M(G). Hence,'I/J ispreciseforG = [0f::1g;;c;?x;;S;-+

S; D go; delay e-+ So].

Iteration

Consider *G. By the induction hypothesis, we can derive G sat 1.p where 1.p is precise for

G. By the iteration rule, *G sat 1/J with 1/J = (9 A ~.p) C* (..,gA ~.p). We prove that 1/J is

precise for *G.

Consider a well-formed model o- such that dch(u) Ç dch(*G) and any variabie y if:.
wvar(*G) is invariant with respect to 0'. Thus, dch(O') Ç dch(G) and any variabie

y if:. wvar(G) is invariant with respect to u. A ss urne (u, begin(0')) I= 1/J. By definition of

the C* operator, there are two possibilities:

1. either there exists a k ;::-:: 1 and models u1 , 0'2 , ..• , O'Je such that a = 0'1 a 2 ••• O'Je, for

any j, 1 :5 j :5 k l, end(O'j) < oo, (uj, begin(uj)} f= g I\ i.p, and if end(o-~:) < oo,

then (uk, begin(uk)} f= ..,9 I\ ~.p, otherwise (uk, begin(O'k)} f= fj I\ i.p,

2. or there exist infinite models 0'1 , CTz, . .. such that u = 111 0'2 .•. , for any j ~ 1,

end(o-j) < oo, {CYj, begin(O'J)} I= g 1\ "P·

134 APPENDIX C. PRECISENESS OF THE PROOF SYSTEM IN CHAPTER 2

That is,

1. Either there exists a k 2::: 1 and models O't, 0'2 , ••• , O'k such that 0' = 0'1 O'z ... O'k, for

any j, 1 ~ j ~ k -1, end(O';) < oo, Q(jj)(O'j.s) (by lemma 2.6.2). Since 0' is well­

formed, so are 0'1 , 0'2 , ... , O'k. By dch(0') Ç dch(G), we obtain dch(O'j) Ç dch(G).

Together with the invariance of variables y ~ wvar(G) and the preciseness of r.p

for G, we have O'j E M(G). Similarly, we have O'k E M(G). If end(O'k) < oo, by

lemma2.6.2, we obtain Q(-.jj)(O't .. ~), otherwise Q(jj)(ut.s);

2. Orthere exist infinite models O't,0'2, ••• such that 0' O'JO"z .. . , for any j 2::: 1,

end(O';) < oo, Q(jj)(O'j.s), and O'j E M(G).

Both cases lead to 0' E M(*G). Hence, (jj A r.p) C* (-.gA r.p) is precise for *G.

Parallel Composition

Consider S S1 IIS2 • By the in duetion hypothesis, we can derive S1 sat r.p1 and S2 sat r.p2

with r.p1 and 1.fJ2 precise for St and Sz, respectively. From preciseness, dch(r.p;) Ç dch(S;)

and var(r.p;) Ç var(S;), for i= 1,2. Then we can apply the general parallel composition

rnle and obtain S1 IIS2 sat 'Ijl with 'Ijl = (r.p1 A (r.p2 C 'lj;2)) V (r.p2 A (r.p1 C l,i;t)) where

'Ijl; = 0 (inv(var(S;)) A empty(dch(S;))], for i = 1, 2. We prove that 1,1; is precise for

StiiS2.

Let u he a well-formed model such that dch(u) Ç dch(S1 IIS2) and any variabie y ~

wvar(S1 IIS2) is invariant with respect to 0'. Assume (u,begin(O')) I= 1,1;. By the well­

formedness of 0', for any c E CHAN, any r, begin(O') ~ T < end(0'), -,(c! E 0'(T).cA c? E

u(r).c) holds. Suppose (u, begin(u)) I= r.p1 A (r.p2 C 1,1;2). Define a 1 as

[u! var(S1)]dch(S,)· From (u, begin(a)) I= r.p1 and var(r.pJ) Ç var(S1), lemma 2.6.8 leads

to (u l var(S1),begin(O')} I= r.p1. By dch(r.p1) Ç dch(SJ) and lemma 2.6.7, we obtain

([u l var(SJ)]dch(SI), begin(u)} I= I.{Jt, i.e., (a~o begin(ut)) I= 'PI· Since 0' is well-formed,

u1 is also well-formed .. By the definition of u and O't, any variabie y ~ wvar(S1) is

invariant with respect to u1 . Together with the preciseness of r.p1 for S1 and dch(ut) Ç

dch(S1), we ohtain u 1 E M(S1).

Next oonsider (0', begin(a)) I= r.p2 C 'ljJ2 • There exist models 0'3 and a4 such that 0' = 0'3a4 ,

(ua,begin(ua)) I= I.{J2, and (a4,begin(a4)} I= 'I/J2· Define u2 as [a3 ! var(Sz)]dch(S2)·

Similarly, by lemma 2.6.8 and lemma 2.6.7, we obta.in a 2 E M(S2).

Notice that end(u) = end(a3a 4) 2::: end(u3) = cnd(a2) and cnd(a) = cnd(u1), hence

end(u) = max(end(ut),end(u2 }). lt is clear that begin(a) = bcgin(ad = begin(u2). By

definitions, we have that, for i 1, 2,

135

I l) . { 17;(r).t be_qin(o-,) S: r < (:nd(11,)
0" dch(s,)(7 .c ~ ~

0 tnd(0"1) :::: 7 < ~:nrl(17)

, { o-,(r).8 lu:gin(O",)::; 7::; {:wl(!7,)
(a- 1 var(S,))(r).$;=

O';',s end{o-;) < r :S end(a)

By the a .. •Burnption, any variabie y ~ IIIV(Lr(St[IS2) is inv<~.ri;l.Tlt w.r .. t. toa, Thu~, any

variabk x~ var(S't[IS2) is Învi:l.riaut w.r.t. toa, i,c., for ;u1y r, begin(O") ~ r :s; tnd(a),

a(r) ... ~(x) = O"•.s(x). Furt.}H~trnore, for any :r. ~ var(Sdl-'i2), first <\.~~umc x ~ var(Sl).

Then by thc ddlnition of a 1, wc h<~.ve 1Tb.8(.1~) = a~.s(x). Tbcrc ;tre two possibilîties:

• if x E var(S2). t.lwu by the ddinition of 0"1 , we have o-•.s(x) o:: O'~ .. ~(x),

This leads to o-• . .s(x) = O"j' .. s(x), for i= 1,2 ..

Second, whcn x f/:. vm·(S2), wc ;\.~!!.in !Hwe 0"
0.s(x).::: IT~.-~(:1:).

Hence, for a.ny variabic :r ~ va1·(St[IS2), for ;l.Tly r, br.gin(O") ~..; r $ oa/(0'), we obtaîn

o-(r) .. ~(x) = 0'~.s(x), for 1 '-" l, 2..

Thus a E M(St!IS1)-

Similarly, if {a,begin(a)) f= 'fl'l (\ (<p1 Cth), we can al5o prove that ff E M(SJ!IS~)­

Therefore >,/J is in deed pr<~cise fot· S'1 1152 •

136 i\I'FJ.iNJJIX C. PllECI."il•:NKS'h' OF THV 1'/W(W .~Y.'-(/'fo;M IN (;JIJ\ fl'J'J.;[{ ;J

Appendix D

Proofs of Lemmas in Chapter 3

Lemma 3.5.1 and lemma 3.5.2 can be proved similarly as in Appendix A for lemma

2.6.1 and lemma 2.6.2, respectively. Notice that adding a buffer b does not influence the

proofs.

Proof of Lemma 3.5.3

For any expression qexp of type QU E, any cset Ç CH AN, and any buffers b1 and ~~ if

ich(qexp) Ç csetand for any c E cset, b1(c) = ~(c), we prove that, for any model q and

any r :2: begin(q), Q(qexp)(q, bt, r) = Q(qexp)(q, b2 , r) by induction on the structure of

qexp.

• qexp =. w. Q(w)(q, bh r) w = Q(w)(q, b2 , r).

• qexp=. init(c). Q(init(c))(q,b1 ,r) b1(c) = ~(c) Q(init(c))(q,~,r).

Proof of Lemma 3.5.4

For any expression qexp of type QU E, any model q, any buffer b, any cset Ç CH AN,

and any r :2: begin(q), we prove Q(qexp)(q, b, r) = Q(qe:~:p)([O"J~en b, r) by induction on

the structure of qexp.

• qexp w. Q(w)(q,b,r) = w = Q(w)([qJ~enb,r).

• qexp=. init(c). Q(init(c))(a,b,r) = b(c) Q(init(c))([aJ~et>b,r).

Proof of Lemma 3.5.5

For any expression qexp of type QU E, any model a, any buffer b, any vset Ç V AR, and

any r :2: begin(a), we prove Q(qexp)(a,b,r) Q(qexp)(a! vset,b,r) by induction on

137

138 APPENDIX D. PROOFS OF LEMMASiN CHAPTER 3

the structure of qexp.

• qexpEw. Q(w)(a,b,r) w Q(w)(alvset,b,r).

• qexp init(c). Q(init(c))(a, b, r) = b(c) = Q(init(c))(a l vset, b, r).

Proof of Lemma 3.5.6

For a.ny expression vexp of type V AL, any es et Ç C H AN, and any buffers b1 and ~'

if ich(vexp) Ç cset and for any c E cset, b1(c) == b2(c), we prove, by induction on

the structure of vexp, that for any model a and any T ~ begin(a), V(vexp)(a, bt, T)
V(vexp)(a, ~. r).

• vexp x. By definition, if r ~ end(a), then V(x)(a,b1 ,r) = a(r).s(x), i.e.,

V(x)(a, bh r) = V(x)(a, b2 , r). If r > end(a), then V(x)(a, bt, r) = ae.s(x), i.e.,

V(x)(a,b1 ,r) V(x)(u,~,r). Hence V(x)(a,b1,r) = V(x)(a,b2 ,r).

• vexp = first(x). V(first(x))(a, bl> r) = ab.s(x) V(first(x))(a, b2 , r).

• vexp E first(qexp). ich(vexp) ich(qexp) and thus ich(qexp) Ç cset. By lemma

3.5.3, Q(qexp)(u,bt,r) ::= Q(qexp)(a,b2 ,r). Then V(.first(qexp))(u,bhr)

First(Q(qexp)(u, b1 , r)) ::= First(Q(qexp)(u, b2 , r)) V(first(qexp))(u, b2 , r).

• vexp = max(vexpt, vexp2). Dy the induction hypothesis, we have, for i 1, 2,

V(vexp;)(a, b1 , r) = V(vexp;)(u, b2 , r). Th en

V(max(vexpl! vexp2))(u, b1, r) = max(V(vexpt)(u, b1, r), V(vexp2)(a, bh r))

max(V(vexp1)(u, b2, r), V(vexp2)(a, b2, r)) V(max(vexp1 , vexp2))(u,~. r).

• vexp = vexp1 0 vexPz, where 0 E { +,-,x}. By the induction hypothesis,

we have, for i= 1, 2, V(vexp;)(u, bl> r) V(vexp;)(u, b2 , r). Thus

V(vexp1 0 vexp2)(u, b1 , r) = V(vexp1)(u, bt, r) 0 V(vexp2)(u, b1 , r)

== V(vexpt)(u, bz, r) 0 V(vexpz)(u, bz, r) V(vexp1 0 vexpz)(u, bz, r).

Proof of Lemma 3.5.7

For any expression vexp of type V AL, any model u, any buffer b, any cset Ç C H AN,

a.nd any r ~ begin(u), we prove V(vexp)(a,b,r) V(vexp)([aJI!,nb,r).

The proof is similar to the proof for lemma 2.6.3 except the following case:

139

• vexp = first(qexp). By lemma 3.5.4, Q(qexp)(a,b,r) = Q(qexp)([aJ~et,b,r).
Then V(Jirst(qexp))(a, b, r) = First(Q(qexp)(a, b, r)) = First(Q(qexp)([aJ~et> b, r)) =
V(Jirst(qexp))([aJ[!et> b, r).

Proof of Lemma 3.5.8

For any expression vexp of type V AL, any model a, any buffer b, any vset Ç V AR, and

any r 2: begin(a), if var(vexp) Ç vset, we prove

V(vexp)(a,b,r) = V(vexp)(a! vset,b,r).

This proof is similar to the proof for lemma 2.6.4 except the following case:

• vexp = first(qexp). By lemma3.5.5, Q(qexp)(a,b,r) = Q(qexp)(a! vset,b,r).

Then V(Jirst(qexp))(a, b, r) = First(Q(qexp)(a, b, r)) =
First(Q(qexp)(a! vset,b,r)) = V(Jirst(qexp))(a! vset,b,r).

Proof of Lemma 3.5.9

For any expression texp of type TIME, any es et Ç C IJ AN, and any buffers bi and

b2, if ich(vexp) Ç cset and for any c E cset, bi(c) = b2(c), we prove, by induction on

the structure of texp, that for any model a and any r 2: begin(a), T(texp)(a, bb r) =
T(texp)(a, b2, r).

• texp = T. T(T)(a, bi, r) = r = T(T)(a, b2 , r).

• texp =start. T(start)(a, bi, r) =begin(a)= T(start)(a, b2, r).

• texp =term. T(term)(a,b1,r) = end(a) = T(term)(a,b2,r).

• texp = vexp. By lemma 3.5.6, we have V(vexp)(a, bb r) = V(vexp)(a, b2, r).

Then T(vexp)(a, bi, r) = V(vexp)(a, bb r) = V(vexp)(a, b2, r) = T(vexp)(a, b2, r).

• texp = texpi 8 texp2, where 8 E { +,-,x}. By the induction hypothesis,

we have, for i= 1,2, T(texp;)(a,bi,r) = T(texp;)(a,b2,r). Then, by definition,

T(texpi 8 texp2)(a, b1 , r) = T(texp1 8 texp2)(a, b2, r).

Lemma 3.5.10 and lemma 3.5.11 can he proveel similarly as in Appendix A for lemma

2.6.5 and lemma 2.6.6, respectively.

140 APPENDIX D. PROOFS OF LEMMASIN CHAPTER 3

Proof of Lemma 3.5.12

For any specification tp, any cset Ç CH AN, and any buffers b1 , b2, if ich(tp) Ç csetand

for any c E cset, b1 (c) b2 (c), we prove, by induction on the structure of tp, that for

any model 0' and any r ;::: begin(O'), {0', bi, r) I= t.p iff (0', bz, r) I= tp.

• 'P qexpi = qexp2. (u, bt, r) I= qexpi = qexpz iff Q(qexp1)(u, b1, r) =
Q(qexpi)(O', b11 r) iff, by lemma 3.5.3, Q(qexp1)(u, b2 , T) Q(qexp2)(0', bz, r) iff

{u, bz, r) I= qexp1 = qexpz.

• 'P texp1 = texPz. {u,bt,r) I= texp1 = teXPz iffT(texpi)(u,bt,r) =
T(texP2)(u,bt,r) iff, by lemma3.5.9, T(texpt)(u,b2,T) = T(texp2)(u,bz,T) iff

{u, b2 , r) I= texp1 = texJJ2.

• 'P = texp1 < texp2 • Similar to the proof for 'P = texp1 texJJ2.

• 'P send(c,vexp). ich(tp) ich(vexp) and thus ich(vexp) Ç cset. Hence

(u,bt,r) I= send(c,vexp) iff r::;: end(u) and (c, V(vexp)(u,b1,T)) E O'(r).S iff, by

lemma 3.5.6, r::;: end(u) and V(vexp)(u, bz, r)) E u(T).S iff

(0', b2 , r) I= send(c, vexp).

• 'P = send(c). (u, b1 , r) I= send(c) iff T::;: end(u) and there exists a {JE V AL such

that (c,{J) E u(r).S iff (O',b2,r) I= send(c).

• 'P = receive(c, vexp). ich('P) { c} U ich(vexp) and thus i eh(vexp) Ç es et. Hence

(O',b1,r) I= receive(c,vexp) iff r::;: end(u) and (c, V(vexp)(u,bllr)) E u(r).R iff,

by lemma 3.5.6, r ::;: end(a) and (c, V(vexp)(u, b2, r)) E u(r).R iff

(a, bz, r) I= receive(c, vexp).

• 'P = receive(c). (a,b1or) I= 1'eceive(c) iff r::;: end(a) and there exists a fJ E VAL

such that (c, iJ) E u(r).R iff (a, b2 , r) I= receive(c).

• 'P ='PI V C/)2 • For i= 1, 2, ich('Pi) Ç (ich(tpi) U ich(tp2)) ich(tp) Ç cset. Hence

(a, bl! r) I= 'PI V tp2 iff (a, b1 , T) I= tp1 or (a, b1, r) I= 'Pz iff, by the induction

hypothesis, (u, b2 , r) I= 'PI or (a, bz, i) I= tpz iff (a, b2 , r) I= 'P1 V 'P2·

• 'P = -.tp1 and tp tp1 U tp2• Simila.r to the proof for if! = if!J V 'P2·

• 'P = C/)1 C tp2 . For i=.:: 1, 2, ich(C{);) Ç ich(tp) Ç c.set. Hence (a, b1o r) I= 'Pt C 'P2 iff

- either (a, bh r) I= tp1 a.nd end(a) oo itr, by the indudion hypothesis,

(a, bz, r) I= tp1 and end(a) oo iff (a, b2, T} I= 'P1 C 'P2,

141

- or there exist models u1 and a2 such that u = a 1a 2, r ::; end(ai) < oo,

(aJ,bbr) I= 'P11 and (u2,Buj(bt,a!),begin(a2)) I= 'P2 iff, since for any c E

cset, b1(c) = bz(c) and thus Buf(b11 al}(c) Buf(bz,a1)(c), by the induction

hypothesis, there exist models a1 and a2 such that a = a1a2, (ah b2, r) I= 'Ph

and (az, Buf(b2, a1), begin(u2)) I= 'P2 iff (a, b2, r) I= 'Pt C 'P2·

• 'P = 'Pt C* 'P2· Similar to the proof for 'P = 'Pt C 'P2.

Proof of Lemma 3.5.13

For any es et Ç CHAN and any specification <p, if i eh('P) Ç cset, we prove, by induction

on the structure of 'P· that for any model a, any buffer b, and any r 2::: begin(a),

{a, b, r) I= <p iff ([aJ:..o b, r) I= 'P·

• 'P = qexp1 = qexp2. (a,b,r) I= qexp1 = qexp2 iffQ(qexpt)(a,b,r) Q(qexp2)(a,b,r)

iff, by lemma3.5.4, Q(qexpt)([aJ~et>b,r) Q(qexp2)([a]~.1 ,b,r) iff
([aJ:..o b, r) I= qexp1 = qexp2.

• 'P = texp1 = texp2. (a, b, r) I= texp1 texp2 iff T(texr,1)(a, b, r) = T(texP2)(a, b, r)

iff, by lemma3.5.10, T(texpt)([aJ:a.1,b,r) = T(texp2)([a]t!.0 b,r) iff

([aJ~et> b, r) I= texpt = texp2.

• 'P = texp1 < texJl2. Similar to the proof for 'P := texp1 = texJ~.

• r.p:::: send(c, vexp). (a, b, r) I= send(c, vexp) iff r ::; end(a) and

(c, V(vexp)(a, b, r)) E u(r).S iff, by definition and lemma 3.5. 7, r $ end([aJ~et)

and (c, V(vexp)([aJ:!.11 b, r)) E [uJ:a.b).S iff ([aJt!.o b, r) f= send(c, vexp).

• <p := send(c). (a, b, r) f= send(c) iff r $end(a) and there exists a tJ E V AL such

that (c, 19) E a(r).S iff, by definition, r ::; end([aJ:!.tl and there exists a tJ E V AL

such that (c,t?) E [aJ:..1(r).S iff ([uJ:aet>b,r) f= send(c).

• r.p receive(c, vexp). ich('P) = {c} U ich(vexp) and thus c E cset. Hence

(a,b,r) f= receive(c,vexp) iff T ::; end(a) and (c, V(vexp)(a,b,r)) E a(r).R iff,

by definition and lemma 3.5.7, r ::; enll([a]t!.1) and (c, V(l•exp)([aJt!.nb,r)) E

[aJ:..1(r).R iff ([uJ:.et>b,r) f= receive(c,ve.1:p).

• 'P := receive(c). ich('P) = {c} and thus c E cset. Ifcnee (a,b,r) \= receive(c) iff

T ::::; end(u) and there exists a iJ E V AL such that (c, t9) E a(T).R iff, by definition,

r::; end([aJ:a.1) and there exists a t9 E V AL such that (c, !?) E [u]~.1 (r).R iff
([aJ:..P b, r} I= receive(c).

142 APPENDIX D. PROOFS OF LEMMASIN CHAPTER 3

• !(.1 := !(.11 V !(.12• For i 1, 2, ich(lf!i) Ç (ich(cpt) U ich(cp2)) = ich(cp) Ç cset. Hence

(a, b, r) I= !(.lt V!(.l2 iff (u, b, r) I= lf't or (u, b, r) I= lf'2 iff, by the in duetion hypothesis,

{[a]~et> b, r} I= !(.11 or ((uJ:..P b, r} I= 'P2 iff ([uJ:.et> b, r) f= 'PI V 'P2·

• !(.1 = -.!(.11 and !(.1 = lf't U !(.12• Similar to the proof for cp 'PI V cp2•

• !(.1 !(.11 C !(.12• Fori=1,2,ich(lf'i)Çich(r)Çcset. Hence(a,b,r} f=r.p1 C r.p2iff

either (a,b,r) I= !(.11 and end(a) = oo iff, by the induction hypothesis,

([aJ:..1 , b, r) I= tp1 and end([aJ:..1) = oo iff ([aJ:.et> b, r} f= rt C 'P2,

or there exist models a1 and a 2 such that a a 1a 2 , r $ end(ai) < oo,

(at, b, r) I= cp1 , and (az, Buf(b, at), begin(a 2)) f= VJz iff, by the induction hy­

pothesis, there exist models faJJ:..t and [a2J:..t such that [aJ:..t = [a1J:..1 [az]~1 ,

([at]:.." b, r) f= 'Ph and (hJ:.et> Buf(b, al), begin(az)) I= cpz iff, since

ich(cp2) Ç csetand for any c E cset, Buf(b, ai)(c) = Buf(b, [a1J:..1)(c), by

lemma. 3.5.12, there exist models (a1J:..t and [a2J:.et such that

[aJ:.et = [at]~et!a2]~.o {[atJ:.et> b, r) I= VJI, and

([u2J:..1, Buf(b, [at]~.1), begin(hJ:..1)} f= !(.12 iff ([uJ:..1, b, r} I= t{}t C 'P2·

• VJ =: lf't C* r.p2 • Similar to the proof for cp =: cp1 C rz·

Proof of Lemma 3.5.14

For any vset Ç VAR and any specification cp, if var(cp) Ç vset, we prove, by induction

on tp, tha.t for any model a, any buffer b, and any r ?:: begin(a), (a, b, r) I= tp iff

(a ! vset, b, r} I= tp.

• tp qexp1 qexp2 • (a,b,r}f=qexpi qexp2 iffQ(qexp1)(a,b,r)=Q(qexJJ2)(a,b,r)

iff, by lemma 3.5.5, Q(qexp1)(a! vsef, b, r) = Q(qexPz)(a! vset, b, r) iff

(a ! vset, b, r) I= qexPt = qexpz.

• tp texpi = texp2• For i = 1, 2, var(texp;) Ç vm·(cp) Ç V8et. Hence

(a,b,r} I= texp1 = teXPz iff T(texp!)(u,b,r) = T(texp2)(u,b,r) iff, by lemma

3.5.11,

T(texp1)(a ! vset, b, r) = T(texp2)(u! vset, b, r) iff
(u ! vset, b, r) f= texp1 = texp2.

• tp = send(c,t1exp). var(cp) = var(vexp) and tltus var·(vcxp) Ç vset. Hence

(a, b, r) I= send(c, vcxp) iff r ::; end(a) and (c, V(vexp)(a, b, r)) E u(r).S iff,

143

by definition and lemma 3.5.8, r::; end(a! vset) and

(c, V(vexp)(a l vset, b, r)) E (a! vset)(r).S iff (a! vset, b, r} I= send(c, vexp).

• r.p send(c). (a, b, r) I= send(c) iff r :::; end(a) and there exists a iJ E V AL

such that (c,iJ) E a(r).S iff, by definition, r::; end(a! vset) and there exists a

iJ E V AL such that (c, iJ) E (a! vset)(r).S iff (a! vset, b, r) F send(c).

• r.p = receive(c,vexp). var(r.p) == var(vexp) and thus var(vexp) Ç vset. Hence

(a, b, r) I= receivc(c, vexp) iff r::; end(a) and (c,V(vexp)(a, b, r)) E a(r).R iff,
by definition and lemma 3.5.7, r :::; end(a! vset) and

(c, V(vexp)(a! vset,b,r)) E (a! vset)(r).R iff (a! vsct,b,r) I= receive(c,vexp).

• r.p = receivc(c). (a, b, r) I= receivc(c) iff T ::; end(a) and there exists a iJ E V AL

such that (c, iJ) E a(r).R iff, by definition, r ::; end(a! vset) and there exists a

{) E V AL such that (c, iJ) E (a! vsct)(r).R iff (a! vsct, b, r) I= receive(c).

• <p = r.p1 V r.p2 • For i== I, 2, var(r.p;) Ç (var(r.p1) U var(r.p2)) == var(r.p) Ç vset. Hence

(a, b, r) F r.p1 V <pz iff (a, b, r) F r.p1 or (a, b, r) F <pz iff, by the induction hypothesis,

(a ! vset, b, r) I= r.p1 or (a ! vset, b, r) I= r.p2 iff (a ! vset, b, r) I= r.p1 V r.p2 •

• <p = -.r.p1 and <p = r.p1 U r.p2 • Similar to the proof for <p = 'Pt V r.p2.

• r.p r.p 1 C r.p2 • For i= 1,2, var(r.p;) Ç var(r.p) Ç vset. Hencc (u,b,r) F r.p1 C r.p2 iff

- either (a, b, r) F r.p 1 and end(a)= oo iff, by the induction hypothesis,

(a ! vset, b, r) I= r.p1 and end(a ! vset) oo iff {a! vsct, b, r) F r.p1 C <pz,

- or there exist models a 1 and u2 such that a = u1u2 , r :::; end(ut) < oo,

(a1 ,b,r) I= 'Pll and (az,Buf(b,at),bcgin(az)) F r.p2 iff, by the induction

hypothesis, there exist models a 1 ! t.Jset and u2 ! vset such that

u! vset = (u1 ! vset)(a2 l vset), (u1 ! vset, b, r) I= 'Pt. and

(a2 ! vset, Buf(b, at), begin(a2)) F r.p2 iff, by definition,

Buf(b, at) = Buf(b, a1 ! vset), there exist models a1 ! vset and u2 ! vset

such that a! vset = (a1 ! vset)(a2 ! vset), (a1 ! vset, b, r) I= 'Pb and

(a2 ! vset, Buf(b, a1 l vset), begin(a2l vset)) I= 'P2 iff

(u l vset, b, r) F 'Pt C 'P2·

• r.p = r.p 1 C* r.p2. Similar to the proof for <p ~ 'PI C 'P2·

Lemma 3.5.15, lemma 3.5.16, lemma 3.5.17, and lemma 3.5.18 can be proved similarly

as in Appendix A for lemma 2.6.9, lemma 2.6.10, lemma 2.6.11, and lemma 2.6.12,

respectively.

144 APPENDIX D. PROOFS OF LEMMASIN CHAPTER 3

Appendix E

Soundness of the Proof System

Chapter 3

• In

To prove the soundne.'ls of a proof system, we must show that every axiom in the proof

system is indeed valid and every inference rule preserves validity.

To prove that S sat <p for some S and r.p, we have to show tha.t, for any buffer b and

any model u E M(S)(b), (u,b,begin(u)) I= <p.

Here we only give the proofs for receiving invariance, send, rcceive, sequentia! oom­

postion, and parallel composition. The others ca.n he proved sound silimarly as in

Appendix B.

Receiving luvarianee

Consider any process S and any channel c E es et withes et Ç C H AN and csetnich(S) =
!11. We prove that the receiving invariance axiom 3.4.2 is valid.

For any buffer b, any erE M(S)(b), by the theorem 3.2.1, we obatin ich(u) Ç ich(S)

and then cset n ich(cr) = 1<1. For any c E cset, any {} E V AL, and any r, begin(u) :5
r :5 end(u), by definition, (c,{}) 1. cr(r).R. Thus wc obtain (cr,b,r} I= ...,receive(c). For

any r' > end(u), by definition again, we have (a,b,r') I= ..,receive(c}. Hence for any

r 2': begin(a), we have {u, b, r) I= ...,receive(c), i.e., (a, b, begin(a)} I= D ..,receive(c).

From c E cset, we have (a,b,begin(a)) I= AcEcsetO...,receive(c), i.e., (a,b,begin(a)) I=
0 AcEcset ...,receive(c). Thus we obta.in (u, b, begin(u)) I= 0 norecv(es et) and then a.xiom

3.4.2 is valid.

Send

We prove tha.t the send axiom 3.4.3 is vaJid.

145

146 APPENDIX E. SOUNDNESS OF THE PROOF SYSTEM IN CHAPTER 3

For any bufferband any a E M(c!!e)(b), we have end(a) = begin(a)+Kc, for any a'-: a,

Idle(a'), Nomsg(a',{c}), a•.s = ab.s, a•.R 0, and ([a]fc})".S = {(c,t'(e)(ab.s))}.

By definition, we obtain {a, b, begin(a)) I= term = start+ Kc. Furthermore, for any

r, begin(a) $ T < end(a), any {} E VAL, we have (c,t9) f/-_ a(r).S, i.e., (a,b,r} I=
...,send(c). By lemma 3.5.1, we also obtain (a,b,end(a)) I= send(c,e). Thus we have

(a, b, begin(a)) I= ...,send(c) U (T =term= start+ I<cAsend(c, e)) and then the axiom

3.4.3 is valid ..

Receive

We prove tha.t the receive axiom 3.4.4 is valid.

For any buffer b and any a E M(c??x)(b), there exist models a 1 and a2 such that

a u1u2, a 1 E W Read(c??x)(b), and 172 E Read(c??x)(Buf(b,a1)). F'rom a 1 E

WRead(c??x)(b), we obtain ldle(a1) and thus (cr17 b,begin(a1)) I= D[x first(x) A

...,receive(c)]. We also have Buf(b,crD(c) = (), for any er~ -: !71 • That is, for any

r, begin(cr1) $ T < end(cr1), and any {} E V AL, b(c) = (} and (c, t9) f/. a 1(r).S.

Thus we have (cr17 b, r) I= init(c) = () A -.send(c). If end(at) = oo, then we ob­

tain (ut,b,begin(at)) I= D[init(c) ()A -.send(c)J. If end(cr1) < oo, by these­

mantics, we have b(c) # () or (c,t9) E O"i.S, forsome {} E VAL. Thus we have

(a1 , b, end(cr1)) I= T == termA(init(c) # ()V send(c)). Hence we have (u17 b, begin(cr1)) I=
[init(c) == ()A -.send(c)J U [T = term A (init(c) # (}V send(c))]. Thus we ob­

ta.in {cr1 , b, begin(u1)) I= Await[init(c) f: {) V send(c)] and thus (a17 b, begin(cri)} I=
W Recv(c??x).

Let b' = Buf(b,at). From cr2 E Read(c??x)(Buf(b,ut)), i.e., a 2 E Read(c??x)(b'), we

obtain end(cr2) begin(cr2) +Kc, for any u;-: a2 , ldle(a;), cr~.R {(c, First(b'(c)))},

and a~.s (u~.s: x~ First(b'(c))). Thus, for any r, begin(a2) :Sr< end(a2), we have

cr2(r).s a;.s and a2(r).R = y:j. We a.lso have a2.s(x) = First(b'(c)). Then we obta.in

(a2,b1,end(a2)) I= receive(c,x)l\x = first(init(c)). Hence we have (a2 ,b',begin(az)) I=
[x first(x) A -.receive(c)J U [T term star·t +Kc A receive(c,x) A x

first(init(c))J, i.e., {a2 , Buf(b, ai), begin(cr2)) I= Recv(c??x).

Since a a 1u2, by the definition of the C operator, we obtain

(cr,b,begin(a)) I= W Recv(c??x) C Recv(c??x). Hence the receive a.xiom 3.4.4 is valid.

Sequentia! Composition

We prove tha.t the sequentia] composition rule 3.4.1 preserves va.lidity.

147

Assume that S1 sat r.p1 and S2 sat r.p2 are valid. Let 'I/J1 0 nosend(och(S2) \ och(S1))

and 'I/J2 0 nosend(och(St) \ och(S2)). We show that S1; S2 sat (r.p1 A '1/JI) C (r.p2 A 'I/J2)

is also valid.

For any buffer b, consider any a E M(S1 ; S2)(b). Then there exist u1 and u2 such

that u u1a2, a1 E M(St)(b), u2 E M(S2)(Buj(b,ut)), and Agree(u1 ,a2 ,S1 ,S2). By

definition, Agree(at, u2 , St, Sz) = N omsg(ui> och(S2) \ och(S1)) A N omsg(u2, och(S1) \

och(S2)). From Nomsg(at,och(S2) \ och(SI)), we have, for any r, begin(o-t) ;S; r 5
end(u1), any c E och(S2) \och(St), and any {) E V AL, (c, {J) tJ. D"t(r).S. Thus we obtain

(ut. b, r) I= ...,send(c). For any r' > end(ui), by definition, we also have (a-t, b, r') I=
...,send(c). Then weobtain (u1 ,b,begin(ut)) I= o...,send(c). SincecE och(S2)\och(S1),

we have (o-b b, begin(ut)} I= l\ceoch(S2)\och(S,) 0 ..,send(c), i.e.,

(a-t. b, begin(at)} I= 0 l\ceoch(S2)\och(S!) ...,send(c). Hence we obtain

(ui> b, begin(u1)) I= 0 nosend(och(S2) \och(St)) and then (o-11 b, begin(ut)) I= 1/J1 • From

S1 sat <.pt, we obtain (ah b, begin(ut)) I= r.p1 . Thus we have (ut. b, begin(ut)) I= r.p1 1\ 1/J1 •

Simila.rly, we can derive (a2 , Buf(b, ut), begin(o-2)) I= r.p2 A 'I/J2• By the definition of the

C operator, we have (er1o-2,b,begin(at)) I= (r.p1 /\'I/J1) C (r.p2/\'I/J2), i.e., (er,b,begin(o-)} I=
(r.ptA 1/;1) C (r.p2/\ 'I/J2). Hence the rule 3.4.1 preserves validity.

Parallel Composition

Assume S; sat <.p;, /Buf 1\cech(Sl)nch(Sz) init(c) = (}, 1/J; 0 [inv(var(S;)) 1\

norecv(ich(S;)) 1\ nosend(och(S;))], ich(r.p;) Ç ich(S;), and var(r.p;) Ç var(S;), for i

1,2. We show the validity of SdiSz sat I Bttf 1\ [('Pt 1\ (r.p2 C ~12)) V (r.p2 A ('Pt C '1/Jt))].

For any buffer b, consider any erE M(S1 IIS2)(b). Then ich(er) Ç ich(St) U ich(S2), and

for iE {1, 2}, there exist a; E M(S;)(b) such that. begin(er)= begin(a-t)= begin(o-2),

end(a-)= max(end(u1), end(u2)), for any c E eh(SI)() ch(S2), b(c) = (). By definition,

we have (er,b,begin(er)) I= /Buf. Suppose end(er1) ~ end(er2). Then end(er) = end(o-t).

We prove (er, b, begin(a-)} I= 'PI 1\ (r.p2 C 1/J2).

• First we prove (a,b,begin(a)) I= r.p 1 • From the semantics, we have that, for any r,

begin(ert) ;S; r ;S; end(at), [er l var(S1)]~h(SJ)(r).S er(r).S = o-1(r).S,

[er l var(St)]~h(SJ)(r).R = [er]~h(S,)(r).R a1(r).R, [a l var(SI)]~h(S,)(r).s =
(a- l var(St))(r).s = a 1(r).s. Since begin([o- l var(S1)]~h(SJ)) begin(u) =
begin(erl), end([er l var(S1)]~h(SI)) =end(er) end(er!), we obtain

[a-! var(St)]~h(St) 0"1. Since a1 E M(SJ)(b) and S1 sat 'PI> we have

([u! var(SJ)J~h(St)>b,begin(er)) I= r.p1 • Since ich(r.pl) Ç ich(St) and var(r.pt) Ç

var(S1),lemma3.5.13 and lemma3.5.14lcad to (er,b,begin(a)) I= 1p1•

• Next we prove (a, b, begin(er)) I= <.pz C 1/Jz.

148 APPENDIX E. SOUNDNESS OF THE PROOF SYSTEM IN GRAPTER 3

- lf end(crz) oo, since end(er)= end(er!) 2:: end(er2), we have end(er2) =end(er)

oo. Similarly, we can derive (er, b, begin(er)) f= rp2. By the definîtion of the C

operator, we obtain (er, b, begin(u)) f= r 2 C 1/J2 ;

- If end(u2) < oo, from S2 sat rp2 and er2 E M(S2)(b), we obtain (er2 , b, begin(u2)) f=
rp2 • Wedefine a model u3 such that begin(u3) = end(er2), end(u3) end(er),

for any r, begin(er3) < r:::; end(cr3), u3 (r).s = u~.s, er3 (r).R = [cr]~h(s,)(r).R,

cr3(r).S = cr1(r).S, <r~.s = cr~.s, cr;.R = ([cr]~h(s2 y.R, and for any c E

och(S2), any tJ E V AL, (c, tJ) ~ cr~.S. By the semantics, [cr]~h(s,)(r).R = (ij
and thus er3 (r).R =(ij. Since end(cr2) :::; end(cri), by Cons(er1 , er2 , St, S2), for

any r', end(u2) < r':::; end(ui), any c E och(S2), and any tJ E V AL, (c, fJ) 1;.
cr1 (r').S. That is, for any r, begin(cr3) < r:::; end(er3), (c, tJ) 1;. cr3 (r).S. Then

we obtain

(cr3, Buf(b, erz), r) f= inv(var(Sz)) A norecv(ich(Sz)) A nosend(och(Sz)).

For any r' > end(cr3), we also have

(cr3, Buf(b, cr2), r') f= inv(var(S2)) A norecv(ich(S2)) A nosend(och(S2)).

Thus we obtain

(u3,Buj(b,a2),begin(cr3)) f= D[inv(var(S2))Anorecv(ich(S2)) A

nosend(och(S2))], i.e., (a3 ,Buf(b,az),begin(cr3)) f= 'lj;2 • By the C operator,

we obtain (a2a3, b, begin(az)) f= 'P2 C 1/Jz.

Now we prove er2cr3 = [a! var(Sz)]~h(S2). Let Ö' = [cr! var(Sz)]~h(S,)·
By definition,

ëi'(r).s (al var(S
2
))(r).s = { crz(r).s begin(az) $ T $ end(a2)

cr3 (r).s end(a2) < r $ end(cr)

ëi'(r).R = [er]~h s (r).R = { a2(r).R begin(cr2):::; r $ end(cr2)
1 >) a3(r).R end(a2) < r $ end(cr)

ü(r).S cr(r).S = { az(r).S begin(a2):::; r:::; end(u2)

a1(r).S = er3(r).S end(a2) < T $ end(a)

Hence Ö' a 2cr3 and then we have (a, b, begin(cr)) f= rp2 C 'lj;2 • Since

ich(rpz) U ich('lj;z) Ç ich(S2) and var('Pz) U var('lj;z) Ç var(Sz), by lemma

3.5.13 and lemma3.5.14, we obtain (a,b,begin(a)) f= r 2 C '1/Jz.

Hence we have proved (a,b,begin(a)) f= rp1 A ('P2 C 1/Jz).

Similarly, for end(a1) < end(a2), we can show (cr,b,bcgin(a)) rp2 A ('P1 C 1/JJ).
Thus the parallel composition rule 3.4 .. 5 preserves va.lidity.

Appendix F

Precise Specifications for

Statements in Chapter 3

The preciseness theorem 3.5.2 can he proved similarly as in Appendix C for the theorem

2.6.2. Here we only give a precise specification for each statement from the programming

language insection 3.1.

The precise specifications for skip, assignment, and delay statements are the same

as those given in Appendix C, respectively.

Send

A precise specification for statement c!!e is

...,send(c) U (T =term= start+ Kc 1\ send(c,e)).

To prove that this is a precise specification for c!!e, we need to use the general

assumption on the S-fields of a model which is given in section 3.2.2.

Receive

A precise specification for statement c??x is W Recv(c??x) C Recv(c??x) with

WRecv(c??x) = 0 [x= first(x) 1\,receive(c)J 1\ Await[init(c) =J ()V send(c)J

and

Recv(c??x) =[x= first(x) 1\ ...,receive(c)J U

[T =term start+ Kc 1\ receive(c, x) 1\ x= first(init(c))].

149

150APPENDIX F. PRECISE SPECIFICATIONS FOR STATEMENTS IN GRAPTER 3

Sequentia! Composition

Assume that !f'; is precise for S,, for i = 1, 2. A precise specification for S1; S2 is

[!f't A 0 (inv(wvar(S1 ; S2) \ wvar(St)) A norecv(ich(S2) \ ich(S1)) A

nosend(och(S2) \ och(St)))] C

[!f'2 A 0 (inv(wvar(S1 ; S2) \ wvar(S2)) A norecv(ich(St) \ ich(S2)) A

nosend(och(S1) \ och(S2)))].

Guarded Command with Purely Boolean Guards

Assume that ({'; is precise forS;, for i= 1, ... , n .

. A precise specification for Gt = [0 :;,1g; -> S;] is

[Quiet(Gt) U (T start+ K9 A Quiet(GI))]A [--,9-> Eval]A

[g -> (Eval C Vi""1 g; A({'; A 0 (inv(wvar(Gt) \ wva~·(S;)) A norecv(ich(G1) \ ich(S;)) A

no.~end(och(Gt) \ och(S;))))].

Guarded Command with IQ-Guards

A ss urne that ({'o is precise for S0 and ({'; is pree i se for ct?? x;; S;, for i = 1, ... , n.

A precise specification for G2 [Oi=1g;; c; ??x; -> S; Ogo; delay e -> So] is

[Quiet(G2) U (T =start+ /(9 A Qttiet(G2))]A hi-> Eval] A

[g-> (Eval C (N FinComm V NTimeOut V N AnyComm.))]

where

NFinComm (g0 /\term<start+max(O,e)AWait) C NComm

NComm := y:;,1 g; A ~.p; A o (inv(wvar(G2) \ wvar(c;??x;; S;)) A

norecv(ich(G2) \ ich(c;??x;; S;)) A nosend(och(G2) \ och(c;??x;; S;)))

NTimeOut := [go A 0 (Ac,Eë init(c,) = () A --,send(c;)) A te1·m = start+ max(O, e) A

0Quiet(G2)] C

[!f'o A 0 (inv(wvar(G2) \ wvar(S0)) A norecv(ich(G2) \ ich(So)) A

nosend(och(G2) \ och(So)))]

NAnyComm (•g0 A Wait) C NComm

Iteration

Assume tha.t 1.p is precise for G. A precise specification for *G is (!J A <.p) C* (--,9 A <.p).

Parallel Composition

Assume that <.p; is precise for S;, for i = 1, 2. A precise specification for S1 IIS2 is

!Buf A [('f>t A ('f>2 C tP2)) V ('f>2 A ('f>l C tj>t))J,
where

IBuf = Àcech(S,Jnch(S2) init(c) = (),
t/>; = D [inv(var(S;)) A norecv(ich(S;)) A nosend(och(S;))], for i= l, 2.

151

152APPENDIX F. PRECISE SPECIFICATIONS FOR STATEMENTS IN GRAPTER 3

Bibliography

[Ada83J

[AH89]

[AH92]

[AL90]

[AL92]

[Apt81]

[Bak80]

[BB91]

[BB92]

LNCS 155. The Programming Language Ada, Reference Manual, 1983.

R. Alur and T.A. Henzinger. A really temporallogic. In Proc. of the 30th

Annual Symposium on Foundations of Gompttter Science, pages 164-169.

IEEE Computer Society Press, 1989.

R. Alur and T.A. Henzinger. Logies and modelsof real-time: A survey. In

Real-Time: Theory in Practice, pages 74-106. J.W. de Bakker, C. Huizing,

W.-P. de Roever, and G. Rozenberg (Eds.), LNCS 600, 1992.

M. Abadi and L. Lam port. Composing specifications. In Stepwise Refinement

of Distributed Systems, pages 1-41. J.W. de Bakker, W.-P. de Roever, and

G. Rozenberg (Eds.), LNCS 430, Springer-Verlag, 1990.

M. Abadi and L. Lamport. An old-fashioned recipe for real time. In Real­

Time: Theory in Practice, pages 1-27. J.W. de Bakker, C. Huizing, W.-P.

de Roever, a.nd G. Rozenberg (Eds.), LNCS 600, 1992.

K.R. Apt. Ten years of hoa.re's logic: A survey-part I. ACM Transactions

on Programming Languages and Systems, 3:431-483, 1981.

J. de Bakker. Mathematica/ Theo1·y of Program Cm·rectness. Prentice Hall,

1980.

J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects

of Computing 3{2), pages 142-188, l 991.

J.C.M. Baeten and J.A. Bergstra. Asynchronous communication in real

space process algebra. In Fomtal Techniqttes in Reai-Time and Fault­

Tolerant Systems, pages 473-492. J. Vytopil (Ed.), LNCS 571, Springer­

Verlag, 1992.

[BCG92] F.S. de Boer, J. Coenen, and IL Gerth. Exception handling in process

algebra. In Proc. of the North Amcrican Process Algebra Workshop, 1992.

153

154

[BD85]

[BH92]

BIBLIOGRAPHY

0. Babaoglu and R. Drumond. Streets of byzantium: .\"etwork architec­

tures for fast reliahle hroadcast. IEEE Transactions on Software Engineering

11(6), 1985.

F. de Boer and J. Hooman. The real-time behaviour of asynchronously

communicating processes. In Forma/ Techniques in Real-Time and Fault­

Tolerant Systems, pages 451-472. J. Vytopil (Ed.), LNCS 571, Springer­

Verlag, 1992.

[BHRR91] J.W. de Bakker, C. Huizing, W.-P. de Roever, and G. Rozenberg(Eds.).

Real-Time: Theory in Practice. LNCS 600, Springer-Verlag, 1991.

[BJ87] K. Birman and T. Joseph. Reliable communication in the presence of failures.

ACM Transactions on Computer Systems 5(1}, pages 47-76, 1987.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica.­

tion. Information & Control, 60:109-137, 1984.

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal

logic specifications. In Proc. of the 16th Annual ACM Symposium on Theory

of Computing, pages 51-63, 1984.

[BKP85] H. Barringer, R. Kuiper, and A. Pnueli. A compositional temporal approach

toa CSP-like language. In Formal Models in Programming, pages 207-227.

E.J. Neuhold and G. Chroust (Eds.), 1985.

[BKT85] J.A. Bergstra, J.W. Klop, and J.V. Tucker. Process algebra with asyn­

chronous communication mechanisms. In Seminar on Concurrency, pages

76-95. S.D. Brookes, A.W. Roscoe, and G. Winskel (Eds.), LNCS 197,

Springer-Verlag, 1985.

[CAS86] F. Cristian, H. Aghili, and R. St rong. Approximate doek synchronization de­

spite omission and performance failures and processor joins. In The 16th In­

ternational Symposium on Fault-Tolerant Computing. Wien, Austrian, 1986.

[CASD85] F. Cristian, H. Aghili, R. Strong, a.nd D. Dolev. Atomie broadcast: From

simpte message dilfusion to Byza.ntine agreement. In The 15th Annual In­

ternational Symposium on Fault- Tolerant Computing, pages 200 - 206. Ann

Arhor, USA, 1985.

[CASD89] F. Cristia.n, H. Aghili, R. Strong, and D. Dolev. Atomie broadcast: From

simple message dilfusion to Byzantine agreement.. Hesea.rch Report RJ 5244,

IBM Almaden Research Center, 1989.

BIBLIOGRAPHY 155

[CH92] J. Coenen and J. Hooman. A compositional semantics for fault-tolerant

reai-time systems. In Pormal Tcchniques in Real- Time and Fault- Tolerant

Systems, pages 33-51. J. Vytopil (Ed.), LNCS 571, Springer-Verlag, 1992.

[CHR91] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.

Information Processing Letters, 40:269 276, 1991.

[CHRR92] Zhou Chaochen, M.R. Hansen, A.P. Ravn, and H. Rischel. Duration spec­

ifications for shared processors. In Pormal Techniques in Real-Time and

Fault-Tolerant Systems, pages 21-32. J. Vytopil (Ed.), LNCS 571, Springer­

Verlag, 1992.

[CM84]

[Coe92]

[Cri85]

[Cri90]

[Cri93]

[CW92]

[Dij76J

[DS89]

[Ger84]

J.M. Chang and N. Maxemchuck. Reliable braadcast protocols. ACM Trans­

actions on Computer Systems 2(9}, pages 251-273, 1984.

J. Coenen. Specifying fault tolerant programs in deontic logic. In Proc. of

the First International Workshop on Deontic Logic in Computer Science,

1992.

F. Cristian. A rigarous approach to fault-tolerant programming. IEEE

Trans. on Software Engineering SE-11 (1), pages 23-31, 1985.

F. Cristian. Synchronous atomie braadcast for redundant braadcast chan­

nels. The Journalof Real-Time Systems 2, pages 195-212, 1990.

F. Cristian. Comments. Private Correspondence, 1993.

P. Coesmans and M.J. Wieczorek. Forma] specification of fault-tolerant

real-time systems using minimal3-sorted modallogic. In Pormal Techniques

in Real-Timc and Fault-Tolerant Systems, pages 571-590. J. Vytopil (Ed.),

LNCS 571, Springer-Verlag, 1992.

E.W. Dijkstra. A Discipline of Pmgramming. Prentice-Hall, 1976.

J. Davies and S. Schneider. Factorizing proofs in timed CSP. In Mathe­

matica/ Foundations of Pmgramming Semantics, pages 129-159. M. Main,

A. Melton, M. Mislove, and D. Schmidt (Eds.), LNCS 442, Springer-Verlag,

1989.

R. Gerth. Transition logic: How to reason about temporal properties in a

compositional way. In P1·oc. ofthe 16th Annual ACM Symposium on Theory

of Computing, 1984.

156

[GJ88]

[Gou88]

[Har88]

[Hen91]

BIBLIOGRAPHY

A. Goswami and M. Joseph. Semantics of reai-time distributed programs.

In Formal Techniques in Real-Time and Fault- Tolerant Systems. M. Joseph

(Ed.), LNCS 331, 1988.

Ronald Gould. Graph Theory. The Benjamin/Cummings Publishing Com­

pany, lnc., 1988.

E.' Harel. Temporal analysis of reai-time systems. Master's thesis, The

Weizmann Institute of Science, Rehovot, lsrael, 1988.

T.A. Henzinger. The Temporal Specification and Verification of Reai-Time

Systems. PhD thesis, Stanford University, 1991.

[HGR87] C. Huizing, R. Gerth, and W.-P. de Roever. Full abstraction of a reai-time

denotational semantics for an OCCAM-like language. In Proc. of the 14th

ACM Symposium on Principles of Programming Languages, pages 223-237,

1987.

[HKZ91] J. Hooman, R. Kuiper, and P. Zhou. A compositional proof system for reai­

time systems based on explicit doek temporal logic. In Proc. of the 6th

International Workshop on Software Specification and Design, pages llG-

117. IEEE Computer Society Press, 1991.

[HLP90] E. Hare!, 0. Lichtenstein, and A. Pnueli. Explicit doek temporallogic. In

Proc. Symposium on Logic in Computer Science, pages 402-413, 1990.

[HMP92] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In

Real-Time: Theory in Practice, pages 226-251. J.W. de Bakker, C. Huizing,

W.-P. de Roever, and G. Rozenberg (Ed.), LNCS 600, Springer-Verlag, 1992.

[H083] KT. Hailpern and S.S. Owicki. Modular verification of computer communi­

cation protocols. IEEE Tmnsactions on Communications, COM-31(1):56-

68, 1983.

[Hoa85]

[Hoo9l]

(Hoo93]

C.A.R. Hoare. Communicating Sequentia{ Processes. Prentice Hall, 1985.

J. Hooman. Specification and Compositional Verification of Rcal- Time Sys­

tems. LNCS 558, Springer-Verlag, 1991.

J. Hooman. Compositiona.l verification of a dist.ributed rea.l-time arbitration

protocol. Real- Time Systems, to appear, 1993.

BIBLIOGRAPHY 157

[JJH90]

[JMS87]

[Jon80]

[Jon85]

[Jon90]

(Koy92]

He Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and

asynchrony. In Proc. of IFIP Working Conference on Programming Concepts

and Methods, pages 459-478, 1990.

M. Joseph, A. Moitra, and N. Soundararajan. Proof rules for fa.ult tolerant

distributed programs. Science of Computer Programming 8, pages 43-67,

1987.

C.B. Jones. Software Development A Rigorons Approach. Prentice Hall,

1980.

B. Jonsson. A model and proof system for asynchronous networks. In Proc.

of the 4th ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, pages 49-58, 1985.

C.B. Jones. Systematic Software Development using VDM. Prentice Hall,

1990.

R. Koymans. Specifying Message Passing and Time-Critica{ Systems with

Temporal Logic. LNCS 651, Springer-Verlag, 1992.

[KSR+ss] R. Koymans, R.K. Shyamasundar, W.-P. de Roever, R. Gerth, and S. Arun­

Kumar. Compositional semantics for reai-time distributed computing. ln­

formation and Computation, 79(3):210-256, 1988.

[KVR83] R. Koymans, J. Vytopyl, and W.-P. de Roever. Reai-time programming and

asynchronous message passing. In Proc. of the 2nd A CM Symposium on

Principlesof Distributed Computing, pages 187-197, 1983.

[LA90] P.A. Lee and T. Anderson. Fault Tolemnce - Principles and Practice.

Springer-Verlag, 1990.

[Lam83a] L. Lamport. Specifying concurrent program modules. ACM Transactions

on Programming Languages and Systerns, 5(2):190-222, 1983.

[Lam83b] L. Lamport. What good is temporallogic. In lnforrnation Processing, pages

657-668. R.E. Manson (Ed.), North Holland, 1983.

[Lar90] K.G. Larsen. Compositiona.l theories bascd on an operational semantics of

contexts. In Stepwise Refinement of Disl!·ibuted Systerns, pages 487-518.

J.W. de Bakker, W.-P. de Roever, and G. Rozenberg (Eds.), LNCS 430,

Springer-Verlag, 1990.

158

[Mil83]

[Mil89]

[MP82]

[MP91]

[MT90]

BIBLIOGRAPHY

R. Milner. Calculi for synchrony and asynchrony. Theoretica! Computer

Science, 25, 1983.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

Z. Manna and A. Pnueli. Verification of concurrent programs: a temporal

proof system. In Foundations of Computer Science IV, Distributed Systems:

Part 2, volume 159 of Mathematica/ Centre Tracts, pages 163-255, 1982.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer, Berlin, 1991.

F. Moller and C. Tofts. A temporal calculus of communicating systems. In

CONCUR '90, pages 401-415. J.C.M. Baeten and J.W. Klop (Eds), LNCS

458, Springer-Verlag, 1990.

[NDG086) V. Nguyen, A. Demers, D. Gries, and S. Owicki. A model and temporal

proof system for networks of processes. Distributed Computing, 1(1):7-25,

1986.

[NRSV90] X. Nicollin, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: an algebra for

timed processes. In Programming Concepts and Methods, pages 415-442. M.

Broy and C.B. Jones (Eds.), 1990.

[Occ88]

[OL82]

[Ost89]

[Pel91]

[PH88]

[Pnu77]

INMOS Limited. ÜCCAM 2 Reference Manual, 1988.

S. Owicki and L. Lamport. Proving liveness poperties of concurrent

programs. ACM Transactions on Programming Languages and Systems,

4(3):455-495, 1982.

J. Ostroff. Temporal Logic for Real- Time Systems. Advanced Software De­

velopment Series. Research Studies Press, 1989.

J. Peleska.. Design and verification of fault tolerant systems with CSP. Dis­

tributed Computing 5, pages 95-106, 1991.

A. Pnueli a.nd E. Harel. Applications of temporallogic to the specification

of rea.l-time systems. In forma! Techniques in Real- Time and l''ault- Tolerant

Systems, pages 84-98. M. Joseph (Ed.), LNCS 331, 1988.

A. Pnueli. The temporallogic of programs. In Proc. of the 18th Symposium

on foundations of Computer Science, pages 46-57, 1977.

BIBLIOGRAPHY 159

[PWT90] P. Place, W. Wood, aqd M. TudhalL Survey of forma! specification tech­

niques for reactive systems. Technica! Report CMU /SEI-90-TR-5, Software

Engineering Institute, Carnegie-Mellon University, 1990.

[Ree89] G.M. Reed. A hierarchy of domains for reai-time distributed computing. In

Mathematica[Foundations of Programming Language Semantics, pages 80-

128. M. Main, A. Melton, M. Mislove, and D. Schmidt (Eds.), LNCS 442,

Springer-Verlag, 1989.

[RH91] J. Rushby and F. von Henke. Forma! verification of algorithms for critica!

systems. ACM SICSOFT Engineering Notes, 16(5):1-15, 1991.

[RLT78J B. Randell, P.A. Lee, and P.C. Treleaven. Reliahility issues in computing

system design. ACM Computing Surveys, 10(2):123-165, 1978.

[Roe85) W.-P. de Roever. The quest for compositionalit.y - a survey of assertion­

based proof systems for concurrent programs, Part I: concurrency based on

shared variables. In Proc. of the IFIP Working Conference 1985: The role

of abstractmodelsin computer science, pages 181-207. North-Holland, 1985.

[RP86]

[RR86)

[SC93]

[SH93]

[Sha92]

[SM81]

R. Rosner and A. Pnueli. A choppy logic. In Pmc. Symposium on Logic in

Computer Science, pages 306-313, 1986.

G. Reed and A. Roscoe. A timed model for Communicating Sequentia!

Processes. In Proc. of ICALP '86: Automata, Languages, and Programming,

pages 314-323. LNCS 226, Springer-Verlag, 1986.

H. Schepers and J. Coenen. Trace-based compositional refinement of fault

tolerant distributed systems. In Proc. of the 4th IFIP Working Conference

on Dependable Computing for Critica/ Application,q. to appear, 1993.

H. Schepers and J. Hooman. Trace-hascd compositional reasoning about

fault tolerant systems. In PARLE: Parallel Architectures and Languages

Europe. Springer-Verlag, 1993.

N. Shankar. Mechanica! verification of a gencralized protocol for Byzan­

tine fault tolerant doek synchroniza.tion. In Fonnal Techniques in Reai­

Time and Fault- Tolerant Systems, pages 217-236 .. J. Vytopil(Ed.), LNCS

571, Springer-Verlag, 1992.

A. Sa.lwicki and T. Ylnldner. On the a.lgorithmic properties of concurrent

programs. In Logic of Pmgrams, pages 169-197. E. Engeier (Ed.), LNCS

125, 1981.

160

[Yi91]

[Yod92]

[ZH92]

[ZH93a]

[ZH93b]

BIBLIOGRAPHY

Wang Yi. CCS + time an interleaving model for real time systems. In

Automata, Languages and Programming, pages 217-228. J. Leach Albert, B.

Monien, and M. Rodriguez (Eds.), LNCS 510, Springer-Verlag, 1991.

V. Yodàiken. Verification of a reliable net protocol. In Forma/ Techniques

in Reai-Time and Fault-Tolerant Systems, pages 193-215. J. Vytopil (Ed.),

LNCS 571, Springer-Verlag, 1992.

P. Zhou and J. Hooman. A proof theory for asynchronously communicating

reai-time systems. In Proc. of the 13th IEEE Real-Time Systems, pages

177-186. IEEE Computer Society Press, 1992.

P. Zhou and J. Hooman. Forma! spedfication and compositional verification

of an atomie broadcast protocol. submitted, 1993.

P. Zhou and J. Hooman. Specification and verification of an atomie broad­

cast protocol. In Proc. of the 4th JFIP Working Conference on Dependable

Computing for Critica{ Applications. to appear, 1993.

[ZHK93] P. Zhou, J. Hooman, and R. Kuiper. Compositional verification of real-time

systems with explicit doek temporallogic. }ormal A spects of Computing, to

appear, 1993.

[Zwi89] J. Zwiers. Compositionality, Concurrency and Partial Correctness. LNCS

321, Springer-Verlag, 1989.

Samenvatting

In dit proefschrift onderzoeken we formalismen waarin de correctheid van reai-time en

fout-tolerante systemen bewezen kan worden. Reai-time systemen worden gekarakte­

riseerd door quantitatieve tijdseisen betreffende het optreden van gebeurtenissen. Ty­

pische voorbeelden van zulke systemen zijn te vinden in nucleaire energie centrales,

industrieële procesbesturing en vliegtuig systemen. De correctheid van deze reai-time

systemen hangt niet alleen af van hun functionele gedrag maar ook van hun timing. Ge­

zien de complexiteit van veel reai-time systemen is het niet eenvoudig om te garanderen

dat aan hun functionele en timing eisen is voldaan. Nog moeilijker is het om correct­

heid te garanderen als componenten kunnen falen. In reai-time systemen worden vaak

fout-tolerante technieken toegepast om een zekere service te kunnen blijven leveren bij

het optreden van fouten. Technieken om fout-tolerantie te bereiken zijn in het algemeen

gebaseerd op het efficiënt benutten van redundantie. De introductie van redundantie

zal echter het tijdsgedrag van een systeem beïnvloeden. Dit wijst op een sterke relatie

tussen reai-time en fout-tolerantie.

Om het ontwerpen van een reai-time en fout-tolerant systeem te formaliseren is een

specificatietaal een eerste vereiste. Zo'n taal moet in staat zijn de eisen van een sys­

teem precies te beschrijven. Een formele beschrijving van de eisen wordt een specifi­

catie genoemd. Een mogelijke aanpak voor het verifiëren dat een programma aan een

specificatie voldoet is het ontwerpen van een bewijssysteem bestaande uit axioma's en

afleidingsregels. In dit proefschrift ligt de nadruk op het ontwerpen van bewijssystemen

die compositioneel zijn. Een compositioneel bewijssysteem stelt ons in staat een systeem

te verifiëren door alleen de specificaties van de componenten te gebruiken, zonder kennis

van hun interne structuur, en zo te abstraheren van hun implementatie.

Dit proefschrift bestaat ruwweg uit twee delen die hieronder beschreven worden.

Reai-Time Formalismen

Om een compositioneel bewijssysteem te ontwikkelen beschouwen we twee versies van

een reai-time programmeertaal waarin parallelle processen communiceren door middel

van het sturen van boodschappen. In de eerste versie is communicatie synchroon, dat wil

161

162 SAMENVATTING

zeggen dat zowel zender als ontvanger wachten met communiceren totdat er een commu­

nicatie partner beschikbaar is. In de tweede versie is communicatie asynchroon, hetgeen

betekent dat de zender zijn boodschap onmiddellijk verstuurt zonder op een partner te

wachten, terwijl een ontvanger nog steeds moet wachten als er geen boodschap beschik­

baar is. Als startpunt voor de ontwikkeling van een compositioneel bewijssysteem geven

we een compositionele semantiek voor elk van deze twee versies van de programmeertaal.

De comp~itionele semantiek zal gebruikt worden als basis voor de interpretatie van

de specificatietaaL In de hoofdstukken 2 en 3 van dit proefschrift is de specificatietaal ge­

baseerd op Explicit Clock Temporal Logic (ECTL). ECTL is een uitbreiding van lineaire

tijd temporele logica met een speciale tijdsvariabele die expliciet refereert aan waarden

van een globale klok. Overeenkomstig de programmeertaal zijn er van de specificatietaal

ook twee versies, een synchrone en een asynchrone versie.

We ontwikkelen een compositioneel bewijssysteem voor elk van de twee versies van

de programmeertaal en de specificatietaaL Er wordt bewezen da.t beide bewijsmethoden

gezond zijn met betrekking tot de semantiek (dat wil zeggen, alle in het bewijssysteem

afleidbare formules zijn geldig) en relatief volledig zijn met betrekking tot een bewijs­

systeem voor ECTL (dat wil zeggen, alle geldige formules kunnen in het bewijssysteem

afgeleid worden, mits alle geldige ECTL formules axioma's van het bewijssysteem zijn).

De synchrone versie van het formalisme wordt in dit proefschrift toegepast bij het spe­

cificeren en verifiëren van een klein deel van een vliegtuig besturingssysteem.

Real-Time en Fout-Tolerante Toepassing

Na deze meer theoretische studie, waarbij het formalisme gebaseerd is op ECTL, on­

derzoeken we de specificatie en verificatie van realistische toepassingen. Omdat atomie

broadcast een van de fundamentele concepten is in fout-tolerantie, kiezen we voor de

bestudering van een atomie broadcast protocol. Dit protocol wordt uitgevoerd in een net­

werk van processoren en communicatieverbindingen daartussen, en kan gekarakteriseerd

worden door drie eigenschappen: terminatie, atomiciteit en ordening. Deze eigenschap­

pen kunnen als volgt geformuleerd worden: als een correcte processor een boodschap

broadcast dan dienen alle correcte processoren deze boodschap te ontvangen binnen een

bepaalde tijdslimiet (terminatie), als een correcte processor een boodschap ontvangt op

een bepaald tijdstip dan dienen alle correcte processoren deze boodschap op ongeveer

het zelfde tijdstip te ontvangen (atomiciteit), en alle correcte processoren dienen bood­

schappen in dezelfde volgorde te ontvangen (ordening). De atomie broadcast service

wordt geïmplementeerd in een netwerk van gedistribueerde processoren door het repli­

ceren van een speciaal server proces op elke processor in het netwerk. Parallelle executie

van de server processen dient te leiden tot deze drie eigenschappen van het protocol.

163

Een processor of een communicatieverbinding is correct als het zich gedraagt zoals

gespecificeerd. Anders faalt het. Het gekozen protocol is ontworpen om omission fouten

te tolereren. Als een processor een omission fout vertoont dan kan het geen boodschap­

pen versturen naar andere processoren. Als een communicatieverbinding te lijden heeft

van een omission fout dan kunnen boodschappen die via de link verstuurd worden ver­

loren gaan. Boodschappen die door een processor ontvangen worden zijn echter correct

betreffende timing en inhoud. Elke processor heeft toegang tot een lokale klok. Er wordt

veronderstelt dat lokale klokken van correcte processoren gesynchroniseerd zijn binnen

een zekere marge.

De specificatietaal in de hoofdstukken 2 en 3 is gebaseerd op ECTL waarin de speciale

tijdsvariabele kan refereren aan waarden van een globale klok. Gezien de complexiteit

van ECTL formules en het streven om de formele verificatie nauw te laten aansluiten

bij de intuïtieve correctheidsargumenten, kiezen we in hoofdstuk 4 een andere specifica­

tietaal gebaseerd op eerste-orde logica.

De verificatie van het protocol geschied als volgt. Allereerst worden de eigenschappen

van het protocol beschreven. Ten tweede worden het onderliggende communicatie me­

chanisme, de kloksynchronisatie aanname en de aannames over het. optreden van fouten

geaxiomatiseerd. Ten derde wordt het server proces gekarakteriseerd door een formele

specificatie. Ten vierde bewijzen we dat parallelle executie van de server processen tot de

gewenste protocol eigenschappen leidt. Het protocol wordt compositioneel geverifiëerd

door gebruik te maken van specificaties waarin de timing Viln componenten uitgedrukt

wordt met behulp van lokale klok waarden. Dit in tegenstelling tot gebruikelijke reai­

time verificatiemethoden, inclusief onze bewijssystemen van de hoofdstukken 2 en 3,

waarin timing uitgedrukt wordt met behulp van waarden van een globale klok.

Een natuurlijke voortzetting van dit werk is het implementeren van het server proces

in een bepaalde programmeertaal en het verifiëren da.t een implementatie inderdaad

correct is. Dit wordt echter niet in dit proefschrift geda.a.u en behoort tot toekomstig

werk.

164 SAMENVATTING

Curriculum Vitae

The author of this thesis was born on May 22, 1964 at Jian Yang, Sichuan province,

China. In 1980, she finished her secondary education and entered Wuha.n University

to study at the Department of Computer Science. In July 1984, her university educa.­

tion was completed with a project named "Design and Implementation of University

Personnel Management System" and she was awarded a Bachelor's degree in Computer

Science. From September 1984 to July 1987, she undertook her postgraduate study a.nd

research at the same department in Wuha.n University and finished it with a Master's

degree in Computer Science. Her master thesis was supervised by Prof. Qiongzha.ng Li

a.nd was entitled "A Temporal Semantics for a Distributed Programming Language"'.

She was awarded a Young Scientist Prize by the 1st National Conference in Theoreti­

ca! Computer Science held in Beijing, China in 1985 and an Outstanding Postgraduale

Research Prize by Wuhan University in 1986. From August 1987 to April 1989, she

worked as an assista.nt researcher at the Institute of Computer Application of Chengdu

Branch of Chinese Academy of Sciences, and was awarded a Young Scientist Prize by

the institute in 1988.

In October 1988 she met Prof. Willem-Paul de Roever who was invited to China

by her master thesis external examiner Prof. Cha.ochen Zhou. This meeting resulted in
a.n offer for her to workat Eindhoven University of Technology (Technische Universiteit

Eindhoven, TUE). From May 1989 to January 1992, she was employed by the Depart­

ment of Mathernaties and Computing Science of TUE as a researcherin theEsprit-BRA

project 3096 "Formal Methods and Tools for the Development of Distributed and Reai­

Time Systems" (SPEC). Since February 1992, she has been workingas a.n "assistent in

opleiding" for her Ph.D at the same department of TUE. When Prof. W.-P. de Roever

left Eindhoven in 1990, her daily supervision was taken over by Dr. Jozef Hooma.n, who

suggested the topics worked out in this thesis and helped her with the resulting research.

165

Stell~ngen

behorende bij het proefschrift

Clocks, Communications, and Correctness

van

P. Zhou

1. Consjder tbe following two verslons of a real-timc programming language in whîch

parallel processes communicate by message passing «long unldiredion.a.l channels.

In the firsL \'Crsion, the communication is synchronous, Le,, both sender and re~

ceiver have to wait until a communîcation pa.rtner is available. In the second

version 1 the communlcation is asynchronous, namely, a scn<ler does noL walt for

a recelver, but a receiver still ha.~ to wait fora message arrivJng if there are no

messages in the buffer for a specific channeL To obtain a <'Álmpositiona.l seman­

tics for the synchronous version of the language 1 tbc model of oomputation should

record the information Lha.L a process is waiting tosend or Lo receive on a pa.rtic~

ular channeL For the asynchronous versîon, however, such waiting informatioii is

noL needed, but explicit a.ssumplions abouL the environment are contained in the

model.

See chapters 2 and 3 of this thesis.

2. Maximal Parollelisrn [KSR+88] means that each parallel process runs at a distind

processor. Therefore each process is executed without unnecessary waiting. ~'hen

applied to tbe two versionsof the programming lnnguage mentioned above1 it bas

different implications. For t.he synchronous versîon 1 H implles that a. process only

waits when it tries to execnte a.n input or output statnment but the communicalion

partner is noL available. 1n Lbc asyitchroitous case) however, it eitforces that a

process only wa.i.Ls when it tries to receive a message along a channel whi1e the

buffer for that channel is empty.

See. cbapters 2 and 3 of this thesis.

[KSR+ssj R. KoymaM, R.K Shynmasunda.r, W.-P. de Rocvcr, R. Gerth, and

S. Arun-Kumar. ComposîLîonal scmantics for real~time dlstributed cornputing.

lnformation and Computation, 79(3):210-256, 1988.

3. ECTL (this thesis), RTTL ([Ost89j), XCTL (IHLP90j), and TPTL ([Hen91J) are

reai-time cxtensions of linear temporal logic. A compnrison between lbem can

he made ;u:cording to tbeir use of the time variahle 1 global variablest unl\·ersal

quantificat.ioll, a.nd freczt: quantification (wbich bind;; t he valuc of the doek to tbc

quanlified variahlc):

t1me var. global 11ar. um'vcr·sal qmm. frcc.::c qtum.

ECTL yes 110 110 no

RTTL yes yc,s yes no

XCTL !/C8 yc.;; 110 110

TPTL ilfJ ye.« 110 !JUf

[Ost89j .J. Ostroff. Temporal Logic for Real- Time. Systems. Ad vaneed Software

Developrnent Series. Research Studi~s Press, 1989.

[HLP90] E. Hare!, 0. Lichtenstein, and A. Pnueli. Explicit doek ternporallogic.

In Proceedings Symposium on Logic in Computer Sc.iencc., pages 402-413, 1990.

[Hen91] T. Hcnzinger. The Tempora./ Spc.cifica.l.ion and Vcrifieation of Reai-Time

Systems. PhD thesis, Stanford University, I 991.

4. The atomie braadcast protocol in chaptcr 4 of this thesis is verified compositionally

by using specifications about the protocol in which timing is expressed by loca.l

clock values. This is new in rea.l-time specification and verification, sincc until

now most methods for program verification use only global doek values, see e.g.

[BHRR91].

[BHRR91] J.W. de Bakker, C. Huizing, W.-P. de Roever, and G. R.ozenberg(Eds.).

Real-Time: Thcory in Practice, REX Workshop Proceedi11gs. LNCS 600, Springer­

Verlag, 1991.

5. Tn Western society, Chinese nan_1es are usually transformcd into English spellings

consisting of letters. Such a transformation is possible for any Chinese name. On

the other hand, an English spelling corresponding toa possible Chinese name can

a.lso be converled into a Chinese name. Th is conversion, hmvever, is nota fundion

in the mathematica! sense, as many different Chinese n<lmes have the same English

spelling.

6. A possible topic for future work is to dcvelop a fault-tolcrant proof system. Such a

proof system can be formulated similarly to [CH92] where the behavior of a process

is partitioned into the normal behavior a.nd the fault beha.vior {that describes the

behavior if a fault occurs).

[CH92] J. Coenen and J. Hoom<tn. A cornpositionnl s~ruantics for fault-tolerant

real-timesystems. In fOnn.al Tc.clmiqucs ilr Real- Time mul Fa11il- Tolerant Systc.ms,

pages 33-51. J. Vytopil (Ed.), LNCS 5ïl, Springer-Verlag, 1992.

Î. A key point to a compositional semantics is that !.he s~mantics of a component

should contain all the possible cxecutions of thc component in any environment.

A dictionru·y1 which givf!S me<tnings to thc words of a la.ngu<lgc, can be considered

as a scmantics. In reality, most of the dictionaries are nol. compositional, because

they usually do not list all the meanings of a word in any context.

8. From the amount of vcrification steps in chaptcrs 2 <tnd ;J of this thesis and espe­

cially of the verification of the atomie hroa<lcast protocol in chaptcr 4, it follows

that the only future for tb is field is in supporting it by mechanica! verification.

9. Thesemantics of a syntactic construct is not always uniquely defined. For instance,

Tangram is an ancient Chinese game [Elf76], but it is also a VLSI-programming

language [Ber92]. Nevertheless, we have to tolerate this phenomenon.

[Elf76] J. Elfers. Tangram: the Ancient Chinese Shapes Game. Penguin Books,

1976.

[Ber92] K. van Berkel. Handshake Circuits: an Intermediary between Communi­

cating Processes and VLSI. PhD thesis, Eindhoven University of Technology, the

Netherlands, 1992.

10. A highly educated woman around thirty is usually on the horns of a dilemma: to

pursue her career or to have children. In Western society, these two cannot he

carried out in parallel: choosing one implies that the other has to he dela.yed.

