EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Clocks, communications, and correctness

Citation for published version (APA):
Zhou, P. (1993). Clocks, communications, and correctness. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR405965

DOI:
10.6100/IR405965

Document status and date:
Published: 01/01/1993

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR405965
https://doi.org/10.6100/IR405965
https://research.tue.nl/en/publications/feabba76-8f21-4fcf-a2d9-c1b04e4a4c06

Clocks,
Communications,
amal

Correctmess

P, Zhou



Clocks, Communications,
and Correctness

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op
donderdag 2 december 1993 om 14.00 vur

door

PING ZHOU
geboren te Sichuan, CHINA

druk: wibro dissertatiedrukkerif, holmond.



Dit proefschrift is goedgekeurd
door de promotoren

prof. dr. W.-P. de Roever
prof. dr. J.C.M. Baeten

en de copromotor
dr. J.J.M. Hooman

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Zhou, P.

Clocks, communications, and correctness / P. Zhou.

- Eindhoven: Eindhoven University of Technology

Thesis Eindhoven. - With ref. - With summary in Dutch.
ISBN 90-386-0442-4

Subject headings: real time / fault tolerance / verification. .



Acknowledgements

I would like to express my sincere appreciation to prof. Willem-Paul de Roever, my
first promotor, who provided me with the opportunity to work at Eindhoven University
of Technology. During the last years, his criticism, guidance, and encouragement have
always stimulated my work. I am also very grateful to his wife, Corinne de Roever, who
kindly helped me get used to my new life in the Netherlands.

Many thanks go to prof. Jos Baeten for his willingness to be my second promotor
and for his constructive remarks on my thesis draft. Prof. Dieter Hammer is thanked
for his practical view and suggestions concerning my work. 1 am specially grateful to
prof. Chaochen Zhou for being a member of my promotion committee and for carefully
reading my thesis draft. Prof. Flaviu Cristian is appreciated for his interest and detailed
comments on a manuscript of chapter 4 of this thesis.

Dr. Ruurd Kuiper is thanked for helping me start my research work and for cooper-
ating on a joint paper. It is my pleasure to thank dr. Jozel Hooman, my copromotor,
who helped me produce this thesis, from the selection of topics to the presentation of my
papers. My colleagues in the section of theoretical computer science are also thanked
for their kindness and help in many aspects.

My deep appreciation goes to my parents and my elder brother without whose love
and encouragement I could not have finished this thesis. Finally, I thank my husband,

Haoran, who gives me such an enjoyable life and all the support I need during my work.



Contents

1 Introduction 1
1.1 RealTimeFormalisms . ... ... ... ... ..., ... ........ 2
1.2 Real-Time and Fault-Tolerant Applications . . . .. .. ... ... .. .. 6
1.3 Notionof Time . .. .. ... ... .. .. ... ....... P 9
14 Overview. . . . . . . . . 10
2 Synchronous Communication 13
2.1 Real-Time Programming Language . .. .. .. ... ... .. .. ..., 13
2.2 Compositional Semantics . . . . ... L. L Lo oL 16
2.3 Specification Language . . . . . ... ... oL o, 24
24 Proof Systermn . . . . . .. L e 28
25 Application . .. .. L e 33
2.6 Soundness and Completeness. . . . . . . . . ... 39
3 Asynchronous Communication , 43
3.1 Real-Time Programming Language . . . . . .. .. ... ... ... ... 43
3.2 Compositional Semantics . . . . .. .. ... ... L. 45
3.3 Specification Language . . . . ... ... Lo Lo Lo oo L. 54
34 Proof System . . . .. ... 58
3.5 Soundness and Completeness. . . . . . . ... ... ... .. 62
4 Atomic Broadcast Protocol 67
4.1 Introduction . . . . . .. ... 67
4.2 Top-Level Specification . . . . .. ... ... . ... ... . .. 70
4.3 System Assumptions . . . ... ... L Lo L o 73
44 Server Process Specification . . . . . . ... L 0 L. 78
4.5 Verification of Termination . . . . .. .. . ... ... . L L L. 80
4.6 Verification of Atomicity . . . . . .. ... L L Lo 85
4.7 Verificationof Order . . . . . . . .. .. . . 93
4.8 Comparison . . . . . . . . . e e e 96



il CONTENTS

5 Conclusions 99
5.1 Summary . . . . .. it e e 99
52 Related Work . . . .. . . .. . . 100

A Proofs of Lemmas in Chapter 2 103

B Soundness of the Proof System in Chapter 2 113

C Preciseness of the Proof System in Chapter 2 125

D Proofs of Lemmas in Chapter 3 137

E Soundness of the Proof System in Chapter 3 145

- F Precise Specifications for Statements in Chapter 3 149

Bibliography 153

Samenvatting 161

Curriculum Vitae ‘ 165



Chapter 1
Introduction

Computer systems are being used in a wide variety of real-time applications, such as:
nuclear power plant control, industrial manufacturing control, medical monitoring, and
flight systems. Such real-time systems are characterized by timing constraints relating
occurrences of events. For instance, it is often required that an event is followed by
another event in less than 7 time units, two consecutive occurrences of an event should be
at least 3 time units apart, or a process should terminate by some deadline. Thus not only
the functional but also the timing behavior of these systems is essential. Traditionally,
the correctness of untimed computer systems is determined only by their logical and
functional behavior. For real-time systems, their correctness depends on the temporal
properties of their behavior as well.

Real-time systems are usually very complicated. It is not easy to guarantee that
they will always meet their timing requirements. When failures occur, it is even more
difficult to ensure that they will function correctly, Fault-tolerance techniques are often
applied in real-time systems to ensure their correctness despite the presence of faults. All
techniques for achieving fault-tolerance depend on the effective utilization of redundancy,
that is, extra elements in the system which are redundant in the sense that they would
not be required in a system which could be guaranteed to be free from faults [LA90).
However, the introduction of redundancy does influence the timing behavior of a system.
For instance, the termination time of some process could be delayed and thus some
deadline might not be met. Therelore real-time and faull-tolerance are closely related.
Since there is hardly any existing theory for specifying and verifying real-time and fault-
tolerant systems, it is a challenging problem to ensure the correctness of these systems.

In this thesis we investigate formalisms for specilying and verifying real-time and
fault-tolerant systems and their applications. The rest of this introduction consists of
four sections: in section 1.1 we explain the development of real-time formalisms, in
section 1.2 we describe the specification and verification ol real-time and fault-tolerant

applications, in section 1.3 we discuss the notion of time, and in section 1.4 we give the

1



2 CHAPTER 1. INTRODUCTION

structure of this thesis.

1.1 Real-Time Formalisms

1.1.1 Programming Language and Semantics

We start with a real-time programming language which is similar to Occam [Qcc88)]. This
language is equipped with parallel composition and communication via message passing
along channels, each of which is unidirectional and connects exactly two processes. A
delay-statement is introduced to suspend the execution for some specified time. This
statement may occur in the guard of a guarded command (similar to a delay-statement
in the select-construct of Ada [Ada83]). We consider the following two versions of this
language which differ in communication mechanisms.

In chapter 2, we study the first version in which communication is synchronous, i.e.,
a sender and a receiver both have to wait with communication until a communication
partner is available. This version is similar to the CSP language in [Hoa85]. In contrast
with this, we investigate in chapter 3 the second version of the programming language
where communication is asynchronous, namely, a sender does not wait to synchronize
with a receiver, but a receiver still has to wait for a message arriving if there are no
messages in the buffer of a particular channel. It is assumed that all channels are
capable of buffering an arbitrary number of messages. This is similar to the asynchronous
communication mechanism defined in [JJH90].

Our aim is to develop a compositional proof system for the programming language.
Compositionality enables us to derive the specification of a compound programming
language construct from specifications of its constituent parts without any information
about the internal structure of these parts [Ger84,Roe85]. A good starting point for a
compositional proof system is a compositional semantics, i.e., the meaning of a process
can be derived from the meanings of its components. Thus, for each of the two versions,
the meaning of the programming language is defined by a compositional semantics. To
achieve cbmpositionality, the semantics of a process contains all possible computations
of the process in any arbitrary environment, since the actual environment is not known
in advance, Later, when we compose this process with some environment, impossible
computations with respect to the given environment are excluded from the semantics of
the composition of the process and this environment.

The two versions of the programming language have diflerent models of computation,
since they have different communication mechanisms. For both versions, their models
describe for each process its states, i.e., mappings from variables to values, and its com-

munication behavior, i.e., sending and receiving of messages. In particular, the model
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for the synéhronous version also records when a process is waiting to send or to receive
on a specific channel. This waiting information is needed to obtain a compositional
semantics for this language. This is justified by the fact that this extra information
appears in the fully abstract semantics for a similar language given in [HGR87]. For the
asynchronous version, the model does not include waiting information of processes but
contains explicit assumptions about the environment. This is consistent with [BH92] in
which a fully abstract semantics for a similar language does not contain such waiting
information.

In order to describe the real-time behavior of processes written in the programming
language, we need to make assumptions about the execution time of statements. In gen-
eral, there are two approaches to model the timing aspects of statements. One, taken for
example in [NRSV90,BB91,HMP92], assumes that all statements except delays take zero
time. The other, which is taken in this thesis as well as in timed CSP [RR86], assumes
that every statement takes some amount of positive time. We will use parameters to
represent the execution time of atomic statements and the time needed for the execution
of compound statements. The correctness of a process with respect to a specification,
which may express timing properties, is verified relative to these assumptions.

Another important assumption involves parallel composition. In this thesis, we use
the mazimal parallelism model [SM81, KSR*88] to indicate that each parallel process
runs at a distinct processor. Consequently, any action is executed as soon as possible
without unnecessary waiting. Notice that maximal parallelism has different implications
when applied to the two versions of the language. In the synchronous case, it implies
that a process only waits when it tries to execute an input or output statement but the
communication partner is not available. In the asynchronous case, maximal parallelism
implies that a process only waits when it tries to receive a message along a channel for

which the buffer is empty. This will be explained in chapters 2 and 3.

1.1.2 Specification

To express properties of real-time systems, a specification language is needed. As ob-
served for example in {Lam83b], linear time temporal logic [Pnu77, MP82,0182,MP$1]
is good for specifying and reasoning about untimed concurrent systems. This logic can
express safety properties and liveness properties. Moreover, it supports reasoning in a
simple and natural way. Unfortunately, this logic allows only the treatment of qual-
itative timing requirements, such as the demand that an event happens “eventually”
or “always”. To specify real-time properties, we have 1o extend temporal logic with a
quantitative notion of time. Basically, there are two approaches.

In one approach, new temporal operators are introduced by extending the standard
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ones with time bounds. This extension of temporal logic is called Metric Temporal Logic
{MTL). A typical timing property that “every event p is followed by another event ¢ in
less than 5 time units” can be expressed in MTL as

O(p— s q)

A general discussion about MTL and specification examples using MTL can be found
in [Koy92]. This logic has been adopted to the specification of real-time properties of
a transmission medium [KVR83]. Verification methods based on MTL for real-time
transition systems can be found in [Har88,Hen81]. Compositional proof systems based
on MTL for different versions of a programming language similar to the one studied in
chapter 2 of this thesis have been formulated in [Hoo91].

In chapters 2 and 3 of this thesis, we investigate an alternative approach, called
Ezplicit Clock Temporal Logic (ECTL}, in which temporal logic is extended with a dis-
tinguished time variable T that explicitly refers to the values of a global clock.

A similar logic, called RTTL (Real-Time Temporal Logic), has been used in [Ost89)
1o reason about real-time discrete event systems. There except the time variable, the
universal quantifier is also allowed over global variables (i.e., variables whose values do

not change over time). The above example can then be expressed in RTTL as
Ye.O[(pAT =2) — O(gAT <z +35)).

Another extension appears in [PH88,Har88,HLP90|, where it is referred to as GCTL
{Global Clock Temporal Logic) and XCTL (Explicit Clock Temporal Logic), respectively.
In addition to the time variable T, GCTL and XCTL also use global variables. But it
is assumed that all global variables are universally quantified and thus no quantifier
appears in any formula.

In [AHS89] a logic called TPTL (Timed Propositional Temporal Logic) has been
proposed. There global variables are also used and the explicit reference to the clock, t.e.,
the time variable, is replaced by a special freezing quantification. The freeze quantifer z.
binds the value of the clock to the quantified variable z. An extensive discussion about
TPTL can be found in [Hen91]. The above example may be expressed in TPTL as

Orp— Cy.lgAy <z +35),

which can be read as *

‘in every state with time «, if p holds, then there is a later state
with time y such that ¢ holds and y is less than z + 5”. A survey about the above
mentioned extensions of linear time temporal logic can be found in [AH92].

This example is chosen to show the different ways of expression in those logics.
Unfortunately, the ECTL presented in this thesis cannot express the example, since it

does not contain global variables to record the values of the clock at different states. If
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the property is modified as “if p holds at the beginning of the execution, then ¢ will hold
in less than 5 time units”, then it can be expressed in ECTL as

p— O(gAT < start + 5),

where start denotes the starting time of the execution. In this thesis, we would like to
use the ECTL-based specification language to characterize all the possible executions of
a process. It turns out that global variables are not needed.

In correspondence with the two versions of the programming language, the speci-
fication language based on ECTL has also two versions. In chapter 2, we present its
synchronous version which includes primitives comm(c, vexp), wait(c!}, and wait(c?),
which mean, respectively, that a process is communicating with its partner along chan-
nel ¢ with value vexp, a process is waiting to send a message along channel ¢, and a
process is waiting to receive a message on channel ¢. In the asynchronous version of the
specification language shown in chapter 3, to describe the communication behavior, it is
sufficient to include primitives send{c, vezp) and receive(c, vexp), which denote that a
process has finished with sending and receiving value vexp along channel ¢, respectively.

After having used an ECTL-based specification language in chapters 2 and 3, it ap-
pears that it is not easy'to specify a system by using ECTL. As we will see in chapters
2 and 3, proving a simple process correct needs many steps of reasoning. In chap-
ter 4, a fault-tolerant protocol presented in [CASD89] will be specified and verified.
We would like to start with a simple specification language and to follow the infor-
mal proofs proposed in that paper. Therefore we adopt another specification language
based on first-order logic. In the protocol, parallel processes are assumed to commu-
nicate asynchronously along communication links. The primitives for communication
are send(p, m,l) at { and receive(p, m,!) at ¢, indicating, respectively, that processor p
starts to send message m along link [ at time { and p finishes with receiving m along !

at time ¢.

1.1.3 Verification

To express that a process S satisfies a specification ¢, we use a correctness formula
of the form S sat . To verify that a system satisfies a specification, usually a proof
system is used to derive the correctness formula. Such a proof system consists of axioms
for atomic statements and rules for compound statements. Global proof systems, such
as [MP82] for temporal logic, require the complete program text. In contrast with them,
we formulate a compositional proof system to reduce the complexity of verification.
Using a compositional proof system, we reason with specifications of processes instead of

their program texts and thus abstract from their implementations. Such compositional
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proof systems have been developed for uniimed systems, e.g. [Zwi89], and real-time
systems, such as [Hoo91]. Other compositional theories can be found in [Lar90].
To verify compositionally that a system satisfies a requirement, there are generally

two phases:

1. A system is decomposed into several smaller subsystems and, by using the speci-
fications of these subsystems and an appropriate compositional proof system, we
verify that the composition of these subsystems satisfies the the requirement of
the system.

This phase is performed repeatedly until it is possible to perform the second phase.

2. We implement these subsystems in some programming language and verify, by
a proof system for this programming language, that the implementations indeed
satisfly the specifications of those subsystems.

This approach is illustrated in chapter 2 by verifying a small part of an avionics system.
The principle also guides us in verifying a fault-tolerant protocol in chapter 4.

For each of the two versions of the programming and specification languages, we
formulate a compositional proof system. By examples we show how the proof systems
can be used to reason about real-time properties. These two proof systems are shown to
be sound with respect to the semantics (i.e., all correctness formulae derivable from the
proof system are valid} and relatively complete [Bak80,Apt81] with respect to a proof
system for ECTL (i.e., all valid correctness formulae can be derived from the proof
system, provided all valid ECTL formulae are axioms of the proof system).

1.2 Real-Time and Fault-Tolerant Applications

For non-fault-tolerant systems, like the ones considered in chapters 2 and 3, it is im-
plicitly assumed that all computing components are correct and remain correct during
execution of these systems, i.e., these systems {including software and hardware) are
free from faults. In reality, however, computer systems are composed of both hardware
and software in which faults may exist and cause failures. A failure occurs when the
behavior of the system deviates from its specification [RLT78]. In general, (software or
hardware) faults are causes of failures and failures are manifestation of faults [LAY0].
Such failures are taken into account in fault-tolerant systems.

In chapter 4, we study a formalism for specifying and verifying real-time and fault-
tolerant systems and apply it to a protocol. A processor or link is correct if and only if
it behaves as specified. Otherwise it suffers failures. We use primitives correct(p) at ¢

and correct(l) at 1 to indicate, respectively, that processor p and link [ are correct at
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time £. Typically for fault-tolerant systems, we also need to express the kind of failures
which are considered when designing such systems (e.g. how much time it takes a spare
generator to step in when electricity supply fails, in case of specifying a fault-tolerant
electricity supply system for a hospital). Such assumptions about failures are called
“failure assumptions” or “failure hypotheses”.

Failures of components of a system can lead to unpredictable behavior and unavail-
ability of service. To achieve a high reliability of a service in spite of failures, a key
idea is to implement the service by replicating a server process on all processors in a
network [Cri90]. A server process is a piece of software which fulfills the specific task.
Given a network of distributed processors and replicated server processes, verifying that
the service is indeed provided by the parallel execution of the server processes requires
a parallel composition rule. With the assumption of maximal parallelism (i.e., each
server process runs on its own processor), this rule states that parallel execution of
server processes satisfies the conjunction of all server specifications, provided that each
server specification only refers to the interface of the processor on which the server runs.
Moreover, we need a consequence rule which enables us to weaken a specification and
a conjunction rule which allows us to take the conjunction of specifications. To verify
compositionally that the service is provided correctly, we {ollow the principle presented
in section 1.1.3 and refine the first phase into four steps:

o First, the top-level requirement of the service should be described in some formal

language. We call this description the top-level specification.

o Second, the general system assumptions should be axiomatized. For instance, the
failure assumptions should be expressed and, when the service involves a lower
level communication between processors and local clocks of processors, the com-
munication mechanism and the clock synchronization assumptions should also be

formalized.

e Third, the properties which the server process should satisfy must be characterized
by a server specification. Such a server specification only refers to the interface of
the processor on which the server is running. We assume that the server process

running on processor p satisfies the server specification with parameter p.

By the parallel composition rule, the parallel execution of the server processes
satisfies the conjunction of the server specifications. Notice that the execution also
satisfies the system assumptions formulated in step 2. Thus, by the conjunction
rule, the execution satisfies the conjunction of the server specifications and the

system assumptions. The next, and final, step is easy to formulate.

¢ Fourth, we prove that the conjunction of the server specifications and the system
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assumptions imply the top-level specification. Then, by the consequence rule, the

parallel execution of the server processes satisfies the top-level specification.

After performing these steps, it remains to implement the server process such that the
server specification is satisfied. This is, however, not done in this thesis and might be a
topic for future work.

After this more theoretical research, we would like to apply the formal method to
examples. As a starting point of verifying real-time and fault-tolerant systems, we choose
a realistic application and apply the four steps of the compositional appreach to it. Since
atomic broadcast service is one of the fundamental issues in fault-tolerance, we selected

an atomic broadcast protocol as our case study.

The atomic broadcast protocol is executed on a network of processors and links and
is characterized by three properties [CASD89]: termination, atomicity, and order. These
properties can be described as follows: if a correct processor broadcasts a message then
all correct processors should receive this message by some time bound (termination), if
a correct processor receives a message at some time then all correct processors should
receive this message at more or less the same time (atomicity), and all correct processors
should receive messages in the same ordering {order). This protocol is implemented by
replicating a server process on all processors of the network. The parallel execution of
these server processes should lead to the properties of the protocol. A

In [CASDS&Y] there is a series of protocols tolerating, respectively, omission failures,
timing failures, and authentication-detectable byzantine failures. We chose a fairly sim-
ple protocol which tolerates omission failures. When a processor suffers an omission
failure, it cannot send messages to other processors. When a link suffers an omission
failure, the messages traveling along this link may be lost. But those messages received
by a processor are correctly received in both timing and contents. In the network of
processors, each processor has access to a local clock, It is assumed that local clocks of

correct processors are synchronized within a certain bound.

This atomic broadcast protocol is called synchronous in [Cri90] in the sense that
the underlying communication delay between correct processors is bounded. Other syn-
chronous protocols can be found in, for instance, [BD85,Cri%0]. There also exist asyn-
chronous atomic broadcast protocols which do not assume bounded message transmis-
sion delay between correct processors. Examples of asynchronous protocols are {BJ87]
and [CM84]. Also notice that, in the chosen synchronous atomic broadecast protocol
for this thesis the underlying communication is asynchronous in the sense explained in
section 1.1.1, i.e., a sender does not wait to synchronize with a receiver, and messages
are buffered by links.
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1.3 Notion of Time

In this thesis we assume maximal parallelism, i.e., each parallel process runs at its own
processor. Notice that every processor has its own local clock. But, like many formalisms
for real-time systems (e.g. see [BHRR91]), the timing behavior of a process is described
in chapters 2 and 3 from the viewpoint of an external observer with his own clock, i.e., a
global clock. Consequently, verification is done compositionally by using specifications
in which timing is expressed by global clock values.

In chapter 4, we specify and verify an atomic broadcast protocol whose specification
uses real time values as well as local clock values. Real time can be considered as
a perfect, standard, global clock, e.g., Greenwich standard time. We have primitives
like send{p,m,!) at t, where ¢ refers to real time. We use C,{¢) to denote the local
clock value of processor p at real time £. Using this notation, primitives writien in
terms of real time values can be transformed into abbreviations written in terms of local
clock values. For instance, send(p,m, !} at, U, which intuitively means that processor
p sends a message m along link ! at local clock time U, is an abbreviation of Ju :
(send(p,m, [} at u A Cp{u) = U), where u refers to some real time value and U refers to
the corresponding local clock value on processor p. We will follow [CASD89] and specify
the properties of the atomic broadcast protocol by using local clock values. We show
that the verification of the protocol can be done compositionally by using specifications
in which timing is expressed by local clock values.

In chapters 2 and 3, we assume a dense time domain called TTM E over which the
values of a global clock range. In chapter 4, we have a dense time domain called RTIME
over which all real time values range. Furthermore, there exists a discrete time domain
called CV AL which contains all local clock values.

Comparing our notion of time with that in MTL, we make the following observations.
In chapters 2 and 3, ECTL is the basis of our specification language and thus we can
use absolute time in the sense that time points in a specification refer directly to actual
global clock values. For instance, the property that in less than 8 time units after the
start of execution, process S communicates with value 7 on channel d is expressed as

follows:
S sat O[T < start + 8 A comun(d, 7).

In chapter 4, we also use absolute time and it can refer to hoth local clock values and
real time values.

In the framework of MTL, a specification can only use relative time in the sense that
time points in the specification are relative to some fixed time point. The example above
can be described in MTL-style by
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S sat O ¢g comm(d, 7).

Here the time points are relative to the starting point of the execution of S.

The primitives from the specification language in chapters 2 and 3 do not refer to
the time at which an action is happening. For example, in the specification language
in chapter 2, we have primitive comm(c,vexzp). The time when the communication
occurs is implicit in this primitive and it should be obtained from the context. For
instance, from formula O (T = 5 — comm{c, vezp)), we know that this communication
will happen when the global clock reaches 5. On the other hand, the primitives from the
specification language in chapter 4 do explicitly refer to the time. For example, primitive
send(p,m, 1) at t indicates clearly that processor p starts to send message m along link {
at real time ¢. It appears in chapter 4 that referring to the time in the primitives makes
~ the specification and verification of the protocol easier, since the primitives have already
provided the timing information and thus we do not bother ourselves with the precise
interpretation of the specification language.

1.4 Overview

The remainder of this thesis is structured as follows.

In chapter 2, we follow the outline of [Hoo91] and develop a formalism for specifying
and verifying synchronously communicating real-time systems. The synchronous version
of the programming language is described in section 2.1. A compositional semantics for
this version of the language can be found in section 2.2. The synchronous version of
the specification language based on ECTL is formulated in section 2.3. Section 2.4
contains a compositional proof system for the synchronous version of the programming
and specification languages. This formalism is applied to specify and verify a small
part of an avionics system in section 2.5. Soundness and relative completeness of this
proof system are discussed in section 2.6. The proof system and the full version of this
chapter are published in [HKZ91] and [ZHK93], respectively, which are joint work with
J. Hooman and R. Kuiper.

In chapter 3, we present the asynchronous version of the formalism. The asyn-
chronous version of the programming language is given in section 3.1. A compositional
sernantics for this version of the language is defined in section 3.2. The asynchronous
version of the specification language based on ECTL is described in section 3.3. A
compositional proof system for this asynchronous version of the programming and spec-
ification languages is proposed in section 3.4. The soundness and relative completeness
issues are discussed in section 3.5. Most of the results in this chapter appear in [ZH92].

In chapter 4, we start with an introduction about the specification and verification
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of the atomic broadcast protocol in section 4.1. The top-level specification of the atomic
breadcast service is described in section 4.2, The general system assumptions are axiom-
atized in section 4.3. The properties of the server process are expressed in section 4.4.
In sections 4.5, 4.6, and 4.7, we verify that the parallel execution of the server processes
leads to the desired top-level specification. Then we compare our results with [CASD89]
in section 4.8. The primary results of this chapter appear in {ZH93b]. A full version of
this chapter can be found in {ZH93a].

In chapter 3, we summarize our work and mention some related research.

Appendix A contains proofs of lemmas in chapter 2. Soundness and relative com-
pleteness of the proof system in chapter 2 are proved in Appendices B and C, respectively.
Proofs of some lemmas in chapter 3 appear in Appendix D. Soundness proofs of a few
modified axioms and rules of the proof system in chapter 3 can be found in Appendix
E. Precise specifications for the statements of the programming language in chapter 3
are shown in Appendix F.
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CHAPTER 1.

INTRODUCTION



Chapter 2
Synchronous Communication

In this chapter, we investigate a theory for proving the correctness of synchronously
communicating real-time systems. In section 2.1, we present the synchronous version
of our real-time programming language in which parallel processes communicate via
synchronous message passing. A compositional semantics of this language is defined in
section 2.2. The synchronous version of our specification language is given in section
2.3. A compositional proof system is developed in section 2.4. An application of the
proof theory is shown in section 2.5. Soundness and completeness of the proof system

are discussed in section 2.8.

2.1 Real-Time Programming Language

2.1.1 Syntax and Informal Semantics

We consider a real-time programming language which is akin to Occam [Occ88]. The lan-
guage is based on a real-time extension of CSP with nested parallelism and synchronous
message passing via channels [KSR*88]. A real-time statement delay e is added which
suspends the execution for e time units if e is not negative. Such a delay-statement
may also occur in the guard of a guarded command. Processes communicate by mes-
sage passing via unidirectional channels, each of which connects exactly two processes.
Communication is synchronous in the sense that a sender or a receiver has to wait for
communication until a communication partner is available.

Let VAR be a nonempty set of variables, CHAN be a nonempty set of channel names,
and VAL be a nonempty domain of values. Let IN denotes the set of all natural numbers
(including 0). The syntax of the real-time programming language is given in Table 2.1,
with ¢,¢; € CHAN, z,z; € VAR, 9 € VAL ,n€ IN,and n > 1.

Any statement in the programming language is called a process. A write-variable is a

variable which occurs in an input statement or in the left hand side of an assignment. Let

13
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Table 2.1: Syntax of the Programming Language in Chapter 2
Ezpression en= U |z | eate | ea—6leaxe
Guard gu= =6 | a<e | 9| nVe
Statement Su= skip | z:=e | delaye | cle | 7z |

Guarded Command G = [JL,9 — S| | [[gi;6lz: — Silgo; delay e — S

51‘,52 [ G I *G { S]“Sz

5 be any statement. Define var(S) as the set of variables occurring in S and wver(S) as
the set of all write-variables in §. Obviously, wvaer(S) € var(S). The set of (directional)
channels occurring in a statement S, denoted by dch(5), is defined as the set containing

all channels occurring in S together with all directional channels ¢! and ¢? occurring in
- §. For instance, dch(c!5; d?y||c?z) = {c, ¢!, ¢?,d,d?}.

Informally, the statements have the following meanings.

Atomic statements

skip terminates immediately.
x := e assigns the value of expression e to variable z.

delay ¢ suspends execution for e time units if the value of e is not negative.

Otherwise it is equivalent to skip.

cle sends the value of expression e on channel ¢ as soon as a corresponding input
statement is available. Since we assume synchronous communication, such an
output statement is suspended until a parallel process executes an input statement

of the form c?z.

c?z receives a value via channel ¢ and assigns this value to variable z. Similar to
the output statement, such an input statement has to wait for a corresponding

output statement before a synchronous communication takes place.

Compound statements

Si1; S indicates sequential composition of 51 and 5;.

Guarded command [[|;4; — Si] is executed as follows. If none of the g; evaluates
to true, then the command terminates after the evaluation of the guards. Other-
wise, nondeterministically select one of the g; which evaluate to true and execute

the corresponding statement S;.

During an execution of guarded command [[|,g:;; ¢:7x; — Si{lgo; delay e — So],

first the guards ¢;, for : = 0,1,...,n, are evaluated. Next,
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- if none of the g; evaluates to true, then the command terminates;

— if go evaluates to true, e is positive, and at least one of the ¢;7z; for which
¢; evaluate to true can start reading messages in less than e time units, then

one of the first possible ¢;?z; and its corresponding S5; are executed;

— if go evaluates to true and either e is not positive or none of the ¢;7z; for which

g; are true can start reading in less than e time units, then 5 is executed;

~ if go evaluates to false, then the command waits until one of the ¢;%z; for
which g; are true can read messages. Then one of the first possible ¢;7z; and
its corresponding S; are executed.

A guard g; which is equivalent to true is often omitted in a guarded command.

Example 2.1.1 Observe that delay-values can be arbitrary expressions, for in-
stance, z := y; [d?x — y := z [[delay z — clz], where the value of z in delay z is
obtained from executing the assignment z = y. a

Example 2.1.2 By means of a guarded command, we can easily express a time-
out. For instance, {z > 0;c?y — z := y || delay 10 -+ skip] informally means that
if z > 0 and the input communication can take place in less than 10 time units
then the assignment is executed, otherwise after 10 time units there is a time-out

and skip is executed. (]

Notice that the semantics of the guarded command G in this thesis differs from
that of Dijkstra for the case that all the boolean guards.are false [Dij76], where it
is interpreted that the program aborts.

¢ x(F indicates repeated execution of guarded command G as long as one of the

guards is true. When none of the guards is true, «G terminates.

s 51}|S; indicates parallel execution of S; and §;. No variable should occur in both
51 and Sy, i.e., var(S)) Nvar(S:) = @.

Henceforth we use = to denote syntactic equality.

2.1.2 Basic Assumptions

In this chapter, we assume that there is no overhead for compound statements and a
delay e statement takes exactly e time units if the value of € is not negative. Furthermore
we assume given positive parameters K,, K., and K, such that every assignment takes

K, time units, each communication takes K time units, and the evaluation of the guards
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in a guarded command takes K time units. Notice that, to avoid an infinite loop in
finite time, we assume K, > 0. These assumptions can be extended to more general
cases, for instance, assignment and communication take some time between a lower and
an upper bounds, etc..

We also assume the mazimal parallelism model for the execution of parallel composi-
tion, which means that each parallel process has its own processor. Therefore, a process
only waits when it tries to execute an input or output statement and the communication
partner is not available. Hence it is never the case that one process waits to perform cle

and, simultaneously, another process waits to execute c?zx.

2.2 Compositional Semantics

" To formally define the meaning of a process, we give a compositional semantics for our
programming langnage. In section 2.2.1 we define a model to describe the computation
of processes. This semantic model is used in section 2.3 to interpret our specification
language. In section 2.2.2 we give the compositional semantics which is used to define
validity of correctness formulae, that is, to define formally when a process satisfies a

specification. Finally, in section 2.2.3 we discuss some properties of the semantics.

2.2.1 Computational Model

In our semantics the timing behavior of a process is expressed from the viewpoint of an
external observer with his own clock. Let this clock range over a time domain TIME.
Thus, although parallel components of a system have their own, physical, local clocks,
the observable behavior of a system is described in terms of a single, conceptual, global
clock. ’

Assume TIME = {r € IR | 7 > 0}, where IR is the set of all reals. Thus the
time domain is dense {(a domain is dense if between every two points there exists a
third point) and linearly ordered. The standard arithmetical operators +, —, x, and
< are defined on TIME. To define the timing behavior of statement delay e, we
have to relate expressions in the programming language to our time domain. Since
we have assumed that delay e takes e time units if ¢ is not negative, we also assume
{9e VAL |9 20} CTIME.

Henceforth, we use ¢, j,... to denote nonnegative integers, and 7,7, 75,... to denote
values of TIME. For notational convenience, we use a special value co with the usual
properties, such as 0o € TIME and for all 7 € TIMEU{oo}: 7 < 00, T+00 = 0o+ = 00,
etc.

A computation of a process is represented by a mapping which assigns to each point
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of time during this computation a pair consisting of a state and a set of communication
records. The state represents values of variables at that point of time. The communi-
cation records denote the state of affairs on the channels of the process. We use records
of the form (c,?) to indicate that a communication occurs along channel ¢ with value
9. Moreover, the model includes additional information that shows which processes are
waiting to send or waiting to receive messages on which channels at any given time. Us-
ing this information, the formalism enforces minimal waiting in our maximal parallelism
model by requiring that no pair of processes is ever simultaneously waiting to send and
waiting to receive, respectively, on a shared channel. The informal description above is

formalized in the following definitions.

Definition 2.2.1 (States) The set of states STATE is defined as the set of mappings
from VAR to VAL: STATE={s|s: VAR — VAL }.

Thus a state s € STATFE assigns to each variable z a value s(z).

Definition 2.2.2 (Variant) The variant of a state s with respect to a variable z and
9 fy=z

s(y) ify#e
Definition 2.2.3 (Communication Records) The set of communication records
COMM is defined as:

COMM = {c!|c€ CHAN} U {c? |c€ CHAN} U {(¢,¥) | c€ CHAN and ¥ € VAL }.

a value 9, denoted by (s : ¢ — 9), is defined as (s : z — 9)(y) = {

Assume 7o € TIME and € TIME U {oo}. If 1, # o0, let [10,71] denote a closed
interval of time points: [ro,71] = {r € TIME | 7 < 7 < 7y}. I 1y = oo, then [70,74]
is the same as [, 00) with [rg,00) = {r € TIME | 7 > 7}. Similarly, (7o, 1] denotes
a left-open and right-closed interval: (70,7] = {7 | 70 < 7 < 1} and [79,71) denotes
a left-closed and right-open interval: [15,71) = {7 | 0 < 7 < 71}. The closed intervals
will be used in the definition of a model, since we would like to observe the state and
communication behavior at the starting and terminating points of a process.

Then a model, representing a real-time computation of a process, is defined as {ollows:

Definition 2.2.4 (Model) Let 7o € TIME, 1, € TIMEU {00}, and 71 > 79. A model o
is a mapping o : [19,71] = STATE x p( COMM). Define begin(c) = 7o and end(c) = 71.

Consider a model o and a point 7 with begin(o) < 7 < end(s). Then o(r) =
(state,comm) with state € STATE and comm C COMM. Henceforth we refer to
these two fields of o(7) by o(7).s and o(7).c, respectively. Informally, if ¢ models a
computation of a process S, begin(o) and end(o) denote, resp., the starting and termi-
nating times of the computation of S (end(c) = oo if S does not terminate). Further-

more, o(begin(c)).s specifies the initial state of the computation, and if end(c) < oo
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then o(end(c)).s gives the final state. We will use a® to denote o(begin{s)), and if
end(o) < 0o, 0° to denote o(end(c)). In general, o(r).s represents the values of vari-
ables. The set o(7).c might contain a communication record {c, ¥}, ¢!, or ¢? with the
following meaning, where c € CHAN:

o (c,9) € o(r).ciff value ¥ is being transmitted along channel ¢ at time 7;
o ol € o(r).c iff S is waiting to send along channel ¢ at time 7;
o ¢? € o(7).ciff S is waiting to receive along channel ¢ at time 7.

To make the model convenient for sequential composition, the c-field at the last point
is not used and then can have an arbitrary value. Only ¢®.s is interesting for the
specification and reasoning.

Define DCHAN = CHANU{c? |c€e CHAN}U{d | c € CHAN}. Henceforth, we

need the following definitions.

Definition 2.2.5 (Channels Occurring in a Model) The set of (directional) chan-
nels occurring in a model ¢, denoted by deh(o), is defined as

deh(0) = Ubegin(oygreend(ey 1€t | et € a(r).c} U {c? [ c? € o(r).c} U
{c | there exists a J such that {¢,d) € o(7).c}

Definition 2.2.6 (Projection onto Channels) Let cset & DCHAN. Define the pro-
jection of a model o onto cset, denoted by [0]cset, as follows: begin([o]eset) = begin(c),
end{[0]cser) = €nd(o), for any 7, begin(o) < 7 < end(0), [0]eset(7).3 = 0(7).5, and

for any 7', begin(o) < 7’ < end(0),

[olese{7)c = {c|cdlea(r)cAnd €cset}U{c?|c? € o{r').cAc? € cset} U
{{e,9) | (e,9) € o{7').c A c € cset}

Definition 2.2.7 (Projection onto Variables) Let vset C VAR. Define the projec-
tion of a model o onto vset, denoted by o | vset, as follows: begin{o | vset) = begin{o),
end(o | vset) = end(o)b, for any 7, begin{o) < 7 < end(a), (0 | vset)(r).c = o(r).e,
and for any 7/, begin(o) < 7" < end(o), and any z € VAR,

o(7').s(z) z € vset

(o | vset)(7').s(z) = {

a®.s(x) z ¢ vset

Definition 2.2.8 (Concatenation) The concatenation of two models oy and o3, de-
noted by 0,07, is a model o such that

o if end(0;) = 0o, then o = oy;
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¢ if end(gy) < 00, end(0y) = begin(o,), and of.s = gb.s, then o has domain
[begin{o1), end(e;)] and is defined as follows:
a{r) begin(oy) € 7 < end(o;)

olr) = oy(r) begin(og) < 7 < end(oy)

¢ otherwise undefined.

Definition 2.2.9 (Concatenation of Sets of Models) The concatenation of two sets
of models Ty and I, are defined as follows:

SEQ(24,L;) = {0102 | 01 € Ty and o3 € T; such that 0,0, is defined}

It is easy to see that SEQ is associative, i.e.,
SEQ(E:,SEQ(E,, X3)) = SEQ(SEQ(L,, %,), B3).
Henceforth we use SEQ(2,, ¥y, £3) to denote SEQ(Z;, SEQ(Z,, £3)).

2.2.2 Formal Semantics

A good starting point for the development of a compositional proof system is the for-
mulation of a compositional semantics. In such a semantics the meaning of a statement
must be defined without any information about the environment in which it will be
placed. Hence, the semantics of a statement in isolation must characterize all poten-
tial computations of the statement. When composing this statement with {part of} its
environment, the semantic operators must remove the computations that are no longer
possible. To be able to select the correct computations from the semantics, any de-
pendency of an execution on the environment must be made explicit in the semantic
model.

The evaluation of an expression e, denoted by £(e), is a function £(e) : STATE —
VAL defined by induction on the structure of e as follows:

o EW)(s) =1

o £(z)(s) = s(z)

o E(er + e2)(s) = E(er)(s) + E(ea)(s)
o E(er — e2)(s) = E(e1)(s) — Elea)(s)
o E(er x e2)(s) = E(ea)(s) x Elea)(s)

The evaluation of a guard ¢, denoted by G(g}{s), is defined by induction on the structure

of g as follows:

* Gler = ez)(s) iff E(er)(s) = Efez)(s)
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* Gler < e2)(s) iff E(er)(s) < E(e2)(s)
* G(~g)(s) iff not G(g)(s)
* G(g1V g2)(s) iff G(1)(s) or G(g2)(s)

The meaning of a process S, denoted by M(S), is a set of models representing all possible

computations of S starting at any arbitrary time.

Skip

Statement skip terminates immediately without any state change or communication.

M(skip) = {o | begin(c) = end(c) }

Assignment

An assignment z := e terminates after K, time units (recall that every assignment
statement takes K, time units to execute). All intermediate states before termination
are the same as the initial state. The state at termination also equals the initial state
except that the value of z is replaced by the value of e at the initial state. The c-field is
empty during the execution period since the assignment does not (try to) communicate.
M(z :=e) = {0 | end(c) = begin(o) + K,, for any 7, begin(c) < 7 < end(0),

o(r).s = ab.s, 0(1).c= 8, and 0°.5 = (0b.s : 2 — E(e)(0%.9))}

Delay

A delay e statement terminates after e time units if e is not negative. Otherwise it
terminates immediately.
M(delay e) = {0 | end(c) = begin(o) + maz(0, E(e)(a®.3)), for any ,

begin(o) < T < end(0), o(7).s = ab.s, a(7).c = @, and 0°.s = 0’5}

Output

In general, in the execution of an input or output statement, there are two periods: first
there is a waiting period during which no communication partner is available (recall
that communication is synchronous) and, secondly, when such a partner is available to
communicate, there is a period (of K, time units) during which the actual communication
takes place. For an output statement cle these two periods are represented by two sets
of models Wazit(c!) and Send(c,e) defined below. Hence the semantics of cle is defined

as

M(cle) = SEQ(Wait(c!), Send(c, €)) with
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Wait(c!) = {o | for any 7, begin(o) < 7 < end(a), o(7).s = o*.5, o(7).c = {c!}, and
if end(o) < oo, then ot.s = ob.s}
Send(c,e) = {¢ | end(o) = begin(c) + K., for any , begin(c) < 7 < end(c),

o(r).s = a5, a(1).c = {(c, E(e)(c*.5))}, and 0°.s = o*.5}

Input

To represent all potential computations of an input statement ¢z, its semantics should
contain all possible models in which any possible value can be received for z. The
value of x at the final state equals to the value in the communication record. Thus the
semantics of c?z is defined as .

M(c?z) = SEQ(Wait(c?), Receive(e, z)),
where Wait(c?) is similar to Wait(c!) and

Receive(e, ) = {0 | end(¢) = begin(o) + K, there exists a ¢ € VAL such that,
for any 7, begin(o) < 7 < end(0), 0(7).s = ob.s, o(7).c = {(c,9)},

and o°.s = (ob.s : z — 9)}

Sequential Composition

Using the SEQ operator defined before, sequential composition is straightforward:
M(Sy; 82) = SEQ(M(S1), M(S52))

Since SEQ is associative, sequential composition is also associative. Thus we can write

Sy; o3 S3 without causing ambiguity.

Guarded Command

For a guarded command G, first define

g = v:‘:l o lf G = “]?zlgi g S‘]
T Viog if G =R, ez = Siflgo; delay e — So)

Consider G = [[|L,;9: — Si]. There are two possibilities: cither none of the guards
evaluates to true and the command terminates after K; time units, or at least one of the
guards yields true and then the corresponding statement S; is executed. Recall that the
evaluation of the guards takes K, time units. In the semantics below this is represented

by statement delay K,.

Mg — S) = 1o | G(-g)(0*s) and 7 € M(delay K,)} U
{o | there exists a k, 1 < k < n, such that G(gi)(o®.s)
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and 0 € M(delay K ; 5¢)}

Next consider G = [[|,¢:; ;72 — Si[ go; delay e ~» Sy).
There are four possibilities for an execution of G (see section 2.1). We first define two
abbreviations:
Wait(G) = {o | G(§)(0*.s), for any T, begin(o) < 7 < end(o), o(7).5 = a’.s,
o(r).c = {c;?|G(g:)(0*.5),1 £ < n }, and if end(s) < oo then ot.s = ob.s}
Comm(G) = {o | there exists a k, 1 < k < n, such that G(g,)(c®.5) and
o € SEQ(Receive(cy, i), M(S1)) }

Using Wait(G), we define the following extra abbreviations:
FinWait(G) = {0 | G(g0)(0*.5), end{c) < begin(o) + maz(0, E(e)(a’.s)), and
o € Wait(G) }
TimeOut(G) = {o | G(go)(0*.5), end(a) = begin(c) + maz(0, E(e)(o®.s)), and
o € Wait(G) }
AnyWait(G) = {0 | G(~go){c®.s) and 0 € Wait(G) }
Then the semantics of G is defined as follows:

M([D9: e — Sillgo; delay e — So]) =
{o | 6(=§)(o*.s) and o € M(delay K,)} U
SEQ(M(delay K,), FinWait{G), Comm(G)) U
SEQ(M(delay K,), TimeOut(G), M(S)) U
SEQ(M(delay K}, AnyWait(G), Comm{G))

Iteration
For a model in the semantics of the iteration statement xG, we have the following
possibilities:

¢ either it is the concatenation of a finite sequence of models from M(G) such that
the last model corresponds to an execution where all guards evaluate to false or it

represents a nonterminating computation of G,

& or it is the concatenation of an infinite sequence of models from M(G) that all

represent terminating computations in which not all guards yield false.

This leads to the following definition:

M@G) = {o| thereexist a k € IN,k > 1, and oy,...,0x such that 0 = 0y -+ - 0y,
for any 4, 1 i<k, 0, € M(G), for any j, 1 <7 <k —1, end(s;} < o0,
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G(§)(0%.5), and if end(o}) < oo then G(~§)(o}.5) otherwise G(§)(o}.s) }
U {o| there exists an infinite sequence of models 01,03, . .. such that o = 0705 -+ -,
for any i > 1, 0; € M(G), end(0;) < oo, and G(g)(0t.s) }

A slight apology should be made for the semantics of *G. The semantics given above is
not fully compositional, because it cannot be determined by the semantics of G alone.
We still need to check if the guards of G are true.

Parallel Composition

The semantics of Sy |}5; consists of all models & such that there exist models oy € M{5;)
and o, € M(S,) and the c-fields of o is the point-wise union of the c-fields of o7 and oy,
provided that the following requirements are fulfilled:

1. end(o) = maz(end(cy),end(o2)), to express that $]|S; terminates when both
processes have terminated.

2. Since communication is synchronous, S; and 5 should communicate sirmltane-

ously on shared channels which connect them.

3. In our execution model we assume maximal parallelism and thus two processes
should not be simultaneously waiting to send and waiting to receive on a shared
channel. Formally, for any ¢ € deh(S;) N deh(S:), and any T, begin(o) < 7 <
end(c), we should have —(c! € o(1).c A c? € o(7).c).

For the s-fields of o, recall that there are no shared variables, i.e., var(S;)Nver(S;) = @.
Hence the value of a variable = during the execution of 5,]|S; can be obtained from the
state of S; if 2 € var(S;), and from the initial state otherwise. This leads to the following

definition for the semantics of parallel composition.

M(S:||5,) = {o| deh{o) C deh(S1) U dech(Sy), for i = 1,2, there exist o; € M(S5;)
such that A ‘

begin{o) = begin{o1) = begin(o,), end(c) = maz{end(a,), end(0,)),

. inla:) < ,
[ laengsy (7). = oi(r).c begin(o;) < 7 < end(o;)

9] end{o;) < 7 < end(o)
(7). in(o;) <1< )
(o | var(S)(r).s = oi(7).s begin{o;) <1 < end(o;)
of.s end{o;) < 7 < end{o)

for any = ¢ var(S;) U var(S,), any 7, begin(o) < 7 £ end(o),
o(r).s(z) = ob.s(z),
and for any ¢ € dch(S) Ndeh(S,), any 7, begin(o) < 1 < end{o),
=(c! € a(7).c A c? € o(r).c)}

We can prove that parallel composition is commutative and associative.
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2.2.3 Properties of the Semantics
First we define a well-formedness property of a model.

Definition 2.2.10 (Well-Formedness) A model o, defined in section 2.2.1, is well-
formed iff for any ¢ € CHAN, any 9,9,,9, € VAL, and any 7,begin(c) < 7 < end(s),
the following formulae hold:

1. ~(ct € o(1).c A c? € a(7).0),
(Minimal waiting: it is not allowed to be simultaneously waiting to send and

waiting to receive on a particular channel.)

2. T[(¢,9) € o(r).cAct € o(T).c] A —[(c,0) € o(7).cAc? € a(7).c], and
(Ezclusion: it is not allowed to be simultaneously communicating and waiting to

communicate on a given channel.)

3. (¢,01) € a(1).cA(e,92) € 0(T).c = Iy =V,.
(Uniqueness: at most one value is transmitted on a particular channel at any point

of time.)

Then we have the following theorem.

Theorem 2.2.1 For any process S, if 0 € M(S) then
1. dch(o) C dch(S),
2. if z ¢ wvar(S),then for any 7, begin(c) < 7 < end(0), o(7).s(z) = o®.5(z), and
3. o is well-formed.

By induction on the structure of S and the definition of well-formedness, this theorem

can be easily proved.

2.3 Specification Language

We define a specification language which is based on Explicit Clock Temporal Logic,
i.e., linear time temporal logic augmented with a global clock variable denoted by T.
Intuitively, T refers to the current point of time during an execution. We use start
and term to express, respectively, the starting and terminating times of a computation
(term = oo for a nonterminating computation). We also use first(z) and last(z) to
refer to the value of variable z at the first and the last state of a computational model,
respectively. If the computation does not terminate, then last(z) has the initial value

of z. Similar ideas have been used in, for instance, [Jon80] and [Jon90]. To specify
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the communication behavior of processes, we use a primitive comm(c, vexp) to express a
communication along channel ¢ with value vezp. We also use comm{c) to abstract from
the value communicated. Furthermore, the specification language includes prir}litives
watt(cl) and wait{c?) to denote that processes are waiting to communicate. Similar to
the semantics, this is required to express maximal parallelism. By including the strong
unti} operator, U , from classical temporal logic we obtain the standard modal operators.
In order to give compositional proof rules for sequential composition and iteration, we
add the “chop” operator € and the “iterated chop” operator C* from [BKP84].

In the specification language, there are two kinds of expressions, i.e., vezp and tezp,
to express values of type VAL and TIME U {o0}, respectively. A specification is
represented by ¢. The syntax of this specification language is given in Table 2.2, with
d¢ VAL, z € VAR, 7 € TIME U {c0}, and ¢ ¢ CHAN.

Table 2.2: Syntax of the Specification Language in Chapter 2

Val Exp vezp= 9 | x | first(z) | last(z) | maz(vexp,vexp,) |
vezp; +vexpy | vexp — vexp, | vezp; x vezp,
Time Ezp tezpu= 7 | T | start | term | vexp |
‘ texp; +texp; | texp — teap, | teaxp, X texp;
Specification @ = texp; = texp, | texp < lexps |
comm{c,vexp) | commic} | wait(c!) | wait{c?) |

iVeor | o |l orUUer | o1 C o | 91C" g

Let texp be any expression of type TIME from the specification language. Define
var({texp) to be the set of all variables occurring in texp. Let ¢ be any specification.
Define dch(p) to be the set of all directional channels, i.e., the set of ¢, ¢!, or ¢7, for
¢ € CHAN, occurring in ¢, and var{(y) to be the set of all variables occurring in .

The interpretation of specifications is defined over the computational model of section
2.2.1. First we define the value of expression vezp at model o and time 7 > begin(o),
r € TIME, denoted by V(vexp)(o, ), as follows:

o V(0)(o,7) =1

_ ) a(r).s(z) i 7 < end(o)
* V(z)(o,7) = { ot.s(zx)  if 7> end(o)
* V(first(a))(o,7) = o*.s(x)

o V(last{z)){o, 1) = { o®.s{z) Hend(o) < 0

obs(z) if end{o) = 00

o Vi{maz(vexp,verp))o,7) = maz(Vi{vexp )0, 1), V(vexp){o,7})
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¢ V(verp, © vexpy)(o, 1) = V(ivezm Yo, 7} O V(vezpyj(o,7), for © € {+,—, x}.

Next we define the value of time expression tezp at model o and time r > begin(o),
7 € TIME, denoted by T (texp)(o, 1), as follows:

o T(#)(o,7) =7

o T(T)o,7) =7

o T(start)(o,7) = begin(c)

o T(term)(o,7) = end(c)

o T(vezp)(o,7) = V(vexp)(o,T)

o Tltezp; O texp;)(o,7) = T(texp Yo, 1) © T{texp)(o,7), for ® € {+,—, x}.

The interpretation of a specification @ at model o and time 7 2> begin(o), r € TIME,
is denoted by (o, 1) k= ¢ and defined by induction on the structure of .

o (0,7) = lexpy = teapy il T{texp Yo, 7) = T (lexps){a, 7).
¢ (0,7) = texp; < texpy Ml T (teap)(o, 1) < T(tezpy)(a,7).
e (0,7} E comnmic,vexp) iff T < end(o) and (¢, V{vezp)(o, 7)) € o(7).c.

s {0,7) = comm(c) Hf 7 < end(o) and there exists a value ¢ € VAL such that
(e,9) € o(7)c.

o (0,7) k= wait(c)) iff 7 < end(o) and ¢ € o(r).c.
o (0,7) F wait(c?) iff 7 < end(a) and ¢? € o(r).c.
o (o,7) E o1 Ve iff (0,7) 1 01 (0,7) b= ¢a.

o (0,7) =~ iff ot (0,7) k= .

o {5,7) E w1 U oy iff there exists a 7 > 7, such that {0, 7)) = o2, and
for any 1,7 €1y < 7, {0,711} E 1.

o (o7 v C o ift
— either (0,7) |= ¢ and end(o) = oo

~ or there exist models o, and g, such that ¢ = oy0q, 7 < end{oy) < o0,

(01,7} F= 91, and (02, begin(a,)) [= w2

o (0,7) 1 C pgiff
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— either there exist a & > 1 and models ¢y,...,04 such that o = 0+ -0y,
(o1, 7) E g1, 7 <end(oy) < oo, forany 7,2 < j < k-1, {0}, begin{o;)) k= v,
end(o;) < oo, and if end(o,) < oo then {0y, begin{or)) | 2, otherwise
{ok, begin(oy)) = ¢4,
~ or there exist infinitely many models oy, 03, 03,. .. such that ¢ = ¢,0305. ..,
end(cy) 2 7, for any ¢ > 1, end(o;} < 00, (o1, 7) & ¢4, and for any j > 2,
(g), begin(a;)) = 1.
The substitution of an expression vexzp, for a variable z in an expression vexp;, denoted
by vezpq[vexp, /z], is defined as the expression obtained by replacing every occurrence of
z in vexpy by vezp;. This notation will be used in the axiom for assignment statement.
We also use the standard abbreviations such as frue = 0=0, 91 A, = ~(~g V

~pa), @1 — w2 = wpy Vg, texpy < fexpy = (texp; = texp,) V (lexpr < texpy), etc..
Furthermore we have the usual abbreviations from temporal logic:

s O = true U ¢ (eventually ¢ will be true)
¢ O = —~O -y (henceforth ¢ will be true)

» o U, = (1 U o) VU {weak until: either eventually ¢, will hold and until
that point ; holds continuously, or ¢y holds henceforth)

Next we define validity of specifications and correctness formulae of the form S sat .

Definition 2.3.1 (Valid Specification) A specification ¢ is velid, denoted by k= ¢,
iff (g, begin(o)} = ¢ for any model o.

For instance, |= T = start, = z = first(z), and
k=term < oo A O(T = term — z = 5) — last(z} = 5.

Definition 2.3.2 (Satisfaction) A process S salisfies a specification ¢, denoted by
b= S sat o, iff (0, begin{c)} k= ¢ for any o € M(S).

We also say that .S sat ¢ hlods if | S sat .
We give a few simple examples to illustrate our specification language. General safety

properties can be specified, e.g.,

o Process 5 does not terminate: S sat ferm = co.

Note that we could also use S sat O~(T = term).
¢ 5 does not perform any communication along channel ¢: § sat 0 ~comm{c}.

Some examples of real-time safety properties:
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e If S starts its execution with z = 0, then S will terminate in less than 5 time units
with z = 8:
S sat z =0 — (term < start + 5) A (last(z) = 8).

e S waits to communicate on channel ¢ and after communication on ¢ it is waiting
to send on channel d:
S sat (wait(c) U (comm(c) U T = term)) C wait(d!).

o During the execution of S, variable z has value 5 at 3 time units after the start of
the execution, after 5 time units z has value 8 and y has value 9, and finally after
7 time units process S terminates with z = 10 and y = 12:
Ssat O[T =start+3 -z =5)A(T'=start+5—z=8Ay=9) A
(T'=start+7 -z =10Ay = 12)] Aterm = start + 7.

H

Liveness properties can also be expressed:
¢ S terminates: S sat term < oco. (Or, equivalently, § sat O (T = term).)

e S either communicates along channel ¢ infinitely often or eventually it waits forever
to send on c: S sat (DO comm(c)) V (OO wart(c!)).

2.4 Proof System

In this section, we give a compositional proof system for the synchronous version of the
programming and specification languages. This proof system will take all valid ECTL
assertions as axioms. We start with axioms and rules which are generally applicable to
any statement. Next we axiomatize the programming language by formulating axioms
and rules for all atomic statements and compound programming constructs.

Let vexp, and vexp, be expressions of type VAL. The well-formedness property of the

semantic models is axiomatized by the following axiom. For any finite cset C DCHAN,

Axiom 2.4.1 (Well-Formedness)
For any finite cset C DCHAN, S sat WF,,,, where

WE, = O(MinWaite A Ezclusionge N Uniquecse)

MinWaiteee: = A(aencese “(wait(c!) A wait(c?))

Ezclusionce; = A(ectyceset ~(comm(c) A wait(c!)) A A eryceser (comm(c) A wait(c?))
Unique se = Acccser cOMm(c, vexpy) A comm(c, vexpy) — veap, = verp,

For any finite cset C DCHAN and vset C VAR, define
empty(cset) Actecser “wait(c!) A Acrecoes "wait(c?) A Aigoeer "comm(c) and

inv(vset) = Apepser & = first(z).
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The next general axiom expresses that a process does not (try to) communicate on

channels that do not syntactically occur in the process.

Axiom 2.4.2 (Communication Invariance)
For any finite ¢set € DCHAN with eset N dch({S) = ¢, S sat Uempty(cset).

Similarly, the proof system has an axiom to express that certain variables are not changed

by a process.

Axiom 2.4.83 (Variable Invariance)
For any finite vset C VAR with vset Nwear(S) = @, S sat Oinv{vsel).

Furthermore, we have the usual conjunction rule and consequence rule.

5 sat vy, §sat ¢

Rule 2.4.1 (Conjunction) S sk o
. sat ¢ Ay

S sat @;, 1 ~— @y
S sat ,

Rule 2.4.2 (Consequence)

Next we give axioms for the five atomic statements. Statement skip terminates imme-

diately.
Axiom 2.4.4 (Skip) skip sat term = start

The assignment axiom expresses that z := e terminates after K, time units and the
final value of z equals the value of € at the initial state. If z occurs in the expression e,
the initial value of z is needed to evaluate the value of e. We use first{z) to record the

initial value of z.
Axiom 2.4.5 (Assignment)
z:=e sat {2 = first(z)) U (T = term = start + K, A z = e[first{z)/z])

Example 2.4.1 With this axiom and the consequence rule we can derive, for instance,
z:=x+1 sat (lasi{z) = first(z)+ 1) A O(T = term = start + K,). o

Example 2.4.2 We show that we can derive
z:=y+4 sat y=5—-C(e =9AT =term = start + K,).

By the assignment axiom and the consequence rule we obtain
z:=y+4 sat O{e=y+4AT =term=start + K,).

Since y & wvar(z := y + 4), by the variable invariance axiom, we have
z:=y+4 sat Oy = first(y)).

Since =y = 5 — O (first(y) = 5), by the assumption, we have
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Fy =258 - O(first(y) = 5). Then by the conjunction rule and consequence rule, we
obtain

z:=y+4 sat y=5— Oy =5).
Hence, by the conjunction rule and 'consequence rule again, we get

z:i=y+4 sat y=5—- Oz =9AT =term = start + K,). 0

Statement delay e terminates after e time units if the value of e is not negative. Oth-

erwise it terminates immediately like skip.
Axiom 2.4.6 (Delay) delay e sat term = start + maz{0,¢)

An output statement starts with waiting to send a message, and as soon as a commu-
nication partner is available the communication takes place during K, time units. Note
that we use a weak until operator in the axiom below to allow an infinite waiting period

{i.e., deadlock) when no partner becomes available.

Axiom 2.4.7 (Output)
cle sat wail(c!) U (T =term — K. A (commic,e) U T = term))

Similarly, an input statement c?z waits to receive a value along channel ¢. When the
communication finishes the value received is assigned to variable z. Thus at the last

state of the execution model = possesses that value.
Axiom 2.4.8 (Input)

clz sat (x = first(z) A wait{c?)) U
(T =term — K. A ({z = first(z) A comm(c,last(z))) U T = term))

Using the C operator we can easily formulate an inference rule for sequential composition.

S] sat P11, 32 sat w2

Rule 2.4.3 (Sequential Composition)
\ 51352 sat @1 C g
Example 2.4.3 Consider process z := 2 + 1;z := x + 2. By the assignment axiom and
the consequence rule we have:
z:=z+1 sat lasi(z) = first(z)+1Aterm = start + K,, and
z:=z+2 sat last(z) = first(z) + 2 Aterm = start + K,.
Then the sequential composition rule leads to
z:=z+1l;z:=2+2 sat
(last(z) = first(z)+ 1 Aterm = start + K,) C
{last(z) = first{z}+ 2 Aterm = start + K, ).
By the consequence rule, we obtain
z:=z+ 1z :=x+2 sat last(z) = first{z)+ 3 Alerm = start + 2K,. O
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Now consider a guarded command . Recall that § is defined as (see section 2.2.2)
o= { Viig: i G =[]k — S

Vicogi i G=[[lLigi 72 — S; || go;delay e — 5]
First we give an axiom which expresses that if none of the guards evaluates to true then
the guarded command terminates after K, time units. Furthermore we express that
there is no activity on the channels of G' and no write-variable of 7 is changed during
the evaluation of guards. Define Eval = term = start + K.

Axiom 2.4.9 (Guarded Command Evaluation)
G sat [(inv{wvar{G)) A empty(deh(G))) U (T = start + K, A inv(wvar(G))}] A
(g — Eval)

Next consider a guarded command with purely boolean guards G = [[ji;90 — S} If
at least one of the guards yields true then after the evaluation of the guards one of the

statements S; for which g; evaluates to true is executed. This leads to the following rule.
Rule 2.4.4 (Guarded Command with Purely Boolean Guards)

S;sat g, fori=1,...,n
e — S| sat § — (Bval C VL, ¢ Aei)

Next we formulate a rule for G = [[|2, ¢;; &:?2; — S; || go; delay e — Sp], using

Wait = mv(wvar(G)) A empty(deh(G)\ {a?, ..., ca?}) A
{90 — T < start + maz(0,e)} A AL {g; & wart(c,7)),

InTime = inv(wvar(G)) A T =term A (go — T < start + maz(0,¢)},
EndTime = inv{wvar(G)) A go A T = term = start + max(0, €),
Comm = (Wait U InTime} C V7, g; A i A comm{¢;), and

TimeQut = (Wait U EndTime) C wq.

Rule 2.4.5 (Guarded Command with IO-Gﬁards)

clr; S; sat @, fori=1,...,n, Spsat g

2, gi5e72: — Si [| go; delay e — Sy sat
G — {Bval C {Comm V TimeOut))
Observe that in the definition of COMM we use ¢; A ; A comm(e;), whgre ; is such
that ¢;7xz;; S; sat ;. In general, p; describes two parts of the computation: a possible
waiting period for ¢,7z; followed by a coomunication on channel ¢, and the execution
of S;. According to the definition of well-formedness, adding comm(¢;) to ¢; excludes
the possibility of waiting on ¢;, and this is exactly what needed in the execution of the
guarded command when the communication on ¢; should start immediately.

The inference rule for an iterated guarded command is as follows.
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G sat ¢

Rule 2.4.6 (Iteration) G sat GAp) C (GA9)

Next consider parallel composition of S; and 5;. Suppose we have deduced specifications
o1 and o, for, respectively, Sy and S;. If oy and 3 do not contain term, then we have
the following simple rule.

Rule 2.4.7 (Simple Parallel Composition)

S, sat ¢y, S, sat ¢y, neither ¢, nor ¢, contain term

51]|S: sat @1 Ay,
provided deh(p;) € deh{S;) and var(p;) C var(S;), for i = 1, 2.

If one of ¢; and @, contains term, we have to take into account that the termination
times of 53 and §; are, in general, different. Observe that if 51 terminates after (or at the
same time as) S, then the model representing this computation satisfies ¢y A(pg C true).
Furthermore we have to express that the variables of S, are not changed and there is
no activity on the channels of S; after the termination of S;. Similarly, for 5 and §;

interchanged. Then it leads to the following general rule for parallel composition.

Rule 2.4.8 (General Parallel Composition)
Let ¢ = O (inv(vaer(S:)) A empiy(dch(S))}, for i = 1,2.

Sy sat ¢, S; sat ¢
S1l1S2 sat (@1 Adwz C 92)) V (w2 A{er C o))

provided dch(p;) € dch(S;) and var(p;) C var(S;), for i = 1,2.

Example 2.4.4 Consider process !5 || ¢?z. Since we have assumed maximal paral-
lelism, the communication takes place immediately and hence this process should satisfy
comm(c,3) U (T = term = start + K. Ax = 5).

By the input axiom, output axiom, and the consequence rule, we obtain !5 sat ¢; and
c?x sat v, with

¢y = wait(c!) U (T = term — K, A (comm(c,5) U T = term)) and

w2 = wait(c?) U (T = term — K. A {comm{c,last(z)) U T = term)).

Suppose ¥, = Dempty({c, c!}) and ¢ = O (inv({z}) A empty({c, c?})).

Then the general parallel composition rule leads to

cls |j 7z sat (w1 A(pz € ¥2)) V(p2 A1 C 1))

The well-formedness axiom and the conjunction rule allow us to add MinWait (.,
Ezclusiong a7y, and Unique( to (@1 Alwz C ¥2)) Vi{pa Al € i),

Consider 3 A {py C ) A MinWait(y oy A Exclusionge a oy A Uniqueg.
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It implies

fwait(c!) U (T = term — K. A {comm{c,5) U T = term))] A

[(wait(c?) A ~wait{c!) A ~comm(c)) U (commic,last(z)) A ~wait(c!))] A Uniqueyey,
which implies

T = term — K, A {comm(e,5) U T = term) A last(z) = 5.

Since | T = start, the above formula implies

comm(e,5) U (T = term = start + K, A a = 5).

Similarly, we can prove that

w2 A1 C 1) A MinWait g on A Ezclusiongg gy A Uniqueyy —

comm(c,5) U (T = term = start + K. Az = 5).

Then, using the consequence rule again, we obtain

el5 || e’z sat comm{c,5) U (T = term = start + K. Az = 5). o

Example 2.4.5 Consider process cl0; d!1 || d?z;c?y. Since this process leads to dead-
lock,
we should be able to prove cl0;d!l || d?2z; ¢y sat [ (wait(c!) A wait(d?)).

By the output axiom, the communication invariance axiom, and the consequence rule,

we have '

cl0 sat wait(c!) U comm(e) and cl0 sat O ~comm(d).

Using the conjunction rule and the consequence rule, we obtain

cl0 sat (wait(c!) A ~comm(d)} U (comm{c) A —comm(d)).

Since ({wait(c!} A ~comm(d)} U (comm{c) A ~comm{d))) C true —

(wait{c!) A ~comm(d)) U (comm{e) A ~comm(d)),

the sequential composition rule and the consequence rule lead to

clf; dl1 sat (wait(c!) A ~comm(d)) U (comm(c) A ~comm(d)).

Similarly, we have

dlz; ety sat (wait(d?) A ~comm(c)) U (comm(d) A ~comm(c)).

Using the simple parallel composition rule, we obtain

cl; d'1 || d7z; ¢ty sat ((wait{c!) A ~comm(d)} U (comm(c) A ~comm{d))} A
((watt(d?) A ~comnmie)} U (comm(d) A ~comm(c)}).

Clearly this implies O (wait{c!) A wait{d?)) and hence, by the consequence rule,

cl0; il || d?z;c?y sat O (wait(el) A wait{d?)}. ]

2.5 Application

In this section we illustrate the use of our formalism by specifying and verifying a small
part of an avionics system. Detailed specifications of the avionics system can be found

in [PWTY0]. Here we only consider the design of a reliable device.
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A device is a component which receives a request from and sends data to its envi-
ronment. A reliable device RD consists of a physical device PD and a handler H and is
depicted by the following figure 2.1.

_pdata data

] (oF

N preq req

Fig. 2.1 Reliable Device

After receiving a request, the physical device PD either sends some data to its environ-
ment along channel pdeta within a certain amount of time, or it fails to do so but will be
ready for the next request on channel preq within some time bound. When the handler
H receives a request from its environment along channel regq, it will send a request to the
physical device PD along channel preq and then wait for PD to send data on channel
pdate. Then there are two possibilities:

¢ If PD functions correctly, it will be ready to send some data to H on channel pdata
within a certain amount of time. After H has received the data, it will send the
data to its environment on channel data.

o If PD does not function correctly, H will stop waiting after a certain period of
time and an approximation of the data will be computed by a component C inside
the handler. Then the approximated data will be sent to the environment along
channel data.

Given a physical device, the problem is to construct a handler such that the composition
of the physical device and the handler is a reliable device. We will design a handler H
such that the parallel composition of PD and H, PD| H, behaves like RD, i.e., satisfies
the given specification of RD.

In this example, we make the following assumptions.

o We focus on the communication behavior of the system and not on how data is
produced. Thus we abstract from whether data is precise or approximated and
ignore the data when a communication takes place. Hence data will not appear in

any specification or process.

» Asin the rest of this chapter, communications are synchronous along unidirectional

channels and a communication takes K. time units.
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e Component C will take D > 0 time units to compute an approximation of the
data.

The specification of the physical device PD is given informally as follows.
1. Initially, PD is waiting to receive a request along channel preg.

2. When PD receives a request on channel preq, it takes Dpp > 0 time units to
process the request. Then either it is ready to send data on channel pdate and
after having sent data on pdata it is again ready for another request on channel
preg, or it is not ready for sending on pdata but it will be ready for another request
on preg within Dpg 2> 0 time units.

The implementation of PD may be in hardware or in software. Since our method is
compositional, only the specification of PD is used to construct the reliable device. The
formal specification of PD is given as SPECpp in the following way.
SPECpp = ([wait(preg?) U (comm(preq) U T = term}] C

[term = start + Dpp] C

[(wait{pdatal) U (commipdata) U T = term)) Vv

(—comm{pdata!) U T = term < start + Dpg)]) C* false.

The specification of the reliable device RD is informally stated as follows.

1. Initially, RD is ready to receive a request from the environment along channel reg

within Dgg > 0 time units.

2. When RD receives a request on channel req, it will be ready to send the data to

the environment through channel date within Dpp > 0 time units.

3. When RD has sent the data through channel date, it will again be ready to accept

the next request on channel req within Dpg time units.

The formal specification of RD is defined as SPECgp as follows.

SPECRp = ([term < start + Dgol €
[wait(req?) U (comm(req) U T = term)] C
[term < start + Dpp} C
[wait(datal) U {comm(data) U T = term)}) C* false.

Our aim is to find a handler H such that PD||H sat SPECpp. After having examined
the requirement of RD and the specification of PD, we propose the following specification
for H.

1. Initially, H should be ready to receive a request from the environment along channel

req within Dgg time units,
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2. When H receives a request on channel regq, it is immediately ready to send a request
to PD on channel preg. After the communication on preq finishes, H is allowed to
wait Dy 2 0 time units before it is ready to receive on channel pdata for at most
D, time units. If a communication on pdata starts in less than Dy time units, then
after this communication H is ready to send on channel data. If no communication
occurs on pdala in less than D; time units, H starts to compute an approximation
of the data by means of the component C and then is ready to send the data on

channel daia.

3. When H has sent the data along channel daiq, it will again be ready to accept the
next request on channel reg within Dgg time units.

The values of the constants Dy and Dy will be determined later. These informal descrip-

tions can be formalized in our specification language as SPECy.

SPECy = ([term < start + Dpgg] €
[wait(req?) U (comm(req) U T = term}] C
[wait(preg!) U (comm(preq) U T =term)] C
[term = start + Dy] C
{(wait{pdatal} U {comm(pdata) U T = term < start + Dy + K.)) V
((wait{pdata?) U T = term = start + D) C (term = start + D¢))] C
[wait{datal) U (comm(data) U T' = term)])} C* false.

Then the handler H is specified by H sat SPECy. For the physical device PD we have,
by assumption, PD sat SPECpp. To show that PD||H sat SPECgp, we apply the
parallel composition rule. Observe that although SPECpp and SPECH contain term,
we have SPECpp C 1 & SPECpp and SPECy C 4 «» SPECK, for any formula .
Then by the general parallel composition rule, we obtain PD||H sat SPECppASPECy.
Let
cset = {preq?, preg!, preq, pdata?, pdatal, pdata, req?, req,data!, data} and
WFD = WF,,.,. By the well-formedness axiom, we have PD||H sat WFD. Using the
conjunction rule, we obtain PD||H sat SPECpp NSPECy ANWFD. If we can prove
SPECpp ASPECy A€WFD — SPECgp, then by the consequence rule, we obtain
PD||H sat SPECgp. Hence we have to prove SPECppASPECyAW FD — SPECgp.
By comparing SPECy with SPECgp, we see that the waiting time of H on channel
pdata has an upper bound of Dy+maz(K,, D). It remains to determine an upper bound

on the waiting time of H on channel preq. Therefore we make the following observations,

1. For the first communication on preg H does not need to wait for PD since PD is

initially ready for preq.
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2. Let tpp denote the maximal amount of time for PD to be ready to receive along
preq after a communication on preg completes. Let ty denote the minimal amount
of time for H to be ready to send along preq after a communication on preq finishes.
We will determine ipp and ¢y and then use them to derive an upper bound on
the waiting time.of H on preq. After a communication on preq ends, there are two
possibilities for PD:

¢ PD functions correctly, i.e. after Dpp time units it is ready to send on pdata.
In this case, we should require
Dpp < Dy + Dy, A , H
i.e. H has to wait long enough to receive the data from pdata. If this re-
quirement is not satisfied, H will stop waiting for PD on pdata and start
component C to compute approximated data before PD is ready to send on
pdata. Then after a next communication on req H will start waiting to send
on preq whereas PD is still waiting to send on pdata. Hence this leads to a
deadlock.
After a comnmunication on preq, H is ready to receive on pdata in Dy time
units. Thus, assuming (1}, PD will start the communication on pdata after
maz{Dpp, Dg) and then be ready for the next request on preq. Hence tpp =
maz(Dpp, Dg) + K.
Also H communicates on pdata after maz(Dpp, Dy) waiting time and then is
ready to send on data. After the communications on dute and req H is again
ready for preq. Thus ty = mez(Dpp, Do) + 3K..
Obviously épp < ty. Thus PD is ready for preq earlier than H is and then H
does not have to wait for PD on preq. Hence after a req communication, H
immediately sends along preg and the sending takes K, time units. Next, as
above, a communication along pdata starts after maz(Dpp, Dy), which also
takes K. time units, and then H is ready to send on daie.
Thus in this case we obtain SPECgp provided
maxz{Dpp, Do) + 2K, < Dgp. (2)
e Or PD does not function correctly, i.e. after Dpp it is not ready for pdata
but it will be ready for the next request on preq within Dpg time units. In
this case, we have tpp = Dpp + Dpg.
Regarding H, after it has waited Dy + I} time units for pdata it starts to
compute approximated data by component C (which takes Do time units)
and then is ready for channel data. Then we have t5; = Do+ Dy + Do + 2K,

— M tpp <ty,ie Dpp+ Dpg < Do+ Dy + D¢ + 2K, then H does not
have to wait for PD on preg. In this case SPECpp A SPECy AWFD
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leads to

{{term < start + Dgg] C

[wait(req?) U {comm(req) U T = term)] C

[term = start + K.} C

[term = start + Dy C

[term = start + Dy + Dg] C

[wait{data!} U {(comm(data) U T = term)]) C false
Hence, to obtain SPECRp, we require K.+ Do+ Dy + Do < Dgp, ie.,
K. + Do+ D, < Dp. 3)

— M ipp > ty,ie. Dpp+ Dpg > Do+ Dy + D¢ + 2K, then H has to wait

at most tpp — ¢ time units for PD on preq. Thus SPECpp ASPECH A
WFD leads to

{[term < start + Dggl C

[wait(req?) U (comm(req) U T = term)] C

[term = start + tpp —tg + K} C

[term = start + Dy] C

{term = start + Dy + D¢] C _

[wait(datal) U (comm(data) U T = term)]) C* false
Therefore we have to require tpp —ty + K, 4+ Do+ Dy + Do < Dgrp, i.e.,
Dpp + Dpg — K. < Drop. 4)

Conditions (1), (2}, (3), and (4) are the restrictions on the parameters to achieve the
required implication. By these restrictions, we only know the relation between Dy and
Dy. When we implement H below, we obtain the value of Dy and then the value of Dy
is determined as well.

Now we implement H in our programming language. We propose the following pro-

cess H.

H =+ req? — pregl;| pdata? — data!]|delay D, — C;data! ] ]
where process C is such that C sat term = start + Dg.

We show that H sat SPECy. By the proof system, we can derive that H sat ¢y with
er = {{term = start + K] C

[wait(req?) U (T = term — K. A (comm{req) U T = term)}] C

[wait{preq!) U (T = term — K. A (comm(preq) U T = term))| C

[term = start + K] C

[(watt(pdata?) U (T = téerm — K. A (comm(pdata) U

T =term <start+ Dy + KN v
((wait{pdata?) U T = term = start + Dy) C (term = start + D.))] €
fwait{data!) U (T = term — K, A (comm{data) U T = term)]) C* false
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By comparing SPECy and ¢y, we can easily derive gy — SPECY, i.e., H sat SPECy
and then process H is a correct implementation of the handler H, provided
Dro 2 K, | (5)
and Dy = K;. Combining the conditions (1) through (4), we see that (1) and (3) are
equivalent to the following condition on Dj:
Dpp — Ky < Dy £ Dpp — K, ~ K,. (6)
We show that (Dpp — Ky, Dap — K. — K] is not an empty interval, i.e., D; can be
found. We only have to prove that Dpp < Dpp — K. Recall Dy = K,. i Dpp > Dy,
by (2), we have Dpp + 2K, < Dpp and then, since K, > 0, Dpp + K, < Dgp. i
Dpp < Dyg, by (2) again, we obtain K, + 2K, € Dgp, i.e. Dpp + K. < Dpp. Thus the
condition (6) for D, is reasonable.
Furthermore, by Dy = K, the condition (2) can be replaced by the following (2'):
max(Dpp, Ky) + 2K, < Dpp. k 29
Hence the final restrictions on the parameters are {(2°), (4), (5}, and (6).

2.6 Soundness and Completeness

In this section, we consider the soundness and completeness of the proof system in section
- 2.4. For the soundness of our proof system, we must show that every formula S sat ¢
derivable in the proof system is indeed valid. We first give a few lemmas which will be
used to prove the soundness. The proofs of these lemmas can be found in Appendix A.

Lemma 2.6.1 For any expression e from the programming language, any model o,
and any 7 2 begin(c), E{e){e(7).8) = V{e)}{o, 7).

Lemma 2.6.2 For any boolean guard ¢ from the programming language, any model
o, and any 7 > begin(0), G(g)(o(7).s) iff {o,7) E g.

Lemma 2.6.3 For any expression vexp of type VAL, any model o, any csel C
DCHAN, and any 7 > begin{(o), V(vexp)(o,7) = Vi{verp)(|o)cser, 7).

Lemma 2.6.4 For any expression vezp of type VAL, any model ¢, any vset C VAR,
and any 7 > begin{o), if var{verp) C vset, then V(vezp)(o,7) = V(vezp)(o | vset, ).

Lemma 2.6.5 For any expression fexp of type TIME, any model o, any cset C
DCHAN, and any v 2 begin{o), T(texp)(o, 1) = T (texp)([0]cset, T)-

Lemma 2.6.6 For any expression lexp of type TIME, any model o, any vset C VAR,
and any 7 > begin(o}, if var{teap) C vset, then T (iexp)(o,7) = T (texp)(o | vset, ).
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Lemma 2.6.7 For any cset C DCHAN and any specification ¢, if deh(yp) C cset, then
for any model ¢ and any 7 > begin{o), {0,7) k= @ iff {[0]eset, 7} = @-

Lemma 2.6.8 For any vset C VAR and any specification ¢, if var(p) C vset, then
for any model o and any v > begin{c}, {o,7) = ifl (¢ | vset, 7} = .

Given these lemmas, we have the following soundness theorem.
Theorem 2.6.1 (Soundness) The proof system in section 2.4 is sound.

To prove this theorem, we have to show that all axioms are valid and all inference
rules preserve validity, i.e., if the hypotheses of any rule are valid, so is the conclusion.
For most axioms and inference rules, soundness follows directly from the definitions of
semantics and given lemmas. The detailed proofs can be found in Appendix B.

We would also like the proof system to be complete, i.e. if § sat g is valid then it is
derivable from our proof system. Observe that the consequence rule relies on implications
that are formulae in Explicit Clock Temporal Logic (ECTL}, and hence the completeness
of our proof system also requires that every valid ECTL formula is provable. Since proof
systems for ECTL are beyond the scope of this thesis, we prove relative completeness:
Every valid specification is derivable in our proof system, assuming that any valid ECTL
formula can be proved.

We first give some lemmas which will be used in the completeness proof. The proofs

of these lemmas can be found in Appendix A.
Lemma 2.6.9 For any model o and any cset C DOHAN, dch(o) C eset iff 0 = [0]coet-

Lemma 2.6.10  For any model o and any cset;, cset, € DCHAN,
if (0, begin{a)} = O empty(csety \ csety), then [0]eser;uosets = 1) cset, -

Lemma 2.6.11 For any model o and any vsely,vsel, C VAR,
if {0, begin{o)) = Oinv(vsety \ vsely), then o | {vsely Uvsely) = o | vsel;.

Lemma 2.6.12 For any model ¢, if deh(o) € cset and (o, begin{o)) = W Fise, then

o is well-formed.

In order to prove the relative completeness of our system, we define a property of

specifications called preciseness.

Definition 2.6.1 (Invariant Variable) A variable x is invariant with respect to a
model ¢ iff for all 7, begin(o) < 7 < end(0), o(7).5(x) = ob.5(x).
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Definition 2.6.2 (Preciseness) A specification  is precise for a statement S of the
programming language in section 2.1 iff

1. S sat ¢ holds, i.e., (o, begin()} k= ¢, for any 0 € M(S);

2. If o is a well-formed model, deh(o) C dch(S), for any variable x ¢ wvar(S), z is
invariant with respect to o, and {&, begin(c)) k= ¢, then 0 € M(S); and

3. dch(yp) = dch{S) and var(yp) = var(S).

A precise specification ¢ for S thus characterizes all possible computations of S: ¢ is
valid for 5, and any “reasonable” computation satisfying o is a possible computation of
S.

We first prove that for any statement S a precise specification can be derived from
the axioms and inference rules (Theorem 2.6.2). We then show (in Theorem 2.6.3) that
any specification @, which is valid for S can be derived from a precise specification ¢, for

S and three predicates. Hence, relative completeness follows directly (Theorem 2.6.4).

Theorem 2.6.2 If S is a statement from the programming language in section 2.1,
then a precise specification for § can be derived by using the proof system in section
2.4.

The proof of this theorem can be found in Appendix C.

Theorem 2.6.3 If ¢, is precise for S and ¢, is valid for §, then
= [1 A WFyengpy) A O [empty(deh(pz) \ deh(pr)) A inv(var(pz) \ var(p1))]] = 2.

Proof: Let ¢ be precise for § and ¢ be valid for S. Consider a model 0. Assume that
(0, begin(o)) = 4 A W Faaio A8 emptyldch(ya) \ dek())  imv(var(a) \ var ()
holds. We show (o, begin(c}} k= ¢2.

By (0, begin(o)} k= @1, lemma 2.6.7 leads to {[0]uch(ey), begin(a)) k= ¢1. By lemma 2.6.8,
{lo)achior) L var(ey), begin(o)) = @1. From {o,begin(a)) = W Fye(y,), by lemma 2.6.7,
we obtain ([0]ah(e), begin(o)) | W Fynp). Then, by lemma 2.6.12, [0]den(p,) is well-
formed. By definition, [0icny,) | var(e:) is also well-formed. Since ¢y is precise for
S, we have dch(py) = dch(S) and var(y:) = var(S). By the definition of projection
onto variables, any variable = ¢ wvar(5) is invariant with respect to [o]acn(ey) | var{es).
Hence by the definition of preciseness, [0]uch(y) | var(yv) € M(S).

From (e, begin(o)) k= O empty(deh(pz) \ deh{py)}, lemma 2.6.10 leads to
[0]dchior)uder(os) = [0lachipy)- Since (o, begin(o)) E Dinv(var(ps) \ var(e)), lemma
2.6.11 leads to ¢ | (var(¢1) Uver{yp,)) = o | var{p;). Thus we obtain

[0 )dch(oy)udenten)  (var(p1) U var(ez)) = [0lackey) | var(p;). Therefore we have
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[0)dchioryudenien) L (var(e1) U var{ps)) € M(S). Since ¢, is valid for S, we obtain

([oluch(orIudeh(vn) | (var(p1) Uvar(ga)), begin(o)) | @2. From var(ps) C var(pi) U
var(yps), lemma2.6.8 leads to {[0]uch(p, Judeh(ys)> be9in(0)) |= 2. By deh(gz) € (deh(py)U
dch{pz)), lemma 2.6.7 leads to {o, begin(c)} E ;. Hence this theorem holds. a

Theorem 2.6.4 (Relative Completeness) The proof system in section 2.4 is rela-
tively complete. '

Proof: For any process 5, assume that specification ¢ is valid for §. We prove that
S sat ¢ is derivable in the proof system in section 2.4. By theorem 2.6.2, we have
8§ sat @, where @, is a precise specification for S. By the well-formedness axiom, we ob-
tain S sat W Fy,,). Since dch(p,) = deh(S), we have [dch{) \ deh(¢y)] Ndch(S) = 6.
Then by the communication invariance axiom, we obtain § sat Oempty(dch(p) \
- dch{ipy)). From var(p1) = var(S), we have [var(yp) \ var(¢:)] N ver(S) = ¢ and
thus [var(y) \ var{(ps)] N wvar(S) = @. By the variable invariance axiom, we obtain
S sat Ozinv(var(p)\var{p;)). Then the conjunction rule and the consequence rule lead
to S sat vy A W Fyon(p) A O [empty(deh(p) \ dek(p1)) Ainv{var(e) \ var(p1))]. By the-
orem 2.6.3, [p1 A W Fyen(py) A O [empty(deh(p) \ deh(p1)) A inv(var(e) \ var(g:))]] = ¢
is valid and, by our relative completeness assumption, provable. Hence, by the conse-
quence rule, S sat ¢ is derivable in the proof system. ]



Chapter 3
Asynchronous Communication

In this chapter, we study a verification theory for asynchronously communicating real-
time systems. In section 3.1, we define the asynchronous version of our programming
language in which parallel processes communicate through asynchronous message pass-
ing. A compositional semantics is given in section 3.2. The asynchronous version of
the specification language is presented in section 3.3. A compositional proof system is
shown in section 3.4. The soundness and completeness issues are discussed in section

3.5.

3.1 Real-Time Programming Language

3.1.1 Syntax and Informal Semantics

Consider a real-time programming language in which parallel processes communicate
by sending and receiving messages along channels. A channel connects exactly two
processes. Communication is asynchronous, that is, a sender does not synchronize with
a receiver but sends its message immediately. Similar to the programming language in
chaptér 2, a real-time statement delay e is added to suspend execution for a certain
period of time. Such a delay-statement may also occur in a guard of a guarded command.
Parallel processes do not share variables. Nested parallelism is allowed.

Similar to chapter 2, let VAR be a nonempty set of variables, CHAN be a nonempty
set of channel names, and VAL be a nonempty domain of values. The syntax of the
real-time programming language is given in table 3.1, with ¢,¢; € CHAN, r,x; € VAR,
n € IN, and n > 1, where IN denotes the set of all natural numbers.

Notice that this programming language is similar to the programming language in
chapter 2 section 2.1, except three statements involving communication. We give the

informal meaning of these three statements as follows:

Atomic statements

43
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Table 3.1: Syntax of the Programming Language in Chapter 3

Ezpression ex= 9 x| erte | ex—e | e Xe
Guard gu= ey=e€ | eg<e | 79 | 1V
Statement Su= skip | z:=¢ | delaye | clle | 27z |

S];‘Sz ] G I e | 51“52
Guarded Command G u= [0 — S | {95677 — Si]] go; delay e — S

e clle sends the value of e to the buffer of channel ¢. We assume that there is an
(unbounded) buffer for every channel. Since the communication is asynchronous,

clle never waits for its communication partner.

¢ ¢??z reads a value from the buffer of channel ¢ and assigns it to variable z. If the
buffer is empty, ¢?7z has to wait until a message arrives.

Compound statements

e The execution of a guarded command [[|1,g:;¢.77z; — 5[ go; delay e — Sgl is
similar to the execution of {[|2 g ez — Sillgo; delay e — Sp] from chapter 2,

fz=1

except that the communication in the guards here is asynchronous.

Similar to chapter 2, any statement in this programming language is called a process.
A write-variable is a variable which occurs in a receive statement (i.e. ¢?7z) or on the
left hand side of an assignment. Let S be any statement. We also use var(S) and
woar(S) to denote the set of variables and write-variables occurring in S, respectively.
We define ¢A(S) as the set of all channel names occurring in §, ich(S) as the set of
all input channel names occurring in S, and och(S) as the set of all output channel
names appearing in S. Notice that ich(S)Uoch(S) = ch(S) and ich(S)Moch(S) denotes
the set of internal channels. For instance, ch{cll5) = och(c!!b) = {c}, ich(e!'5) = @,
tch(c!13; d?7z||c??y) = {c,d}, and och(c!!3; d?72}{c?Ty) = {c}.

3.1.2 Basic Assumptions

Similar to chapter 2, we assume that there is no overhead for compound statements and
that a delay e statement takes exactly e time units if the value of ¢ is not negative.
We also assume given positive parameters K, and K, such that each assignment takes
K, time units and the evaluation of the guards in a guarded command takes K, time
units. The new assumption here is that we assume a positive parameter K, such that
each sending takes K, time units and each reading takes K, time units. It is possible to

generalize these assumptions, for instance, sending and reading take different times.
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In this chapter we also use the mazimal parallelism model to represent the situation
that each parallel process runs at its own processor. Hence any action is executed as
soon as possible. A process only waits when it tries to receive a message from a channel

but the bufer for that channel is empty.

3.2 Compositional Semantics

In this section, we give a compositional semantics for the programming language defined
in section 3.1. First we define a computational model in section 3.2.1. Then we describe

the formal semantics in section 3.2.2.

3.2.1 Computational Model

Similar to chapter 2, the timing behavior of a process is expressed from the viewpoint
of an external observer with his own clock. Thus we will use the same time domain
TIME as defined in chapter 2, i.e., TIME = {r € IR | 7 = 0}. We will also use the
notations defined there, for instance, [1o, 71, denoting a closed interval of time points,
{70, 71, representing a left-open and right-closed interval, and so on.

Next we define a model representing a real-time computation of a process.

Definition 3.2.1 (Model) Let 7o € TIME, 7y € TIMEU {00}, and 711 2> 715. A model
o is a mapping ¢ : [10,71] = STATE x p{COMM)} x p{COMM), where

STATE = {s|s: VAR — VAL } and COMM = {{c,9) | c€ CHAN and ¢ € VAL }.
Define begin(o) = 75 and end(o) = 7. The set of all models is denoted by MOD.

Consider a model o and a 7 € [begin(c), end(o)]. Then we have o(7) = (s, S, R) with
s€ STATE,S C COMM, and R C COMM. Hencelorth we refer to the three fields of
o(7) by o(7).s, 0(7).5, and o(r).R, respectively. Informally, if o models a computation
of a process P, begin{o) and end(c) denote, resp., the starting and terminating times
of this computation (end{c) = oo if P does not terminate). Furthermore, a{begin{e)).s
specifies the initial state of the computation, and if end(o) < oo then o{end{c)).s gives
the final state. We will use 0® to denote o(begin{e)) and, if end(a) < oo, 0° to denote
o(end(a)). In general, o(7).s represents the values of variables, For a channel ¢ and a

value ¥ € VAL, a record {c,d) has the following meaning:

o (c,d) € o(r).5 ifl process P or the environment of P has sent value J along ¢ at

time T,

o (c,9) € o{7).R iff process P has read value 9 from (the buffer of) channel ¢ at

time .
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Note that, using the syntax of process P, we can observe if a message has been sent by

P itself or by its environment. For instance, if P = c!!5 and ¢ represents an execution

of P, we are sure that if (¢, 5) is in some S-field of o, value 5 is sent by P itself, since

it is assumed that each channel connects exactly two processes. On the other hand, if

P = ¢z and {c,5) occurs in some S-field of o, value 5 is sent by the environment of P.
In the description of the semantics we use the following definitions.

~ The definition about the variant of a state s is the same as the one in chapter 2.

Definition 3.2.2 (Input Channels Occurring in a Model) The set of input chan-

nels occurring in & model o, denoted by ich{c), is defined as

1ch(0) = Upegin(o)cr<end(o) {€ | there exists a ¥ € VAL such that (¢,9) € o(7).R}

Definition 3.2.3 (Prefix of a Model) A model oy is a prefix of model o3, de-
noted by o1 X oy, iff begin(ay} = begin{c,), end(oy) < end(o,), and for any 7 €

[begin{o1), end(01)], 01(7) = a3(7). Define 01 < 03 as 0y X 02 A end{ey) < end(os).

Definition 3.2.4 (Concatenation of Models) The concatenation of two models oy

and g,, denoted by 0,03, i1s a model o defined as follows:
¢ if end(oy) = oo, then o = oy;

e if end(0y) < oo, end(0,) = begin(oy), and af.s = ob.s, then o has domain ’
ai(r) 7 € [begin(o1), end(oy)]

{begin{o,), end(0,)] and is defined by o(7) = oa(r) 7 € (begin(oa), end(oa)]

o otherwise o is undefined.

Definition 3.2.5 (Sequence) A sequence ¢ is a finite or infinite list of values. If it is
infinite, it takes the form of (91,9;,...} with &, € VAL, for any z > 1, and its length
lgl is co. If it is finite, it has the form of (dy,...,¥,} for some n > 0, n € IN, with
¥; € VAL, for any ¢, 1 <¢ <n, and its length |¢| is n. If n = 0, it is an empty sequence
and denoted by (). The set of all sequences is denoted by QUE.

For any nonempty sequence g, First(q) gives the first element of q. For any two
sequences ¢, and g3, ¢y - ¢2 is the concatenation of ¢, and ¢;. If ¢y is a prefix of g1, ¢, — @2
results in a sequence obtained by removing all elements of ¢, from ¢, otherwise ¢; — ¢»
is undefined.

Definition 3.2.6 (Buffer) A buffer is represented by a mapping which assigns to each
channel a sequence representing the messages in the buffer of the channel.

Define BUF = {b|b: CHAN — QUE]} as the set of all buffers.
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Thus b(c) specifies a sequence which represents the messages in the buffer of channel

Next we define the sequence of messages being sent along channel ¢, by a process or

an environment, after a model o, denoted by BufS(o)(c), as follows.

e BufS(o)(c) records every value ¢ for which there exists a 7 € [begin{c), end(c)]
such that (c,9) € o(7).S.

o BufS(o)(c) is time-ordered, that is, if there exist 7, and 7, such that r, < =,

(¢,91) € 0(11).5, and (¢, V) € o(7;).S, then ¥; appears before ¥, in BufS(a)(c).

We can similarly define BufR(0)(c) as the sequence of values being read by a process
along channel c after the’computation of o, namely replacing o(7).S by ¢(7).R in the
corresponding places in the definition of BufS(o)(c).

In the semantics, we assign a set of models to each statement, representing all possible
computations of that statement starting with an initial buffer. To compute the resulting

buffer after a computation o with initial buffer b, we give the following definition.

Definition 3.2.7 (Buffer of a Model) For any 0 € MOD, any ¢ € CHAN, and any
b € BUF, the bufler of channel ¢ after a computation ¢ starting with initial buffer b,
denoted by Buf(b,o)(c), is defined as Buf(b,o)(c) = (b(c)- BufS(o)(c))— BufR(c)(c).

Thus Buf(b,o)(c) representes the sequence of values which are left in the buffer
of ¢ after the execution of & which starts with initial buffer b. The semantics of our
programming language will be such that, for any channel ¢ and any o from the semantics
of any statement S starting with any initial buffer &, the sequence of messages being
read from c¢ is a prefix of the sequence of messa,geé being stored at the buffer of channel
¢, i.e., Buf(b,0)(c) € QUE and thus Buf(b,0) € BUF.

We will use Buf(b, U‘]O’g -++0y,) to denote Buf(Buf(- - (Buf(b,01),02), -+),00)-

Definition 3.2.8 (Concatenation) For any Fi, F; € BUF — p(MOD), we define
CON(F,F,) € BUF — p(MOD) by
CON(F],FZ)(b) = {0’10'2 | oy € F](b), og € Fz(BUf(b, 0'1))7 and B’ltf(b, 0’1) € BUF}

It 1s not difficult to see that CON is associative, i.e.,
CON(F,,CON(F;, F3))(b) = CON(CON(Fy, Fy), F5)(b). _
Henceforth, we use CON(Fy, Fy, F3)(b) to denote CON(F,, CON(F3, F3))(b).
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3.2.2 Formal Semantics

The meaning of a process S, denoted by M(S), associates to each element b€ BUF, a
set of models representing all possible computations of § starting at an arbitrary time
where the initial contents of the buffer of each channel ¢ is given by b{c). For any process
S and a buffer b € BUF, we define M(S){b} by induction on the structure of S.

The evaluation of an expression e from the programming language in section 3.1 is a
function £(e) : STATE — VAL, which is defined similarly as in chapter 2 section 2.2.2.
The evaluation of a guard g from the language at a state s, denoted by G{g)(s), is also
defined similarly as in chapter 2 section 2.2.2.

Before giving the semantics, we need to make a general assumption about the 5-
fields of any model. Since the S-fields of a mode! contain all the values sent to a process,
especially by its environment, we do not describe those S-fields in the semantics of the
process. Instead, they only need to obey the following assumption.

General Assumption

For any model o, any ¢ € CHAN, any 7, begin{o) < 7 < end(0), and any 94,9, € VAL,
the following holds:
(c,1) € o(r).S A (c,¥;) Eo{7).5 — ¥, = .

Informally, this means that there can be at most one value being sent along a channel at
any time point. This assumption will be used in, for instance, a theorem concerning the
relative completeness of a proof system for this asynchronous version of the programming
language. ;

We first define a predicate I'dle(o), which expresses that all states are equal to the

initial state and no message has been read during the execution of o

Definition 3.2.9 For any model o, Idle(o) iff for any 7 € [begin(o), end(0)], o). =
o*.s and o(7).R = 9.

Skip

Statement skip terminates immediately without any state change or communication.
The S-fields of any model of this statement indicate the messages sent by its environment
and thus obey the general assumption. ’

M(skip)}(b) = {o | begin{o) = end{c) and Idle(c}}

Assignment

Statement z := e assigns the value of e to variable # and terminates after K, time units.

All intermediate states before termination are the same as the initial one. The state at
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termination also equals to the initial state except that the value of z is replaced by the
value of ¢ evaluated at the initial state. The R-fields of any model of this statement are
empty during the execution period since this statement does not receive messages. But
the S-fields show the messages sent by the environment and thus also obey the general

assumption.

Mz := e)(b) = {o | end(0) = begin{a) + K,, for any ¢’ < o, Idle(0’),0°.R = @, and
o%.s = (obs: z > E(e)(0.8))}

Delay
M(delay e)(b) = {o | end(o) = begin(c) + maz(0, E(e)(c®.5)) and Idle(o)}

Send

Statement clle sends the value of e to the buffer of channel ¢. This is represented by
a record (¢, ¥g), where 9 is the value of ¢, in the S-field at termination. But before
that point, there should be no record (¢, ¥9), for any ¥ € VAL, in any S-field, because ¢
is an output channel of the statement itself and thus the environment cannot send any
message along c.

In order to express that no message should be sent along a set of channels during a

computation, we define the following predicate.

Definition 3.2.10 For any model ¢ and any cset C CHAN, Nomsg(o, cset) iff for any
¢ € cset, any 1 € [begin(c)}, end(c)], and any § € VAL, (¢,9) ¢ o(7).5.

Furthermore, it is possible that the environment of ¢!le sends some value along another
channel d # ¢ during the execution of clle. Thus we need the following definition, which
expresses that the projection of a model & onto a set of channel names cset at S-fields
is the same as o except that the new S-fields contain only those records for which the

channel name belongs to cset.

Definition 3.2.11 (Projection onto Channels at §-Fields) Let cset € CHAN.

5

2 ety as follows:

Define the projection of a model ¢ onto cset at S-fields, denoted by [o]
begin((o]S.,) = begin(o), end([ol5) = end(o),

cset

for any 7 € {hegin(a),end(a}l, [0]5,..(7).5 = a(7).s, [615,..(7).R = o(7).R, and

csel
[0]5..:(7).8 = {(e, 9} | (¢,9) € o(7).5 and ¢ € cset}.
The semantics of clle is then defined as;

M{clle}(b) = {o | end(0) = begin{o) + K., for any o' < o, Idle{c’}, Nomsg(o’, {c}),
0¢.s = abs, 0. = @, and [{0]{56})6.5 = {{c,E(e)(c*s))} }
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Receive

During the execution of a receive statement ¢??z there are generally two periods: first
there is a waiting period during which the initial buffer of ¢ is empty and no message
has been sent by its environment along channel ¢. Next, when the initial buffer of ¢ is
not empty or some message has been sent by the environment along channel ¢, there is a
period of K, time units during which the actual reading takes place. When the reading
finishes, = gets the first value from the buffer of channel ¢. Let
W Read(c??z)(b) = {0 | Idle(o), for any o' < o, Buf(b,0')}{c) = (), and

if end(o) < oo then Buf(b,o)(c) # (}}

and

Read(c??2)(b) = {0 | end(c) = begin{o) + K, for any ¢’ < o, Idle(0),
a®.R = {{c, First(b(c)))}, and o®.s = (c*.5: z — First(b(c)))}

Then the semantics for ¢?7z is defined as:

M{(c??z)(b) = CON(W Read(c??x), Read{c??2))(b)

Sequential Composition

To give the correct semantics of S;; S;, the models of 5, and S; should agree with each
other such that, if ¢ is an output channel of S, but not an output channel of S,, then
(¢, ), for any ¥ € VAL, should not be in any S-field of the model of 53, because ¢ is an
output channel of S;5; and thus the environment of §;; 5; cannot send any message
along ¢. I ¢'is an output channel of S; but not an output channel of 5, a similar
reasoning holds. Let '

Agree{oy, 02, 51, S2) = Nomsg(o1, 0ch{S:) \ och(51)) A Nomsg{oz, 0ch{S1) \ och(S,)).

The semantics of sequential composition is then defined as:

M(8y; S2)(b) =
{oy02 | 01 € M(51){(b), 02 € M8} (Buf(b,01)), and Agree(oy, a2, 51, 52)}

Guarded Command

Define Gy = [[L,4: — S, G2 = [[Ragsa??a — Sifldelay € — 5], § = Vi, g; for
Gy, §=Viogfor Gy, and € = {a,... 6.} for Gy

Consider G; first. There are two possibilities for the execution of Gy: either none of
the boolean guards evaluates to true and then this command terminates after evaluation,
or at least one guard g; yields true and then the corresponding statement S; is executed.

Recall that the evaluation of guards takes K, time units. During the evaluation
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period, the S-fields of any model of G, for i = 1,2, should not contain any {c, V) with
¢ € och((G;) and ¥ € VAL, because the environment of G; cannot send any message to
och(G;) and G| itself has not yet sent values to och({G;). For i = 1,2, define
Eval{G)(b) = {0 | end(c) = begin{o) + K, Idle(c), and Nomsg(o, och(G:)}}.
Then the semantics for G is given as follows.
M([[l1g: = SD(®) = {0 | G(=g)(c*5) and & € Eval(G1)(b)} U
{e102 | there exists a k, 1 < k < n, such that G{ge)(ot.s),
a1 € Eval(Gy)(b}, 07 € M(Si)(Buf(b, 1)),
’ and Nomsg(oz, 0ch{G1) \ och(5:))}

During an execution of a guarded command [[%,9:; ¢;77z; — 5] go; delay e — Sy, first
the guards ¢;, for : = 0,1, ..., n, are evaluated. Then,

¢ if none of the g; evaluates to true, then the command terminates;

¢ if go evaluates to true, e is positive, and at least one of the ¢;77z; for which ¢;
evaluate to true can start reading messages in less than e time units, then one of

the first possible ¢;?72; and its corresponding S; are executed;

s if go evaluates to true and either e is not positive or none of the ¢;??z; for which

g: are true can start reading in less than e time units, then Sy is executed;

e if gy evaluates to false, then the command waits until one of the ¢;?7z; for which
g; are true can read messages. Then one of the first possible ¢;?7z; and its corre-

sponding S; are executed.

To give the semantics for Gy, we first define two abbreviations:
Wait(G,)(b) = {0 | G(8)(c".5), Idle(o), Nomsg(o, 0ch{Gy)), for any ¢’ < o, any i,
1 <4 < n, either G(~g;)(c.s) or Buf(b,o')(¢;) = (),
and if end(o) < oo then there exists a k, 1 <k < n, such that
G(gi)(0®.s) and Buf(b,o)(ci) # {}}
Comm(G3)(b) = {o | there exists a k, 1 < k < n, such that G(gi)(c*s),
o € M(c??2y; 8¢ )(b), and Nomsglo, och{G2) \ och(S:))}
Notice that Wait{G,)(b) is similar to W Read{c??2)(b).
Using Wait{G;)(b), we define the lollowing additional abbreviations:
FinWait(G3)(0) = {o | G{go)(o?.9), end{o) < begin{a} + maz(0, £(e)(ab.5)),
and o € Wait(G:)(b)}
TimeOut(Gy)(b) = {0102 | G(go)(02.5), end(a;) = begin(a ) +max(0, E(e)(oh.3)), Idle(ay),
Nomsg(oy,0ch(Gy)), for any ¢; € & Buf(b,o:){a) = {},
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a9 € M(So)(Buf(b,01)), and Nomsg{(az, ach(G3) \ och(Ss))}
AnyWait(G,)(b) = {0 | G(—~go)(c®.5) and o € Wait(G2)(b)}
Then the semantics for G, is given as follows.

MUk, gi 6772 — S; || goj delay e — So])(b) =
{o | 6(~§)(c*.s) and o € Eval(G;)(b)} U
CON(Eval{Gy), FinWait(G,}, Comm{G3)){(b) U
CON{(Eval(Gy), TimeOui{G,))(b) U
CON(Eval(G,), AnyW ait{G,), Comm(G,))(b)

Iteration

For a model in the semantics of *G starting with a buffer b, there are two possibilities:

¢ either it is a concatenation of a finite sequence of models from M(G)(b;), for some
b;, such that each model corresponds to an execution of G starting with b; and
either the last model represents a nonterminating computation of G or all boolean

guards evaluate to false at the initial state of the last model,

& or it is a concatenation of an infinite sequence of models from M{G)(d;), for some
b, such that each model represents a terminating computation of (7 starting with
b; and not all boolean guards yield false at the initial state of each model.

Thus we have the following semantics for »G.

MG)(b) = {o | thereexist a k € IN, k > 1, and 3,...,0% such that 0 = 0y - - - 0y,
a1 € M(G¥(b), for any 1,2 <1 < k, 0; € M(G)(Buf(b,o1- - 0i1)),
for any 7,1 < j <k —1, end(0;) < oo,g(g)(a'}..s], and
if end(ox) < oo then G(—g)(ob.s) otherwise G(g)(oh.s)}

U {o | there exists an infinite sequence of models a1, 09, .. ., such that

o =002, 01 € M(G)(b), for any : > 2,
o; € M(GYBuf(b,oy--0;y)), forany j > 1,
end(o;) < 0o, and G(g)(at.s)}

Parallel Composition

In order to define the semantics of parallel composition, we first need a few definitions.
The first definition expresses that the projection of a model o onto a set of channel
names cset at R-fields is the same as ¢ except that the new R-fields contain only those

records for which the channel name belongs to cset.
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Definition 3.2.12 (Projection onto Channels at R-Fields) Let cset C CHAN.
Define the projection of a model & onto cset at R-fields, denoted by [¢]%,,, as follows:
begin([ol2,,) = begin(a), end(o]R,) = end(c),

for any T € [begin(o),end(a)], [o]R,(7).s = a(7).3, [0]2,,(7).S = o(7).S, and
[o]R.(7).R = {(¢c,9) | (¢,?) € o(7).R and ¢ € cset}.

The projection of a2 model o onto a set of variables vset is the same as o except that
if a variable does not belong to vset then its value at all states is the same as its initial
value in a.

Definition 3.2.13 (Projection onto Variables) Let vset C VAR. Define the pro-
jection of a model o onto vset, denoted by ¢ | vset, as follows:

begin(o | vset) = begin(o), end(o | vset) = end(c), for any 1 € [begin(o), end(0)],

(o | vset)(7).5 = o(7).5, (¢ | vset)(r).R = o{r).R, and for any = € VAR,

(¢ | vset)(r).s(z) = { o(7).8{z) = € vset

ab.s(z) & vset

The semantics of 51||5; consists of all models ¢ for which there exist models oy €
M(5;) and o3 € M(S,) such that !

o the S-fields of o are the same as those of oy and o, because the S-fields contain
the messages that have been sent in the whole system;

e the R-fields of the projection of o onto ich(S;) at R-fields should be the same as
the corresponding R-fields of o;;

¢ the value of a variable z during the execution of 5,||5; is obtained from the state of

o; if z € war(S;), and from the initial state otherwise, since var(S;)Nvar(S;) = @;

e if S terminates before S;, the S-fields of o, should not contain any {¢, 9} with
¢ € och(Sy) and ¥ € VAL after ) has terminated, because ¢ € och(S;) implies
¢ ¢ och(S;) and the environment of S;[|S; cannot send any message to ¢ either.
Similarly, for §; and S, interchanged. To express this property, we have the

following predicate Cons.

Definition 3.2.14 For any statements Sy, S, and any models o1, a4,
Cons(oy,0,,5,,5;) iff

o if end(o,) < end{o,), then for any ¢ € och(S)), any ¥ € VAL, and any
7 € (end(0,), end(o3}], {¢,?) € 04(1).5;

¢ if end(o,) < end(oy), then for any ¢ € och(S,), any ¥ € VAL, and any
7 € (end(02), end(oy)], (¢, V) ¢ o:{7).5. k
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The ipitial buffers of joint channels of §; and S; should not contain any message.
Thus, given any initial buffer b,

o if there exists a ¢ € ch(S;) N ch(S;) with b(c) # (), then M(5]|S2)(b) = @;

s otherwise M(S5,]|5:)(b) = ;
{o ]| tch(o} C ich(51) Uich(S,), for i = 1,2, there exist o; € M(S;)(b) such that

begin(o) = begin{o;), end(c) = maz{end(o,), end(a,)),
for any ; € [begin(o;), end(0})], o(m1).S = 0;(71).5,
(0145 (n)-R = 0i{n1).R, (0 | var(S:))(r1).s = oi(m1).,
for any 73 € (end(0y), end(0)), [0]fys,)(T2). R =8, (0 | ?)(2?’(\5‘;))(1‘2).8 = g}.3,
for any z ¢ var(S;)Uver(S;) and any 7 € [begin(c), end(s)],
a(r).5(z) = ot.5(z) = ob.5(x),
for any ¢ € ch{S:) N ch(Sy), b(c) = (), and Cons(ay, 02,51, 52)}

Similar to chapter 2, we also define a so-called well-formedness property of the semantics.

Definition 3.2.15 (Well-Formedness) A model o, defined in section 3.2.1, is well-
formed iff for any ¢ € CHAN, any 7, begin(o)} € 7 < end(o), and any 94,9, € VAL,
the following holds:

¢ {¢c,0)€a(r).RA(c,¥;) € o(7).R — I, =1,
(Uniqueness: at most one value is received on a channel at any time point.)

And then we also have the following theorem.

Theorem 3.2.1 For any process S and any buffer b, if ¢ € M(S)(b), then
e ich(o) C ich(S),
e if = ¢ woar(S), then for any 7, begin(o) < 7 < end(0), o(7).s(z) = ¢*.s(z), and
s o is well-formed.

This theorem can be easily proved, by induction on the structure of S.

3.3 Specification Language

We define a specification langunage which is based on Explicit Clock Temporal Logic, i.e.,
ordinary linear time temporal logic augmented with a global clock variable denoted by
T. Intuitively, T refers to the current point of time during an execution. We use start
and term to express the starting and terminating times of a computation respectively

{term = oo for a nonterminating computation). We also use first{z) and init{c) to
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refer to the value of ¢ at the first state of a computation and the initial buffer of channel
¢, respectively. Notice that last{(z) (from the specification language in chapter 2) is not
needed here. To specify the communication behavior of processes, it is sufficient to use
two primitives send(c, vezp) and receive(c, vexp), which express sending and receivingr
of expression vezp along channel ¢, respectively. To abstract from values, we also use
send(c} and receive(c). Similar to chapter 2, this specification language include the
strong until operator, U , the “chop” operator C, and the “iterated chop” operator C*.

In this specification language, there are three kinds of expressions, i.e., gexp, vexp,
and tezp, to express values of type QUE, VAL, and TIME U {cc}, respectively. A
specification is denoted by . The syntax of this language is given in tabel 3.2, with
w€ QUE,c€ CHAN,9 € VAL, z € VAR, and # €¢ TIME U {cc}.

Table 3.2: Syntax of the Specification Language in Chapter 3

Que Ezp gezp = w | init{c)
Val Exp vexpi= 9 | z | first(z) | first(gezp) | maz(vezp:,vezp,;) |

vexp, + vexp, | vexrp — vexpy | véxp X vexp;

i

Time Exp texpu= F | T | start | term | vezp |

texpy + texps | tewp, —texpy | texpy X texp;
Specification @ = qexp, = qexp; | texp; = texp, | texp; < texp; |
send(c,vexp) | send(c) | receive(c,vexp) | receive(c) |

w1V |~ | iU | 01 C o2 | 91 C™ 2

Let ezp be any expression from this specification language, i.e., exp can be some
gexp or texp. Define the input channels of ezp, denoted by ich(exp), to be the set of
all channel names occurring in init(c) in exp. Define the variables of exp, denoted by
var{ezp), to be the set of all variables occurring in ezp. Let  be any specification.
We define ich{p) to be the set of all channel names occurring in init(c), receive(e), or
recetve(c, vexp) in @, for some vezp. We also define var{p) to be the set of all variables
occurring in .

Next we give the interpretation of this specification language. We first define the
value of a sequence expression gezp at model o, initial buffer b, and time 7 2 begin(o),

r € TIME, denoted by Q{qgexp)(0,b,7), as follows.
o Qw){o,b,7)=w
e Qinit(c)){o,b,7) = b(c)

The value of expression verp at model o, initial buffer &, and time 7 > begin(c},
T € TIME, denoted by V(vezp)(s, b, 1), is defined as follows.
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. V(d)(o,b,7) =1

Vaesn={ A )
o V(first(z))(o,b,7) = o*.5(2)
o V(Jirst(geap))(a,b,7) = First(Q(geap)(a,b,7))
" o V(magz(veapy, vezps))(o, b, 7) = maz(V(veap;)(o, b, 7), V(veaps)(a, b, 7))
o V(vezp Ovesp)(a,b,7) = V(vezps)(a, b, 7)OV(vezps)(a, b 1), for © € {+, - x}.

The value of a time expression texp at model o, initial buffer b, and time 7 >
begin{o), r € TIME, denoted by T (texp){o,b, 7}, is defined as follows.

o T(7)(o,b,7) =+

o T(T)(o,b,7) =1

o T(start)(o,b, ) = begin(o)

o T(term)(,b,7) = end(a)

o T(vezp)(o,b,7) = V(vezp)(s,b,7)

o T(vexp,@uexp;)(o,b,7) = T(vexp,)(a, b, 7)OT (vexp;)(a,b, ), for © € {+,—, x}.

The interpretation of a specification ¢ at model o, initial buffer b, and time 7 >
begin(a), r € TIME, denoted by (0,b,7} |= ¢, is defined by induction on the structure
of ¢.

o (0,b,7} = qexp = qexp, iff Q(qezpi)o,b,7) = Qgexp; )0, b, 7).

o {0,b,7) |= texp; = texpy iff T(texp,)(0,b,7) = T(texpy){o,b, 7).

o {(0,b,7) |=texpy < texp, il T(texp)(o,b,7) < T{iexpz)(o, b, 7).

¢ {0,b,7) | send(c,vexp) ifl T < end(0) and (¢, V(vezp)(a,b, 7)) € o(r).5.

¢ {0,b,7) |= send(c) iff T < end(0) and there exists a ¥ € VAL such that
(c,9) € o(r).S.

o {0,b,7} = recerve(c, vexp) iff T < end(o) and (¢, V(vexp)(o, b, 7)) € o(7).R.

» {0,b,7) |= receive(c) iff 7 < end{o) and there exists a ¥ € VAL such that
(c,9) € o(T).R.
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o (0.5,7) =1 Vi, iff {0,b,7) E wy or (0,8,7) I @3
¢ (o,b,7) |5 ¢ iff not {0,b,7) k= .

e (0,0,7) = @1 U g iff there exists a 7, 2 7, such that {6,b,7;) = @, and for-all
T1, T S T < T2, (U, bv 71} % -

o (o,b,7)E 1 C pyiff

— ejther {0, 5,7} & ¢ and end(eo) = oo,

— or there exist models oy and o such that o = 0y0;, 7 < end(oy) < 00,
(o4,b, 7} k= 1, and (o2, Buf(b, 01}, begin{oz)} k= 3.

o {0,b, 1) b=y C* oy iff

— either there exist a £ > 1 and models ay4,..., 04 such that ¢ = o7+ - 0y,
T <end(oy) < 00, {01,b,7) k= @y, for all i, 2 <4 < k ~ 1, end(o;) < o0,
{o:, b, begin(0})) | w1, if end(or) < oo then (o, b, begin(eL)) E ¢,
otherwise {0y, by, begin(oy)}) k= 91, and for all j, 2 g; <k,

b; = Buf(b, o5 0j-1),

- or there exist infinite models oy, 03,03, ... such that ¢ = ¢0y0903. . .,
end(oy) 2 7, (01,5, 7) E ¢, for all 1 > 2, {5, b, begin(o;)) E ¢ with
b = Buf(b,o;- - 0;1), and for all j > 1, end(0;) < 0.

The substitution of an expression vexpy for a variable z in an expression vezpy,
denoted by vexp;[vexp,/z], is defined as the expression obtained by replacing every
occurrence of z in vexp; by vexp;.

Moreover, we have the usual abbreviations from temporal logic, i.e., O, Dy, and
w1 U 3. Their definitions can be found in chapter 2 section 2.3.

Definition 3.3.1 (Valid Specification) A specification  is valid, denoted by = ¢,
iff (g, b, begin{o)} k= ¢ for any buffer b and any model o.

To express that every computation of a process S satisfies an ECTL specification ¢,
we use a correctness formula of the form § sat .

Definition 3.3.2 (Satisfaction) A process 5 salisfies a specification @, denoted by
k= S sat @, iff {0,b, begin{o)) & ¢ for any bufler b and any model o € M(5)(5).

The following are some examples of correctness formulae in this specification language.

o S never receives any message from channel ¢ and never terminates:

S sat (O —~recefve(c)) Alerm = oo.
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s If S starts its execution with z = 0, § will eventually terminate and  will have
™
value 10 at termination:
S sat first(z) =0 - O(T =term Az = 10).

¢ If the initial buffer of channel ¢ is empty and no message will be sent to channel
¢, then S never receives any message from ¢
S sat (init(c) = () A O —send(c)) — O -receive(c).

s If the initial buffer of ¢ is not empty, then S will eventually receive the first value
of the buffer for channel ¢
S sat init{c) # () — Oreceive(e, first(init{c})).

3.4 Proof System

In this section, we give a compositional proof system for our programming language in
section 3.1. Similarly to chapter 2, this proof system will include all valid assertions of
ECTL as axioms. We first formulate some general axioms and then give axioms and
rules for each statement from the programming language.

For any finite cset C CHAN and finite vset C VAR, define
norecv(cset) = \.ecoer ~receive(c), nosend{cset) = A e ~send{c), and
inv(vset) = Apepser & = first(z).

The first axiom axiomatizes the well-formedness property of the semantics.

Axiom 3.4.1 (Well-Formedness)
For any finite cset C CHAN, § sat WFA

e Where

WFA,, = Acceses TeCEIVE(C, VETP) ) A TecEive(c, verpy) — vexp; = veap,.

The next axiom expresses that if a channel is not an input channel of statement S,

S will never receive a message along that channel.

Axiom 3.4.2 (Receiving Invariance)
For any finite cset C CHAN with cset Nich(S) = @, S sat Onoreco(cset).

The variable invariance axiom, the conjunction rule, and the consequence rule defined
n chapter 2 are also included in the proof system.

The axioms for skip, assignment, and delay statements are the same as defined in
chapter 2. ,

Statement c!le sends the value of e along channel ¢ without waiting for its commu-

nication partner.

Axiom 3.4.3 (Send) clle sat —send(c) U (T = term = starl + K. A send(c, e))
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Statement ¢?7x reads the first value of the sequence of messages in the buffer of channel
¢. If there is no message available, it has to wait until a message arrives.
Let ¢ be any specification. Define Await(yp) = (—¢) U (¢ AT = term).
We formulate an axiom for ¢??z by using
WRecv(c??z) = Oz = first(z) A —~receive(c)] A Awaitlinit(c) # {) V send(c)]
and
Recv(c??z) = [x = first(z) A —receive(c)] U
[T = term = start + K. A receive(c,z} A z = first(init(c))]

Axiom 3.4.4 (Receive) c¢?%z sat WRecv{¢??z) C Recv{c??z)

Sequential composition Sy; S; expresses a séquential execution of Sy followed by S,.
Let ¢y = Onosend{och{S;) \ och(5;)) and 1, = Onosend{och(Sy) \ och(52)).

Then we have the following rule for sequential composition.

Sy sat ¢, 5 sat ¢
51;8; sat (w1 Athr) C (w2 Aty)

Recall that we have the following abbreviations (see section 3.2.2):

Gr = [[[i19i = Sil, G2 = [[Fagi 772 — Sif|delay e — Sgl,

Rule 3.4.1 (Sequential Composition)

g =Vi g for Gy, § = Vg for Gy, ¢ = {ci | g} for Ga.

To axiomatize guarded commands, we define some additional abbreviations:

Quiet(G;) = inv{wvar(G:)) A norecv(ich(G;)) A nosend(och(G;)), for ¢ = 1,2,

Quiet(Gy \ j) = tnv(wvar(G2)\ {z;}) A norecv(ich{G2) \ {¢;}) A nosend{och{G,}),
forj=1,..,n,

and
Eval = term = start + K.

First we give an axiom for the evaluation of gnarded commands Gy and G;.
Axiom 3.4.5 (Guarded Command Evaluation) Fori=1,2,

G; sat [Quiet(G;) U (T = start + K, A Quiet{G;}}| A [~§ — Fwval]

Next we formulate a rule for Gy, by using
Ezec = V7, gi A @i A Unesend(och{G1) \ och(S;))
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Rule 3.4.2 (Guarded Command with Purely Boolean Guards)

S; sat ¢, fori=1,...,n
% 9 — Si] sat §— (Eval C Ezec)

For G, we use the following additional abbreviations:

Wait = § A Await|Vicicn 9i A (init(c) # () V send(ci))] A O Quiet(G2)

Comm = V., g A ¢i A Bnosend(och(G,) \ och(S;))

FinComm = (ga Aterm < start + maz(0,¢) A Wait) C Comm.

TimeOut = [go A O {A ez tnit{c) = () A ~send(c;)) A term = start + maz(0,e) A
0 Quiet(Gy)] € [iwo A Onosend{och(G;) \ och(So))]

AnyComm = (—gy A Wait) C Comm

Rule 3.4.3 (Guarded Command with 10-Guards)

a2 5; sat p;, fori=1,...,n, S, sat g

(N2 ,95 6772 — Sigo; delay e — S;] sat
g — (Bval C (FinComm V Timeout V AnyComm))

Statement *G denotes repeated execution of G if one of those g; in G is true. Its
execution can be expressed by using the C* operator.

G sat @
*G sat (§Ap)C" (- Agp)

Rule 3.4.4 (Iteration)

Next consider parallel composition of S; and §;. Suppose we have spéciﬁcaﬁions ¢ and
2 for, respectively, Sy and 53. If Sy terminates after (or at the same time as) Sy then
the model representing this computation of S;||.S; satisfies ¢4 A{p2 C true). Furthermore
we have to express that the variables of S; are not changed and there is no activity on
the channels of 5, after the termination of S;. Similarly, for S; and S; interchanged.
Let IBuf = Accon(s,jnehis,) tnit(c) = () and

¥; = O [inv{var(S:)) A norecv{ich(S;)) A nosend(och{S;))], for ¢ = 1,2.

The parallel composition rule is formulated as follows.

Rule 3.4.5 (Parallel Composition)

S; sat P1, SQ sat w2
Si1|S2 sat TBuf Af(p1 A2 € #2)) V (g2 A1 C )]

provided ich(w;) C ich(S;) and var(g;) C var(Sy), for i = 1,2,
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Example 3.4.1 We prove that
c?lz||c!!5 sat term = start + 2K, AQ(T = term — z = 5).

By the receive axiom, we lrave ¢?7¢ sat ¢, with
¢1 = WReev(c??z) C Recv(c??z), where
WRecu(c??z) = Oz = first(z) A ~recetve(c)] A Awaitlinit(c) # {) V send(c)] and
Recv(c??z) = [z = first(z) A ~receive(c)] U
[T = term = start + K, A recetve(c,2) A z = first(init(c))].
By the send axiom, we have cli5 sat o, with
2 = —send(c) U (T = term = start + K. A send{c, 5)).

Since ch{pr) C ich{c??z), ich(pz) C ich(cMB), var(py) € var(c??z), and var(p;) C
var{cl!5), by the parallel composition rule, we have '
??zf|clts5 sat IBuf Af(p1 A (p2 C )V (p2 A (91 C 1))
where
IBuf = init(e) = (},
¥y = Ofinv({z}) A norecv({c})], and
Py = Dnosend({c}).
Observe that,
IBuf A i A (s C ) is equivalent to
init(e) = () A [WRecv(c??z) C Recv(c??z)] A
[(msend(c) U T = start + K. A send(c,5)) € Onosend({c}}],
which implies
[(—send(c) Ainit{c) = {}} U (T = term = start + K, A send(c,5))] C
[(z = first(z) A —receive(e)) U (T = term = start + K, A receive(c, z) A

z = first{init{c)})],
and this leads to
term = start + 2K, AO(T = term — z = 5}.
Furthermore, we have that,
IBuf Ay A (w1 C ¢) implies
[-send(c) U (T = term = start + K, A send(c, 5))] A
[WRecv(c??2) € Recv(c??z) € Onorecv({c})],
which implies
term = start + K. A [O(T = term = start + K, A send(¢,5)) C

O (T = term = slart + K, A receive(c,z)) C Onoreev{{e})],

and this leads to
term = start + K. A term > start + 2K,
which leads to false.

Combining these two cases, we obtain
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IBufA{p1A (@2 C ¢2))V{paA (1 C 1)) — term = start+2K AD(T = term — z = 5).
Hence, by the consequence rule,
c??zl|clis sat iterm = start + 2K A O (T = term — z = 5). 0

3.5 Soundness and Completeness

In this section, we discuss the soundness and completeness of the proof system in section
3.4. Regarding the soundness of the proof system, we must show that every formula
S sat ¢ derivable in the proof system is indeed valid. We first give some lemmas
which will be used to prove the soundness. These lemmas can be proved similarly as
in Appendix A for those lemmas in chapter 2 section 2.6. The proofs for some new or
modified lemmas can be found in Appendix D. '

Lemma 3.5.1 For any expression ¢ from the programming language, any model o,
any buffer b, and any 7 > begin(c}, E(e}(c(7).5) = V{e}{o, b, 7).

Lemma 3.5.2 For any boolean guard ¢ from the programming language, any model
o, any buffer b, and any 7 > begin(c), G(g)(o(7).s) iff {0, b, 7} = g.

Lemma 3.5.3 For any expression gezp of type QUE, any cset C CHAN, and any
buffers b, and by, if ich{gexp) C cset and for any ¢ € cset, bi(¢) = by(c), then for any
model o and any 7 > begin{o), Qlgezp){(o, b, 1) = Qlgezp)(o, by, 7). ‘

Lemma 3.5.4 For any expression gexp of type QUE, any model o, any buffer b, any
cset C CHAN, and any T > begin(o), Q(gexp)(e,b,7) = Q(gexp)([o]h,,, b, 7).

Lemma 3.5.5 For any expression gezp of type QUE, any model o, any buffer b, any
vset C VAR, and any 7 > begin(c), Q(qexp)(o,b,7) = Q(gexp)(o | vaet, b, 1},

Lemma 3.5.6 For any expression vexp of type VAL, any cset C CHAN, and any
buffers b; and b, if ich{vexp) ¢ csef and for any ¢ € cset, b{c) = by(c), then for any
model & and any 7 > begin{o), V(verp){s,by,7) = V{vexp)(o, by, 7).

Lemma 3.5.7 For any expression vexp of type VAL, any model o, any buffer b, any
cset C CHAN, and any T > begin(o), V(vezp)(o, b, 7) = V(vexp)([o]Z,,, b, 7).

Lemma 3.5.8 For any expression vezp of type VAL, any model o, any buffer b, any
vset C© VAR, and any r 2 begin(o), if var(vexp) C vset, then V(vezp)(o,b,7} =
V{verp)(o | vset, b 7).
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Lemma 3.5.9 For any expression texp of type TIME, any cset C CHAN, and any
buffers b; and by, if ich(vezp) C cset and for any ¢ € cset, by(c) = by{¢), then for any
model o and any 7 > begin(c), T{texp)(o, by, 7) = T (texp)(o, by, 7).

Lemma 3.5.10 For any expression texp of type TIME, any model o, any buﬁ'e;' b,
any cset C CHAN, and any 7 > begin(o), T (texp)(o,b,7) = T (texp)([o]R,,, b, 7).

Lemma 3.5.11 For any expression tezp of type TIME, any model ¢, any buffer b,
any vset C VAR, and any 7 > begin(o), if var(texp) C vset, then T (texp)(o,b,7) =
T (tezp)(o | vset, b, 7).

Lemma 3.5,12 For any specification ¢, any cset C CHAN, and any buffers 4 and
by, if ich{p) C cset and for any ¢ € cset, bi{c) = by(c), then for any model & and any
T > begin(o}, (0,51,7) F @ iff (0,62, 7) = 0.

Lemma 3.5.13 For any cset C CHAN and any specification ¢, if ich(p) C cset, then
for any model o, any buffer b, and any 7 > begin(o), (0,5, 7) E ¢ iff ({0]2,,,b,7) k= ¢.

cset?

Lemma 3.5.14  For any vset € VAR and any specification ¢, if var(p) C vset, then.
for any model o, any bufer b, and any r 2 begin(a), {0,b,7) = @ iff {0 | vsel, b, 7} = .

For the soundness of this proof system, we have the following theorem.
Theorem 3.5.1 (Soundness) The proof system in section 3.4 is sound.

To formally prove this theorem, we have to show that all axioms are valid and all
inference rules preserve validity. For most axioms and inference rules, the soundness
can be proved similarly as in Appendix B for the proof system in chapter 2, i.e., by
following the definitions of the semantics and given lemmas. In Appendix E, we only
give the soundness proofs for receiving invariance, send, receive, sequential composition,
and parallel composition.

Similarly to chapter 2, we only prove the relative completeness of the proof system
in section 3.4, i.e., every valid specification is derivable in the proof system, provided
that any valid ECTL formula is provable.

We give a few lemmas which will be used for the completeness proof. These lemmas

can be proved similarly as in Appendix A for lemmas from chapter 2.

Lemma 3.5.15 For any model ¢ and any cset C DCHAN, ich(o) C cset iff
g = [a]get‘

Lemma 3.5.16 For any model ¢, any bulfer b, and any csely, csety C DCHAN,
if {a,b, begin(o)} = O norecv(cset, \ csety), then [o]? = [o]R

lcsety Uesety csety”
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Lemma‘ 3.5.17 For any model ¢, any buffer b, and any vsety,vset, C VAR,
if {o, b, bégz'n(a)) k= Oinv{vsety \ vsety), then o | (vset) Uvsety) = o | vsety.

Lemma 3.5.18 For any model o, any buffer b, if ich{c) C cset and
(0, b, begin(o)) = WF2,,, then o is well-formed.

-Similar to chapter 2, we prove the relative completeness by using a property of
specifications called preciseness.

Definition 3.5.1 (Invariant Variable) A variable z is invariant with respect to a
model o iff for any 7, begin{o} < 7 < end(o), o(7).5(z) = ab.s(¢).

Notice that although this definition is the same as definition 2.6.1, they refer to different
_ computational models.

Definition 3.5.2 (Preciseness) A specification ¢ is precise for a statement S of the
programming language in section 3.1 iff

1. S sat ¢ holds, i.e., {0, b, begin{c)) k= o, for any buffer b and any ¢ € M(S)(}};

2. For any buffer b and any well-formed model o, if ich(o) C ich(S), any variable
z ¢ wvar(S) is invariant with respect to o, and {0, b, begin{c)} = ¢, then
o € M(S)(b); and

3. ich{p) = ich(S) and ver(e) = var(S).

A precise speéiﬁcation o for § thus characterizes all possible computations of S: » is
valid for S, and any “reasonable” computation satisfying ¢ is a possible computation of
S.

In Theorem 3.5.2, we first show that for any statement S a precise specification can be
derived from the proof system. Then, in Theorem 3.5.3, we prove that any specification
w2 which is valid for § can be derived from a precise specification ¢, for S and two other
predicates. Hence, in Theorem 3.5.4, relative completeness is proved easily.

Theorem 3.5.2 If S is a statement from section 3.1, then a precise specification for §
can be derived by using the proof system in section 3.4.

This theorem can be proved similarly as in Appendix C for theorem 2.6.2. In Appendix
F we give a precise specification for each statement from section 3.1.

Theorem 3.5.3 If ¢, is precise for § and ¢; is valid for S, then
E o1 A WFf ) A O[noreco(ich(o2) \ ich(g1)) A inv(var(pz) \ var(@:)]] = @2
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Proof: Let ¢, be precise for S and p, be valid for S. Consider a model ¢ and a buffer b.
Assume that (o, b, begin(o)) = @1 AO [norecv(ich(pz) \ich(p1)) Ainv(var(pz)\var(e1))]
holds. We prove (o, b, begih(a')) E o,

By (o, b, begin(a)) |= ¢1, lemma 3.5.13 leads to ([0]f,,,), b, begin(o)) = ¢1. By lemma
3.5.14, ([0]R4,,) | var(p1),b,begin(o)) k= @1. From (0,b,begin(a)) k= WFf . by
lemma 3.5.13, we have ([0]%,,,), b, begin(o)) = WFZ, . By lemma 3.5.18, (G
is well-formed. Then by definition, [a]ﬁh(‘m) | var(p1) is also well-formed. Since ¢,
is precise for S, we have ich(p;) = ich(S) and var(p,) = var(S). By the definition
of projection onto variables, any variable ¢ ¢ wwvar(S) is invariant with respect to
[a]ﬁh(wl) | var(p1). Hence by the definition of preciseness, [0]%,,,) | var(p1) € M(S).
From (o, b, begin(c)) |= O norecu(ich(yps) \ ich(p1)), lemma 3.5.16 leads to
[a]ﬁh(w)uich(w) = [a]{:h(w). Since (o, b, begin(o)) = Oinv(var(y,) \ var(e,)), lemma
3.5.17 leads to o | (var(y1) Uvar(pz)) = o | var(p;). Thus we obtain

[0] (o )uichion) + (vaT(01) Uvar(p2)) = [0]y,,) | var(¢1). Therefore we have
[a]ﬁh(w)uich(wz) | (var(p1) Uvar(p,)) € M(S). Since @, is valid for S, we obtain
([a]{:h(m)uich(m) 1 (var(p1) Uvar(p2)), b, begin(o)) = 2. From wvar(pz) C var(e) U ,
var(yps), lemma 3.5.14 leads to ([a]{zh(w)wch(w),b, begin(o)) E ¢2. By ich(y2) C.
(ich(p1) U ich(yp2)), lemma 3.5.13 leads to {0, b,begin(c)) = .. Hence this theorem
holds. 0

Theorem 3.5.4 (Relative Completeness) The proof system in section 3.4 is rela-

tively complete.

Proof: For any process S, assume that specification ¢ is valid for S. We prove that
S sat ¢ is derivable in the proof system in section 3.4. By theorem 3.5.2, we have
S sat ¢, where ¢, is a precise specification for S. By the axiom 3.4.1, we have
S sat WF}‘:,.(W). Since ich(py) = ich(S), we have [ich(p) \ ich(p1)] N ich(S) = @.
Then by the receiving invariance axiom, we obtain S sat Onorecv(ich(yp) \ ich(y;)).
From var(yp,) = var(S), we have [var{p) \ var(p}] Nver(S) = @ and thus [var(ye) \
var(p;)] N wvar(S) = @. By the variable invariance axiom, we obtain

S sat Oinv(ver(¢)\var(p:)). Then the conjunction rule and the consequence rule lead
to S sat p; AW ,!gh(w])/\m [rorecv(ich(p)\ich(p1))Ainv(var(yp)\var(p:))]- By theorem
3.53, [ A WF.»':MW) A O [rorecv(ich(p)\ ich(p1)) Ainv(var(p) \ var(¢1))]] — ¢ is valid
and, by our relative completeness assumption, provable. Hence, by the consequence rule,

S sat ¢ is derivable in the proof system in section 3.4. o
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Chapter 4

Atomic Broadcast Protocol

4.1 Introduction

Computing systems are composed of hardware and software components which can fail.
Component failures can lead to unanticipated behaviour and unavailability of service.
To achieve a high availability of a service despite the presence of faults, a key idea
is to implement the service by replicating a server process on all processors [Crig0].
Replication of service state information among group members enables the group to
provide the service even when some of its members fail, since the remaining members
have enough information about the service state to continue to provide it. To maintain
the consistency of these replicated global states, any state update must be broadcast to
all correct servers such that all these servers observe the same sequence of state updates,
Thus a communication service is needed so that client processes can use it to deliver
updates to their peers. This communication service is called atomic or reliable broadcast.
We will refer to it as atomic broadcast. There are two sets of atomic broadcast protocols:
synchronous ones, such as [BD85,CASD85], and {Cri90], and asynchronous ones, such
as [BJ87] and [CM84]. '

Synchronous atomic broadcast protocols assume that the underlying communication
delays between correct processors are bounded. Given this assumption, local clocks of
correct processors can be synchronized [CAS86]. Then the properties of synchronous
atomic broadcast protocols are described in terms of local clocks as follows [CASDS85,
CASD89}:

s Termination: every update whose broadcast is initiated by a correct processor at
time T on its clock is delivered by all correct processors at time T + A on their
own clocks, where A is a positive constant and is called the broadcast termination

time.

s Atomicity: if a correct processor delivers an update al time U on its clock, then that

67
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update was initiated by some processor and is delivered by each correct processor
at time U on its clock.

o Order: all correct processors deliver their updates in the same order.

Synchronous atomic broadcast protocols provide an upper bound for the broadcast ter-
mination time, Thus they can be used in real-time applications where deadlines must
always be met, even in the presence of faults. On the other hand, asynchronous broad-
cast protocols do not assume bounded message transmission delays between correct
processors. Thus they cannot guarantee a bound for the broadcast termination time.
Therefore asynchronous atomic broadcast protocols are not suitable for critical real-time
- applications.
We are interested in the formal specification and verification of real-time and fault-
- tolerant systems. Since atomic broadcast service is one of the fundamental issues in
fault-tolerance, we choose an atomic broadcast protocol as our case study.

An informal description of an atomic broadcast protocol, an implementation, and an
informal proof which shows that the implementation indeed satisfies the requirement of
this protocol are presented in [CASD85,CASD89]. In these papers, there is a series of
protocols each of which tolerates omission failures, timing failures, and authentication-
detectable byzantine failures. As a starting point of verifying real-time and fault-tolerant
systerms, we choose a fairly simple protocol which tolerates omission failures. Henceforth,
we use the term atomic broadcast protocol to refer to this protocol. We will follow the
ideas of {CASD89] as closely as possible and compare our results with it in section 4.8.

The atomic broadcast service is implemented by replicating a server process on all
distributed processors in a network. Thus any client process on any processor can use this
service. We allow more than one client process located on one processor. Assume that
there are n processors in the network. Pairs of processors are connected by links which
are point-to-point, bi-directional, communication channels. A processor (link) is correct
if and only if it behaves as specified. In the atomic broadcast protocol, it is assumed
that only omission failures occur on processors and links. When a processor suffers an
omission failure, it cannot send messages to other processors. When a link suffers an
omission failure, the messages traveling along this link may be lost. But those messages
received by a processor are correct in time and contents. It is also assumed that the
duration of message transmission between correct processors takes finite time and local
clocks of correct processors are approximately synchronized. To send an update to its
peers, a client process initiates the atomic broadcast server process located on the same
processor to atomically broadcast that update. After such a request, each server process
will deliver that update to the client processes located on the same processor. To achieve

the order property of the service, there is a priority ordering among all processors. If
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two updates are initiated at different clock times, they will be delivered according to
the ordering of their initiation times. If they are initiated at the same clock time on
different processors, they will be delivered according to the priority of their initiation
processors. The configuration of the service is illustrated in the following figure 4.1.

client client \ .
process : process

v\ deliver /
AY

client
process

client
Pprocess

\ \\ deliver /

\ /7 \
\ \ / \ A / 7/
\ / \ \ / /
A A v N/ /
initiate® / initiate L initiate /initiate

server < link server

process send/ T T T T\ process

processor recejve processor

Fig. 4.1 Atomic Broadcast Service Configuration

In general, to formally verify a system, we need a proof theory which consists of axioms
and rules about the system components. To be able to abstract from implementation
details, it is often convenient to have a compositional verification method. Composition-
ality enables us to verify a system by using only specifications of its components without
knowing any internal information of those components. In particular, if the system is
composed of parallel components, the proof method should contain a parallel composi-
tion rule. Let S(p) denote the atomic broadcast server process running on processor p,
@ denote a specification written in a specification Iéﬂguage based on first-order logic,
and S(p) sat ¢ denote that server process S(p) satisfies specification ¢. The parallel
composition rule states that if server process S(p;} satisfies specification ¢; and ; only
refers to the interface of p;, i.e., ¢; and ; do not interfere with each other, for any
4,7 =1,2,...,n and 7 # j, then parallel execution of S(p;) satisfies the conjunction of
the ;. This rule can be formalized as follows.

Parallel Composition Rule
S{p:) sat @i, p; only refers to the interface of p;, for 1 = 1,2,...,n
S(pll---11S(pa) sat Al @i

To prove that a component satisfies a weaker specification, we need a consequence rule.

Namely, if process S satisfies ¢ and  implies 1, then § also satisfies .

S sat p, @ - P

Consequence Rule
S sat ¥
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Another useful rule is the conjunction rule, which shows that if process S satisfies ¢,
and ., then § also satisfies p; A @5,

S sat ¢;, S sat ¢,

Conjunction Rule
S sat o1 Ay

Recall that local clocks of correct processors are approximately synchronized. We show

that the verification of the protocol can be done compositionally by using specifications

in which timing is expressed by local clock values as follows.

o In section 4.2, we specify the properties of the atomic broadcast protocol in a spec-
Afication language based on first-order logic. We call this the top-level specification
and denote it by ABS. Thus our aim is to prove S(p:}j} - - [[S(pn) sat ABS.

o In section 4.3, we axiomatize the required assumptions about the service config-
uration, including underlying communication mechanism, clock synchronization
assumption, and failure assumptions. We denote the conjunction of all these ax-
ioms by AX.

o In section 4.4, we define the properties of the atomic broadcast server process
running on processor p. We call this the server process specification and denote it
by Spec(p). The specification Spee{p) should only refer to the interface of processor
p. We assume S(p) sat Spec(p).

o By the parallel composition rule, we obtain S(p( )|+ --[|S(p.} sat Al Spec(p:).
Since S{pi}l|-- - ||S(pn) also satisfies AX, we prove, in section 4.5, 4.6, and 4.7,
that '

Ay Spec(p) A AX — ABS.
Hence the consequence rule leads to S(p}|| - - - [|S(p.) sat ABS.

e We compare our results with [CASD89] in section 4.8.

4.2 Top-Level Specification

We formalize the top-level requirements of the atomic broadcast protocol in this section.
Let P be a set of processor names and L a set of link names. We assume that all
processors and links have unique names. We use p,q,7,s, ... to denote elements of P
and [, {;, ... to denote elements of L. Let G be the network of processors and links, i.e.,
G=PUL.
We assume that all real times range over a dense time domain called RTIME and
the standard arithmetic operators +, —, x, and < are defined on RTIME. We use

lower case letters, e.g. 1, u, v, ..., to denote variables ranging over RTIME.
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Each processor has access to a local clock. We denote by C, a function which
represents the value of the local clock of processor p, i.e., Cy(t) is the value of the local
clock of p at real time £. Let all clock values range over a domain called CVAL. We
assume that, for any T € CVAL, T' > 0. Similarly, the standard arithmetic operators
+, —, X, and < are defined on CVAL. We use capital letters, eg. T, U, V, .., to
denote variables ranging over CVAL. We also use (U, V], {U, V), (U, V], and (U, V) to
express, respectively, closed, half-open, and open intervals of clock values.

The atomic broadcast service is implemented by a group of server processes replicated
on all processors in the network. When a client process initiates a server process running
on processor p by sending a request of broadcasting update &, we call p the initiator of
o, i.e., we interpret it as p initiates o. Similarly, when the server process delivers an
update o to client processes, we interpret it as p delivers o to client processes.

To formally describe the properties of the atomic broadcast protocol, we define the

{following primitives:

s correct(p) at t: processor p is correct at real time ¢, 1.e., no omission failure occurs

on p at real time t.

o correct(l) at ¢: link [ is correct at real time ¢, i.e., no omission failure occurs on !

at real time £,

¢ initiale(p,o) at & processor p finishes with receiving a request of broadcasting
update ¢ from a client process located on p at real time ¢, i.e., p initiates o at real
time &.

s deliver(p, o) at t: processor p starts to send update o to client processes located

on p at real time ¢.
Henceforth, we use the following abbreviations:
s correct(p) = Vi correct{p) at i
| o correct(l) = Vi : correct(l) at t

In [CASDB8Y], local clock values are used to express and reason about the properties of
the protocol. We would also like to use local clock values to describe and verify the
protocol. For any primitive ¢ at 1, we define the following abbreviations:

spat, T=3t:pattAC(t)=T
[ ] (,ﬁ’bypTEEToitpatpTaAToSCr

o ¢ beforep, T=3T:paty, Tp ATy <1
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spinpg I=dT €l:paty, T, where I CCVAL.

In {CASDB8Y], assumptions about the system are simplified. For instance, it is assumed
that message processing time on a correct processor is zero. In this paper, we will take
all possible times spent by a correct processor into account. Then the termination and
atomicity properties can only be described by using an upper bound and an interval,
respectively, instead of precise time points as in [CASD89].

4.2.1 Termination

The &‘operty of termination is stated as follows: every update whose broadcast is initi-
ated by a correct processor s at clock value 7' will be delivered at all correct processors
by clock value T + D, on their own clocks, where D, is a positive constant and is also
* the broadcast termination time.

In this paper, we take the convention that any free variable occurring in a formula is
universally, outermostly, quantified. Thus the termination property is formally expressed
as fTollows:

TERM = correct{s) A correct(q} A initiaté(s,o) atg T — deliver(q,0) byq T + Dy

4.2.2 Atomicity

The atomicity property is described as follows: if a correct processor p delivers an update
at clock value U, then that update was initiated by some processor s at some local time
T and is delivéred by all correct processors at some local clock value between U — D3 and
U + D,, where D; is a positive constant and indicates the difference of delivery times of
an update by two correct processors.
This property is formalized as follows:
ATOM = correct(p) A correct(q) A deliver(p,o}) aty, U —
3s, T :initiate(s,0) aty T A deliver{q,0) ing [U — D3, U + D5

The atomicity property claims that if any correct processor delivers an update o at time
U on its clock, then every correct processor will deliver that update at more or less

the same time on its own clock, while the initiator of that update might happen to be

correct at the initiation time . This is the difference with the termination property.

4.2.3 Order

The property of order is expressed in [CASD8Y] as follows: all correct processors deliver

their updates in the same order.
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Intuitively, we understand the order property as follows. Let U be any clock value. _
If a sequence of updates delivered by processor p before local time U is (G15- -, 0k),
then there should exist a clock value V such that (oy,...,0%) has also been delivered
by any other processor ¢ before local time V. Notice that U and V can be different.
Furthermore, there is no reason to exclude the possibility that more than one update
is delivered at the same time by a processor. Therefore the set of sequences of up-
dates should include all possible sequences of updates in which those updates which are
delivered at the same time are interleaved. ‘

We define the following abbreviation:
o —deliver(p) inp I = —30 : deliver(p, o) inp 1.

Let IN denote the set of all natural numbers (including 0). Let IN* = IN \ {0}. We
define List(p,U) to be the set of all possible sequences of updates delivered by p before

local time U as follows.

Definition 4.2.1 For any processor p and any clock value U € CV AL, define
List(p,U) = {{01,02,...,0;) | there exist k € IN*, Uy, Us,..., Uy € CV AL such that
Uy LU £... LU < U, delwer(p, 0;) atp U,
for all 1 = 1,2,..., &k, ~deliver(p) inp (U;, Uj3.1),
forall j =1,2,...,k—1, and ~deliver(p) inp [0,U;).}

If we can prove that, for any two correct processors p and ¢ and any clock value U, there
exists a clock value V such that List(p, U) is a subset of List(q, V), then symmetrically
we can also prove that for any U there exists a V such that List(q,U) C List(p,V).
Hence p and ¢ deliver their updates in the same order. Then the order property is

formalized as follows:
ORDER = correct(p) A correct(q) — YUV : List(p,U) C Lisi(q,V)

Notice that, by the definition of ORDER, if p delivers o, and @, at some clock value
U, then ¢ also delivers oy and o3 at some clock value V;, although U; and V; can be
different.

The top-level specification of the protocol is the conjunction of these three properties.
Recall that ABS denotes the top-level specification of the atomic broadcast protocol.
Thus,

ABS =TERM N ATOM AORDER.

4.3 System Assumptions

In this section, we axiomatize the assumptions about the system.
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4.3.1 Processors and Links

We define the following primitive for a link /.

o link(l,p,q): | is a physical communication channel between p and g.

Definition 4.3.1 Define Link{p) as the set of links each of which connects p with
another processor: Link(p) = {I| 3q: link(l,p,q)}.

For any p, ¢, and I, if | € Link(p), | € Link(q), and p # ¢, then p and q are connected
by I. This is expressed by the following axiom.

-~

Axiom 4.3.1 (Link) 1€ Link{p) Al € Link(g) Ap # q — link(,p,q)
We also assume that a link connects at most two processors.
Axiom 4.3.2 (Point-to-Point) link(l,p,q) Alink{l,p,r) o g=7r

Let FP = {p | —ecorrect(p)} and FL = {l | ~correct(!}}. Define F = FPU FL.
Thus F denotes the set of processors and links which are not always correct, i.e., they
experience omission failures during an execution of the protocol. We assume that during
any protocol execution there can be at most m processors that suffer omission failures,
where m € IN.

One important assumption about the network is that during any execution of the
protocol all correct processors remain connected via correct links. Otherwise bounded
communication delays between correct processors cannot be guaranteed and thus the
protocol cannot provide any upper bound for the broadcast termination time. Recall
that G is the set of all processors and links, i.e., G = PUL. Then G\ F = {p |
correct(p)} U {1 | correci(l)} and it denotes the set of correct processors and links. G\ F
can be considered as a graph in which processors are vertices and links are edges. Thus
we have the following standard definitions (see, e.g. [Gou88]) with p,q € G\ F:

Definition 4.3.2

® A p—q walkin G\ 'F is a finite alternating sequence of correct processors and links
that begins with p and ends with q and in which each link connects the processor
that precedes it in the sequence and the processor that follows it in the sequence.

o Ap~—gqpathin G\ F is a p— q walk in which no processor is repeated.
e The length of a path is the number of links in that path.

o The distance between p and q, denoted by ‘&(p,q), is the minimum of all lengths of
p — q paths in G\ F. If there is no path between p and ¢, then d(p, q) is cc.
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e G\ F is connected if and only if there exists a path in G \ F' between any two _
processors in G \ F. ‘

e When G\ F is connected, the diameter of G \ F is the longest distance between
any two processors in G \ F, i.e., mez({d(p,q) | p,q € G\ F}).

Now we can give the axiom for connectivity.
Axiom 4.3.3 (Connectivity) G\ F is connected.

Given axiom 4.3.3, we assume that the diameter of G \ F is d.

4.3.2 Bounded Communication
We define two primitives:
e send(p,m,!) at t: processor p starts to send message m along link ! at real time t.

e receive(p,m,l) at t: processor p finishes with receiving message m along link [ at

real time .

The abbreviations defined in section 4.2 also hold for these two prirﬁitives.
Two processors connected by a link are called neighbors. When send(p,m,!) at ¢ or
receive(p, m,l) at ¢ holds, [ must be a link connecting p and one of its neighbors. This

is expressed in terms of clock values by the following axiom.
Axiom 4.3.4 (Neighbor)
send(p,m,l) atq T V receive(p,m,l) atq T — | € Link(p)

Two processors can send messages to each other if they are connected by a link. The
communication between two processors is synchronous in the sense that the duration
of the transmission of a message is bounded by two positive constants v and § with
7,6 € CVAL and v < 8. Let p and ¢q be two correct processors connected by a correct
link {. Let r be any correct processor to be used as reference. If p sends message m
along link { at clock value U according to the clock of r, then ¢ will receive m along [ at

some clock value in the interval [U + v, U + §] according to the clock of r.

Axiom 4.3.5 (Bounded Communication)
correct(p) A correct(q) A link(l, p,q) A correct(l) A correct(r) A send(p,m,l) aty U —
receive(q,m, 1) iny [U +4,U + §]

This axiom implicitly implies that the local clock function C, for correct processor p
should be monotonic.
Given bounded communication, the clocks of correct processors can be assumed approx-

imately synchronized.
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4.3.3 Clock Synchronization

We assume that when processors are correct their clocks are approximately synchronized

within a sufficiently small, positive, constant e.

Axiom 4.3.6 (Clock Synchronization)
correct(p) at t A correct(q) at t — |C,(t) ~ C,(t)] < ¢

It is trival to derive the following lemma.

Lemma 4.3.1 (Clock Synchronization) ,
correct{p) A eorrect(q) — |Cp(t) — Co(t)] < ¢

IS

Given axiom 4.3.6 and lemma 4.3.1, we can easily prove the following lemmas.

Lemma 4.3.2 For any primitive ¢ at 1,
correct(p) A correct(q) A ¢ ing [U,V] — ping (U —¢,V +¢).

Proof: Assume that the premise of this lemma holds. From ¢ ing [U, V], by definition,
there exists a T such that ¢ at, TAT € [U,V]. Let t be such that Cp{t) = 7. Then we
have ¢ at t A C,(t) € [U, V]. In terms of the clock of ¢, we obtain ¢ atq C,{t}). Since
correct(p) and correct(q) hold, by the synchronization lemma 4.3.1, we have [C,(t) —
Co(t)] < g, b, Cp{t) — € < Cy(t) < Cp{t) + €. Thus we obtain U — ¢ < Cyp{t) < V +¢,
ie., Cg(t) € (U — ¢,V +¢). Therefore we obtain ¢ ing (U — ¢,V + ¢). Hence this lemma
holds. o

Lemma 4.83.3 For any primitive ¢ at ¢,
correct(r) A correct(p)aty T A pat, T — ping (T —¢,T +¢).

Proof: Assume that the premise of this lemma holds. Let t be such that C,{t) = T.
Then by assumption, we have ¢ at £. In terms of the clock of r, we have ¢ at, C.(¢).
From correct(p) at, T, we obtain correct(p) at t. Since correct(r) holds, by the syn-
chronization axiom 4.3.6, we have [{C.{t) — C,{t}] < ¢, i.e., Cp{t) — e < C.(2) < Cp(t) + €.
Then we obtain C,(t) € (T' — ¢, T + ¢). Therefore we have ¢ in, (T — ¢,T + ¢). Hence
this lemma holds. ‘ O

Lemma 4.3.4 For any primitive ¢ at i,
correct(r} A correct(p) aty T A gaty T — ¢iny (T —¢,T +¢).

This lemma can be proved similarly as lemma 4.3.3.
The bounded communication property is also expressed in terms of local clock values in
the next lemma, which can be proved by using axiom 4.3.5 and lemma 4.3.2.

Lemma 4.3.5 (Bounded Communication)
correct(p) A correct(q) A link{l, p, ¢) A correct(l) A send(p,m, 1) atp U —
recetve{g,m, ) ing (U +v — U + 8 +¢)
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4.3.4 Failure Assumptions

The atomic broadcast protocol verified in this paper tolerates only omission failures.
When a processor suffers an omission failure, it cannot send out messages. More pre-
cisely, if a processor p is not correct at real time ¢, then p is not able to send any message’
m along any link ! at time ¢. This is also called the fail silence property of processors.
We express this property in terms of clock values by the following axiom.

Axiom 4.3.7 (Fail Silence) ~—correct(p) atq T — —send(p,m,l) atq T

When a link suffers an omission failure, the messages entrusted on that link may be
lost. But if a message has been received by a processor along a (faulty) link, then that
message should have been correctly transmitted by that (faulty) link, i.e., that message
is not corrupted, there are no timing errors on the message sending and receiving, etc..
Therefore, if a processor ¢ receives a message m along link [ at clock value V and ¢ is
correct at V according to the clock of any correct processor r, then there exists another
processor p which has sent that message earlier along ! at some time between [V —§, V 7]
according to the clock of r.

Axiom 4.3.8 (Only Omission Failure)
correct(r) A correci(q) at, V Areceive(g,m,l) at, V —
3p # q:send(p,m, 1) ing [V -6,V — 1]

We can also express this property in terms of local clock values on p and q.

Lemma 4.3.6 (Only Omission Failure)
correct(q) atq V A receive(q,m,l) atq V —
Jp# q:[send(p,m,l)ing (V — 8 —2¢,V — v +2¢) A
(correct{q) — send(p,m, D) ing (V—6—¢,V — v +¢€))]

Proof: Assume that the premise of the lemma holds. Consider any correct processor r.
From recetve(q, m,l) atq V, since correct(q) atq V holds, by lemma 4.3.3, we obtain
recetve(q,m, ) ing (V — ¢,V + ¢). By definition, there exists a V; € (V — ¢,V + €) such
that receive(q,m,!) at, Vi holds. Then by the only omission failure axiom 4.3.8, we
have 3p & ¢ : send(p, m, ) in, [V; — 8, Vi —4]. There must also exist a V, € [Vi -6, V} —4]
such that dp # ¢ : send(p,m,l) aty V,. Then by the fail silence axiom 4.3.7, we have
correct(p) aty V,. Thus by lemma 4.3.4, we obtain dp £ ¢ : send(p,m,!) inp (V2 -
e, Vo +e€), le, Ip £ g send(p,m, 1) ing (V — 86— 26,V — v+ 2€).

I correct(q) holds, by the only omission failure axiom 4.3.8, we have
Ip # q: send(p,m, 1) ing [V =6,V —+]. Then there exists a V3 € [V =6, V —4] such that
Jp # q : send(p,m, ) atq V3. By the fail silence axiom 4.3.7, we obtain correct(p) atq Va.
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Then by lemma 4.3.4, we have 3p # ¢ : send(p,m, ) inp (Va — ¢, V3 + ¢}, ie,,
dp#£ g:send(p,m,Ding (V-6—¢,V—~v+e).
Hence this lemma holds. o

So far, we have given the required assumptions for the system.

4.4 Server Process Specification

For any processor p, we characterize the atomic broadcast server process running on p,
i.e., S{p}, by the following requirements.

» Initiation requirement.
When p initiates an update o at clock time 7', it will send message < T, p,0 > to
all its neighbors immediately. When p has waited long enough to be sure that all
correct processors have received that message, p will convey < T, p,0 > to client

processes.

Notice that, in the top-level specification, only delivery of updates is important
and thus primitive deliver(p,c} at ¢ is used. In the server process specification,
information about the initiation time T and the initiator s of an update ¢ is needed
to implement the top-level specification. Therefore we define another primitive
convey(p, < T,s,0 >) at { as follows:

~ convey(p, < T,s,0 >) at {: processor p starts to send message < 7', 8,0 > to
client processes located on p at real time 1.

Then the relation between deliver{p,o) at ¢ and convey(p,< T,s,o0 >) at t is

clear:
— deliver(p,o) at t = 33, T : convey(p,< T, s,0 >) at t

Assume that any correct processor can send a message to all its neighbors within
T, € CVAL time units and any correct processor can convey all the updates initi-
ated at the same clock time to client processes within 7, € CV AL time units. Let
T, € CVAL, T, > T,, be the minimum time to ensure that all correct Processors
have received a message containing an update after it is initiated. These parame-
ters will be used to determine the values of Dy and D, occurring in the top-level

specification.
We formalize the first property for p by Start(p) as follows:

Start(p) = initiate(p,o) aty, T —
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Vi€ Link(p) : send(p, < T,p,0 >,1) ing [T, T+ T,] A
convey(p, < T,p,o >)inp [I'+T,, T+ T, + T,

¢ Relay requirement.

When p receives a message < T, 5,0 >, it will relay this message to all its neighbors
except the one which just sent this message to itself. But it will do so only if it
receives the message at some local time in the interval [T, T + T;), since T is the
initiation time of o and T, is the maximum time needed for every correct processor
to receive this message. Later, similarly as in the initiator’s case, when its clock
reaches T + T, p will convey < T,s,0 > to client processes. This property is
formalized by the following formula Relay(p):

Relay(p) = receive(p, < T,s,0 >, ) at, UNU € [T\T+T,) =
Vi € Link(p) \ {{} : send(p, < T',s,0 >, i) inp [U, U + T3] A
convey(p, < T,s,0 >) ing [T+ 1, T+ T, + T,

o Convey requirement.
If processor p conveys a message < T,s,0 > at time [/ on its clock, then there.
can be only two possibilities: either p initiated o itself at local clock value T with
UelT+ T, T+T + T, or p received the message < T,s,0 > at some clock
value in the interval [T, T+ T,)and p £ s AU € [T+ T,,T + T, + T.] holds.

When p initiates o at local time T or it receives < T, 5,0 > at some local time in
the interval [T, T + T), we say that p learns of message < T, s,0 > and define an

abbreviation for it as follows:

Learn(p, < T,s,0 >) = (iniliate(p,o)at, TAp= s} v
(3 recerve(p, < T,s,0 >, 1) ing [T, T+ T;)Ap & s5)

Then the requirement is formalized by the following formula Origin{p):

Origin(p) = convey(p, < T,s,0 >) aty U —
Learn(p, < T,s,0 >)ANU € [T+ T,, T+ T, + 1]

¢ Ordering requirement.
If two messages are conveyed by processor p, then they will be conveyed in the order
of initiation times of updates contained in these two messages. If initiation times
are the same, then they will be conveyed according to the priority of initiators.
Therefore it is assumed that there is a total order < on the set of processor names

P. This total order specifics a priority ordering among processors.

We define a lexicographical ordering T on pairs < 1,5 >.
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Definition 4.4.1  For any two pairs {77, %) and (T4, 54},
{Tt,S;} [ (T;;;Sz) iff {T; < 112) v ET; = Tg A By = SQ).

Then the fourth requirement is formalized by the following formula Seguen(p):

Sequen(p) = convey(p, < Ty, 5,91 ») alp ¥y A convey(p, < Ty, 53,09 >} atp ¥y
= (Vi <V = (T1,5) T (T3, 52))
The reguiremenis mentioned above are only for correct processors, i.e., they define the
standard behaviour of correct processors. Since we assume that processors can only
“suffer omission failures, we still need to define what is the acceptable behaviour for
faulty processors. Thus we have the {ollowing requirement for any arbitrary processor
'R
¢ Failure requirement.

When p sends a message < T\, 5,0 > to one neighbor at local time I/, there can be

only two possibilities: either p initiated o iself at local time T and U € [T, T+ 7,]

holds, or p received < T, 3,0 > at some local time V and eorreci(p) atp VAU €

ViV LAV € [F, T+ T, ) holds. This requirement is expressed by the following

formula Source(p):

Seurce(p) = send(p, < T,5,0 > Il atz I/ —
{inifiate(p,o)at, TAU e [T, T+ T JAp=Es) vV
W,V {recome{p, < T,s,a > 5} at, V Acorrect{p] atp, V A
pEs AU [VV 4T AV e [T, T+ T}

When send{p, < T,s,¢ >»,1} atp {7 holds, by the fail silence axiom 4.3.7, it implies
that correci{p) atp {/ holds. But corract{p) aty U does not imply eorecti{p). It
18 quite possible that p is faulty al some other time. That is why this requirement
should be for any processor p and not only for correct one.

Recall that Spec(p) denotes the specification for server process S{p}. Thus,
Specip) = feorrect(p) — Siari(p) A Relay(p) A Origin{p) A Sequen{(p)] A Source(p)
We assume that server process S{y) satisfies specification Spec(p).

Axiom 4.4.1 (Server Process Specification} S{p} sat Specip)

Thus the behavior of any processor p is specified by this axiom and the fail silence axiom
4.3.7.
4.5 Verification of Termination

In this section, we prove that the terminakion property of the atomic broadcast protocol

follows from the axioms and lemmas given in the previous sections, To make the proof
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easier, we first give some additional lemmas.

The first lemma expresses that il a correct processor p receives a message < 7, 5,0 >
at focal time I/ in the interval [T, T+ 7}, then ils correct neighbor ¢ which is not s will
receive < T, 5,0 > at local time V in the mterval [T,17 4 T, 4 & + ¢}, provided 4 > e

Lemma 4.5.1 (Propagation) I~ 2 ¢ then
correct{p} A correct{q) A link{ly, p,q) A correct{iy) A receive(p, < T,s,0 >, ) atp & A
Vel T+T O Ag# s — Wirecetve{q, < T80 > Ding [TLU+ T, + 84 ¢).

Proof: Assume that the premise of the lemma holds. Siace reccive(p, < T.3,0 >
) aby U holds, there are two possibilities.

o 1 i # i, then g is not the processor which just sent the message < T, 5,0 > to
p. By Relay(p), p will send the message < T, 5,0 > to all its neighbors except the
one that just seni this message to jtsalf within T, time units. Hence p will send
< T,s,0 > to ¢ along link I; and thus we have
send{p, < T,s,0 >, bL) ing [U,U +T,].

By definition, there exists an I/, such that

send{p, < T, 5,0 >, 13} at, Al € LU+ T

By the bounded communication lemma 4.3.3, we obtain

recetve(g, < T, p,o > bLiing (1 +v—e Ui+ 84 ().

Smeely U and U 2 T, wehave U; 2 7. I is assumed that v > ¢ Thus we
obtain U} 4+ v — ¢ 2 T. Together with Iy < U 4+ 7T, we obtain

3 reeeive(y, < Ty5,0 > 0 ing [T+ T+ 8 + ¢}

o 11, =1, then p receives < T, p, & > from link 1; and thus we have
receive(p. < T, 5,0 >, 1} aty [7.
Since correct(p) holds, by the only omission failure lemma 4.3.6, there exists a p;
such that
pEpAsendlp, < Ts,o > L)ing, (U -b-¢li~1+¢)
holds. By the ncighbor axiom 4.3.4, we have I; € Link{p) A, € Linkip,}. Since
p # m, by the link axiom 4.3.1, we obtain link{l;,p,p). But il is assurmed that
tink{l;,p, 7). Thus by the point-to-point axiom 4.3.2, we obtain p; = ¢. Thus
there exigts a U such that
send(g, < T, s,0 > Llatg Uy Al e (U —& — U v 4 e
holds. Sinee g # 3, by Source(q), we obtain
U,V (receive{g, < T, 5,0 >, ) atq V Acorreetigaty V A
gZsalh eV V+hlave T+ 1))
From V <€ Uy and Uy < U —v4¢, weobtain V < U=vydcand thus V < F+T,+6+e.
Together with V 2 T, we have
A receive(q, < Tso> Hing [TLU+T,+84 4.
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Hence this lemma holds. (m]

The intuition behind this lemma is as follows. When a correct processor p receives a
message < T, 8,0 > at clock time U and it does not receive < T', 8,0 > from its correct
neighbor ¢, p will relay < T, 5,0 > to ¢ within T, time units. That is, the latest clock
time at which p staris to send < T,s,0 > to ¢ is U + T. Since p and ¢ are correct
processors, the latest corresponding clock time to U + T on ¢ is U + T, + ¢. Sending
< T,s,0 > from p to g takes at most § time units. Thus, the latest clock time at which
g receives < T,s,0 > is U+ T, + é + e. Figure 4.2 shows the timing relation between
the Jocal clocks of processors. »

jo T ,

. (¥ 3 Ts
0 U :U+ | c,
t .
— JeeH— 65— R
0 U+T, U+T, +6+¢ 4

Fig. 4.2. Timing Relation Picture for Lemma 4.5.1

Recall that d is the diameter of the graph consisting of all correct processors and links.
The following lemma shows that if T, > (d — 1)(T, + &6 + €) and v > ¢ and correct
processor s initiates an update o at local time T, then any other correct processor ¢ will
receive < T, 5,0 > in the interval [T, T 4+ d(s, ¢)(Ts + 6 + ¢€)).

Lemma 4.5.2 (Bounded Receiving) I T, > (d—1)(T.+é+¢) and v 2 ¢, then
correct(s) A correct(q) A initiate(s,oc) ats TAg# s —
3l : recerve(q, < T,s,0 >,1) ing [T, T + d(s,¢)}(Ts + & + €)).

Proof: Assume that the premise of the lemma holds. We prove this lemma by induction

on the distance between s and ¢. Since s # ¢, we start with d(s,q) = 1.

o d(s,q) = ‘1. Since both s and ¢ are correct processors, by the definition of
d(s,q), they are connected by some correct link. Let ! be that link. Then we
obtain link(l,s,q) A correct(l). By the server process specification axiom 4.4.1
and correct(s), we have Stari(s). From Stari(s) and initiate(s,0) aty T, s
will send the message < T,s,0 > to all its neighbors within 7, time units.
Thus it will also send < T',s,0 > to processor ¢ along link I. Thus we have
send(s,< T,s,0 >,1)ing [T, T + T3].

By definition, there exists a U such that
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send(s, < T,s,e >N ats UAU € [T,T+T,].

By the bounded communication lemma 4.3.5, we obtain

recetve(q, < T,s,0 > ) ing (U+~y - ¢, U+ 6+¢).

Since it is assumed that 4 > €, together with U > T, we obtain U+ v ~€e > T.
By U < T+ T,, we obtain

receive{q, < T,s,0 >, D ing [T, T+ T, +6+¢), ie.,

3i: receive(q, < T, 8,0 >, 1) ing [T, T + d(s,¢)(T, + é + ¢)).

» d(s,q) = k+1 with k > 1. By definition, there must exist a link /; and a processor
¢y such that link(ls, ¢1, ¢) A correct(ly) A correct{q) Ad(s,q1) = kA d{q1,q) = 1
holds. By the induction hypothesis, we have
3L, : receive(g, < Ty 5,0 >,1;) ing, [T, + k(Ts + 6 +¢)).

By definition, there exists a V] such that

Al : (receive(qr, < T, 5,0 >, 1) atq, iAVi € IDT+RTs+64+€))).
Since T, 2 (d—1}(T, + 6 +¢) and d 2 k + 1, where d is the diameter of G \ F, we
obtain :
E(T, + 6 + ¢) < T, and thus we have <

3l : (receive(q, < T, 5,0 >, 1) atq, VAV € [T, T+ T}) ).

Since ¥ > ¢, by the propagation lemma 4.5.1, we have

3l: receive(q, < T,s,0 >, ) ing [T, Vi + T, + &+ ¢), ie.,

Al : receive(q, < T,s,0 >, 1) ing [T\ T+ (k+ 1)(T, + 6 + ¢)).

Hence we have proved

3l : receivel{q, < T, s,0 >,1) ing [T, T + d(s,q)(T; + § + €)).

Hence this lemma holds. n}

This lemma can be informally explained as follows. When a correct processor s initiates
an update o at clock time T, it will send message < T\, s,0 > to all its neighbors within
T, time units, i.e., the latest clock time at which s starts to send < T, 5,0 > to all its
neighbors is T'+T,. Suppose ¢ is a correct neighbor of s. Then the latest corresponding
clock time to T'+ T, on ¢ is T+ T +¢. Sending < T, 5,0 > from s to ¢ takes at most é
time units. Thus the latest clock time at which ¢y receives < T, 5,0 > s T+ T, + é+¢.
Then ¢; will relay < T, 5,0 > to all its neighbors except s within T, time units, i.e., the
latest clock time at which ¢ starts to send < T, 5,0 > to its neighbors is T+ 27, + 6 +e.
Suppose ¢, is a correct neighbor of ¢; but ¢; # s. Then the latest corresponding clock
time to T+ 27, +d+con g is T+ 27T, + 6§ + 2¢. Similarly, sending < T, 3,0 > from ¢ to
¢o takes at most 6 time units. Thus the latest clock time at which ¢; receives < T, 38,0 >

is T+ 2T, + 26 + 2¢. This procedure can go on until every correct processor has received
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< T,s,0 >. Figure 4.3 shows the timing relation between the local clocks of processors.
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]
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0 T+2T,+6+¢  T42T,+26+2%

Fig. 4.3. Timing Relation Picture for Lemma 4.5.2

The next lemma shows that if a correct processor s initiates o at local clock time T,
then every correct processor ¢ will convey < T,s,0 > in theinterval [T+ 7, T+ T, + 7.}
according to their own clocks, provided T, 2 d(T, + é +¢) and v > ¢.

Lemma 4.5.3 (Convey) KT, 2 d(T,+6+¢)and ¥ 2 ¢, then
correct(s) A correct{q) A initiale(s,0) ats T — convey(q, < T',s,0 >)ing [T+ T;,T +
T, +7TJ

Proof: Assume that the premise of the lemma holds. We prove this lemma in two cases.

¢ d(s,q) = 0. By definition, we have s = ¢. By the server process specification axiom
4.4.1 and correct(q), we have Start(q). From Start{q) and initiale(s, o) ats TAs =
q, we obtain
convey(q, < T,s,0 >} ing [T+ T, T+ T, + T].

e d{s,q) > 0. By definition, we have s # ¢. Since T, > d(T, + 6 + ¢} and v > ¢, by
the bounded receiving lemma 4.5.2, we obtain
Al : receive(q, < T,s,0 >,1) ing [T, T + d{(s,q)(T, + 6 + €)), i.e,,
3l : receive(q, < T,s,0 >,1) ing [T, T+ T,).
By Relay{q), we obtain convey(q, < T,s,0 >)ing [T+ T, T+ T, + T2}

Hence this lemma holds. : o

. Next we prove that the termination property follows from the axioms and lemmas given
before.

Theorem 4.5.1 (Termination) If7, >d(T,+6é+¢€),v>¢ and Dy > T, +7T,, then

correct(s) A correct(q) A initiate(s, o) aty T — deliver(q,0) byq T + Di,
i.e., the termination property TERM holds.
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Proof: Assume that the premise of this theorem holds. Since T, 2 d(T,+6+€)and 7 2 ¢,
by the convey lemma 4.5.3, we obtain convey(q,< T,s,0 >) ing [T+ T,, T+ T, + T.].
By definition, we obtain deliver(q,0) ing [T+ T,,T + T, + T.].

Since Dy 2 T 4+ r + T, we have deliver(g,0) byg T + Dy.

Hence this theorem holds. o

4.6 Verification of Atomicity

In this section, we prove the atomicity property of the atomic broadcast protocol. We
first show some lemmas which will help prove the atomicity property.

 The next lemma states that if correct processor p receives message < T,s,0 > at
some local time in the interval [T, T + T}, then that update & was initiated by processor
s at local time T, provided v > 2e.

Lemma 4.6.1 (Initiation) If v > 2¢, then
correct(p) A receive(p, < T,s5,0 >,1) ing [T, T + T,) — initiate(s,0) aty T.

Proof: Assume that the premise of the lemma holds. By definition, there exists a V
such that

correct(p} A receive(p, < T',s,0 >, ) at, VAV € [T, T+1T,) (1)
holds. By the only omission failure lernma 4.3.6, there exists a s; and a U such that

s #EpAsend(s;,<T,s,0>,1)ate; Uy AU € (V =626,V — 7+ 2€). (2)
By Source(s;), there exist {; and V; such that

(initiate(s),0) ats; T A sy =s) V (3)

recetve(s), < T,s,0 >,1;) ats, Vi A correct(sy) atg, Vi A

ssgsA eV +LIAVIE[T,T+T,) 4

holds.

I (3) holds, we have proved initiate(s,o) aty T.

H (3) does not hold, then s; is not the initiator of & and (4) holds.

By (1) and (4), weobtain V € [T, T+ T,) and Vi € [T, T+ T}).

From (2), we have Uy < V — v + 2¢, 1.e., V > U; + v — 2¢. From (4}, we have U; > V.
Thus we obtain V >V, + 71— 2¢,1e, V-V > v~ 2

From receive(sy, < T, 3,0 >,1) aty, V) and correct(sy) ats; Vi in {4), we obtain by the
only omission failure lemma 4.3.6 another processor s; # s,. If s, is not the initiator of
o, we follow the above steps and then obtain another processor s3 # s;. This procedure
can continue until we obtain a processor 8;..; such that sy, ..., sx.; are not the initiator
of o, where k € IN* A k > 2. Since k is arbitray and v > 2¢, let k > (V — T')/(y — 2¢).
Then, for any i = 2,3,...,k — 1, there exist {; and V; such that
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8; # 8i-1 N receive(s;, < T,s,0 >,1;) atg, Vi A correct(s;) ats, Vi A
5;i£Fs ANV, e[\ T+T,) A Viog = Vi >y —2€)

holds. From V,.; — Vi > v —2cand V — V] > v — 2¢, we obtain V ~ V; > i{y ~ 2¢), for
any ¢ = 1,2,...,k~ 1. From receive(si_,,< T,s,0 >,lr1) atg, , Vi-1, by the only
omission failure lemma 4.3.6, there exists a processor s; # sy such that

send(sg, < T, 8,0 >, k1) insk {(Viei — 8 — 2¢, Vi — v + 2¢) holds.

By Source(s;), there exist I, and V such that

(initiate(sy, o) ate, T A sy =s)V (5)
receive(sy, < T, 8,0 >, 1) atsy, ViAsy,ZsAVi € [T, T+1T,) (6)
holds.

If (6) holds, similar as before, we can derive Vi_; — Vi > v~ 2¢. From V ~V; > i(v—2¢),
we obtain V — Vi > k(y — 2¢). Since v > 2¢ and k > (V —T)/(y — 2¢), we have V. < T
* and thus (6) does not hold. Therefore (5) must hold, i.e., s, is the initiator of o. Hence
this lemma holds. o

We define an abbreviation Firstrec(p, < T,s,o >,1) aty U,
is one of the first correct processors which have received < T,s,o > according to

their own clocks, as follows:

Firstrec(p, < T,s,0 >,l) atp U = correct{p) A receive(p, < T,s,0 >,1) atp U A
Vp' U U {correct(p’) Ap' # p Areceive(p', < T, s,0 >, ) aty U — U’ 2 U)

The next lemma shows that if p receives < T, 5,0 > at local time U, p is one of the first
correct processors which have received < T, 8,0 >, and s is faulty, then any processor ¢

which is not p and has sent < T, s,0 > to p earlier than U is a faulty processor.

Lemma 4.6.2 (Faulty Sender)
Firstrec(p, < T,s,0 >, L) aty, U A —correct(s) A send(q, < T,s,0 >,1;) atq V A
U>VAg#p—o —correct(q)

Proof: Assume that the premise of the lemmaholds. From send(q, < T,s,0 >,l;)atq V,
by Source(q), we obtain,

(initiate(q,0)atq TAg=s) V (1)
30U : (receive(q, < T,s,0 >,I') atq U’ Acorrect(g) atq U' AV € [U',\U'+ T ). (2)
Then there exist two possibilities:

o if (1) holds, then ¢ = s and thus, by assumption, —correct(q) holds;

o if (2} holds, we have V > I/, Since U > V, we obtain U > U
¥ correct(q) holds, by Firstree(p, < T,s,o >,1) aty U, we should have U’ > U

and thus it leads to a contradiction. Thus —~correct(g) holds.



4.6. VERIFICATION OF ATOMICITY ‘ 87

For both cases, we obtain —~correct(q). Hence this lemma holds. , o

The following lemma shows that if p receives < T,s,0 > at local time V, p is one
of the first correct processors which have received < T',5,0 >, and s is faulty, then
V < T +m(T, + 6 + 2¢}, where m 1s the maximum number of faulty processors in the
network, provided v > 2e.

Lemma 4.6.3 (First Correct Receiving) If v > 2¢, then
Firstree(p, < T, 8,0 >,1) aty V A ~correct(s) = V < T + m(T, + 8 + 2¢).

Proof: Assume that the premise of the lemma holds. From receive(p,< T,s,¢ >
,1) atp V and correct{p), by the only omission failure lemma 4.3.6, there exists a s; and
a Uy such that .
sy EFpAsend(s,<T,s,0>1) aty, Ui AU € (V—56-2¢,V—~7q+2)
holds. Thus we have

VelUi+6+2and Uy <V —-y+2. (1)
Since Firstrec(p, < T,s,0 >,1) atp V holds, by the faulty sender lemma 4.6.2, s, is a
faulty processor, i.e., mcorrect(s;) holds. By Source(s;), there exist I; and V; such that

(initiate(s;, o) ats; TAsi =sAU, € [T, T+T,) ) Vv (2
(recetve(s), < T,s,0 >, 1)) ats; Vi A correci(s,) ats; Vi A ;
siZFsAN e V+T] AV e, T+T,)). 3)

holds. Then there are two possibilities.

o If (2) holds, then s, is the initiator of o and we have U; < T + T,
From (1), we obtain V < T+ T, + § + 2¢.
Since —correct(s) holds, there is at least one faulty processor, i.e., the maximum
number of faulty processors m > 1.
Thus we obtain V < T+ m(T, + 6 + 2¢).

o If (3) holds, then together with (1), we obtain

VaWV+T,+642. 4
From receive(s;, < T,s,0 >,11) atg, V; and correct(sy) ats, Vi, by the only omis-
sion failure lemma 4.3.6, there exist s; and U such that s; has sent < T,s,0 > to
sy along link Iy at clock time U,.
Similar as before, we have U, € (V1 — 6 — 2, Vi — v+ 2¢), le,, Uy < V) — v + 2¢.
Since it is assumed that v > 2¢, we obtain U, < V. ‘
From (1), we have Uy < V — v + 2¢. By v 2> 2¢, we have Uy < V.,
From (3), we have ¥} < U; and thus V; < V. Therefore we obtain U, < V.
Then by the faulty sender lemma 4.6.2, ~correct(s;} holds.

By Source(s;), we obtain a formula similar as (2) and (3).
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If 53 is not the initiator of o, we follow the above steps and then obtain another s3
which is also a faulty processor, by the same reason as for s;. Since there are at
most m faulty processors, we cannot continue this procedure infinitely. We must
obtain a s; with & < m and it is the initiator of o.
Thus we have faulty processors sy, ..., sx_; which are not the initiator of o. For
any ¢ = 2,3, ..., k — 1, by the only omission failure lemma 4.3.6 and Source(s;),
there exist [; and V; such that
$; & 8i-1 A recetve(s;, < T, 35,0 >,1,) ats, Vi A correct(s;) atg, Vinsi £ s A

Vi < Vi+ T, 4+ 6+ 2

holds. Then we obtain

Vi < Vs + (k= 2)(T, + 6 + 2¢}. (5)
From receive(sg-1, < T,8,0 >, 1) atg, ; Vi and correct{si_1) atg, | Vi1,
by the only omission failure lemma 4.3.6, there exists a Uy such that
sk & spy Asend(sg, < T, 8,0 >, l;_y) atg, U AU € (Viey — 6 26, Vg — v+ 2¢)
holds. Then we obtain Vi_y < Ui + & + 2¢.
Together with (5), we obtain

Vi < Up + (k= 2)T, + (k — 1){6 + 2¢). (6)
Since s; is the initiator of o, by Source(s;), we have
initiate(s;, o) aty, TAsy=sAUi€ [T, T+T,).
Together with (6), we obtain

Vi < T+ (k= 1)(T, + 6+ 2¢). {7
Combining (4} and (7), it results in V < T + k(T + 6 + 2¢).
Since k £ m, we finally obtain V < T + m(T, + 6 + 2¢).

Hence this lemma holds. o

Here we give an intuitive explanation of the lemma 4.6.3 for the case m = 2. Assume that
$; and s; are faulty processors and connected by a link I. Suppose that s; initiated an
update o at local time T'. As we have seen from the proof of the lemma, s; behaved in the
same way as a correct initiator. Namely, s; will send the message < T, 35,,0 > to all its
neighbors within T, time units according to its own clock. When s; receives < T, 53,0 >
from s, at some local time V, it is derived (by Source(s;)) that correct(s;) ats; V holds.
By the only omission failure lemma 4.3.6, sending < T, s3,0 > from s, 10 s; takes at
most § + 2¢ time units as measured on the clock of s;. Thus the latest clock time at
which s; receives < T,s5,0 > 1s T+ T, + 6 + 2¢. Then 31 will relay < T, 32,0 > to
all its neighbors except s, within T, time units according to its own clock, as a correct
processor will do. Suppose p is a correct neighbor of s;. Since s, is faulty and p is

correct, by the only omission failure lemma 4.3.6 again, sending < 7', 35,0 > from s; to

-
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p takes at most 6 + 2¢ time units as measured on the clock of p. Thus the latest clock
time at which p receives < T, 85,0 > is T + 2T, + 26 + 4e. Then we have the following
figure 4.4, which is similar to figure 4.3, but the upper bound is slightly different.
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Fig. 4.4. Timing Relation Picture for Lemnma 4.6.3

The following lemma shows that if p receives < T, s,0 > at local time U in the interval
[T, T+T,), pis one of the first correct processors which have received < T, 5,0 >, and s
is faulty, then any other correct processor ¢ will receive < T, s, ¢ > at some local time in
the interval [T, U+ d{(p, ¢)(T,+ & +¢)), provided T} 2 (d4+m—1)(Ts + 6} + (d+2m — 1)e
and v > 2¢.

Lemma 4.6.4 (Correct Receiving) IfT, > (d+m—1){T,+6) +{(d+2m —1)c and

5 > 2¢, then

Firstrec(p, < T,s,0 >,I') aty, UAU € [T,T + T} A~correct(s) A correct{g) Ap £ q —
Al receive(q, < T, 8,0 >, 1) ing [T, U + d(p, ¢}(Ts + 6 + €)).

Proof: Assume that the premise of the lemma holds. We prove this lemma by induction
on the distance between p and q. Since p # g, we start with d{p,¢) = 1.

e d(p,q) = 1. By definition, p and ¢ are connected by some correct link. Let that
link be . Then we have link(l,p, ¢) A correct(l}.
From Firstrec(p, < T,s,0 >,l') atp U, by the only omission failure lernma 4.3.6,
there exist a p; and a U; such that
p1 EpAsend(p,<T,s,0>,1) atp, Ui A Dhe(U-é6—eU~—~v+¢)
holds. Since ¥ > 2¢, we have v > ¢. Thus we obtain U > U —~ 4 4 ¢ and then
U > U,. By the faulty sender lemma 4.8.2, we have —~correct(p,). Thus correct
processor ¢ is not that sender p. .
By Relay(p), p will send < T,s,0 > to ¢ along link ! within T, time units. Thus
we have send(p, < T,s,¢ >,1} inp [U,U + T,}.
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By definition, there exists an X such that

send(p,< T,s,o0 > Daty X AX € [UU+T,)

holds. By the bounded communication lemma 4.3.5, we obtain
receive(q,<T,s,0 >, Ding (X +v -, X +6+¢).

Since X > Uand U > T, we have X > T. By v > 2¢, we obtain X +y—e>T.
Together with X < U + T, we have proved

3 : receive(q, < Ty 3,0 > D ing [T, U+ T, + 6 +¢), ie.,

3 : receive(q, < T',s,0 >,1) ing [T, U + d(p, ¢){T, + § + €)).

e d(p,g) = k+ 1 with k > 1. By definition, there must exist a processor ¢; and a
© link {2 such that correct(g) Acorrect{L)Alink{ly, q1,¢) A d(p,q1) = kAd(g1,9) = 1
holds. By the induction hypothesis, we have
3l : recetve(qs, <T,s,0 >,h) ing, [T, U + BT+ 6 + €)).
By definition, there exists a V; such that
Al : (receive(qy, < T, 5,0 >,1;) atq, iAW € [T U+ &(T, + 6+ €)) ).
Since Firstree(p,< T,s5,0 >,I') atp U and v > 2¢ holds, by the first correct
receiving lemma 4.6.3, we have U < T + m(7T, + & + 2¢). Thus we obtain
3L : (receive(q, < T, 5,0 >, 1) atq, iAW € [T, T+ (k+m)(T,+6)+(k+2m)e) ).
Since T, 2 (d+m— 1T, +6)+ (d+2m — 1)e and k < d — 1 hold, we have
iy : (receive(qr, < T, 5,0 >, 1;) atq, iAVi € T,T+71,)).
Since correct(q) and —correct(s) hold, we obtain g # s.
By assumption, 4 > 2e. Then by the propagation lemma 4.5.1, we have
Al : receive({q, < T, 5,0 >, 1) ing [T, Vi + T, + 6+ ¢), ie,,
N receive(q, < T,s,0 >, D) ing [T,V + (k+1}{T, + 6 +€)).
Therefore we have proved ,
Al : receivel{q, < T',s,0 >, 1) ing [T, U + d(p,g}(Ts + & + €}).

Hence this lemma holds. 0

Next lemma shows that if correct processor p learns of < T,s,0 >, then any correct
processor ¢ also learns of < T',s,0 >, provided T, > (d + m)(T, + &) + (d + 2m}c and
v > 2e

Lemma 4.6.5 (All Learn) I T, > (d+ m)(T,+ &)+ (d + 2m)e and v > 2¢, then
correct(p) A correct(g) A Learn(p,< T, s,0 >) — Learn(q,< T, s,0 >).

Proof: Assume that the premise of the lemma holds. By Learn(p, < T, s,o >}, we have
{(initiate(p,ocyaty, TAp=s) V {1)
b : (recetve(p, < T,5,0 >, 1) ing [T, T+ T, ) Ap# s) (2)

From (2), since v > 2¢, by the initiation lemma 4.6.1, we obtain initicle(s, o) aty T.
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Since either (1) or (2) hold, we obtain initiate(s, o) atg T from the premise.

We have to prove Learn{g,< T, s, o >), i.e., the following formula holds:
(initiate(g,c)atq TAg=s) V 3)
(32 : receive(q, < T, 8,0 >, L) ing [T, T+ T,) A g &£ 5). 4)

There are two possibilities: ‘

e if 5 = g, then we have initiate(q,0) atq T A ¢ = s holds, i.e., (3) holds;
¢ if 5 # ¢, we prove that (4) holds by the following two cases.

1. If correct(s) holds, since T, > (d + m){T, + 8} + (d + 2m)e and v > 2¢, by
the bounded receiving lemma 4.5.2, we obtain
3L, : receive(q, < T, 5,0 >, 1) ing [T, T + d(3,¢)(T, + 6 + €)), i.e.,
iy : receive(q, < T, 5,0 >, b)) ing [T, T+ T,)Aq # s,
i.e., (4) holds. '

2. If =correct(s) holds, then by receive(p, < T,s,0 >,l;) iny [T, T + T,), there
exists a processor p; which is one of the first correct processors that have
received < T, 3,0 > in the interval [T, T + T,) according to their own clocks.
Thus, there exist {s and U such that
Firstree(p, < T,s,0 >,13) atp, UAU € [T,T +T;) holds.

Since v > 2¢, by the first correct receiving lemma 4.6.3, we obtain that p;
receives < T, 8,0 > at local time U with U < T + m(T, + 6 + 2¢).

Then we have also two cases:

~ if g = py, then by Firstrec(p,, < T,s,0 >,13) aty U, we have
receive{g, < T, s,0 >, I3} ing [T, T+ m(T, + & + 2¢)), ie,,
3l : receive{q, < T, 3,0 >, 1) ing {T,T + m(T, + & + 2¢));

— if ¢ # py, since ¥ > 2¢, by the correct receiving lemma 4.6.4, we have
Ay : receive(q, < T,s,0 >, 1) ing [T, U + d{p, ¢}{(Ts + 6 + €)), i.e.,
Ay : receive(q, < T, 8,0 >, L) ing [T, T + m(T + 8§ + 2¢) + d{p, g)(Ts +
5+ ¢)).

Combining both cases, since d(p, q) < d, we obtain

Al : recetve(q, < Ty 3,0 >, 1) ing [T, T + (d + m)(T, + 6) + (d + 2m)e).
Since T, > (d + m){T, + 8) + (d + 2m)e, together with s # ¢, we have
(3, : receive(q, < Tys,0 >, L) ing [T, T+ T,) A g & s).

Thus for both cases, (4) holds,

Hence this lemma holds. o
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Next lemma expresses that if correct processor p conveys < T, 3,0 > at some local time
U, then any correct processor ¢ conveys < T, 3,0 > in the interval [T+ 7,, T+ T, + T,
provided T, 2 (d + m}{(T, + 8) + (d + 2m)e and v > 2¢. '

Lemma 4.6.6 (All Convey) I 7T, > (d+m)(T,+6)+{(d+2m)e and ¥ > Z¢, then
correct{p) A correct(q) A convey(p, < T,s,0 >) atp U —
convey(q, < T,s,0 >)ing [T+ T, T+ 7T, +T].

Proof: Assume that the premise of this lemma holds. By the server process specifica-
tion axiom 4.4.1 and correct(p), we have Origin(p). From Origin(p) and
convey(p, < T,s,0 >) atp U, we obtain Learn(p, < T,s,0 >). Since T, > (d + m)(T, +
8) 4+ (d + 2m}e and 4 > 2¢, by the all learn lemma 4.6.5, we have
Learn{q, < T,s,0 >), i.e.,
(tnitiate(g,0)atg TAg=3) V 8}
(31 : receive(q, < T,s,0 >, 1) ing [T, T+ T,) A g # s). (2)
If (1) holds, by Start(g), we have convey(q, < T\s,0 >)ing [T+ T,, T+ 71, +TJ.
If (2) holds, by Relay(q), we have convey(q, < T,s,0 >) ing [T+ T, T+ T, + T}.
Thus for both cases, we obtain convey(q, < T,s,0 >) ing [T+ 1, T+ 7, + T].
Hence this lemma holds. (]

Next we prove a theorem which shows that the atomicity property follows from the
axioms and lemmas given before.

Theorem 4.6.1 {Atomicity) H T, 2 (d+ m)(T, + &) + (d + 2m)e, ¥ > 2¢, and
Dy, > T, then
correct(p) A correct(q) A deliver(p,c) aty, U —
Js, T : initiate(s, o) aty T A deliver(g,a) ing [U — D2, U + Dy,
i.e., the atomicity property ATOM holds.

Proof: Assume that the premise of the theorem holds. From deliver(p,o) aty, U, by
definition, there exist s and 7T such that convey(p, < T, 5,0 >) aty, U holds. By the server
process specification axiom 4.4.1 and correci(p), we have Origin{p). By Origin(p), we

obtain

Learn{p,< T,s,0 >)ANU € [T+ 1., T+ T, + T, ie,
((initiate(p,o)atp TAp=s) V 1)
(A :receive(p, < T,s,0 >, 1) ing [T, T+ T,) A p # 8)) A (2)
Uel[T+ T, T+T,+Tl) (3)

From (1), we have initiate(s,o) atg T
From (2), since vy > 2¢, by the initiation lemma 4.6.1, we obtain initiate(s, o) ats T.

Thus for both cases, we have
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3s, T : initiate(s, o) aty T v 4)
From convey(p,< T, 3,0 >) atp U, since T}, > (d+ m)(T, + 8) + {d + 2m)e and v > 2¢,
by the all convey lemma 4.6.6, we have
convey(q, < T,s,0 >)ing [T+ T,, T+ T, + T.].
From (3), wehave T € [U ~ T, -~ T,,U - T,].
Hence we obtain convey{q,< T,s,0 >)ing [U - T,,U + T,}.
By definition, we obtain deliver(q,0) ing [U — T, U + T.].
Since Dy > T,, we have ;

deliver(q, o) ing [U — Dy, U + Dy). (5)
Combining (4) and (5), this theorem holds. o

4.7 Verification of Order

The order property of the atomic broadcast protocol will be proved in this section. We
first give two lemmas which will be used to prove the order property.

The following lemma shows that, for any correct processors p and ¢, if p conveys
< T,s,0 > at local time U, ¢ conveys < T,s,0 > at local time V, and no update is
delivered by p in the interval [0, 1)), then there is also nc update delivered by ¢ in the
interval [0, V), provided 7, > (d + m}{T, + 6) + (d + 2m)e and v > 2¢.

Lemma 4.7.1 (First Delivery) 7, > (d+ m)(T, + ) + (d + 2m)e and v > 2¢,
then

eorrect(p) A convey(p, < T,s,0 >) atp U A

correct(q) A convey{q, < T,s,0 >) atq V A

=deliver(p) inp {0, U) — ~deliver(q) ing [0, V).

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) ing [0,V)
holds. By definition, there exist sq, T, and V; such that

convey(q, < T, 80,00 >) atq Vo AV, € [0, V) holds.

By assumption, we have convey(q, < T,s,0 >) atq V.

From V; < V, by Sequen(q), we obtain (Ts, 50) C (7', s).

Since T, = (d + m)(T, + 6} + (d + 2m)e and v > 2¢, by the all convey lemma 4.6.6, we
have convey(p, < To, $a, 00 >) ing [T+ 71, T+ T, + T, ie, there exists a Uy € CVAL
such that convey(p, < Ty, 0,00 >} atp Up holds.

By assumption, we have convey(p, < T,s,0 >) at, U,

Since (Ta, s0) T (T, s}, by Sequen(p), we obtain Uy < U.

From Uy € CV AL, we have Uy > 0 and thus Uy € [0,U).

Therefore we obtain convey(p, < To, o, 00 >) atp Ug AUs € [0,U), ie,,

deliver(p, 0y) inp [0,U). V
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But by assumption, we have —~deliver(p) inp [0,U).

Thus it leads to contradiction and then deliver(q) ing [0, V) does not hold, i.e.,
~deliver(q) ing [0, V) holds.

Hence this lemma holds. u]

Next lemma shows that, for any correct processors p and ¢, if p conveys < Ty, 81,07 >
at clock time Uy and < T3, 53,09 > at clock time Us, q conveys < Ty, s;,07 > at clock
time W} and < T3,s;,07 > at clock time V,, and there is no update delivered by p in
the interval (Uy, 1), then there is also no update delivered by ¢ in the interval (V;, 12),
provided T, > (d + m)(T, + &) + (d + 2m)e and v > 2e.

Lemma 4.7.2 (No Delivery) T, > (d+ m)(T, + ) + (d + 2m)e and v > 2¢, then
correct(p) A convey(p, < Ty, 81,01 >) atp Uy A convey(p, < T3,82,02 >) atp Uz A
correct(q) A convey(q, < Ty, 81,01 >) aty Vi A convey(q, < T3, 82,02 >) atp V3 A

~deliver(p) inp (Uy, Uy} — —deliver(q) ing (V1. V3).

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) ing (W4, 12)
holds. By definition, there exist s and T such that convey(q, < T,s,0 >) ing (4, V3)
holds. Then there exists a V such that convey(q, < T,s,0 >) atq VAV € (W, Vs)
holds.

By assumption, we have convey(q, < T, 81,01 >) atp V.

Since Y < V, by Sequen(q), we obtain (71,3:) C (T, s).

Similarly, from assumption, we have convey(q, < T3, 52,0 >) atp V5.

Since V < V,, by Sequen(q) again, we obtain (T, s) = (T2, 33).

From convey(q, < T,s,0 >) atq V,since T, > (d 4+ m)(T,s + 6) + (d + 2m)e and v > 2¢,
by the all convey lemma 4.6.6, we have convey(p, < T, 8,0 >) inp [T+ T,., T+ T, + T,
i.e., there exists a U such that convey(p,< T,s,0 >} aty, U holds.

By assumption, we have convey(p, < T, 81,01 >) aty Uy,

Since (T1,5:) C (T, 3), by Sequen(p), we obtain U; < U.

Similarly, from assumption, we have convey(p, < T, $5,02 >) aty Us.

Since (T, 5) C (T2, 52), by Sequen(p), we obtain U < U,.

Thus we obtain convey(p, < T,s,0 >) at, UAU € {U,, 1)),

By definition, we have deliver(p, o) ing (U;,Us).

But from assumption, we have —deliver(p) iny (U, Us).

Thus it leads to contradiction and then deliver{q, o) ing (Vi, V3) does not holds,

ie., ~deliver(q) ing (W}, V2) holds.

Hence this lemma holds. ]

Next we prove, by the following theorem, that the order property holds.
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Theorem 4.7.1 (Order} I 7T, > (d+ m){(T,+ 8) + (d + 2m)e and v > 2¢, then
correet{p) A correct(q) — YUIV : List{p,U) C List{q, V),
i.e., the order property holds.

Proof: For any clock value U € CVAL, assume {(oy,03,...,0%) € List(p,U). By
definition, there exist k € INY, Uy, U,,..., Uy such that Uy < U; € ... S Ux < U,
deliver(p,0:)atp U, fori = 1,2,.. . k, ~deliver(p) ing (U;, Uj41), forj = 1,2,..., k-1,
and —deliver(p) ing [0,07). From deliver(p,o;) aty U;, there exist s; and T; such that
convey(p, < T, 8;,0; >) atp U; holds. Let V = U+T, We prove that, by induction on
k, there exist V1, V,,...,Visuchthat y <V, < ... <V, <V,

convey(q, < T, si,0: >) atq Vi, for 1 = 1,2,...,k, ~deliver(q) ing {V;,Viy1), for j =
1,2,...,k—1, and ~deliver{g) inq [0, V}) hold.

o k =1. By assumption, we have convey(p, < Ty, 31,01 >) atp U and
~deliver{(p) inp [0, ;).
Since T, 2 (d+ m){(T, + &) + (d+ 2m)e and 4 > 2¢, by the all convey lemma 4.6.6,
we obtain convey(p, < Ty, 31,01 >) ing [T1'+ T.,. T+ T, + T.) and
convey(q, < Ty, 85,00 >) ing [Ty + T, i + T, + T)..
Thus we have Uy € [T1 + 75,71 + T + T.). Since Uy < U, we obtain Ty + T, < U.
There exists a ¥; € CVAL such that
convey(q, < Ty, s1,01 >) atqg i AV, € [T1 + 7,11 + T, + T,] holds.
Then we have V; <T1 + T, + T, and thus Vy < U + T, ie., Yy < V.
By the first deliver lemma 4.7.1, we also obtain ~deliver(q) inqg [0, ).

¢ k > 1. By the induction hypothesis, there exist V|, V,,..., Vi.; such that V; <
Vo £... € Vi, convey(q, < Tj, 85,0 >) atg Vi, for 1 = 1,2,.. .,k -1,
~deliver(q) ing (V;, Vjy1), for j = 1,2,...,k—2, and —~deliver(q) ing [0, V) hold.
By assumption, we have convey(p, < Ty, sx, 0% >) atp U
By the all convey lemma 4.6.6, we obtain that there exists a V such that
convey(q, < Ti,sp, 04 >) atq Vi AVi € [T, + T, T + T, + T} holds.
Since Upy < Uy, we prove Vi.; < Vi by the following two cases.

1. Assume Uy < Up. By assumption, we have
convey(p, < T1,8k-1,0k—1 >) atp Ug_y and convey(p, < Tk, sx, 04 >) atp Uy
Since Uy_; < Uy, by Sequen{p), we obtain (Ti_y, se-1) T (Tk, sk)-
From the induction hypothesis and above, we have
convey(q, < Ti-1, Sk—1, Ok~ >) atq Vi1 and convey(q, < T, sk, 0% >) atgq V4.
Since (Tk.1, sk-1) T (T, s&), by Sequen(q), we obtain Vi < V4.

2. Assume Uy = U,
Suppose Vi.y < Vi. Similar as above, we obtain Uy < Uy which does not
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hold.
Suppose Vi_y > Vi. Similarly, we obtain Uy_y > Uy which also does not hold.
Therefore only Vi_y = V, holds.

Combining these two cases, we obtain V,_; < V.

Similar as the case for k = 1, we have Uy € [Ty + T, Tx + T, + T.] and Uy < U.
Thus we obtain Ty + T, < U. Since V, < T + T, + 7., we have V, <« U + T, i.e.,
i<V,

By assumption, we have ~deliver(p) inp (Ug-y, Uy).

Then by the no delivery lemma 4.7.2, we obtain ~deliver(q) inq (Vi-1, Vi).

Hence we have proved that there exist V1, V,,... ,Visuchthat y <V, <... <V <V,
convey(q, < T, 8,00 >) atg V,, for i = 1,2,...,k, ~deliver(¢q) inq (V;,Vj41), for
- j=1,2,...,k~1, and ~deliver(q) ing [0, ;) hold.

Since convey(q, < T;, 84,0, >) atq Vi implies deliver(q, 0;) atq Vi, we obtain
deliver(q,o:) atq V;, fori =1,2,... k.

Therefore we have (o1,0,,...,04) € List(q, V).

Hence for any U there exists a V, i.e., V = U + T, such that List{p,U) C List(q, V).
Thus this theorem holds. 0

We have proved that, if T, > (d + m)(T, + 8) + (d + 2m)e, v > 2¢, Dy 2 T, + T, and
D, > T, then the termination, atomicity, and order properties hold. Since T is the
minimum time to ensure that all correct processors have received a message containing
an updates after it is initiated, we take T, = (d + m){T, + ) + (d + 2m)e. Since Dy
is the broadcast termination time, it should be as small as possible and thus we take
D, =T, + T.. Similarly, since D, indicates the difference of delivery times of an update
by two correct processors, it should be also as small as possible and therefore we take
Dy, =T,

Recall that AX is the conjunction of all axioms for the system, Spec(p;) is the
specification for the server process running on processor p;, and ABS is the top-level
specification of the protocol, i.e., ABS = TERM A ATOM AORDER. Hence we have
proved AL, Spec(p;) A AX — ABS, provided T, = (d + m){(Ts + 8) + (d + 2m)e,
y>2e, Dy =T, 4+T,,and Dy =T..

4.8 Comparison

Comparing our paper with [CASD89], the basic ideas of proving properties of the pro-
tocol are similar. The assumptions and proofs presented in [CASDS9] are simplified and

informal. For instance, it is assumed there that when a correct processor p initiates
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an update, it takes zero time units for p to send a message to all its neighbors. In
our framework, it takes at most 7, time units. Similarly, when p receives a message,
[CASD89] assumes zero time units for p to relay the message to its neighbors, but we
assume at most T, time units. We also assume that p will take at most T, time units to
convey updates initiated at the same clock time to client processes.

‘Recall that d is the diameter of the graph consisting of all correct processors and links,
m is the maximum number of faulty processors in the network, § is the upper bound of
message transmission delay between two correct processors as measured on any correct
processor, and ¢ is the maximum deviation of local clocks of correct processors.

The minimum time to ensure that all correct processors have received a message
containing an update after it is initiated is 7, in our paper with T, = (d+ m)(T, +
8) + (d + 2m)e, which is more detailed than that in [CASD89|, where it is A with
A = (d+m)6 + e If we assume T, = 0, then we have T, = (d + m}é + (d + 2m)e
and thus 7 is similar as A except the part concerning e. Consequently, the broadcast
termination time in our framework, which is Dy with Dy = T, 4+ T, is not exactly the
same as that in [CASD89], which is A. If we also assume T, = 0, then we have D, =T,
and thus D; is similar as A.

In this paper we express the termination property by using deliver(q, o) byq T+ Dy
instead of deliver(q,0) atq T+ D,. In the termination theorem 4.5.1, we have proved
that if initiate(s, o) aty T, then deliver(q,o) ing [T+ T,,T + T, + T.]. H we assume
T, =0, since Dy = T,+T,, we obtain deliver(q, o) atq T+D;. Therefore the termination
property described here can be reduced to that in [CASD89) if T, = 0.

Similarly, if T, = 0, then the atomicity property expressed in this paper can also be
reduced to that in [CASD89]. In the atom,icity theorem 4.6.1, we have proved that if
deliver(p, o) atp U, then deliver{g,0) ing [U — T.,U + T.J. I T, =.0, then we obtain
deliver{q,o) atq U.

To prove the atomicity property, we need to show that if a correct processor p delivers
o at some time U, then o was initiated by some processor s at some clock time T'. This
is not proved in [CASD89]. We have proved it in lemma 4.6.1 by using available timing
information. There we need a lower bound for message transmission delay between two
correct processors. Thus we add a lower bound 7 in the bounded communication axiom
4.3.5. This lower bound is also used in other lemmas, e.g. the propagation lemma 4.5.1
and the first correct receiving lemma 4.6.3.

The behavior of any processor p is specified by the fail silence axiom 4.3.7 and the
server process specification axiom 4.4.1. Notice that axiom 4.3.7 and formula Source(p)
hold for any arbitrary processor p, i.c., even if p is faulty. To prove the atomicity
property, we have to show that if a correct processor p delivers an update o at local

time U, then ¢ was initiated by some processor and o will be delivered by each correct
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processor in the interval [U — Dy, U + Dy] according to their own clocks. By the initiation
lemma 4.6.1 and Origiﬁ(p), we can prove that there exists a processor s which initiates
o at some local time T'. If s is correct, by the server process specification axiom 4.4.1, we
have Start{s), Relay(s), and Origin(s). Then we can derive that each correct processor
will deliver ¢ in the interval [U — D,,U + D], But if s is not correct, all we have is
Source(s) and axiom 4.3.7. Then we can only use them and other axioms to reason
backwards to prove the atomicity property. This idea is represented in the first correct
receiving lemma 4.6.3.

In [CASDS8Y|, it is required that a processor will relay a message to its neighbors
only if it receives the message for the first time. We do not require this in our paper.
When a processor receives a message it will always relay the message to its neighbors.
The requirement in JCASD89] is to make the server process more efficient and avoid
. memory overflow. Since we focus ourselves on the correctness of the protocol, this is not
considered here.

An assumption mentioned in [CASD89], but not in this paper, is that the resolution
of processor clocks is fine enough so that separate clock readings yield different values.
This is an assumption for the implementation of the protocol. In this paper, we only
express those assumptions needed for cur verification and nothing more. Therefore
another assumption of [CASD89], namely that there is a finite bound on the number of
messages any processor can send per time unit, is also not included.

Just before the deadline of this thesis, we received the comments on this chapter from
the first author of [CASD89]. According to [Cri93], the clock synchronization assumption
can be made to all local clocks of processors, not only to local clocks of correct processors,
since we only allow omission failures in the protocol. If a local clock could suffer from
omission failures, the processor having that clock could exhibit Byzantine behavior (e.g.
timestamp different updates with the same timestamp). Thus the clock synchronization

axiom 4.3.6 can be sirengthened as
1Co(t) = Co(t) < €

Lemma 4.3.1 then can be removed.
Having done this, some axioms and lemmas can be simplified and their proofs will

be easier. For instance, the only omission failure axiom 4.3.8 will look like
correct(q) aty V Areceive(q,m, ) aty V — Ip £ q: send(p,m, 1) iny [V —~ §,V — 7]
And the only omission failure lemma 4.3.6 will become

correct(q) atq V Arecetve(g,m,l)atq V — dp # ¢ : send(p,m, 1) iny, [V—b—¢,V—v+€].



Chapter 5

Conclusions

5.1 Summary

In chapters 2 and 3 of this thesis, we developed two versions of a formalism to specify
and verify real-time systems, one of which was for synchronously communicating real-
time systems and the other was for asynchronously communicating real-time systems.
We started with two versions of an Occam-like programming language. One version
contained synchronous communication primitives and the other included asynchronous
communication primitives. We gave a compositional semantics for this programming
language. The specification language {also with two versions according to the commuy-
nication mechanism) for systems written in this programming language was based on
Explicit Clock Temporal Logic (ECTL). A compositional proof system was formulated
for each version of the programming and specification languages. These two proof sys-
tems were shown to be sound with respect to the semantics and relatively complete with
respect to a proof system for ECTL. We also demonstrated the use of the formalism
for synchronous communication by specifying and verifying a small part of an avionics
system.

In chapter 4, we specified and verified an atomic broadcast protocol tolerating omis-
sion failures. As we saw in this thesis, using ECTL-based formalism to reason about
properties was not easy. We would like to describe the protocol in an intuitive and infor-
mal way. Therefore the specification language for the protocol was not based on ECTL
but on first-order logic. We described the top-level requirements of the atomic broadcast
protocol and the server process in the specification language. We also axiomatized the
lower level communication mechanism, clock synchronization assumptions, and failure
assumptions. Thereafter we proved, by using an assertional, compositional approach,
that parallel execution of the server processes on a network of distributed processors sat-

isfied the top-level specification of the protocol. Hence we formally verified the protocol

99
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which was only informally proved in [CASD89]. This increased our confidence that the
properties of the protocol were indeed guaranteed by the parallel execution of the server
processes.

Notice that, in the top-level specification of the protocol, in the axioms about the
service system, and in the server process specification, we used local clock values instead
of global clock values. An essential idea of the atomic broadcast protocol was that the
messages used to broadcast among processors contained time stamps which recorded
the initiation time of updates. These time stamps were in terms of local clocks and
were used to achieve the so-called order property of the protocol. Following [CASDSY|,
other properties of the system, for instance the bounded communication axiom and the
only omission failure axiom, were also expressed using local clocks. This suggested that
reasoning about the protocol in terms of local clocks would be easy and natural. After
_ verifying the protocol, this turned out to be true. The clock synchronization assumption
for correct processors made the specification and verification of the protocol in terms of
local clocks values meaningful. This is new in real-time specification and verification,
since many formal methods only use global clock values, see e.g. [BHRR91].

Also observe that the formal method we used is compositional. This enables us to
use only the specification of the server process to verify the protocol, without knowing
-any implementation details of the server process. Thus we can separate the concern of
implementing the server from the concern of formal verification of the protocol.

As we have seen from this thesis, specifying and verifying real-time fault-tolerant
systems are not easy. Applications of the ECTL-based proof systems show that proving a
simple process correct needs a lot of effort. Moreover, the specification language contains
the chop operé,tar C and the iterated chop operator C* which make the reasoning even
more difficult. However, in [RP86] there are some nice axioms and rules for the chop
operator, for example: {1 C2)Cos = 1 C(w2Cw3), (L1 V@2)Co3 = @1 Cps V @ Cipa,
@1C (e Vps) = vy Copa V 1 C 3, etc., where @, for 7 = 1,2, 3, are formulae interpreted
over sequences of states. Furthermore, one of our aims in this thesis is to formulate a
compositional proof systern which can provide elegant rules for compound statements
including sequential composition and iteration. As shown in the thesis, it is reasonably
easy to derive propertieé from formulae containing chop operators in an intuitive way or

by reasoning at the semantic level.

5.2 Related Work

We mention some research results which are related to our work. In [Lam83a), interest-
ing examples, e.g., the alternating bit protocol, are specified using generalized temporal

logic (i.e., with predicates), but time is not considered. Compositional proof systems
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based on temporal logic can be found in [BKP84,BKP35,NDGO86], where time is also
not concerned. Untimed modular verification of communication protocols (including the
alternating bit protocol) using temporal logic and history variables is shown in [HO83].
How to compose untimed specifications are extensively discussed in [AL90], where the
precise distinction between a system and its specification is examined. In [AL92], prob-
lems arised in real-time systems are addressed and a formal framework provided by
TLA (the Temporal Logic of Actions) is used to study these problems. A state-based,
compositional semantics for real-time programs is proposed in [GJ88], where it models
termination, failure, divergence, deadlock, and startvation. A distributed real-time arbi-
tration protocol is verified compositionally in [Hoo93], which follows the same principle
presented in this thesis. Real-time extensions of CCS [Mil89] are proposed in [MT90,
Yi91]. A hierarchy of untimed and timed models for CSP [Hoa85] is presented in [Ree89)],
which enables one to reason about concurrent processes in a uniform fashion with the
minimum of complexity. A complete set of inference rules for reasoning about timed CSP
processes is given in [DS89]. Untimed process algebra for synchronous communication
in [BK84] is extended with real-time in [BB91]. Another algebra for timed processes is
suggested in [NRSV90]. A calculus of durations to reason about design and requirements
for real-time systems, which is an extension of Interval Temporal Logic, can be found .
in [CHR91]. This calculus is used in [CHRR92] to express specifications for shared pro-
cessors. Process algebras dealing with asynchronous communicatiom mechanism appear
in [Mil83,BKT85,JJH90,BB92]. A trace-based model and proof system for asynchronous
network is presented in [Jon85]. A compositional semantics for an asynchronous version
of CSP can be found in [BH92].

There is also some progress on the specification and verification of (real-time and)
fault-tolerant systems. A rigorous programming approach for fault-tolerant systems is
presented in [Cri85], where only sequential programs are considered. A compositional
proof system for fault-tolerant programs written in a CSP-like language are shown
in [JMS87]. Mechanical verification of a Byzantine fault-tolerant algorithm for clock
synchronization is described in [RH91,5ha92]. A reliable broadcast protocol proposed
in [CM84] is formally verified in [Yod92], where the so called “modal primitive recursive”
" functions are used. In [Pel91] CSP is used to design and verify fault-tolerant systems.
Deontic logic is applied in [Coe92] to specify layered {ault-tolerant systems in a natural
way. A compositional semantics for fault-tolerant real-time systems appears in [CH92),
where the occurrence of failures are allowed and the effect of these failures is described in
the real-time behavior of programs. Fault-tolerant real-time systems are specified using
“Minimal Three-Sorted Modal Logic” in [CW92]. A trace-based compositional network
proof theory for fault-tolerant systems is shown in [SH93], where the fault hypothesis
which specifies the class of faults that must be tolerated is an important feature. This
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is also a key point in a traced-based compositional framework for refinement of fault-
tolerant system proposed in [SC93]. Exception handling in process algebra can be found
in [BCG92], where ACP [BK84] is extended with an exception handling construct and
the theory is applied to an fault-tolerant system presented in [Pel91].



Appendix A

Proofs of Lemmas in Chapter 2

Proof of Lemma 2.6.1

Consider any expression e from the programming language, any model ¢, and any v >
begin{c). We prove E(e)(o(7).s) = V{e)(a, ) by induction on the structure of e.

o e=1. EV){o(r).5) = ¢ = V(¥){(o,7).
o e =z E(z)o(r).5) = o{r}).8(z) = V(z)(o, 7).

o ¢ = e O ey, where ©® € {+,—, x}. By the induction hypothesis,’ we have, for
1=1,2, E{e;)(o(r).5) = V(e){o,7). Then E(ey ® ex}{o{7).5) =
E(er)(o(7).5) © E(e2)(a(7).5) = V(er)(a,7) © V(ea)(0,7) = V(e1 @ e2)(a, 7).

Proof of Lemma 2.6.2

Consider any boolean guard ¢ from the programming language, any model o, and any
7 2 begin{c). We prove G(g){(o(r).s) iff (0,7} }=¢ by induction on the structure of g.

o g = e = ey Gleg = e){o{r).5) il E{e1)(0(7).8) = E(ex){o(7).5) iff,
by lemma 2.6.1, V(ey)(0,7) = V(e ){o, 7) iff (0,7} = ey = €.

® g = e; < e;. Similar to the proof for g = ¢; = ea.

o g =gy G{—g1)(o(r).s) iff not G{g:1)(o(7).s) iff, by the induction hypothesis,
not {o,7) | g1 iff {o,7) = —¢1.

® g=giVg. Gl Va)(o(r).s) iff G{g ){o(r).s) or G(g2){o(T).s) iff, by the induction
hypothesis, (o.7) g or (o, 1) =g iff (0,7) B gy V 42
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Proof of Lemma 2.6.3

Consider any expression vezp of type VAL, any model ¢, any cset € DCHAN, and
any 7 > begin{o). We prove V(vezp){o,7} = V(vezp){[6]cses, 7) by induction on the
structure of vezp.

e verp =9, V(@) o,7) =9 = V() [o]cser, 7)-

¢ vexp = z. By definition, if 7 < end(0), then o(7).5(z) = [0]cset(7).3(2), 1.,
if 7 < end(lo]eeet), then V(z)(0,7) = V(2)([o)cset, 7)-
If 7 > end(o), then V(z)(o,7) = 0%.5(z) = [¢]¢,,-5(2), L.e
if 7 > end{[0]cses), then V{z) (o, 7) = V(z)}([¢]eset, 7)-
Hence V{z)(o, 1) = V(z){([c]cset, 7).

o vezp = first(z). V(first(z))(o,7) = ob.s(zx) = [0],0-5(x) = V(first(z))([olesets T)-

o vezp = last(z). If end(0) < oo, then V(last(z))(o,7) = 0°.5(z) = [0]5,.-5(2) =
V(last(@))()ows; 7). 1t nd(e) = 00, then V(last(z))(e, ) = o*.5(2) = [oltr(2)
= V(Iast(x))([d]caen T)‘

s vezp = max(vezp;, vexpy). By the induction hypothesis, we have, for i = 1,2,
V{vezp;}{o,7) = V(verp;}([¢]cset, 7). Then
V{max(vexp,, vezp;))(o, 7) = maz(V{vezp )(o, 1), V(verp, o, 7))
= maz(V(vexp: )([0]cset, 7} V(verps)([0)oser, 7)) = V(maz{verp:, veaps) {[o)oser, T)-

» verp = veTp, O vexrp,, where @ € {+, —, x}. By the induction hypothesis,
we have, for ¢ = 1,2, V(verp:)(o,7) = V({vezp; ){([0]eser, 7). Thus
V(vexp, © vexpy)(o, 7) = V(vexp;)(a,7) © V(vexp,)(o, 1)
= V(vezp1)([0]esers T) @ V(vezpe)([0leser, ) = V(verpy © vewps)([0]esets 7)-

Proof of Lemma 2.6.4

Consider any expression vezp of type VAL, any model o, any vset C VAR, and any
r > begin{c). We prove, by induction on vexp, that if var(vexp) C wset, then
V{vezp)(o, ) = V{vexp){o | vset, 7).

o vexp = 9. V() o,7) =9 = V(I)}{o | vset, 7).

e vexp = z. var{vezp) = {z} and thus ¢ € vset. By definition, if 7 < end(0),
then o(r).s(z) = (o | vset)(7).s(z), i.e., if 7 < end(o | vset), then V(z)(o,7) =
V(z){(o | vset,7). f 7 > end(o), then V(z){o,7) = o%s(x) = (o | vsel) .s(x),
ie., if 7 > end(o | vset), then Y(2)(o,7) = V(z){o | vset, 1)

Hence V(2)(o,7) = V(z)(o | vset, 7).
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e vexp = first(z). var{vezp) = {z} and then = € vset. Thus V{first(z))(o,7) =
ot.5(z) = (o | vset).s(x) = V(first(z))(o | vset,T).

s verp = last(z). var(vezp) = {z} and then z € vset. U end{o) < oo, then
- V(last(z))(o, 1) = o°.8(x) = (0 | vset).s(x) = V(last(z)){o | vset,T).

If end(a) = oo, then V(last(z))(o,7) = ob.s(z) = (0 | vset)?.s(z) =

V(last(z)){o | vset, 7).

¢ verp = max{vezrp,,vexp,). For i = 1,2, var(verp;) C var(vezp) C vset. Then by
the induction hypothesis, V(vexp;){(o,7) = V(vezp;)(o | vsel, ). Then
V{maz(vexp:,vexps))(e, 7) = maz(V(verp Yo, 1), V(vexp:){o, 1)) =
max(V{vexp, }(o | vset, ), V(verp)(o | vset, 7)) =
V(maz({vexp,,vexp;))(o | vset, 7).

s vexp = vexp; O vexp;, where © € {+,—,x}. For ¢ = 1,2, var(vezp) C
var{vezp) C vset. Then by the induction hypothesis,
V(vezp;}{o, 1) = V(vezp;}{v | vset, 7). Thus
V{vezp, © vexpy){o, 1) = V(vexp )(o,7) © V(vexpz)(a, 1)
= V(vezp,)(o | vset,7) © V(vezp;)(o | vset,7) = V(vezp, © vexp:)(o | vset,r).

Proof of Lemma 2.6.5

Consider any expression tezp of type TIME, any model o, any cset € DCHAN, and
any T > begin(s). We prove T (texp)(o,7) = T (texp)([0]cser, 7) by induction on the
structure of texp.

o texp= 7. T(#)(o,7) =% = T(F)([0lesets T)-

o texp=T. T(T)(0,7) =7 = T(T)([0]esets 7)-

o texp = start. T(start)(o,7) = begin(o) = begin([0]eser) = T (start)([7]eoet, 7)-
o tezp = term. T (term)(0,7) = end(0) = end([0]cee) = T (term)([a]eset, 7).

¢ itexp = verp. By lemma 2.6.3, we have V(veap)(o,7) = V(vexp)([#]eser, )-
Then T (vezp)(o, ) = V(vezp)(a,7) = V(vexp)([o]eset, 7) = T (vexp)([o]eset, 7).

o tezp = texpy O texp,, where O € {+, —~, x}. By the induction hypothesis,
we have, for ¢ = 1,2, T(texp:}{o,7) = T (texp;)([0]cset 7). Then, by definition,
T (texzpy O texpy)(o, 1) = T{texp & lexps)([¢]esers T)-
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Proof of Lemma 2.6.6

Consider any expression tezp of type TIME, any model o, any vset C VAR, and any
7 2 begin(o). We prove, by induction on tezp, that if var{tezp} C vset, then
T(texp)(o,7) = T (texp){o | vset, 7).

o texp=T. T{(F)o,7) =7 = T(#)}{o | vset, 7).
e tezp=T. T(T)(o,7) =1 = T(T)(c | vset, 7).

o texp = start. T(start)(o,7) = begin(o) = begin(o | vset) =
T{start)(o | vset, 7).

s texp = term. T{lerm)(o,7) = end{o) = end(c | vset) = T(term){o | vset, 7).

s texp = vexp. var(texp) = var(vezp) and thus var{vezrp) C vset. By lemma 2.6.4,
V(vezp)(o, 7) = V({vezp)(o | vsel, 7). Then ,
T(vexzp)(o,7) = V(vexp)(o, 1) = V(vexp)(o | vset, v} = T (vexp)(o | vset, 7).

o texp = texp, Olexpy, where © € {+,—, x}. Fori = 1,2, var{tezp;) C var{texp) C
vset. By the induction hypothesis, T (texp;)(o,7) = T (texp;)(c | vset, 7). Then,
by definition, T {tezp; © tezp;)(o,7) = T (tezp) © texps)(o | vsel, 7).

Proof of Lemma 2.6.7

Consider any cset © DCHAN and any specification ¢. We prove that if deh{p) C cset
then, for any model o and any 7 > begin(c), (6,7} = ¢ if {[¢]cses, 7} I= @, by induction
on the structure of .

* @ = texp = texp,y. {0,7) = texp, = texpy it T (teap,)(o,7) = T{iezp:)(o, ) iff,
by lemma 2.6.5, T (texp )([0)cset, T) = T (tezpa)([0]esets 7) iff ([)eser, ) = texpr =
texp;.

® = texp; < texp;. Similar to the proof {or ¢ = tewp; = terp,.

o ¢ = comm(c,vezp). dch(p) = {c} and thus ¢ € cset. Hence (0, 7) |= comm(c, vezp)
iff r < end{o) and (¢, V(vexp)(o, 7)) € o(r).c iff, by definition and lemma 2.6.3,
7 < end([0]uer) and (e, V(vexp)([o]isers 7)) € [0)esea(T).c 3T

{[o)eset, T} = comm(ec, vezp).

o © = comm{c). deh(p) = {c} and thus ¢ € cset. Hence (o, 1) = comm{c) iff
7 < end{c) and there exists a value ¥ such that {¢,9) € o(7).c iff 7 < end([0]cset)
and there exists a value d such that (¢, 9) € [0]cser{7).¢ T {{T]eser, 7) = commic).
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e ¢ = wail(c!). dch(p) = {c!} and then ¢! € cset. Hence (0,7} k= wait(c!) iff
7 < end(o) and ¢! € o(7).c iff 7 < end([o];ser) and ¢! € [0]eser(7T).c iff

([U}C.sets T) # wait(c!).

s ¢ = wait{c?). deh{p) = {c?} and then ¢? € cset. Hence {o,7) = wait(c?) iff
r < end{s) and ¢? € o{r).c iff 7 < end{[o]cser) and €? € [0]coer(T)-c iff
([ coer, T) = wait{e?).

o ¢ = p1 Vg Fori = 1,2, we have deh(p;) C (deh{p)Udch(p2)) = deh{p) € cset.
Hence {0, 7) | p1Vq iff {0, 7) k= 1 01 {0, 7) = @4 iff, by the induction hypothesis,
<[‘7]Caeta7) l~_- ¥ Or ([alcact;7> ': (%] iff ([a]csch T) }: w1 Vs

s v =~y and @ = @1 U 2. Similar to the proof for ¢ = @1 V s,

o o= C @ Fori=1,2, we have deh(p;} C deh{yp) C cset.
Hence {0,7) =1 € @2 iff

— either {0, 7) = ¢ and end{o) = oo iff, by the induction hypothesis,
([a]csehT> # ®1 and 6nd([d]cset) = 00 iff <[U]cael7r) l: ©1 C 2}

~ or there exist models oy and o, such that o = o102, 7 < end{e) < oo,
{e1,7) | @1, and {03, begin{0,)} k= ¢, iff, by the induction hypothesis,
there exist models oy and o, such that ¢ = 6109, (Io1]wet, ™) F 41, and
{[o2]cset, begin{o2)} k= 2 iff, there exist models [71]cser and [02]ceer Such that
[0]eset = [O1]cset[O2]esets ([T1]esets T} = 91, and {[o2)csets begin([os]cser)) b= o iff

([o)esets 7) 01 € .

e = ¢ C* ;. Similar to the proof for p = ¢y C ¢,

Proof of Lemma 2.6.8

Consider any vset C VAR and any specification ¢. We prove, by induction on ¢,
that if var(y) C vset then, for any model ¢ and any 7 > begin(c), {o,7) E ¢ iff
(o § vset,7) = .

o p = texp; = texpy. Yor i = 1,2, var(texp;) C var(p) C vset. Hence
{o,7) £ tezp; = texp, iff T(tezp)(o,7) = T(texp)(o,7) iff, by lemma 2.6.6,
T(texp){o | vset, 1) = T(te;;:pg)(a' L vset,r) iff {o | vsel,T) k= texp; = tezps.

e p = texp; < texpy. Similar to the proof for ¢ = texp, = lexp,;.

e © = comm(c,vexp). var(vexp) = var(p) and thus var{vezp) C vsel. Hence

{o,7) = comm(c,vexp) il 7 < end{o) and (¢, V(vexp)(eo,7}) € of(7).c iff, by
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definition and lemma 2.6.4, 7 < end(o | vset) and
{c, V(vezp}(o | vset, 7)) € {0 | vset)(r).ciff {0 | vset, ) = comm{c, vexp).

* ¢ = comm(c). {0,7) = comm(e} iff 7 < end(s) and there exists a value 9 such
that (¢,9) € o{r).ciff T < end(o | vset) and there exists a value ¥ such that
(c,9) € (0 | vset)(r).ciff {o | vset,7) |F comm(c).

‘o ¢ = wail(c!). {o,7) E wait(c!) iff < end{o) and c! € o(7).ciff T < end(o | vset)
and c! € (¢ } vset)(7).ciff {o | vset, 1) |= wait(c!).

o ¢ = wait(c?). {0,7) = wait(c?) iff 7 < end(o) and ¢? € o(7).ciff
7 < end(o | vset) and ¢? € (¢ | vset)(r).ciff {¢ | vset, ) |= wait(c?).

o 0=y Ve Fori=1,2, var(e;) € var{y) € vset. Hence {0,7) E ¢1 V @ iff
{o,7) E ¢4 or {o,7) |= vq ifl, by the induction hypothesis, (¢ | vset,7) | ¢; or
{o | vset, 1) |= @ iff {o | vsel, ) |= @1 V 2.

s ¢ = gy and @ = @1 U . Similar to the proof for ¢ = ¢ V @,
o o=y C @ Fori=1,2 var(y;) € var(p) C vset. Hence {0,7) k=1 C g iff

— either {o,7) k= ¢ and end(o) = oo iff, by the induction hypothesis,
{0 | vset, 7} = ¢ and end{o | vset) = oo iff (0 | vsel,7) =1 C o3

— or there exist models oy and o, such that 0 = 0,03, < end(e) < oo,
{e1,7) = 1, and {03, begin{o3)) E ¢, iff, by the induction hypothesis, there
exist models o) and o, such that o = 0,0, (07 | vset,7) = ¢y, and (02 |
vset, begin{o,)} = w2 ifl, there exist models oy | vset and o | vset such that
o | vset = (01 | vset)(oy | vset), {oy | vsel,7) E 1, and
{02 | vset, begin(oz | vset)) k= ¢y iff {0 | vset,7) k=1 C 2.

® ¢ = @y C* @,. Similar to the proof for ¢ = ¢, C .

Proof of Lemma 2.6.9

Consider any model o and cset C DCHAN. We prove that deh(o) € cset iff o = [0] e,

By the definition of projection onto variables, begin(o) = begin{[o]se), end(o) =
end([0]cset), and for any , begin{oc) < 7 < end(o), o(n).s = [o)eser(T1).5. Then
we only have to prove that, for any 7, begin(o) < 7 < end{(0), dch(o) C cset iff

o{7).c = [olese(T)-C.
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Let ¢ € CHAN and ¥ € VAL. By definition, for any 7, begin{e) < 7 < end(c),

[olese(r)e = {d]d €o(r)enc €cset}U{c?|c? € a(r).cAc? € csel} U
{{c,9} | {¢,?) € a(7).c A c € cset})

and

dCh(o) = Ubegin(a)ﬁ'r(end(o) {C! l c! € 6(7)‘(:} U {C? I e’ € O'(T).C} U
{c| there exists a ¥ such that {¢,9) € o{7).c}

Assume dch{c) C cset. We show o(7).c = [0]ce(7).c, for any 7, begin{e) € 7 <
end(o). U ¢! € o(r).c, then ¢! € deh{c). By the assumption, ¢! € cset and thus
¢! € [o]cses(7).c. Similarly, if ¢7 € o{7).cthen c? € {0]usei(7).¢, and if (¢,¥) € o(7).c, then
(¢,9) € [o]eset(7).c. Thus o{r).c C [o]eser(7).c. On the other hand, if ¢! € [0]csa(T)-c,
then ¢! € a(7).c. H €? € [0]oes(7).c, then ¢? € o{r).c. H (¢,9) € [5]eses(7)-c, then
{c,9) € o(r).c. Therefore [0]csee(7).c C o(r).c. Hence o(r}.c = [0]cser(T)-c-

Now assume 6(7).¢c = [0]et(7).c, for any 7, begin(o) < 7 < end(o). We prove deh{c) C
cset. Consider any ¢! € deh{o). By definition, there exists a 7, begin(o) € 7 < end(c},
such that ¢! € o(7).c. By the assumption, ¢! € [¢]e(7).c and then ¢! € cset. Similarly,
if ¢? € dch{c), then c? € cset, and if ¢ € dch{o), then ¢ € cset. Hence dch(o) C cset.
Hence the lemma holds.

Proof of Lemma 2.6.10

Consider a model o and two sets csety, csely © DCHAN. We prove that
if {0, begin{a)) |E D empty{csets \ csety), then [0]cer,ucset, = [0leser, -

By the definition of projection onto channels, begin{|o] seryueset,} = begin{[e]cser, )
end([o]esetsucset,) = end([e)cser, ) and for any 7, begin(o) < 7 < end{o),
[0lesetsvesetz(T)-8 = 0{r).s = [0]eser, (T).s. Then we only have to prove, for any 7,
begin{o) < 7 < end(0), [0lssetyucsets (7)€ = [0]cser, {T)-c.

Since csety U csety = csety U (csety \ csely), we obtain [0]cseruesets = [Flesetsufeseta\csets)
and then {J]cset,cheeg(T)-C = [g]csetxu(csetg\csetl)(T)-C = {U]csctl(”f)ﬁ U [‘ﬂ(a.setg\caet,)(T)»C-
We show [0](caety\csets)(7)-€ = .

Assume (0, begin{o)) |= Uempty(cset; \ csety). For any ¢ € csety \ esety, by definition,
we have (o, begin(o)) | O ~comm{c). Thus, for any 7, begin{o) < 7 < end(c), and for
any value 9 € VAL, (¢,9) € o(7).c. Thus (¢, 9) ¢ [0} csers\conty){7).c. Similarly, for any
cl € csety \ csety, we obtain ¢! ¢ [0)cer\esety) (7)., and for any ¢? € cset, \ csety, c? ¢
[0} (csetoresets) (7)€ Hence [0]csetr\esety) (7)€ = @ and then [0]eser,uesety (T)-€ = [0]csery (7)€
Thus the lemma holds.
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Proof of Lemma 2.6.11

Consider a model ¢ and two sets vsely, vsel, € VAR, We prove that

if {0, begin{e)} b= Oinv(vset, \ vsety ), then o | (vsef; Uwvsely) = o | vsety.

By the definition of projection onto variables,

begin(co | {vset; Uvsety)) = begin{a | vsety),

end{o | (vset; Uwvsety)) = erd{o | vsety), and for any 7, begin(c) < 7 £ end{s),

{0 | {vset; Uvset:}}{7).c= (0 | vsety){7).c.

We only have to prove (o | (vset; Uvsety))(7).s = (o | vset;}(7).s.

By deﬁniticn, we have (0 | (vset; Uvsety))(7).8(z) = { JET)'S(m) if z € ?fset‘ Uvset;

ob.s(z)  otherwise

If z € vsety U vsely, since vsely U vsely = vsety U (vsel, \ vsety ), we have 2 € vset; or

T € wvsely \ vsely. Assume {(0,begin{o)) | Oinv(vsel; \ vsety). Then for any = €

vsety \ vsety, any 7, begin(c) < r < end(0), we cbtain o(r).s(z) = ob.s(2).

Thus, (o | (vset; Uvsety))(7).s(z) = { ogr).s(m) ifze tfsetl
o°.s{z)  otherwise

Hence (o | (vsety Uvsels))(7).s = (o | vset;}(r).¢ and thus this lemma holds.

Proof of Lemma 2.6.12

Consider a model 0. We prove that if dek{o) C cset and (o, begin{o)) = W Fese, then

o is well-formed.

Assume (o, begin{o)} E WF,,. Then
{0, begin(o)) = D{MinWaile,e A Exclusion e A Uniquegs). Hence, for any 7 >
begin(o),

1. {o,7} k= ~(wail(c!) A wait{c?)), for any {d},¢?} C cset;

2. {o,7) I ~(comm(c) A wail(c!}), for any {c,c!} C eset, and
{o,7} = ~(comm(c) A wait(c?)), for any {e,c?} C cset;

3. {0, 7} = comm{c,vexp) A comm(e, vexp;) — vexp = vexp,, for any ¢ € cset.
Given the interpretation of specifications (section 2.3), this implies, for any 7 > begin{c),
1. ={c € o{r).c A c? € o(r).c}, for any {c!,c?} C cset;

2. There does not exist a value § € VAL such that
{¢,9) € o(r)eAndd € o(r)cor (e,9) € a(r).cAc? € ofr).c.
Thus, for any value 9 € VAL,
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~({e,?) € o{r).c A c! € o(r).c), for any {c,c!} C eset, and
~((¢,?) € o{r).c Ac? € o(r).c), for any {c,c?} C cset;

3. {e,V(vexp )(o, 7)) € o{r).c A (¢, V(vexp)(o,7}) € o(7).c —
V(vezp; )(o, 7) = V(vexp;)(o,7), for any ¢ € cset.
Since vexp; and vexp,; are arbitrary expressions of type VAL, let 4,, ¥; € VAL be
such that 4, = vexp, and ¥, = verps. Hence 9, = V(vezp,}(o,7) and
9, = V(vezp;)(o, 7). Thus, for any > begin{o),
{e,91) € o(r).c A {c,9;) € o(r).c = ¥; = I, for any ¢ € cset.

Notice that if ¢! ¢ cset then, by deh(o) C cset, we have ¢! ¢ dch{o) and thus ! ¢ o(7).c,
for any 7, begin{o) < v < end(0). Similarly, if ¢? ¢ cset then c? ¢ o(7).c and if ¢ ¢ cset
then, for any value ¥ € VAL, (¢,¥) ¢ o(r).c. Thus, for any ¢ € CHAN, for any values
4,9,,9, € VAL, and for any 7, begin{o) < 7 < end(o), we have:

1. ~{d € o(r).cAc? € o(r)c);
2. ~((c,9) € o{r).c Al € o(r).c) and =((¢,9) € o(7).c A c? € o(7).c);
3. (¢, %) € o(r).cA{c,d;) € o(r).c = ¥y =¥,

Hence ¢ is well-formed.
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Appendix B

Soundness of the Proof System in
Chapter 2

To prove the soundness of a proof system, we must show that every axiom in the proof
system is indeed valid and every inference rule preserves validity, i.e., if the hypotheses

of an inference rule are valid, so is the conclusion.

Well-Formedness

Consider any procee S and any finite set cset € DCHAN. We prove that the well-

formedness axiom 2.4.1 is valid.

For any ¢ € M(S), by theorem 2.2.1, o is well-formed, that is, for any r, begin(o} <
T < end(0), any ¢ € CHAN, and any ¢,,9,5,9 € VAL, we have:

1. »(c! € o(r).cAc? € o{7).c},
2. ~((¢,0) € o{r)cAc € o(r).c) A ={{c,F) € o(r).cAc? € o(r).c), and
3. (¢,91) € o(r).cA(c, ) € o(r)c > ¥ = Vs

For any expressions vexp; and vexp, of type VAL and any 7, begin(o) < 7 < end(e),
we have V(verp; {{o,7) € VAL and V{vexp,)(o,7) € VAL. Since ¥; and ¥, are arbitrary
values in VAL, we can replace 4y and 9, by V{vezp,}(a,7) and V{vezp,)(o, ), respec-
tively. Thus, for any 7, begin{c) £ 7 < end(o), any ¥ € VAL, and any expressions

verp;, verps, we have:
1. ~(cl € o(r).cAne? € o(7).c), for any ¢ with {c!,c?} C cset,

2. ={{¢,8) € a(r).cAcl € ar).c), for any ¢ with {c, !} C cset,
={{c,?) € o(7).c Ac? € a(r).c), for any ¢ with {c,c?} C cset, and
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3. (c,V({vexzp )0, 7)) € o(t).c A (¢,V(vezps)(o,7)) € o(7).c —
V(vezps ){o, 1) = V(vexps)(o, 7}, for any c € cset.

By the interpretation of specifications, we obtain that, for any 7, begin{a) < 7 < end(o),
any 4 € VAL, and any vezp, and vexp,:

L (0‘, T) }: A{c!,c?}gcset ﬂ(w“it(cg) A wait(C?));
2' (0, T) ': A{c,c!}gcset -w(comm(c) A wait(d)) A /\{c,c?}gcset -{comm(c) A w‘ut(c?))s
3. {0,7) E Acccser comm(c, vexzp,) A commic, vezp;) ~ vexp; = vexp,.

Furthermore, for any 7' > end(o), any ¢ € cset, and any vezp, we have
{o,7") = ~wait(c!) A ~wait(c?) A ~comm{e) A ~comm{c, vexp).

. Thus, for any 7 > begin(o), and any vexp, and vezp,, we obtain:

L. {o,7) = Aqecryceser ~(wait(ch) A wait(c?));

2. (0,7) F Afeyceset ~(comm(c) A wait(c!)) A Age ryceser ~{comm(c) A wait{c?});
3. {(0,7) k= Acecsst cOmm(c, vexp) A yomm(c, verp;) — vexp; = vexTps.

Thus, by definition, {0, begin{c)) E B (MinWaite A Emclusioncse,k/\ Uniqueceet) and
then (o, begin(o)} = W F4;. Hence, axiom 2.4.1 is indeed valid.

Communication Invariance

Consider any process S and any set cset & DCHAN such that cset Ndch(S) = ¢. We
prove that the communication invariance axiom 2.4.2 is valid.

For any ¢ € M(S5), by theorem 2.2.1, we obtain deh{c) C deh{S} and then
cset N deh{o) = @. Thus, by definition of dch{c), for any 7, begin(o) € 7 < end(o), we

have:
1. If ¢ € eset, then there does not exist any value 0 such that (¢, 4} € o(7).¢;
2. H el € eset, then ! ¢ o(r).¢
3. If ¢? € cset, then ¢? ¢ o(7).c.
Thus, for any 7, begin{s) < r < end(c), we obtain:
1. {o, 7} E —~comm(c), for any ¢ € csel;

2. {o,7) | ~wait{c!), for any ¢! € cset;
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3. (o,7) | ~wait(c?), for any c? € cset.

Furthermore, for any ¢ € CHAN and any 7' > end(c), we have

(o, 7"} | ~comm{e} A —wait(c!) A —~wait(c?).

Thus, for any v > begin(o}, we have {o, r) k= empty(cset) and then
{0, begin{o)} b= O empty{cset).

Hence axiom 2.4.2 is valid.

Variable Invariance

Consider any process S and any vset € VAR with vset Nwvar(S) = @. We prove that

the variable invariance axiom 2.4.3 is valid.

For any o € M(S), any = € vsetl, and any 7, begin(o} < 7 < end(o), by theorem
2.2.1, we obtain o(7).s(z) = o*.s(z). Then, by definition, we obtain V(z){o,7) =
V(firsi(z))(o,7) and thus {o,7) = = = first{z). For any ' > end(c), by defini-
tion, we have V(z)(a,7') = 0%s(z) = o*.s(z) = V(first(z))(e,7). Then we obtain
{0,7) = = = first(z). Hence, for any 7 > begin(o), we have (0,7} = z = first(z),
ie., {o,begin{o)) = Oz = first(z)). Since x € vset, we have (0,begin(o)) E
Azevse: O (T = first{z)), L.e., (0, begin{o)} = O Aycysei( = first{z)). Hence we obtain
{0, begin(o)) k= O inv{vset) and thus axiom 2.4.3 is valid.

Conjunction

We prove that the conjunction rule 2.4.1 preserves validity.

Assume that § sat ¢; and S sat @, are valid. For any ¢ € M(S), we obtain
(o, begin(o)} = 1. Similarly, we have (o, begin(o)) |= @2. Hence we obtain
{0, begin{c)) = v1 A 2, i.e., rule 2.4.1 preserves validity.

Consequence

We prove that the consequence rule 2.4.2 preserves validity.

Assume that 5 sat ¢; and ¢; — ¢, are valid. For any o € M{S), we obtain
{o,begin(c)}) = 1. By the implication, we have (o, begin(0)} = 2. Thus rule 2.4.2

preserves validity.
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Skip

We prove that the skip axiom 2.4.4 is valid.

Consider any o € M(skip). We have begin(o) = end(c) and then
{0, begin(o)} k= term = start. Hence axiom 2.4.4 is valid.

Assignment

We prove that the assignment axiom 2.4.5 is valid.

For any 0 € M(z := ¢), for any 7, begin(o) < 7 < end(c), we obtain o(r).s(z) =
o*.s(z). By definition, we have {o,7) k= # = first(x). From the semantics, we
have 0°.s(x) = E(e)(c*.5). By lemma 2.6.1, we obtain V(z)(0,end(c)) = £(e)(cb.s) =
V(e)(o, begin{s)). By definition, we have V(e){(a, begin{o)) = V{e| first(z)/z]}(o, begin{o))
= V{e|first(z)/z])(0,end(c)). Hence V(z)(o,end(c)) = V(e[first(z)/z])}{(o, end(o))
and then (o, end(0)) = = = €[first(z)/z]. Since end(c) = begin(s) + K,, we obtain
{0, end(0)) |= term = start + K, and {0, end(o)} k= T = term. Thus, we obtain
{o,begin(c)) |= (z = first(z)) U (T = term = start + K, A z = e[first(z)/z]), i.e.,
axiom 2.4.5 is valid.

Delay

We prove that the delay axiom 2.4.6 is valid.

Consider any o € M(delay e). By lemma 2.6.1, £(e)(a’.s) = V(e)(o, begin(o)). Since
o € M(delay ¢), we have end(c) = begin(o) + maxz(0, £(e)(c®.5)). Hence we obtain
end{o) = begin(o) + maz(0,V(e)(o, begin{o))) and then

(o, begin(o)} |= term = start + maz(0, ¢), i.e., axiom 2.4.6 is valid.

Output

We prove that the output axiom 2.4.7 is valid.

Consider any o € M{cle). Then there are two possibilities:

1. either end{c) = co and o € Wait(cl), i.e, for any 7 > begin(o),
o(r).comm = {cl};

2. or there exist models ¢, and o, such that 0 = 0,03, 0y € Wait(c!), o7 € Send(c, ¢),
and end(oy) < oo. That is, there exists a 7 € TIME such that, end(o) = 7, for
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any 7y, begin{oy} £ 11 < end(o1), o1(11).8 = fyf.s, oi{m).c = {cl}, of.s = a'{.s,
end(oy) = begin(oy) + K., for any 72, begin(oy) € m < end(03), o3(n).c =
{(c,E(e)(03.5))}, 0a(72).8 = 0.5, and 0.5 = 0}.5.

That is,

1. either end{o) = oo and, for any 7 > begin(c), {0, 7) k= wait(c!), i.e.,
{0, begin(o)) = Dwait(cl);

2. or, from ¢ = 0,04, we can derive that there exists a 7 € TIME such that, for
ahy 1, begin(c) < m < 7, {o,71) E wait{c!). Since end(s;} < o, we obtain
begin(az) = end(oy) = 7. By lemma 2.6.1, for any 7, 7 < 7, < end(c), E(e)(0d.5)
= V(e){o2, begin{os)) = V(e){02,m2). Thus we have (o, 7:) |= comm(c,e). Since
end(oz) = begin{o;) + K., we obtain end(o) == r + K, and then {o,7) T =
term — K, as well as {¢,end{c)) E T = term. Therefore we have
{0, begin(o)) E wait(c!) U (T = term — K. A{comm(c,e) U T = term}).

Hence we obtain (o, begin{e)) |E wait{c!) U (I' = term — K, A (comm{c,e) U T =
term)), i.e., axiom 2.4.7 is valid.

Input

We prove that the input axiom 2.4.8 is valid.

Consider any ¢ € M({c?z}. There are two possibilities:

1. either end(o) = 0o and o € Wait(c?), i.e, for any 7 2 begin{o}, o(r).c = {7},

b

and o(7).s = o’.s;

2. or there exist models oy and o, such that ¢ = o0y0y, 0y € Wait(c?), o3 €
Receive(c, z), and end(oy) < oco. That is, there exists a 7 € TIMFE such that,
end(o,) = 7, for any 7y, begin(o;) < 1y < end(oy), o1(n1).8 = ob.8, o (n).c = {7},
0%.s = 5.5, end(0;) = begin(ay) + K., there exists a value 9 € VAL such that,
for any 7, begin(oy) < T < end(03), oa(m).c = {(c,9)}, o2(r2).5 = 0b.5, and

o5.s = (0b.s 12— V).
That is,

1. either end(o) = oo, for any 7 2 begin{c}, {o,7) = wail(c?) and
{0,7) = o = first{z), ie., {0, begin{o}) &= O(x = firsi(z) A wati(c?));
2. or, from o = 0y0;, we obtain begin(o;) = end(oy) = 7. Thus for any =,

begin(e) < 7 < 1, {oyn) F x = first(z) A wait(c?), for any 7, 1 < 75 <
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end(o), (0,72) | z = first(z) A comm{ec,d). Since end(o;) = begin(o;) + K.,
we obtain end(c) = 7 + K, and then {oy7) E T = term — K, as well as
(0,end(0)) = T = term. Hence we have (o,7) E T = term —~ K. A ((z =
first(z) A comm(c,9)) U T = term). From o®.s{z) = J, by definition, we ob-
tain that, for any 7,7 € 7 < end(s), V(last(z})(o, 7} = J. Thus we have
(o,7) E (= = first(z) A comm(c,last(z))) U T = term. Therefore we ob-
tain {o,begin(c)} k= (z = first(z) A wait(c?)) U (T = term — K, A ((z =
first(z) A comm(c,last(z))) U T = term)).

Hence we have {0, begin{o)} k= (z = first(z) A wait(c?)) U (T = term — K. A ((z =
first(z) A comm(c,last(z))) U T = term)), i.e., axiom 2.4.8 is valid.

- Sequential Composition

We prove that the sequential composition rule 2.4.3 preserves validity.

Assume that S sat p; and S, sat @, are valid. We show that S); 5, sat ¢, C ¢, is
also valid. Consider any o0 € M{51;5;). Then there exist oy € M{S;) and o, € M(S,)
such that o = oy0,. By definition, end(01)} = begin{c,). From S; sat ¢, and §; sat ¢y,
we obtain {0y, begin{0)) E ¢; and {o3,begin(o,)) k= ;. By the definition of the C
operator, we have {a, begin{a1)) = p1 C 9, L.e., (0,begin(c)} = v1 C ps. Hence, rule
2.4.3 preserves validity.

Guarded Command with Purely Boolean Guards

Consider G = [[]%,9; — S:|. We prove that the guarded command evaluation axiom
2.4.9 is valid for G.

For any o € M(G), there are two possibilities:

1. either G(—§)(o®.s) and o € M(delay K,);

2. or there exists a k, 1 < k < n, such that G(g;)(0”.s) and & € M{delay K,; Si)-
That 1s,

1. either, from G(~§)(o®.5), by lemma 2.6.2, we obtain {o, begin(0)) = ~§. Since
o € M(delay K,), we have end{c) = begin{c) + K, and then
(g, begin(o)) |= term = start + K,. Recall Eval = term = start + K. Hence we
have {0, begin{o)) = —~g — Eval.
From the semantics, for any 7y, begin{o) < 71 < end(o}, we have o(7;).s = at.s

and then (0,7) E Avcwrer(e) T = first(z), i.e., (o,71) | inv{wvar(G)). Also, for
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any e, begin(o) < m, < end(c), we have o(ry).c = 8, i.e.,
(0,72) = Acteacnie) "wart(cl) A Acreacnia) ~wait(e?) A Acedcna) ~comm(c).
Thus we obtain (o,7;) |= empty(dch(G)). We also have (g,end(0)) = T =
start + K,. Then we have

- {0, begin{o)} k= {inv{wvar(G))Aempty(dch(G))) U (T = start+ K Ninv(wvar(QG))).
Therefore we have
{0, begin(o)) k= [(inv(wvar(G))Aempty(dech(G))) U (T = start+K Ainv(wvar(G))}]
A~§ — Eval);

2. Or, by G(gx)(c°.5), we obtain G(§)(c®.s) and then (o, begin(s)) | §. Then we
have (g, begin(c)) k= —§ ~ Eval. Since o € M(delay K,; Si}, there exist models
01 € M(delay K,) and o, € M(S;) such that o = 6,0;. From o, € M(delay K,),
we obtain the same result as previous case, i.e., :
(o1, begin(on)) k= (inv(wvar(G))Aempty(deh(G))) U (T = start+ K Ainv(wvar(G))).
Thus we obtain
{o, begin{o)} E [(inv(wvar(G))Aempty(dch(G)}) U (T = start+K,Ainv(wvar(@)))]
A(~g — Eval).

Hence we conclude that axiom 2.4.9 is indeed valid for G = [|L,9: — Si].

Next we prove that the guarded command with purely boolean guards rule 2.4.4 preserves
validity.

Assume S; sat ; are valid, i = 1,2,...,n. Consider any ¢ € M(G).

1. If G{(~g}{(o®.s) holds, then we have {0, begin{c)} | ~§ and then
(o,begin(0)) =g — (Eval C Vi, 9: A i)

2. If G(gx)(c*.5) holds, then we obtain G(§)(a®.s) and then (o, begin(0)) = §.

Since ¢ € M(delay K,;S;), there exist models oy € M(delay K,) and o; €
M(Si) such that o = oy0;. Thus we have end(o,) = begin(oy) + K, and then
{01, begin{o1)} k= Eval. From the assumption, S; sat @; are valid, i = 1,2,...,n.
Since 03 € M(Sy), we have {0y, begin(0,)) = ¢k. TFrom G(gx)(ob.s), we obtain
G(gx)(0%.5) and then (o2, begin(a2)) = gx. Thus we have (o2, begin(a2)} = gx A
and then {0y, begin(o,)) |E Vi, i A @i Since begin{o:} < end(o;) < oo, by the
definition of the C operator, we obtain {0, begin{o,)} = Eval C Vi, g Ay, le.,
{o,begin(0)) = Eval C Vi, g Mo

Thus we have (o, begin(o)) = § — (Eval C Vi, b Awi).

Hence rule 2.4.4 preserves validity.
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Guarded Command with I0-Guards

Consider G = [ 95672 — S || go; delay e — Sp}. We first prove that the guarded
command evaluation axiom 2.4.9 is also valid for G.

Let o € M(G). There are four possibilities:
1. G(—g)(c*.s) and 0 € M(delay K,);
2. or 0 € SEQ(M(delay K,), FinWail(G), Comm/(G));
3. or 0 € SEQ(M(delay K,), TimeOut(G)}, M(Sp));
4. or o € SEQ(M(delay K,), AnyWait(G), Comm(G)).

Following the proof of axiom 2.4.9 for the case G = [[L,4 — S|, we conclude that
axiom 2.4.9 is also valid for G = [}, ¢;;¢:72; — 5; || g0;delay e — Syl

Next we prove that the guarded command with io-guards rule 2.4.5 preserves validity.

Assume ¢;7z;; S; sat ¢;, 1 = 1,2,...,n and Sy sat @y are valid.

1. H G(—g)(c®.s), then we have (0, begin(o)) | —§. Thus we obtain
(o, begin{o)} k= § = (Bval C (Comm V TimeQOut)).

2. If 0 € SEQ{M{delay K,), FinW ait(G), Comm(G)), then there exist models
o1 € M{delay K,), 0; € FinW ait((), and 03 € Comm(G) such that 0 = 010903.
From g1 € M(delay K}, we obtain end{g,) = begin{o) + K, and then
(o1, begin(on)) | term = start + K, i.e., {01, begin(o)) E Eval.
From o, € FinWait(G), we obtain end(03) < begin(o;) + maz(0, £(e){05.5)),
Glgo)(0b.s), for any 7, begin(oy) < 7 < end(03), oa(r3).8 = o8.3,
ay(r2)e = {&? | Glgi)ed.s),1 < i < n}, and o5.s = ad.s. Then for any
74, begin(oq) < 15 < end{o,), we have (09,73} b= inv(wvar(()). For any 7,
begin(ay) < 1, < end{s;), we obtain (62, 7) | empty(deh(G)\ {&1?,...,¢7}).
By assumption, we have ¢;?7 € o3(7;).ciff G(g:)(ot.s), for any i, 1 < ¢ < n. Then we
have {0y, 73) | wait(c;?) iff (o3, begin{e,)} | ¢. iff {03, 72) k= gi. Thus we obtain
(02,72) | ALy 9 = wait(e;?). From end(o;) < begin(a;) + max(0, E(e)(0t.s)),
we have, {or any 73, begin(oz) < 75 € end(03), {o2;75) k= T < start + maz(f,¢e).
From G(go)(o5.5), we have (0,,75) k= go and then {0, begin{o)} E § Thus
(o2, 73} = go = T < start-+maz(0,¢). 1t is obvious that (o, end(o3)) = T' = term
holds. Hence we obtain
{02, begin(o2)) E [{(inv{wrvar(G)) A emply{dch{G)\ {a1?, ..., T} A(go » T <
start + maz(0,€)) A AL (g & wait{e?)] U (inv{wear(GY) AT = term A (go —
T < start + maz(0,€))), i.e., {02, begin{or)) = Wait U InTime.
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From o3 € Comm(G), there exists a k, 1 € k < n, such that G(g:)(03.5) and

o3 € SEQ(Recetve(ey, zi), M(Si)). Then (o3, begin(o3)) E g, 03 € M(cx?zi; i),
and (o3, begin(o3)) |= comm(cy). By assumption, cx?zi; Sy sat ¢y is valid. Thus
we have {03, begin(os)) = @r and then {03, begin(as)) k= gx A @r A comm(cy).
Hence we obtain {o3, begin(o3)} |= Viny & A @i A comm(c;).

Then we have {0303, begin{(a,)) | (Wait U InTime) C VI, gi A @i A comm(c;),
i.e., {0203, begin{o,)} E Comm.

By o = 010,03, we obtain (0, begin{o)} |z Eval C Comm.

Hence we have {0, begin(o)} | § — (Eval ¢ Comm);

. o € SEQ(M(delay K,), TimeOut(G), M(5y)), there exist models

o1 € M(delay K,)}, o, € TimeOut(@), and o3 € M(5;) such that o = o10903.

o1 € M{delay K,) implies (g1, begin(o)) |= Eval.

a3 € TimeOut(G) implies G(go)(oh.5) and end(ay) = begin(os)+maz(0, £(e)(ad.5)).
Thus we have {o;, begin(0;)} |= go and then (o, begin(s}} = §. By lemma2.6.1, we
have end(a;) = begin(a,)+maz(0, E(e)(ab.5)) = begin{az)+maz(0, V(e)(os, end(a,)))
and then (o3, end(0;)) | T = term = start + maz(0,¢). Similar to previous
case, we can also derive that, for any m, begin{oy) € 1 < end{(0y), (03,12} F
empty(dch(G) \ {e1?,..., 6.1} ) A (g0 = T < start + maz(0,€e}) A AL, {g:
wait(c;?)), and for any 73, begin{a,) < 75 < end{ay), {02, 75} k= inv{wvar{G)) A go.
Hence, we obtain {02, begin{o,)} i Wait U EndTime.

Since S, sat g is valid, we have {03, begin(o3}) F ¢o.

Thus we obtain {0303, begin(os)) | (Wait U EndTime) C o, ie.,

{0903, begin(oz)} | TimeOut.

By o = 010,03, we have {0, begin{a)} &= Eval C TimeQOul.

Hence we obtain {c, begin(a)) E § — (Eval € TimeOut);

.o € SEQ(M(delay K,), AnyWail((), Comm(G)), then there exist models
oy € M{delay K, ), 03 € AnyWait{G), and 03 € Comm(G) such that o = 0y0,03.
o, € M{delay K,) implies {71, begin{o,)} |= Eval.

o2 € AnyWait(G) implies G(—go){0.s) and then we have {52, begin(as)) = ~go.
Thus we have {03, begin(o,)) k= go = T < start + maz(0,¢). From the seman-
tics, we obtain G(g)(c5.5) and then {03, begin(a,)} = g, i.e., {0, begin(o)} & §.
Similar to previous cases, we can derive that, for any 7, begin{o,} € 7 <
end(o2), {7a, ) f= empty(dch(G) \ {a?,...,c.T}) A AL (g & wait{c?)), for
any 73, begin(o,) < 15 < end(oz), (02.7}) E inv{wvar(G)} A {g — T <
start + max(0,¢)), and {o2,end(a2)) = T = term. I end(a;) = oo, we have
{02, begin(02)) = O Wail. If end(o,) < 0o, we obtain

{02, begin(oz)) | Wait U InTime. Hence we have
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{02, begin{o3)) = Wait U InTime.

a3 € Comm(G) implies {03, begin{a3)) = Vi, g A i A comm(c;).

Thus we obtain {003, begin(o,)) k= (Wait U InTime) C VI, ¢ Api Acomm{c;),
i.e., {0203, begin(oy)) |= Comm.

By o = ¢,0303, we have (0, begin{c)) |= Eval C Comm.

Hence we have {5, begin(0)) k= § — (Eval C Comm).

Hence rule 2.4.5 preserves validity.

Iteration

We prove that the iteration rule 2.4.6 preserves validity.

Assume G sat ¢ is valid. We prove that *G sat (§ A @) C* (=§ A ) is also valid.
Consider any o € M(*G). There are two possibilities:

1. either there exist a k € IN, k > 1, and models 6y, 0y, ..., 03 such that 0 =
oo, foralli, 1 <i<k ;€ M(G), forall 5, 1 €7 <k~1, end{o;) < o,
g(g)(a;?.s), and if end(a}) < oo then G(~§)(0l.s) otherwise G(g)(03.5),

2. or there exist an infinite sequence of models oy, 03, ... such that o = 0,05..., for
all i > 1, 0; € M(G), end(2;) < 0o, and G(g)(o?.s).

Since G sat ¢ is valid, we obtain (o, begin(0;)} = ¢, for all 0; € M(G). Then,

1. either there exist a k € IN, k¥ > 1, and models oy, 63, ..., o such that
o = ooy, forall §, 1 < j £ k-1, {g;,begin(0;)} E ¢, end(g;) < oo.
From G(§)(o}.s), by lemma 2.6.2, (0}, begin(a;)} | §. Then (o}, begin(o;)) =
G A If end(oy) = oo, from G(g)(ob.s), we obtain (o4, begin(ar)) k&= g. By
{ok, begin(or)} | @, we obtain {04, begin(or)) = § A . If end(oy) < oo, by
G(—§)(at.s), we have (o}, begin(ox)) k= ~g A @; '

2. Or there exist an infinite sequence of models a4, o5, ... such that o = ¢y03..., for
all i 2 1, {oi, begin(o;)) | ¢, end(o;) < oo, and {0}, begin{0:)) = §. Thus, for all
i > 1, we obtain {0}, begin(0,)) = § A .

By the definition of the C* operator, we obtain {o, begin{o)) = (§ A ) C* (= A ), i.e.,
rule 2.4.6 preserves validity.
Parallel Composition

We prove that the general parallel composition rule 2.4.8 prescrves validity. Then the

simple parallel composition rule 2.4.7 preserves validily as well.
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Assume S; sat ¢;, ¢¥; = O[inv(var(S;)) A empty(dch(S,))], dch{p:;) C dch{S;), and
var{p;) C var(S;), for ¢ = 1,2, We show the validity of 5||5; sat (@1 A (0. C2)) Vv
{2 A {1 C #1)). Consider any ¢ € M(5,]|S;). Then deh{o) € deh({S;) U dch(S;), and
for ¢ € {1,2}, there exist o; € M(S5;) such that bejin(a) = begin(oy) = begin(oy),
end(o) = maz(end(oy), end{o3)). Suppose end(oy) > end(oy). Then end(o) = end(oy).
We prove (7, begin(a)) |= 1 A2 C ¢2).

» First we prove {o,begin(o}} |= ¥;. From the semantics, we have that, for any
T, begin(oy) < 7 < end(oy), [0 | var(Si)lansy{r)c = o1(7).c, for any 77,
begin(oy) < v < end(o1), [0 | var(S1)]uca(s,)(7").8 = o1(7'}.s. Since
begin(lo | var(S:)lungsy) = begin(a) = begin(or), end(lo | var(Sy)lasy) =
end(o) = end(oy), we obtain [0 | var(5))]uns,) = o1. Since oy € M(S)) and
Sy sat ¢y, we have ([o | var(Si)lien(s,), begin(o)) k= p1. Since deh{p,) S deh(Sy)
and var{yp;) C var(S;), lemma 2.6.7 and lemma 2.6.8 lead to {0, begin(e)) k= 5.

Next we prove (o, begin(a)} = @3 C 3.

- If end(02) = oo, since end(o) = end(0;) 2 end{o,), we have end(0,) = end(e) =

oo. Similarly, we can derive {0, begin(o)) b= ;. By the definition of the €
operator, we obtain (¢, begin{c)} k= ¢ C ¥y;

- fend{o2) < oo, from 5, sat p; and o, € M{S;), we obtain {o2, begin(02)} = 2.

We define a model o3 such that begin(oz) = end(s,), end{os) = end(o),
for any 7, begin{os) < 7 < end(os), 03(1).c = [6luns,(7).c, for any 7',
begin(os) < 7’ < end(03), 03(7).s = 05.s. Then we have (03, 7’} | inv{var(5,;)).
For any 7] > end(o3), we also have {(03,7{} | inv(ver(S;)). Hence we
obtain (o3, begin(o;)} | Qinv(ver(S;)). From the semantics, for any 7,
end(o2) < 7 < end(0), [0)an(s,)(T).c = @. That is, for any 7, begin(os) <
T < end(as), o3(r).c = @. Thus we have {03,7) | empty(dch(S;)). For
any 73 > end{o3), we also have {03, 71) = empty(dch(S2)). Then we obtain
(a3, begin(os)) k= O empty(dch{5:)). Thus we have

(o3, begin(o3)) = Ofinv(var(8:)) A empty(dch(S2))], ie., {03, begin(e3))
2. By the definition of the C operator, we obtain {0903, begin(oz)} k= 0203,
Next we prove [0 | var(S3)]ack(s,) = 0203. Let & = [0 | var(S:)]acn(s,)-

By definitions, we have

o2{7).5 begin{og) < 1 < end(o,)

&(7)’3 e (0 l var(Sz))(T}.s == { 63{7)'8 C?ld((fz) < T S 67’&([(0')

oy{7)e begin{a,) < 7 < end(o;)
o3(7).c end(o) < 7 < end(o)

5(7‘).6 = [o]dch(sz)(T)'c = {
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Hence 6 = 0303 Thus ([0 | var(5:)]ack(s,), begin(o2)) k= @2 € ¢, Since
deh{pa) G dch(S;) and var(p;) € var(S;), we have deh{p; C ¢3) C deh(S2)
and var{yp; C 3} € var(S;). Then lemma 2.6.7 and lemma 2.6.8 lead to
(0, begin(2)) | 91C .

Therefore we have proved (o, begin(o)) f= o1 A (92 C ).
Similarly, for end(o;) < end(o;), we can show (o, begin(o)) | w2 A (91 C 1).

Hence the general parallel composition rule 2.4.8 preserves validity.



Appendix C

Preciseness of the Proof System in
Chapter 2

To prove the preciseness theorem 2.6.2, we show that for any statement 5 we can prove
S sat  where ¢ is precise for S, namely,

1. S sat ¢ holds, i.e., (0, begin(o)} k= p, for any o € M(S);

2. If o is a well-formed model, dch(o) € deh(5), for any variable ¢ ¢ wvar(S), z is
invariant with respect to o, and {¢, begin(o)) |= ¢, then 0 € M(S); and

3. deh(yp) = dch(S) and var(p) = var(S).

By induction on the structure of §, we show that, for any statement S, S sat ¢ holds
where @ is precise for S.

For all the cases, the proof of the first requirement follows from the soundness theorem
{Theorem 2.6.1) and the proof of the third requirement is easy. Hence we only give here

the proof of the second requirement.

Skip

By the skip axiom, skip sat ierm = start. We show that term = start is precise
for statement skip. Consider a well-formed model & such that (o, begin(o)) = term =
start. Then we have end(c) = begin(s) and hence & € M(skip). Hence term = start

is precise for skip.

Assignment

Let ¢ = (z = first(z)) U (T = term = start + K, Az = e|[first(z)/z]). By the

assignment axiom, z := e sat ¢. We show that ¢ is a precise specification for z := e.

125
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Consider a well-formed model o such that deh{o) C dch{z := ¢) and any variable
y ¢ wvar{z ;= e) is invariant with respect to o. Thus we obtain dch{c) = @, i.e., for any
Ty, begin(o) € 1y < end(0), o(n).c = @. Furthermore, for any variable y # z, for any
72, begin(o) < 1, < end(0), we have o(r;).s(y) = ob.s(y). Assume (o, begin(o)) = ¢.
Then we obtain end(o} = begin(e) + K, and, for any m, begin(c) < 7 < end{o),
o(r).8(z) = ob.s(z), and o°.s(z) = V(e[first(z)/z])(o,end(c)). By definition, we
have V(e[ first(z)/z])(o, end(o)) = Vie|first(z)/z])(o, begin(o)) = V(e){o, begin(c)} =

b b

E(e)o.s. Thus, for any 7, begin(o) < 71 < end(0), a(n).s = o.5,0%s = (c*s:z

E(e)o*.s). Hence 0 € M(z := ¢). Thus ¢ is a precise specification for = := e.

Delay

- Let ¢ = lerm = start + maz(0, ¢). By the delay axiom, delay e sat . We show that ¢
is a precise specification for delay e. Consider a well-formed model ¢ such that deh{c) C
dch{delay e) and any variable y ¢ wvar(delay ) is invariant with respect to 0. Thus we
obtain deh{o) = @, i.e., for any 1, begin{o) £ 7 < end{s), o(n).c = ¢. Furthermore,
for any 7, begin(o) < 1, < end(0), we have o(13).s = ob.s. Assume (0, begin(o)} | ©.
Thus end(0) = begin(o) + maz{0, V(e){o, begin{a)})) = begin{o) + maz(0, E(e)(s°.5)).
Hence o € M(delay ¢). Therefore ¢ is a precise specification for delay e.

Output

Let ¢ = wait(c!) U (T = term— K. A(comm(c,e)} U T = term)). By the output axiom,
cde sat . We show that ¢ is precise for cle. Consider a well-formed model ¢ such
that dech(o) C dch(cle) and any variable y ¢ wvar(cle) is invariant with respect to o.
Then we obtain dch{o) C {c,c!} and, for any variable y, any 7, begin{c) < r < end(s),
a(1).5(y) = o*.s(y). Hence o(r).s = ¢*.s. Assume (0, begin(o)} k= . Then there are
two possibilities:

o either {0, begin{o)) = D weait(c!),
o or {0, begin(o)} |= wait(c!) U (T = term — K, A (comm(c,e) U T = term)).
That is,

o either for any 7 > begin(z), {0, 7} = wait(cl), i.e., 7 < end{o) and thus end(e} =
00. By definition, for any 7 > begin{c), ¢! € o(7).c. Since o is a well-formed model,
for any value 4 € VAL and any 7, begin{o} < 7 < end(o), ~(c! € o{r).cAc? €
o(r).c and ~{(c! € a(r).cA{c,9) € o(7).¢) are valid. Then we obtain o{r).c = {!}.
Together with o{r).s = ob.5, we have o € M(cle);



127

o or there exists a 7 > begin(c), 7 € TIME, such that, for any 7, begin{o) < n < 7,
(6,71) | wait(c!) and {o,7) = T = term — K, A (comm{c,e) U T = term). We
split o into two models 0y and o3 such that ¢ = 0,0, with end(o;) = 7. Thus
begin(oy) = end(o1) = 7. Then we obtain that, for any 7y, begin{oy) < 7, <
end(a1), o1(m1).c = {c!}. Together with o(r).s = ob.s, for any 7, begin(o) <
7 < end(o), we obtain oy € Waii(c!). From {o,7) = T = term ~ K., we obtain
7 = end(o) — K. and then end(oy) = 7 + K. = begin{o3} + K.. From {o,7} I
comm{c,e) U T = term, we can derive that, for any ), begin(o,) € 7 < end(o2),
{c,V(e)(oz,72)) € oq(13).c. By the well-formedness of o and the invariance of
variables, 3(73).c = {(¢, V(e)(ay, begin(ay}))} = {(¢, E(e)ob.s}}. Together with
o(r).s = ot.s, for any 7, begin(c) < 7 < end(c), we obtain 0, € Send(c, ) and
hence o € M(cle). '

Therefore ¢ is precise for cle.

Input

Let ¢ = (& = first{z)Await(c?)) U (T = term— K A{((x = first(z)Acomm(c,last(z)))
U T = term)). By the input axiom, ¢?z sat . We show that ¢ is precise for
ctz. Consider a well-formed model o such that deh(o) € deh(c?z) and any variable
y ¢ wovar{c?z) is invariant with respect to 0. Then dci(e) C {c,c?} and, for any
7, begin(e) < 7 < end(o), for any variable y # =z, o(7).5(y) = o*.s(y). Assume
{0, begin(c)} k= . There are two possibilities:

s either (o, begin{a)) k= O {z = first(z) Await(c?});

e or {0, begin(0)) |= (z = first{z) Await(c?)) U [T = term — K. A((z = first(z) A
comm(c, last(2))) U T = term)].

That is,

e either end(o) = oo, for any 7 > begin(o), o(r).s(x) = o®.s(x), and c? € a(r).c.
From the invariance of variables different from z and the well-formedness of o, we

obtain, for any 7 > begin(c), o(7).s = o*.s and o(7).c = {c?}. Hence o € M(c?z);

o or there exists a r > begin(o), 7 € TIME, such that, for any 7, begin{o) < n < 7,
(o,n) = @ = first(z) Await(c!) and {o,7) E T =term — K. A {(z = first{z) A
comm(c,last(x))) U T = term). We split o into two models oy and o, such that
o = 010, with end(o;) = r. Then begin{o;) = end(e¢;) = r. We obtain that, for
any 7, begin(ay) < 7 < end(a1), o1(m).s = at.s, o1(n).c = {c?}. From {(o,7) =
T = term ~ K,, we have r = end(c) — K, and thus end(g,) = begin{o;) + K..
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We can also derive that, for any 7, begin(oz) < 7 < end(ay), (03,72} =z =
first(z) A comm{c,last(z)). Together with:the invariance of variables different
from z, we then have o3(r;).s = ab.s. Since 0 = 010, and of.5(z) = o}.5(z),
we obtain of.s = ob.s. Thus 0, € Wait(c?). By definition, V(last(z))(o4,72) =
a5.s(z). Let ¥ = of.5(z). Hence by the well-formedness of o, we obtain, for any
72, begin{o;) < 7 < end(o3), o2(r2).c = {(¢,¥}}. Furthermore, we also have
05.5 = (03.5: 2+ ¥). Hence o3 € Receive(c,z) and then o € M(c?z).

Hence ¢ is precise for c?x.

Sequential Composition

Consider § = 5;;8,. By the induction hypothesis, we can derive S; sat ¢; and
S; sat oy, where ; and @, are precise for Sy and 5, respectively. By the commu-
nication invariance axiom, we obtain
S, sat O empiy(dch(S;) \ deh(S1)) and Sq sat D empty(dch(5:) \ dch(S,)).
By the variable invariance axiom, we obtain
51 sat Dinv{wvar(S;; S2)\ wvar(S))) and S; sat Oinv{wvaer(Sy; Sy) \ wvar(S,)).
Then, using the conjunction rule, we have
Sy sat vy A O (empty(dch{S,) \ deh(S51)) Adnv(wvar(Sy; S2) \ wvar(Sy))) and
S, sat v A O (empty(dch{S:1) \ dch(Sy)) A inv{wrvar(Sy; S2) \ wvar(S:2))).
Hence, by the sequential composition rule, S;; 5, sat ¢ with
@ = [p1 A O (empty(dch(S;) \ deh(S1)) A inv(wvar(Sy; 52)\ wear($)))] €

[z A O (empty(dch{S:) \ dch(S52)) A inv{wvar{Sy; S2) \ wvar(S;)))]
We prove that ¢ is precise for 5y; S;. .
Consider a well-formed model o such that dch(o) C deh(S5:;S;) and any variable
y ¢ wvar(Sy;Sy) is invariant with respect to o. Assume {0, begin{c)) = . There
exist 0y and o, such that ¢ = 0,0, end(0;) > begin{o),
{04, begin{o1)) E o1 AD (empty(dch(S:)\ deh(S))) Ainv{wvar(Sy; S2) \ wvar(5:}}), and
{03, begin(o2)) k= @2 A D{empty(dch(Si) \ dech(S2)) A inv(wvar(Sy; 52) \ wvar(5:)}).
From {¢y, begin(ey)) k= O empty(dch(S:) \ dch(5;)), lemma 2.6.10 leads to
[0ldchsiyuderiszy = [Olaens)). From deh(o) C deh(Sy;8z) = dch(Sy) U deh(S;) and
o = 0,0, we obtain dch(oy) C dch{5;) U dch{5;). Thus, by lemma 2.6.9, we have
01 = [01)ach(s:)uden(s:) = [01]ucn(s,). By lemma 2.6.9 again, we obtain dch{oy) C dch{S;).
From {oy,begin{a)) k= Dinv{wvar(S;;S;) \ wvar(S;)), we know that any variable
z € wvar(Sy;Sy) \ wear(S)) is invariant with respect to oy. By the assumption, any
variable y ¢ wvar(Sy; S,) is invariant with respect to 0. Thus any variable z ¢ wvar(5;)

is invariant with respect to oy. Since o is well-formed, both o and o, are also well-
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formed. Together with (o, begin{c,})} | @1 and the preciseness of ¢, for S;, we ob-
tain oy € M(S;). Similarly, o3 € M(S:). By ¢ = 0,0, and the definition of SEQ,
o € M(5:;5;). Then ¢ is precise for S;; Ss.

Guarded Command with Purely Boolean Guards

Consider G = [[[%,9: — Si]. By the induction hypothesis we can derive 5; sat ¢;,
1 = 1,...n, where ¢; is precise for 5;. By the variable invariance axiom,
S; sat Oinv(wvar(G) \ wvar(S;)). By the communication invariance axiom,
S; sat O empiy(deh(G) \ deh{S;}). Then by the conjunction rule, we have
S; sat @; A O (inv(wvar(G) \ wvar(S;)) A empty(deh(G) \ dch(S:))).
By the guarded command evaluation axiom, the guarded command with purely boolean
guards rule, and the conjunction rule, we obtain G sat ¢ with
¢ = [(inv(wvar(@)) A empty(dch(G))) U (T = start + K, A inv{woar(G)))} A
(g — EvalyA[g — (Bval C V(g A i A D (inv(wvar(G) \ woar(S:))IA
empty(dch(G) \ deh(S:)))))]
We prove that ¢ is precise for G.
Consider a well-formed model o such that dch(o) € dch(G) and any variable y ¢
wvar(G) is invariant with respect to . Assume {0, begin(o)) = ». We prove that
g € M({[~,9: — S;). By assumption, there exists a v > begin{o} such that (o, 7) =T =
start + Ky Adnv{wver(G)) and, for any 7y, begin(o) < 7 < 7, {0,711} | inv{wvar(G)) A
empty(dch{G}). Then we have r = begin(c) + K, and, for any 7{, begin{o) < 7| <
7, any y € wvar(G), o(7{).s(y) = o*s(y). Together with the invariance of vari-
ables y ¢ wvar(G), we obtain o(7!).s = o’.s. Since dch(o) C dch(G) and {o,7) k=
empty(dch{()), we obtain o(m).c = @.
Next consider the validity of §. There are two possibilities.

o If {0, begin(o)) = ~§, lemma 2.6.2 implies G(=g)(0®.s). By assumption,
{o,begin(o)) = term = start 4+ K, and hence end(c) = begin{a) + K,. Thus,
end(o) = 1 = begin(o) + K, and then o € M(delay K ).

o If {o,begin(o)} |= g, then (o, begin(o)} k= (term = start + K,) C
V(g A g; A O (anv(wvar(G) \ wvar(S;)) A empty(dch{G} \ dch(S)))).
By definition of the  operator, there exist models oy and o, such that o
0104, {0y, begin{o)} = term = start + K,, and (o3, begin{oy)) = Vi, (4
wi A O (inv{wvar(G) \ woar(S:)) A empty(dch{G) \ dch(S5;)))). Thus end{cy)
begin{oy) + K,. From begin(c) = begin{oy), we obtain o) € M{delay K,).

>

i

Since end(oy) < o0, by the definition of 0103, we have end(c1) = begin{os)

and of.s = ob.s. Furthermore, there must exist a k, 1 < k& < =, such that
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(02, begin(02)) | s A AD (inv(woar(G)\ woar($:)) Aemply(deh(G)\deh($4))).
From (0, begin(os)) = gi, by lemma 2.6.2, G(gi)(0%.5). From (o3, begin(as)) =
Oinv(wvar(G) \ wvar(S;)), any variable z € wvar(G) \ wvar(Sy) is invariant
with respect to ¢,. By assumption, any variable y ¢ wvaer(G) is invariant with
respect to ¢. Thus, any variable z ¢ wuvar(S:) is invariant with respect to
o3. From {03, begin{o,)) k= Dempiy(dch(G) \ dch(Sk)), lemma 2.6.10 leads to
[O’g]m(q)udch(s*) = [Uz]dch(s,,)- Since deh(GYUdch(Sy) = dch(G), we obtain [02]dch(G)
= [02)acnis,y- From o = o407 and deh(a) C dch(G), we have dch{oy) € dch(G). By
lemma 2.6.9, it implies o7 = [02]gcn(e) and then o3 = [03]um¢s,). By lemma 2.6.9
again, we obtain deh(o;) C dch(Sy). Since o is a well-formed model, o; and o, are
also well-formed. Together with (o9, begin{(eo;)} & ¢ and the preciseness of ¢y for
Sk, 02 € M(S;). By 0 = 010, and 0y € M(delay K,), we obtain G(g)(o®.s). By
the definition of SEQ, we have ¢ € M(delay K,; Sy).

Both cases lead to ¢ € M([[|’=1¢; — Si]). Hence ¢ is precise for [[|7, b — 5]

Guarded Command with 10-Guards

Consider G = [[|1L,9:;¢:72: — S; || go;delay e — So]. By the induction hypothesis, we
have ¢;7z;; S; sat ¢; and S; sat ¢, where ; is precise for ¢;72;;5;, 1= 1,2,...,n, and
o 18 precise for Sp. By the variable invariance axiom, the communication invariance
axiom, and the conjunction rule, we obtain
a7z Si sat ; A O{inv(wvar(G) \ woar(c;?xi; Si)) A empty(deh(G) \ deh(e; 72 5))).
Similarly, we have S, sat o A O (inv{wvar(G) \ wvar{Sp)) A empty(dch(G) \ dch(Ss))).
By the guarded command evaluation axiom, the guarded command with 10-guards rule,
and the conjunction rule, we obtain G sat v with
P = [(inv(weer(Q)) A empty(deh(GY)) U (T = start + K, A inv(woar(G)))] A
(~§ — Eval) A[g§ — (Eval C (NComm V NTimeout))]
where
NComm = (Wait U InTime) C ¢, NTimeOut = (Wait U EndTime) C i,
with
1 = Vil A wi A commie) A O (inv{wvar(G) \ woar(c;7z; i) A
empty{dch(G) \ dch(c;?x;; S)))]
2 = o A O (inv(wvar{G) \ wvar{Se)) A emply(dch(G) \ dch(Se)))

We prove that ¢ is precise for G.
Consider a well-formed model o such that dch{o) C dch(G) and any variable y ¢
wvar(G) is invariant with respect to 0. Assume (o, begin(o)) k= 1. We prove o € M{G).

Similar to the preciseness proof for G = [, — 5], we have that, for any 7,
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begin{o) < 7 < begin{a) + K,, o{n).c = @, and for any 7{, begin(o) < 1| <
begin(o) + K,, o(1]).s = ob.s.
Next consider the validity of §. There are two possibilities.

o If {0, begin(c)) |= —g, lemma 2.6.2 leads to G{~§)(c®.s). By assumption, we have
(o, begin(o)) |= term = start + K, and then end(o) = begin(o) + K,;. Then we
obtain o € M{delay K;). Hence o € M(G).

o If {0, begin{o)) | §, then we have (o, begin(o)) = (term = start + K} C
[((Wait U InTime) C 4,) V (Wait U EndTime) C ).

For this case, consider the further three possibilities.

1. If (0,begin(o)) k= (term = start + K,) C ((Wait U InTime)C 9y), then there
exist models oy and oy such that o = 0109, {0}, begin(oy)) k= term = start + K,
and (o3, begin(o)) E (Wait Y InTime) C . Then we have end(s) =
begin(o1) + K. By begin(o) = begin(o;), we obtain oy € M(delay K,).
Furthermore, there exist models o4; and o33 such that oy = 03,032,

(091, begin(o2)) |E Weait U InTime, and (049, begin{oy,)) = ¥;. We prove that
Oy € FinWeait(G) U AnyWait(G) and o4 € Comm{(G).

By definition, there exists a r; > begin{oy;) such that (o1, 72} = inv(wvar(G)) A
(T = term) A {go = T < start + maz{0,¢)} and for any 75, begin{oq;) < 75 < 14,
{021, 73) B inv(wear{G)) A empty{dch(G)\ {7, .., en?}) A (g0 — T < start +
maz(0,e}) A AL, (g « wait(¢?)). Then we obtain end(oy;) = 7, and, for any
y € wvar(G), for any 7/, begin(on) < 17 < 7, oulry).s(y) = ob.s(y). To-
gether with the invariance of variables y ¢ wvar(G), we obtain oy1(75).s = o, .s.
Since o is a well-formed model, so are oy and 0,;. From above, we obtain
oa(rh).c = {a? | G(g:)(0t,.5),1 € i < n}. By assumption, (o, begin(o)} k= §g.
By lemma 2.6.2, G(g)(o°.s) and hence G(7)(0b;.5).

If {01, begin(on)) = go, lemma 2.6.2 leads to G(go)(03,.5). From (03,72} k= go —
T < start + maz(0, ), we obtain 7, < begin{oa; ) + max((],ﬁ( }o21(72).5)). Then
we have end(021) < begin(oy;)+ maz(0, £(e)(oh;.5)) and then oy € FinWait(G).
If (091, begin(oz)) E —go, we obtain oy € AnyWait{G).

Next consider o4;. Since {oq2, begin{os2)) k= ¢y, there exists a k, 1 < k < n, such
that {o2;, begin(o)} | gi A ox A comm{ci) A O (inv{wver(G) \ wvar(eiTeg; S)) A
empty(deh{G) \ dch(cx?zx; Sx))). From lemma 2.6.2, we have G(gi)(0%,.5). From
{022, begin(oyg)) E O (inv(wvar{G\wvar{c,Tae; Si))), any variable z € wvar(G)\
wvar{e,7zy; Sk} is invariant with respect to 09;. By assumption, any variable y ¢
woar(G) is invariant with respect to o. Thus, any variable z ¢ wvar{c,7zs; S} is

invariant with respect to gg;. By lemma 2.6.10, [02:Jucn(a)udcn(cetznise) = [022)den(cetzaisi)
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and then [03;]4ch(c) = [022)dch(cr20i54)- Using deh(a) € deh(G), we obtain
dch(02;) C dch(o) C dch(G). By lemma 2.6.9, 62 = [023]ucn(c)- Thus,
022 = [032)dch(cy72y;8,)- By lemma 2.6.9 again, we have dch(o3s) C deh(ci?zs; Sk).
Together with the well-formedness of 043, {022, begin{oy)) E @i, and the precise-
ness of ¢, for cpTxy; Sk, we obtain oy € M T2y Si). Since M(er?zy; Si) =
SEQ(M(ci?zi), M(Sk)) and {022, begin(o22)) B comm(c;), we have
042 € SEQ{Receive(cy, zx), M(S;)). Thus we obtain a3, € Comm(G).
By o2 = 21073, we obtain
oy € SEQ(FinWait(G), Comm(G)) U SEQ{AnyW ait(G), Comm(G)).
By 6 = 0,03 and oy € M{delay K,), we have
o € SEQ(M(delay K,), FinWait(G), Comm(G}) U

SEQ(M(delay K,), AnyWait{G), Comm(G)) and hence o € M(G).

. K {0, begin(0)) |z (term = start + K,;) C 0 W ait, there exist oy and o3 such that

o = 0103, {0y, begin(o)) = term = start + K, and (o3, begin(oy)) k= O Wait.
Then oy € M{delay K,). From (oy, begin(o,)) = 0 Wait, we obtain that, for
any 1, 2 begin{oy), {02, 72) |= Wait. Hence we have (03,7} b= go — T <
start+mazx{0,e). If (o2, 72} b= go, we obtain 7, < begin(a;)+maz(0, E{e)(o(r2).9)).
But it can not be true. Hence {03,7;) E =¢o. By lemma 2.6.2, G(~go){02(72).5)
and then G{~go){o5.5). Next we prove end(o3) = co. Suppose end(oy) < co. By
definition, for any 73 > end(o;), we have {(0,,73) k= empiy(deh(G)). By assump-
tion, {0, begin(c)) k= §. Since G(—go)(0°.3), there exists a k, 1 < k < n, such that
(o, begin(o)} = gr. Then, for any m 2 begin(oz), {02, 72) |= wait{er) and hence
{02, 72) |E ~empty{dch(G)). This contradiction leads to end{g;) = co. We also
have 03(7;).s = 0b.5 and o3(13).c = {c? | G(g:)(ob.5),1 < i < n}. Hence

oy € AnyWait(G).

We can easily find a model which belongs to Comm(G). Let 03 be a model such
that o3 € Comm((G). By the definition of SEQ, we have

0303 € SEQ(AnyW ait(G), Comm(G)). Since end(o3) = oo, we have 0,03 = 03,
Thus ’

0y € SEQ(AnyW ait(G), Comm(G)).

Together with ¢ = o103 and o7 € M(delay K,), we obtain

o € SEQ(M(delay K,), AnyW ait(G), Comm(G)) and hence o € M(G).

If {o,begin(c)) = (term = start + K,) C {((Wait U EndTime) C 1), there
exist oy and o3 such that o = o010, {01, begin(o1)) B term = start + K, and
{03, begin(o2)) E (Wait U EndTime) C 4. Thus oy € M{delay K,).
Furthermore, there exist models oy and 04, such that oy = 04,044,

{021, begin(oy)) | Wait U EndTime, and (043, begin{o2,)) k= 12. We prove that
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g € TimeOut(G) and o9, € M(S).

By definition, there exists a 7y > begin{oy) such that (g2, 72) | EndTime and,
for any 7}, begin{on) < 75 < 7, {on, 7} E Wail. Then we have (03,72) E
inv(wvar(GY) A go AT = term = start + maz(0,e). Then end(oy) = r =
begin(oy )+ maz(0, £(e)(on(72).5)) and, by lemma 2.6.2, G(go)(02: (72).state}). We
also have that, for any 74, begin(oy1) < 7 < 73, 021(75).s = 05,5 and, for any 75,
begin{on) < b < 13, on{75).c = {&? | G(g:){od,.5),1 < i < n}. Thus end(oy) =
begin{oy )+ maz(0, E(e)(cl,.5)) and G(go)(ot;.s). Hence oy € TimeOQut(G).
Next consider o4;. Since {o92, begin(ay;)) | 12, any variable ¢ € wvaer{G) \
wvar(S) is invariant with respect to o, By assumption, any variable y ¢ wvaer(G)
is invariant with respect to o. Hence, any variable z ¢ wvar(S) is invariant
with respect to 09;. By lemma 2.6.10, [&2g]d¢;‘(a)udch(s) = [02]dh(s) and then
[o22lachiey = [022)acn(sy. Using deh(o) C deh(G), we have dch(o,;) C deh(o) C
dch(G). By lemma 2.6.9, 022 = [0m]icn(s) and hence 022 = [o22)un(s). By
lemma 2.6.9 again, dch{gq;) C deh(S). Together with the well-formedness of o4,
{022, begin{oa2)) k= o, and the preciseness of @y for S, we obtain a4 € M(S).
By 04 = 091022, we have 0y € SEQ(TimeOuwt(G), M(5)).

By ¢ = 0y0;, we obtain ¢ € SEQ(M(delay K,), T'imeOut(G), M(S5)) and hence
o € M(Q).

Therefore all the cases lead to ¢ € M((G). Hence, 9 is precise for G = || 00 72 5 —
S || go;delay e — Sol.

Iteration

Consider *G. By the induction hypothesis, we can derive G sat ¢ where ¢ is precise for
. By the iteration rule, #(G sat ¢ with ¥ = (§ A ¢) C* (=g A ). We prove that 9 is

precise for »G.

Consider a well-formed model ¢ such that deh(o) C deh{*(G) and any variable y ¢
wvar{*G) is invariant with respect to ¢. Thus, deh{o) € dch(G) and any variable

y ¢ woar{() is invariant with respect to o. Assume (o, begin(v)} k= . By definition of

the C* operator, there are two possibilities:

1. either there exists a k > 1 and models 0y, 0,,..., 04 such that 0 = oy04. .. 0, for

any j, 1 <7 <k~ 1, end(o;) < o0, {0;,begin{o;}} k= § A ¢, and if end(o) < o0,
then {0y, begin(a,)) = =g A @, otherwise {ay, begin{ay)) = § A v,

2. or there exist infinite models 0y,03,... such that ¢ = oy09..., for any j > 1,

end(o;) < o0, {g;, begin(o;)) = G A p.
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That is,

1. Either there exists a k > 1 and models oy, 04, ...,04 such that o = 0,03 .. .0y, for
any j, 1< j <k—1, end(o;) < 00, G(7)(c?.5) (by lemma 2.6.2). Since o is well-
formed, so are 04,09,...,0% By dch(o) € dch(G), we obtain dch(o;) C deh(G).
Together with the invariance of variables y ¢ wvar(G) and the preciseness of ¢
for G, we have 0; € M{G). Similarly, we have o, € M(G). If end(o}) < oo, by
lemma 2.6.2, we obtain G(—~g){(0%.s), otherwise G(g)(c%.5);

2. Or there exist infinite models o1,03,... such that ¢ = 0y0,..., for any j > 1,
end(0;) < 00, G(§)(at.s), and 0; € M(G).

Both cases lead to 0 € M(xG). Hence, {§ A @) C* (—§ A ) is precise for *G.

Parallel Composition

Consider S = 5,}|S,- By the induction hypothesis, we can derive S, sat ¢; and S, sat @,
with ¢, and @, precise for S and 53, respectively. From preciseness, deh{p;) C dch(S:)
and var(yp;) C var(S;), for ¢ = 1,2. Then we can apply the general parallel composition
rule and obtain S;]|.S; sat ¢ with ¥ = (o1 A (@2C ¥2)) V (2 A (01 € 1)) where

¥ = O finv(var(S;)) A empty(dch(S;))], for i = 1,2. We prove that i is precise for
51} 5.

Let o be a well-formed model such that dch(o} € dch(S51]|S,) and any variable y ¢
wvar(5;]|5;) is invariant with respect to 0. Assume (o, begin{o)) k= . By the well-
formedness of o, for any ¢ € CHAN, any 7, begin{o) < 7 < end{g), ~{(c! € o(r).cAc? €
o(r).c) holds. Suppose {a, begin(a)}} k= @1 A (92 C 1,). Define oy as

lo { var{S5:))acs,)- From {0, begin(o)} |= ¢1 and var(p;) C var(S;), lemma 2.6.8 leads
to (o | var{5:)}, begin(o)) = @1. By deh(p1) € deh(S;) and lemma 2.6.7, we obtain
{lo} var(S1)]dch(s,),begin(o)) = vy, 1e., {0y, begin(o1)) = 1. Since o is well-formed,
oy is also well-formed. By the definition of o and oy, any variable y ¢ wvar($) is
invariant with respect to ;. Together with the preciseness of ¢, for S; and deh{e) C
dch(S;), we obtain oy € M{S5;)}.

Next consider {o, begin{0)) k= @2 C1p,. There exist models o3 and o4 such that 0 = g304,
(o3, begin(o3)) |= @2, and (04, begin(o4)) |= 2. Define o3 as [o3 | var(S2)|ucnisy)-
Similarly, by lemma 2.6.8 and lemma 2.6.7, we obtain oz € M(S,).

Notice that end(o) = end(o104) > end(o3) = end(02) and end(c)} = end(o1), hence
end(o) = maz{end(0,), end(03)). It is clear that begin{c) = begin(o,) = begin(o,). By

definitions, we have that, for i = 1,2,



ai{7)e begin(o) = 7 < end(o;)

[a]dch(b-.)('r),c = {

i end(a;) = 7 < end(a)

a(t)s begin{e) < o1 2 ond{ay)
.8 end(a;) < 1 < end(o)

(o | war(S))(r)s = {
t

By the assumption, any variable 3 & woar(5]]52) is invariant w.et. to o, Thus, any

variable = ¢ war(5||57) is invariant wort. to o, e, for any 7, begin(e) < 7 £ end(a),

a(r).s(z) = ot.s5(z). Furthermore, for any © & var(5||5:), first assume 2z ¢ var(5,).

Then by the definition of o1, we have at.s{x) = ot.5(x). There are two possibilities:

o if & £ var{Sy), then by the definition of o, we have o®.s(z) = ob.s(z),
s if 2 ¢ var(S.), we also have ob.s5(1) = #d.5(2).

This leads to o?.5{(z) = ot.s(2), for i = 1,2.

Second, when z ¢ var(8;), we again have o®.s(x) = a®.s{x).

Hence, for any variable @ ¢ var(5|]|5;), for any 1, begin{c) = 7 £ end(e), we obtain
a(r).s(z) = ot s{x), for i = 1,2

Thus 6 € M(5||5:)-

Similarly, if {o, begin(a)} = we A () O tf,), we can alse prove that & € M{5||5,)-

Therefore ¥ is indeed precise for 5|5,
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Appendix D
Proofs of Lemmas in Chapter 3

Lemma 3.5.1 and lemma 3.5.2 can be proved similarly as in Appendix A for lemma
2.6.1 and lemma 2.6.2, respectively. Notice that adding a buffer b does not influence the

proofs.

Proof of Lemma 3.5.3

For any expression gexp of type QU E, any cset C CHAN, and any buffers 5, and by, if
ich(gexp) C cset and for any ¢ € cset, by(c) = by(c), we prove that, for any model o and
any 7 2 begin(o), Q{gexp)(o, by, ) = Q(gezp)(e, by, 7) by induction on the structure of
gezp.

e gerp = w. Z(w){o, b, 7) =w = w)(o,by, 7).

o gexp = init(c). Q{init{c)){o, b, 7) = bi(c) = byle} = Qinit{c))(o, by, 7).

Proof of Lemma 3.5.4

~ For any expression gexp of type QUE, any model o, any buffer b, any cset C CHAN,
and any T > begin(c), we prove Q(qezp)(a,b, 1) = Q(gexp)(|o)X.,, b,7) by induction on

csel’

the structure of gexp.
o gexp = w. Qw)(0,b,7) = w = Qw)([o],, b,7).
o gezp = init(c). Q(init(c))(a,b,7) = b(c) = Q(init(c))([o]R,;, b, 7).

Proof of Lemma 3.5.5

For any expression gexp of type QU E, any model o, any bufler b, any vset C VAR, and
any T > begin{c), we prove Q(qexp){a,b, ) = Q(gexp)(c | vset, b, 1) by induction on

137
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the structure of gexp.
e gexp=w. Q{w)(o,b,7) = w = Q(w){o | vset, b, 7).

® gexp = init{c). Q(init{c))(o,b, 7} = b(c) = Q(init(c))(o | vset, b, 7).

Proof of Lemma 3.5.6

For any expression vexrp of type VAL, any cset C CHAN, and any buffers b; and b;,
if ich(vexp) C cset and for any ¢ € eset, hi(c) = by(c), we prove, by induction on
the structure of vezp, that for any model ¢ and any = > begin{c), V{vezp)(o,b,7) =
V(vezp)(o, by, 7).

o vexp=19. V(I)o,b,7) =19 = V(I o, by, 7).

e vexp = z. By definition, if r < end(c), then V(z)(0, by, 7) = o(7).5(z), i.e.,
V{z)(o, b, 7) = V(z){e, by, 7). If 7 > end(e), then V(z){e, b, 1) = 0°.8(z), i.e.,
V(z)}(o, by, 7) = V(z)(a, by, 7). Hence V(z)(o, by, 7) = V(z)(0, b, 7).

e vexp = first(z). V(first(z))(o, by, 1) = ot.5(z) = V(firsi(z))(o, by, 7).

o vexp = first{gezp). ich(vexp) = ich(qezp) and thus ich(gexp) C cset. By lemma
3.5.3, Q{gezp)(o, b;,’r) = Qqexp)(o, bz, 7). Then V(first{gexp)) o, by,7) =
First{Q(qexp)(o, by, 7)) = First{Q(gexp)(0a, by, 7)) = V(first(gexp))(o, b2, 7).

* vexp = maw(vexpl,ve:cpg). By the induction hypothesis, we have, for 7 = 1,2,
V(verp;)(o,by,7) = V(veap;}{a, by, 7). Then
V(mez(vezp;, vexpy))(o, by, 7) = max(V{vezp, ){a, by, 7), V(vezp; ) (o, by, 7))
= maz{V{vexp:)(a, by, 1), V{vexpy)(0, by, 7)) = V(maz{vezpy, vexps)){o, by, 7).

» vexp = vexrp, O vexps, where & € {+,—, x}. By the induction hypothesis,
we have, for i = 1,2, V(vezp;){(o,b;,7) = V(verp;)(o, b2, 7). Thus
V{vezp: © vexpy)(o, by, 7) = V{vezp Yo, b1, 7) © V(verp: Yo, by, 7)
= V(vezp )(0,bs,7) © V(verp;){(o, by, 7) = V{vexpy © vexpy){o, by, 7).

Proof of Lemma 3.5.7

For any expression vezp of type VAL, any model o, any buffer b, any cset C CHAN,
and any 7 > begin{c), we prove V(vezp)(o,b, ) = V(vexp}{[o]t.,, b, 7).

csety

The proof is similar to the proof for lemma 2.6.3 except the following case:
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e vexp = first(qezp). By lemma 3.5.4, Q(gezp)(a,b,7) = Q(qezp)([o]2.., b, 7).
Then V(first(gexp))(o, b, 7) = First(Q(qezp)(o,b, 7)) = First(Q(gezp)([o]%.., b,7)) =
V(first(gezp))([o]R,;, b, 7).

Proof of Lemma 3.5.8

For any expression vexp of type VAL, any model o, any buffer b, any vset C VAR, and
any 7 > begin(o), if var(veap) C vset, we prove

V(vexp)(o, b, 7) = V(vezp)(o | vset,b, 7).

This proof is similar to the proof for lemma 2.6.4 except the following case:

o vexp = first(gexzp). By lemma 3.5.5, Q(qezp)(o,b,7) = Q(qezp)(o | vset,b, 7).
Then V(first(gexp))(o,b,7) = First(Q(qezp)(o,b,7)) =
First(Q(gexp)(o | vset, b, 7)) = V(first(qgexp))(o | vset,b, 7).

Proof of Lemma 3.5.9

For any expression texp of type TIME, any cset C CHAN, and any buffers b, and
by, if ich(vezp) C cset and for any ¢ € cset, b1(c) = by(c), we prove, by induction on
the structure of texp, that for any model o and any 7 > begin(o), T (texp)(o, b, 7) =
T (texp)(o, by, 7).

o tezp= 7. T(7)(o,b1,7) =7 =T (7)(0,bs, 7).

o texp=T. T(T)(o,by,7) =71 =T(T)o, by, 7).

o texp = start. T(start)(o, by, 7) = begin(o) = T (start)(o, by, 7).
o tezp = term. T(term)(o,b;,7) = end(o) = T (term){o, by, 7).

e texp = vexp. By lemma 3.5.6, we have V(vexp)(o, b1, 7) = V(vezp)(o, by, 7).
Then T (vexp){(o, by, 7) = V(vexp)(o, by, 7) = V(vexp)(a,by, ) = T (vezp)(o, by, 7).

o texp = texp; O texp,, where ® € {+,—, x}. By the induction hypothesis,
we have, for i = 1,2, T (tezp;)(0,b,,7) = T (texp;)(o, b2, 7). Then, by definition,
T (texp; O texpz)(o, by, 7) = T (texp O texpy)(o, by, 7).

Lemma 3.5.10 and lemma 3.5.11 can be proved siinilarly as in Appendix A for lemma

2.6.5 and lemma 2.6.6, respectively.
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Proof of Lemma 3.5.12

For any specification ¢, any cset C CHAN, and any buffers by, by, if ich{p) C cset and
for any ¢ € eset, bi(c) = by(c), we prove, by induction on the structure of ¢, that for
any model o and any 7 > begin(c), {0,b1,7) E ¢ iff {0,by,7) | .

s = gexp; = qexp;. {0, by, 7) = qexpy = qexpy iff Q(gexp)(o,by,7) =
Qlgezps)(o, by, 7) iff, by lemma 3.5.3, Q(qexp: )0, by, 7) = Q{gexp, )0, by, 7} iff
(0, b2, 7) |= gexpr = gexpy.

e @ = texp = texpy. (0,0, 7) k= texpy = texpy il T{tezpi}o,b1,7) =
T (texpy)(o, by, 7) iff, by lemma 3.5.9, T (texp:i Yo, by, 7) = T (tezps)(0, by, 7) iff
{o,by, 7} k= tezp; = texp,.

o = lexp < texp,. Similar to the proof for ¢ = texp; = texp,.

e o = send(c,vexp). ich(p) = ich{vezp) and thus ich(vexp) C cset. Hence
{0,b1,7) |E send(c,vezp) iff T < end(o) and (¢, V{vexp) (o, by, 7)) € o(7).5 iff, by
lemmma 3.5.6, 7 < end(o) and (¢, V(vezp)(o, by, 7)) € o{7}).5 iff
{0,bs, 7} b= send{c, vexp).

¢ © = send(c). {0,b,7) | send(c) iff 7 < end(c) and there exists a § € VAL such
that (¢, ?) € o(7).5 T {0,by, 7) |= send(c).

o @ = receive(c, vexp). ich(yp) = {¢} Uich(vezp) and thus ich(vezp) C cset. Hence
(o,b),7) b= receive(c,vezp) iff 7 < end(c) and (¢, V(vezp)(o, b, 7)) € o{r).R iff,
by lemma 3.5.6, 7 < end{e) and (¢, V(vezp)(o,b;, 7)) € o(r).Riff
{0, by, 7) = receive(c, vezp).

o ¢ = receive(c). {o,b;, 1) = receive{c) iff 7 < end(s) and there exists a ¥ € VAL
such that {c,¥) € o(7).Riff (0,by,7) | receive(c).

o 0= Vi, Fori=1,2 ich(p:) € (ich{p1) Uich{ps)) = ich{p) C cset. Hence
{o,0:,7) = w1 Vo Ml {0,b1,7) = ¢ or {o,b1,7) E ¢ iff, by the induction
hypothesis, {0,b;, 7} E ¢1 or (6,5, 7) = 02 iff {0,b,,7) = 91 V 0.

® @ = ¢y and ¢ = @1 U @y. Similar to the proof for ¢ = 1 V @2,
o p = C . Fori=1,2 ich(p;) Cich(p) C eset. Hence (o, by, 7} E 1 C g iff

— either {0,4,7) |E ¢: and end(s) = oo i, by the induction hypothesis,
{0,by,7) | 1 and end(o) = o0 iff (0,62, 7) = o1 C 2,
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— or there exist models oy and o, such that 0 = 0409, T < end(o;) < o0,
{o1,b1,7) | 1, and {09, Buf(b,01), begin{a,)) = @2 iff, since for any ¢ €
eset, by(c) = by(c) and thus Buf(by, 01)(c) = Buf(by, o1)(c), by the induction
hypothesis, there exist models o, and ¢, such that o = 040y, {01,8,7) = @1,
and (o4, Buf(bs,01), begin(oz}) b= @2 il (0,02, 7) =1 C s

o @ = ; C* 3. Similar to the proof for p = p; C 2.

Proof of Lemma 3.5.13

For any cset C CHAN and any specification @, if ich(p) C csef, we prove, by induction
on the structure of ¢, that for any model o, any buffer b, and any 7 > begin{o),

{0,6,7) = @ iff ({0150, 0, 7) = -

* ¢ = gezpy = gexpy. (0,b,7) |= gezp = gexp, ifl Q(gexpr)(0,b,7) = Qlgezp;) (0, b, 7)
iff, by lemma 3.5.4, Q(gezp;)([o]R,,, b, 7) = Qqeap,)([7]R,,, b, 7} iff
([a]fseh b, T) = gexpy = gexps.

o ¢ =texp; = texp,. (0,b,7) E teap, = texp, ff T {texp; )(o,b,7) = T(texp;)(0,b,7)
iff, by lemma 3.5.10, T (texp;)([0]R,;, b, 7) = T (texpa){[o]R.,, b, ) iff
{[o)et b, 7) = tezpy = tezp,.

o p = texp; < texp;. Similar to the proof for ¢ = teap, = texp,.

e © = send(c,vezp). (0,b,7) k= send(c,veap) iff T < end(o} and
(¢, V(vexp)(a,b, 7)) € o(r).S iff, by definition and lemma 3.5.7, 7 < end([0]%,,)
and (C, V(vexp)([ ]cset?& T)) € { ]cset( )’S Xﬁ' ({ ]get’b T) l: aend(c,vexp).

s ¢ = send(c). {o,b,7) = send(¢) iff 7 < end(s) and there exists a ¥ € VAL such
that (¢,9) € o(7).S iff, by definition, 7 < end([0]E,,) and there exists 2 ¥ € VAL
such that {c,9) € [0]%,,(7).5 iff {{¢]R,,,b,7) E send(c).

csel?

o o = receive(c, veap). ich(p) = {c} Uich(vexp) and thus ¢ € cset. Hence
{o,b, 1} |= receive{c,vexp) iff 7 < end(s) and {c, V(vexp)(o,b,1)} € o(7).R iff,
by definition and lemma 3.5.7, 7 < end([o]%,,) and (¢, V(vexp)([o]R,,,b,7)) €
[1R (7). Riff ([o]R,,, b, 7) |= receive(c, vexp).

cset?

s © = receive(c). ich(p) = {c} and thus ¢ € csef. Hence {o,b,7) |= receive(c) iff
7 < end(g) and there exists a 9 € VAL such that {¢,¥) € o(7). R if, by definition,
7 < end{[o]R,,) and there exists a 9 € VAL such that (¢,9) € [o}®,(7).R iff

([o]R.,, b, 7) |= receive(c).
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® 0= Vo For i = 1,2, ich(yp;) C (2ch(i1) U ich{ps)) = ich(yp) T cset. Hence
(0.0, 7) E o1V iff {0,b,7) |= 1 o1 {0, b, 1) = @ ifl, by the induction hypothesis,
([a]cut!b T) '= 1 Oor ([ ]getv b T) |= P2 iff ([ ]cset’ ) }= 1 Vs

® =~ and ¢ = ) U ;. Similar to the proof for ¢ = ¢y V ¢q.
e p=¢; C ¢y Fori=1,2, ichiy;) Cich{p) C cset. Hence {0,b,7) E o1 C o iff

— either {0,b,7) b= 1 and end{os) = oo iff, by the induction hypothesis,
{{ ]caet?b T) 1:: (%! &Ild end([”]cset = oo iff <[0]csetvb T> '= (51 c P2,

— or there exist models oy and o, such that ¢ = o104, 7 < erd{e1) < o0,
{01,b,7) |E 1, and (o3, Buf(b,01), begin(oz)) k= ; iff, by the induction hy-
pothesis, there exist models [04]% , and [o3]R,, such that [0]® , = [1]%,.[02)E..

cset cset

([ ]cxet’b T) l:: P15 and <[ ]cset‘tBaf(é (}”1) 5693’1(0'2)) # P2 lff, since
ich(p;) C cset and for any ¢ € cset, Buf(b,01)(c) = Buf(b,[o1]R.;)(c), by
lemma 3.5.12, there exist models {01]%,, and [04)2,, such that

{clget = Eal]get[a'u’]c.seu ([Ullcaem b T) |= P15 and

([ ]cset? Buf(b [allcsct) begzn([aﬂ]caet» F: P2 iff ([0]£§6i’ b?T> }:: #1 ¢ P2-

& @ = @ C* . Similar to the proof for o = ¢y € 3.

Proof of Lemma 3.5.14

For any vset C VAR and any specification y, if var(p) € vset, we prove, by induction
on ¢, that for any model o, any buffer b, and any v > begin{o}, (0,b,7) b= ¢ iff
{o | vset,b,7) = .

o = gexpy = qexpy. (0,6, 7) | qexpy = qexps iff Q{gexpy){o, b, 7) = Q(qezpr)(0, b, 7)
iff, by lemma 3.5.5, Q(gexp, }{o | vset, b, 7) = Qlgexp;)(o | vset, b, 7) iff
{o | vset,b,7) = gezpy = qexp,.

o @ = texp = texp;. Fori = 1,2, var(texp;) C var(p) C vset. Hence
{0,b,7) }= texp = texpy il T(lexpi)(o,b,7) = T(texp,)(o,b, 7} iff, by lemma
3.5.11,
T (texp; )(o | vset, b, 7) = T (texpy){o | vset, b, 7)iff
{0 | vset, b,7) k= texp; = texp,.

® p = texp, < texp;. Similar to the proof for ¢ = leap;, = teap,.

¢ © = send(c,verp). var(y) = var{vezrp) and thus var(verp) C vset. Hence
{6,b,7) |= send(c,vezp) ilf 7 < end(o) and (¢, V(vexp)(o, b, 7)) € o(r).5 iff,
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by definition and lemma 3.5.8, r < end(c | vset) and
(e, V(vexp)(o | vset, b, 1)) € (¢ | vset)(7).S iff (& | vset,b, 7} = send(c,vezp).

e ¢ = send(c). {o,b, 7) k= send(c) iff 7 < end(c) and there exists a ¥ € VAL

such that (c,9) € o(r).S iff, by definition, 7 < end(c | vset) and there exists a
¥ € VAL such that (¢, d) € (o | vset)(r).5iff {& | vset, b, 7) = send(c).

s @ = receive(c, vezp). var{y) = ver{vezp) and thus var(vexp) C vsef. Hence
{o,b,7) |= receive(c,vexp) il T < end(s) and (¢, V(vezp)(o,b,7)) € o{r).R iff,
by definition and lemma 3.5.7, 7 € end(o | vset) and
(e, V(vezp)(o | vset, b, 7)) € (0 | vset){(7).Riff {& | vset, b, 7} |= receive(c, vexp).

s ¢ = receive(c). {0,b, 1) |= receive(c) iff T < end{c) and there exists a § € VAL
such that (¢, 9) € o(r).R iff, by definition, 7 < end(o | vset) and there exists a
9 € VAL such that (¢, 9} € (0 | vset)(7).R if {0 | vset, b, 1) k= receive(c).

& 0= Vp Fori=1,2, var(y;) C (var(p:) U var(e:)) = var(p) C vset. Hence
{0,b,7) = 1V iff {0,b,7) = @y or {0, b, 7} = 4 iff, by the induction hypothesis,
{o ] vset, b1} k= or {0 | vset, b, 7) |= @2 iff {0 | vsel,b, 7} k=1 V .

o =~ and ¢ = @ U pqy. Similar to the proof for ¢ = ¢y V @q.
e v = C wa Fori= 1,2, var(p) € var{p) C vset. Hence (0,5, 7} E ¢y C o, iff

— either (0,5, 7) |= ¢1 and end(s} = oo iff, by the induction hypothesis,
{0 | vset,b,T) k= ¢y and end(o | vset) = oo iff {o | vsel,b,7) =1 C 3,

— or there exist models oy and oy such that 0 = oy09, 7 < end{oy) < o0,
{01,b,7) k= ¢1, and {02, Buf{b,01), begin(a2)} |= w2 iff, by the induction
hypothesis, there exist models o) | vset and o, | vset such that
o | vset = {0y | vset){oy | vset), {0y | vsel, b, 1) = ¢y, and
{o: | vset, Buf(b, o1), beqin{os)} = g iff, by definition,

Buf(b,oy) = Buf(b,o; | vset}, there exist models oy | vset and oy | vset
such that o | vset = (ay | vset)(oy | vset), (o1 | vset, b, 7} k= ¢4, and

(o | vset, Buf(b,01 | vset), begin{oy | vset)) = @, iff

(o {vset,b,1) =1 C 2.

* = @ C oy Similar to the proof for ¢ = ¢y C ¥,.

Lemma 3.5.15, lemma 3.5.16, lemma 3.5.17, and lemma 3.5.18 can be proved similarly
as in Appendix A for lemma 2.6.9, lemma 2.6.10, lemma 2.6.11, and lemma 2.6.12,

respectively.
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Appendix E

Soundness of the Proof System in
Chapter 3

To prove the soundness of a proof system, we must show that every axiom in the proof
system is indeed valid and every inference rule preserves validity.

To prove that S sat ¢ for some S and ¢, we have to show that, for any buffer b and
any model o € M(S)(b), {0, b, begin(o)) = ¢.

Here we only give the proofs for receiving invariance, send, receive, sequential com-
postion, and parallel composition. The others can be proved sound silimarly as in
Appendix B.

Receiving Invariance

Consider any process S and any channel ¢ € cset with cset € CHAN and csetNich{S) =
¢. We prove that the receiving invariance axiom 3.4.2 is valid.

For any buffer b, any o € M{S){(b), by the theorem 3.2.1, we obatin ich(o) C ich(S5)
and then cset Nich{o) = @. For any ¢ € cset, any ¢ € VAL, and any 7, begin(o) £
7 < end(a), by definition, (c,9) ¢ o(r).R. Thus we obtain {5,b,7) |= —receive(c). For
any 7 > end(o), by definition again, we have {z,b, 7} |= ~receive(c). Hence for any
T 2> begin(g), we have (0,b,7) |= —receive(c), i.e., (0,0, begin(o)) | O -receive(c).
From ¢ € eset, we have {0, b, begin(0)) b= Aceser O —receive(c), ie., {0,b,begin(o)) =
O Acecser Teceive(c). Thus we obtain {0, b, begin{o)) | Onorecv(cset) and then axiom
3.4.2 is valid.

Send

We prove that the send axiom 3.4.3 is valid.

145
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For any buffer b and any o € M{c!le)(b), we have end{c) = begin(o)+ K, for any ¢/ < o,
Idle(o'), Nomsg(o’,{c}), o*.s = o’.s, 0°.R = @, and ([0](;)".S = {(c,E(e}(c*3))}.
By definition, we obtain {o,b, begin(c)) k= term = start + K.. Furthermore, for any
r, begin{o) < 7 < end(o), any ¥ € VAL, we have (¢,9) ¢ o{7).5, ie., {0,b,7) |
—send(c). By lemma 3.5.1, we also obtain {o,b,end(c)} = send(c,e}. Thus we have
{0, b, begin{o)} k= —send(c) U (T = term = stari+ K, Asend(c,e)) and then the axiom
3.4.3 is valid.

Receive

We prove that the receive axiom 3.4.4 is valid.

. For any buffer b and any o € M(c??x){b), there exist models oy and o3 such that
o = o102, 063 € WRead(c??z)(b), and o, € Read{c??z)(Buf(b,01)). From o, €
W Read{c??z)(b}, we obtain Idle(o;) and thus (o}, b, begin(oy)) | Oz = first(z) A
~receive(c)]. We also have Buf(b,01)(c) = (), for any ¢} < ¢;. That is, for any
7, begin(oy) € v < end(oy), and any ¢ € VAL, ble) = () and (c,9) ¢ o3(7).S.
Thus we have (01,5, 7} |= init(c) = {} A —send(c). If end(oy) = oo, then we ob-
tain {oy, b, begin(ay)) | Olinit{c) = () A ~send(c)]. U end(oy) < oo, by the se-
mantics, we have b(c) # {) or {¢,¥) € 0¢{.5, for some § € VAL Thus we have
{01, b, end(0y)) = T = termA(init{c) # (}Vsend(c)). Hence we have {0y, b, begin{o1)) |=
[init(c) = () A —~send(c)] U [T = term A (init(c) # () V send(c))]. Thus we ob-
tain {0y, b, begin(c1)) | Awaitlinit(c) # () V send(c)] and thus {o1,b, begin(e))
W Recv(c??z). _
Let ¥ = Buf(b,0,). From o; € Read(c??z)(Buf(b, 0:)), i.e., g, € Read(c??z)}{(V), we
obtain end(a;) = begin(os) + K., for any ¢} < 0y, Idle(o}), ¢5.R = {(¢, First(¥'{c)))},
and g5.5 = (ad.s : z — Firsi(¥(c))). Thus, for any 7, begin(o;) < 7 < end(a3), we have
o3(7).s = ob.s and 03(7).R = 8. We also have of.s(x) = First(¥(c)). Then we obtain
(03,8, end(03)) k= receive(e,z) Az = first(init{c)). Hence we have {03, ¥, begin(o,))
[z = first{z) A —receive(c)] U [T = term = start + K. A receive{c,z) Az =
first(init(c))}, i-e., {02, Buf(b,a1), begin{a;)) |5 Recv(c??z).

Since ¢ = 0,03, by the definition of the C operator, we obtain

{o,b,begin(o)) E WRecv(c??z) C Recv(c?7z). Hence the receive axiom 3.4.4 is valid.

Sequential Composition

We prove that the sequential composition rule 3.4.1 preserves validity.
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Assume that S sat ¢, and 5, sat ¢, are valid. Let ¢ = Onosend{och(S:) \ och{$:))
and ¥, = Onosend(och(S1) \ och(S,)). We show that Sy; 5, sat (o Ay} C (@ As)
is also valid.

For any buffer b, consider any ¢ € M(S5;;5;)(b). Then there exist oy and o, such
that o = 0103, 0y € M(S5,)(b), 02 € M(53)(Buf(b,01)), and Agree(oy,a,,5;,52). By
definition, Agree(o1,04, 51, 52) = Nomsg(oy, och(S2) \ 0ck(S;)) A Nomsg(os,0ch(S1) \
och(S3)). From Nomsg(o1,0ch(S;) \ och(Sy)), we have, for any 7, begin(oy) < 7 <
end(oy), any ¢ € och(S:)\ 0ch(S5,), and any ¥ € VAL, (¢,9) € a1(7).S. Thus we obtain
{g1,b,7) |= —send(c). For any ' > end(s,), by definition, we also have {¢,,5,7') |=
~send(c). Then we obtain {0y, b, begin(a1)) k= O —~send(c). Since ¢ € 0ch{S;} \ 0ch(5y),
we have (0y,b, begin(a1)} | Aceocn(si)\och(sy) O ~send(c), i.e.,

{01, b, begin(01)) E O Accoch(sapoch(s;) ~send(c). Hence we obtain

{o1, b, begin{a1)} = Onosend{och(S,) \ och(S;)) and then {4, b, begin(o1)) E ¥1. From
Sy sat ¢;, we obtain {0y, 5, begin{o;)} = 1. Thus we have {0y, 5, begin(al)) = w1 Ay
Similarly, we can derive {o,, Buf(b,01), begin{o2)} = @2 A 1h,. By the definition of the
C operator, we have (0,09, b,begin{c1)} |E (01 A1) C (02 Athe), Le., {0, b, begin{o)) =
(w1 A1) C (w2 Aths). Hence the rule 3.4.1 preserves validity.

Parallel Composition

Assume S; sat @;, IBuf = Aceon(s,)nen(s,) iet(e) = (), ¥ = O[inv(var(S;)) A
norecv(ich(S;)} A nosend{och{5;}}], ich{w;) C ich(S;), and var(yp;) C var($;), for ¢ =
1,2. We show the validity of $||S, sat TBuf Al{o1 A{es C ¥)) V {w2 A @1 C ¢1)))

For any buffer b, consider any o € M(5,]]52)(b). Then ich{o) C ich{Sy) U ich(S;), and
for i € {1,2}, there exist o; € M(S;)(b) such that begin(s) = begin(oy) = begin(oy),
end(c) = maz(end(oy), end{0s)), for any c € ch(S)) N ch{S,), b(c) = (}. By definition,
we have (0, b, begin(o)} k= I Buf. Suppose end(0o,) > end(o3). Then end(c) = end(a).
We prove (g, b, begin(o}} = o1 Alpz C ).
o First we prove (o, b, begin(o))  ¢;. From the semantics, we have that, for any 7,
begin(a) < 7 € end(on), [o | var(S; )};ZMS,){T).S = a(1).5 = 0{7).5,

[0 | var(S)|fas,y(7)-R = [0]fs)(7)-B = au(7).R, [o | var(Si)|fys,)(7)s =
(o | var(51))(r).s = o1(r).s. Since begin(lo | var(8$)|fys,)) = begin(o)

il

begin(ay), end([o | var(S)) i’:h(s,)) = end(0) = end{o,), we obtain

o] var{S;)]ﬁh(sl} = ¢y. Since oy € M(51)(b) and S, sat ¢;, we have

(lo | var(S1))fs,), b begin(a)) = 1. Since ich(pr) C ich(S1) and var(p) C
var($;), lemma 3.5.13 and lemma 3.5.14 lead to {0, 5, begin(o)) k= ¢1.

e Next we prove {o, b, begin(o)} = w2 C .
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- Hend{o;) = o0, since end(c) = end(0y) > end(o,), we have end(0;) = end(c) =
oo. Similarly, we can derive {0, b, begin(o)) = p,. By the definition of the C
operator, we obtain {0, b, begin{c})} = w2 C

~ Hend{o3) < 0o, from S; sat ¢, and o3 € M(5;)(}), we obtain {02, b, begin(e;)) E
2. We define a model o3 such that begin{os) = end(0,), end(o3) = end{o),
for any 7, begin(os) < 7 < end(03), 03(7).s = 5.5, 03(7).R = [0]s,) (7). R,
03(7).S = 01(r).S, 045 = o053, 08.R = ([0]fys,))"-R, and for any c €
och(S3), any ¥ € VAL, (c,9) ¢ 03.5. By the semantics, [¢]fs,)(7).R = ¢
and thus o3(7).R = @. Since end(o,) < end{c), by Cons(oy,02,51,5:), for
any 7', end(o3) < 7' < end(01), any ¢ € och(S5,), and any ¥ € VAL, (¢,9) ¢
o1(7').5. That is, for any 7, begin{o3) < 7 < end(03), (¢,9) € 03(7).5. Then
we obtain
{03, Buf(b,03), 1) = inv{var(Sy)) A norecv(ich(S,)) A nosend{och{Sz)).
For any 7/ > end(o3), we also have
(o3, Buf(b, 03), 7} k= inv(var(52)) A norecv(ich(S2)) A nosend{och(S,)).
Thus we obtain
{03, Buf(b, 02), begin(os)) E O [inv(var(S:)) A norecv{ich(S2)) A
nosend{och(S;})], i.e., {03, Buf(b, 03), begin(os)) k= ¢,. By the C operator,
we obtain {5,03, b, begin(o,)) 2 C 9.

Now we prove 0303 = [0 | var(53))5ys,)- Let 6 =[o | var(Sg)]fjh(s)).
By definition, ’

oa{1).3 begin(oz) < v £ end(o;)
o3{r).s end(oy) < 7 < end(0)

F(7).s = (o | var(Sy)}{7).s = {

oo{T).R begin(os) < 7 < end{0y)

6‘(T).R = [U]ﬁh(SQ)(T)'R = { (’}3(7)-]% end(oz) <7< 6’:‘?.d(0‘)

a{(r).8 =o(r).5 = { aa(7).5 begin(oz) < 7 < end{oy)
o1{1).5 = 03(7).5 end{c;) < r < end{o)

Hence & = 0,03 and then we have {5, b, begin(o)} k= ¢z C t,. Since
tch(p2) U ich(z) € ich(Sy) and var{e;) U var(ys) C var(S;), by lemma
3.5.13 and lemma 3.5.14, we obtain {o, b, begin(o)) k= w2 C 1.

Hence we have proved {0, b,begin(c)) k= 1 A (g C ).
Similarly, for end(o;) < end(03), we can show (o, b, begin(a)) = @2 A (@1 C ).
Thus the paralle] composition rule 3.4.5 preserves validity.



Appendix F

Precise Specifications for

Statements in Chapter 3

The preciseness theorem 3.5.2 can be proved similarly as in Appendix C for the theorem
2.6.2. Here we only give a precise specification for each staternent from the programming

language in section 3.1.

The precise specifications for skip, assignment, and delay statements are the same

as those given in Appendix C, respectively.

Send

A precise specification for statement clle is
~send(c) U (T = term = start + K. A send(c, €)).

To prove that this is a precise specification for clle, we need to use the general

assumption on the S-fields of a model which is given in section 3.2.2.

Receive

A precise specification for statement ¢?7z is W Recv(c??z) C Recv(c??z) with

W Recv(c??z) = Oz = first(z) A ~receive(c)] A Await[init{c) # {} V send(c)]
and
Recv(c??z) = [z = first{(z) A ~receive(c)] U

[T = term = start + K, A receive(c,z) A z = first(init(c))].
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Sequential Composition

Assume that ; is precise for Sy, for i = 1,2. A precise specification for Sy; 55 is

le1 A O (inv(wvar(Sy; S2) \ wvar(S;)) A norecv(ich{(S,) \ ich(S1)) A
nosend(och(S,) \ och(S:)))] C

[@2 A O (inv(woar(Sy; S2) \ wvar(S:)) A norecv(ich(S;) \ ich(S,)) A
nosend(och{5;) \ och(S5,)))].

Guarded Command with Purely Boolean Guards

Assume that ; is precise for S;, fori=1,...,n.

~ A precise specification for Gy = ([, 9: — Si] is

[Quiet(Gy) U (T = start + K, A Quiet(G1))] A [~ — Eval] A
[§ — (Eval C V., g: Ao AD (inv(woar(G) \ wvar(S:)) Anorecv(ich(Gy) \ ich(S5:)) A
nosend{och{G) \ och(S;)))).

Guarded Command with 10-Guards

Assume that (g is precise for Sp and ¢; is precise for ¢;?%z; S;, fori=1,...,n.

A precise specification for Gy = [, 9i; 7?2 — S;]|go; delay e — S5 is

[Quiet(Ga) U (T = start + K, A Quiet(Gy))] A [~ — Eval] A
[§ — (Eval € (NFinComm V NTimeOut V NAnyComm)}|

where
NFinComm = (go A term < start + max(0,e) A Wait) C NComm
NComm = VL, g Ap; A D (inv(wvar(Gs) \ woar{¢;?72;; 8i)) A 7
~ norecv(ich(Gy) \ ich(¢;?7z:; S:)) A nosend(och(Gs) \ och(c;112;; 5;)))
NTimeOut = [go A O A, eetnit{c;) = {§ A ~send(c;}) A term = start + maz(0,e) A
0 Quiet(Gy)] €
[o A O (inv(wvar(Gy) \ wvar(Sy)) A norecv(ich{G,) \ 1ch(S6)) A
nosend{och({Gy) \ och{5p)))]
NAnyComm = (g A Wait) C NComm

Iteration

Assume that @ is precise for G. A precise specification for G is (§ A @) C* (g A ).
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Parallel Composition

Assume that ; is precise for §;, for ¢ = 1,2. A precise specification for 5|5, is
IBuf Al(p1 A(pz C 92)) V(w2 A(pr C 1))l

where
IBuf = Acecn(s,)neh(sy) nit(c) = (),
o = D [inv{var(S;)) A norecv(ich{S;)) A nosend(och(S:})], for i = 1,2.
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Samenvatting

In dit proefschrift onderzoeken we formalismen waarin de correctheid van real-time en
fout-tolerante systemen bewezen kan worden. Real-time systemen worden gekarakte-
riseerd door quantitatieve tijdseisen betreflende het optreden van gebeurtenissen. Ty-
pische voorbeelden van zulke systemen zijn te vinden in nucleaire energie centrales,
industriesle procesbesturing en vliegtuig systemen. De correctheid van deze real-time
systemen hangt niet alleen af van hun functionele gedrag maar ook van hun timing. Ge-
zien de complexiteit van veel real-time systemen is het niet eenvoudig om te garanderen
dat aan hun functionele en timing eisen is voldaan. Nog moeilijker is het om correct-
heid te garanderen als componenten kunnen falen. In real-time systemen worden vaak
fout-tolerante technieken toegepast om een zekere service te kunnen blijven leveren bij
het optreden van fouten. Technieken om fout-tolerantie te bereiken zijn in het algemeen
gebaseerd op het efficiént benutten van redundantie. De introductie van redundantie
zal echter het tijdsgedrag van een systeem beinvloeden. Dit wijst op een sterke relatie
tussen real-time en fout-tolerantie.

Om het ontwerpen van een real-time en fout-tolerant systeem te formaliseren is een
specificatietaal een eerste vereiste. Zo'n taal moet in staal zijn de eisen van een sys-
teem precies te beschrijven. Een formele beschrijving van de eisen wordt een specifi-
catie genoemd. Een mogelijke aanpak voor het verifiéren dat een programma aan een
specificatie voldoet is het ontwerpen van een bewijssysteem bestaande uit axioma’s en
afleidingsregels. In dit proefschrift ligt de nadruk op het ontwerpen van bewijssystemen
die compositioneel zijn. Een compositioneel bewijssysteem stelt ons in staat een systeem
te verifiéren door alleen de specificaties van de componenten te gebruiken, zonder kennis
van hun interne structuur, en zo te abstraheren van hun implementatie.

Dit proefschrift bestaat ruwweg uit twee delen die hieronder beschreven worden.

Real-Time Formalismen

Om een compositioneel bewijssysteem te ontwikkelen beschouwen we twee versies van
een real-time programmeertaal waarin parallelle processen communiceren door middel

van het sturen van boodschappen. In de eerste versie is communicatie synchroon, dat wil
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zeggen dat zowel zender als ontvanger wachten met communiceren totdat er een commu-
nicatie partner beschikbaar is. In de tweede versie is communicatie asynchroon, hetgeen
betekent dat de zender zijn boodschap onmiddellijk verstuurt zonder op een partner te
wachten, terwijl een ontvanger nog steeds moet wachten als er geen boodschap beschik-
baar is. Als startpunt voor de ontwikkeling van een compositioneel bewijssysteem geven
we een compositionele semantiek voor elk van deze twee versies van de programmeertaal.

De compositionele semantiek zal gebruikt worden als basis voor de interpretatie van
de specificatietaal. In de hoofdstukken 2 en 3 van dit proefschrift is de specificatietaal ge-
baseerd op Explicit Clock Temporal Logic (ECTL), ECTL is een uitbreiding van lineaire
tijd temporele logica met een speciale tijdsvariabele die expliciet refereert aan waarden
van een globale klok. Overeenkomstig de programmeertaal zijn er vamr de specificatietaal
ook twee versies, een synchrone en een asynchrone versie.

We ontwikkelen een compositioneel bewijssysteem voor elk van de twee versies van
de programmeertaal en de specificatietaal. Er wordt bewezen dat beide bewijsmethoden
gezond zijn met betrekking tot de semantiek (dat wil zeggen, alle in het bewijssysteem
afleidbare formules zijn geldig) en relatief volledig zijn met beirekking tot een bewijs-
systeem voor ECTL (dat wil zeggen, alle geldige formules kunnen in het bewijssysteem
afgeleid worden, mits alle geldige ECTL formules axioma’s van het bewijssysteem zijn).
De synchrone versie van het formalisme wordt in dit proefschrift toegepast bij het spe-

cificeren en verifiéren van een klein deel van een vliegtuig besturingssysteem.

Real-Time en Fout-Tolerante Toepassing

Na deze meer theoretische studie, waarbij het formalisme gebaseerd is op ECTL, on-
derzoeken we de specificatie en verificatie van realistische toepassingen. Omdat atomic
broadcast een van de fundamentele concepten is in fout-tolerantie, kiezen we voor de
bestudering van een atomic broadcast protocol. Dit protocol wordt uitgevoerd in een net-
werk van processoren en communicatieverbindingen daartussen, en kan gekarakteriseerd
worden door drie eigenschappen: terminatie, atomiciteit en ordening. Deze eigenschap-
pen kunnen als volgt geformuleerd worden: als een correcte processor een boodschap
broadcast dan dienen alle correcte processoren deze boodschap te ontvangen binnen een
bepaalde tijdslimiet (terminatie}, als een correcte processor een boodschap ontvangt op
een bepaald tijdstip dan dienen alle correcte processoren deze boodschap op ongeveer
het zelfde tijdstip te ontvangen {atomiciteit}, en alle correcte processoren dienen bood-
schappen in dezelfde volgorde te ontvangen (ordening). De atomic broadcast service
wordt geimplementeerd in een netwerk van gedistribueerde processoren door het repli-
ceren van een speciaal server proces op elke processor in het netwerk. Parallelle executie

van de server processen dient te leiden tot deze drie eigenschappen van het protocol.



163

Een processor of een communicatieverbinding is correct als het zich gedraagt zoals
gespecificeerd. Anders faalt het. Het gekozen protocol is ontworpen om omission fouten
te tolereren. Als een processor een omission fout vertoont dan kan het geen boodschap-
pen versturen naar andere processoren. Als een communicatieverbinding te lijden heeft
van een omission fout dan kunnen boodschappen die via de link verstuurd worden ver-
loren gaan. Boodschappen die door een processor ontvangen worden zijn echter correct
betreffende timing en inhoud. Elke processor heeft toegang tot een lokale klok. Er wordt
veronderstelt dat lokale klokken van correcte processoren gesynchroniseerd zijn binnen
een zekere marge.

De specificatietaal in de hoofdstukken 2 en 3 is gebaseerd op ECTL waarin de speciale
tijdsvariabele kan refereren aan waarden van een globale klok. Gezien de complexiteit
van ECTL formules en het streven om de formele verificatie nauw te laten aansluiten
bij de intuitieve correctheidsargumenten, kiezen we in hoofdstuk 4 een andere specifica-
tietaal gebaseerd op eerste-orde logica.

De verificatie van het protocol geschied als volgt. Allereerst worden de eigenschappen
van het protocol beschreven. Ten tweede worden het onderliggende communicatie me-
chanisme, de kloksynchronisatie aanname en de aannames over hel optreden van fouten
geaxiomatiseerd. Ten derde wordt het server proces gekarakteriseerd door een formele
specificatie. Ten vierde bewijzen we dat parallelle executie van de server processen tot de
gewenste protocol eigenschappen leidt. Het protocol wordt compositioneel geverifiderd
door gebruik te maken van specificaties waarin de timing van componenten uitgedrukt
wordt met behulp van lokale klok waarden. Dit in tegenstelling tot gebruikelijke real-
time verificatiemethoden, inclusief onze bewijssystemen van dec hoofdstukken 2 en 3,
waarin timing uitgedrukt wordt met behulp van waarden van cen globale klok.

Een natuurlijke voortzetting van dit werk is het implementeren van het server proces
in een bepaalde programmeertaal en het verifiéren dat een implementatie inderdaad
correct is. Dit wordt echter niet in dit proefschrift gedaan en behoort tot toekomstig

werk.
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1. Consider the following two versions of a real-time programming language in which
parallel processes communicate by message passing along unidirectional channels,
In the firsi version, the communicalion is synchronous, Le., both sender and re-
caiver have to walt unti) a communication partner is available. In the second
version, the communication is asynchronous, namely, a sender does not wait for
x receiver, bul a receiver siill has to wail for a message arriving if there are no
messages 1n the buffer for a specific chasnel. To oblam a compositional seman-
tics for the synchronous version of the language, the model of compatation should
record the information that a process is wailing to send or to receive on a partie-
ular channel. Por the asynchronous version, however, such wailing information is
nol needed, but explicit assumplions about the environmeni are contained i the

model.

See chapiers 2 and 3 of this thesis.

2. Mazima!l Parallclism [KSR¥88] means that each parallel process runs at 2 distinet
processor. Therefore each process is executed without unnecessary wailing. When
apphied Lo Lhe two versions of Lhe programming language mentioned above, it has
different implications. For the synchronous version, it hmplies that a process only
wails when it tries Lo execute an input or sulpat staloment but the communication
partner is not available, In the asynchronous case, however, it enforces (hal a
process cnly wails when it tries Lo receive a message along a chanpel while the

buffer for that channel is empty.
See chapters 2 and 3 of this thesis.

[KSR*88] R. Koymans, R.K. Shyamasundar, W.-P. de Roever, R. Gerth, and
S. Arun-Kumar. Composiiional semantics for real-lime disiribuled computing.
Information and Computation, 79(3):210-256, 1988,

3. ECTL (this thesis), RTTL ([Ost80]), XCTL {{HLP90]), and TPTL {[Hent1}} are
real-time exiensions of linear temporal logic, A comparison between them can
be made according 1o their use of the time variakle, global variables, universal
quantificalion, and freeze quantification {which binds the value of the clock 1o the

quaniified variable):

time var. global var. unsversal guom.  freeze guon.

ECTL yes 1o ne na
RTTL Hes ¥es yes o
XCTL 7S res nag N

FPTL 5ig oL 1o yes
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[Ost89) I. Ostroff. Temporal Logic for Heal-Time Systems. Advanced Soltware
Development Series. Research Studies Press, 1989.

[HLP90] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic.
In Proceedings Symposium on Logic in Computer Seience, pages 402-413, 1990,

(Hen91) T. Henzinger. The Temporal Specification and Verifieation of Real-Time
Systems. PhD) thesis, Stanford University, 1991.

. The atomic broadcast protocol in chapter 4 of this thesis is verified compositionally

by using specifications about the protocol in which timing is expressed by local
clock values. This is new in real-time specification and verification, since until
now most methods for program verification use only global clock values, see e.g.
[BHRRY1]. '

{BHRRY1] J.W.de Bakker, C. Huizing, W.-P. de Roever, and G. Rozenberg{Eds.).
Real-Time: Theory in Practice, REX Workshop Proceedings. LNCS 600, Springer-
Verlag, 1991.

. In Western society, Chinese names are usually transformed inte English spellings

consisting of letters. Such a transfermation is possible for any Chinese name. On
the other hand, an English spelling corresponding to a possible Chinese name can
also be converted into a Chinese name. This conversion, however, is not a lunction
in the mathematical sense, as many diflerent Chinese naines have the same English

spelling.

. A possible topic for future work is to develop a lault-tolerant proof system. Such a

proof system can be formulated similarly to [CH92] where the behavior of a process
is partitioned into the normal behavior and the fault behavior (that describes the
behavior if a fault occurs).

[CH92] J. Coenen and J. Hooman. A compositional semantics lor fault-tolerant

real-timesystems, In Formal Techniques in Real-Time and Faull- Toleran! Systems,
pages 33-51. J. Vytopil (Ed.}, LNCS 571, Springer-Verlag, 1992.

. A key point to a compositional semantics is that the scinantics of a component

should contain all the possible executions of the component in any environment.
A dictionary, which gives meanings to the words of a language, can be considered
as a semantics. In reality, most of the dictionaries are not compositional, because

they usually do not list all the meanings of a word i any context.

. From the anwunt of verification steps in chapters 2 and 3 of this thesis and espe-

cially of the verification of the atomic hroadcast protocol in chapter 4, it follows

that the only future for this field is in supporting it by mechanical verification.



9.

10.

The semantics of a syntactic construct is not always uniquely defined. For instance,
Tangram is an ancient Chinese game [EH76], but it is also a VLSI-programming
language [Ber92]. Nevertheless, we have to tolerate this phenomenon.

[EIf76] J. Elfers. Tangram: the Ancient Chinese Shapes Game. Penguin Books,
1976.

[Ber92] K. van Berkel. Handshake Circuits: an Intermediary between Communi-
cating Processes and VLSI PhD thesis, Eindhoven University of Technology, the
Netherlands, 1992,

A highly educated woman around thirty is usually on the horns of a dilemma: to
pursue her career or to have children. In Western society, these two cannot be
carried out in parallel: choosing one implies that the other has to be delayed.



