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Chapter 1 

Introduetion 

Computer systems are being used in a wide variety of reai-time applications, such as: 

nuclear power plant control, industrial manufacturing control, medica! monitoring, and 

fiight systems. Such reai-time systems are characterized by timing constraints relating 

occurrences of events. For instance, it is often required that an event is foliowed by 

another eventin less than 7 time units, two consecutive occurrences of an event should be 

at least 3 time units apart, or a process should terminate by some deadline. Thus not only 

the functional but also the timing behavior of these systems is essential. Traditionally, 

the correctness of untimed computer systems is determined only by their logica! and 

functional behavior. For reai-time systems, their correctness depends on the temporal 

properties of their behavior as wel!. 

Reai-time systems are usually very complicated. 1t is not easy to guarantee that 

they will always meet their timing requirements. When failures occur, it is even more 

diflicult to ensure that they will fundion correctly. Fault-tolerance techniques are often 

applied in reai-time systems to ensure their correctness despite the presence of faults. All 

techniques for achieving fault-tolerance depend on the effective utilization of redundancy, 

that is, extra elements in the system which are redundant in thc sense that they would 

not be required in a system which could be guaranteed to be free from faults [LA90]. 

However, the introduetion of redundancy does influence the timing behavior of a system. 

For instance, the termination time of some process could be delayed and thus some 

deadline might not be met. Therefore reai-time and fauli-tolerance are closely related. 

Since there is hardly any existing theory for specifying and verifying reai-time and fault

tolerant systems, it is a challenging problem to ertsure the correctness of these systems. 

In this thesis we investigate formalisms for specifying and verifying reai-time and 

fault-tolerant systems and their applications. Thc rest of this introduetion consists of 

four sections: in section 1.1 we explain the development of reai-time formalisms, in 

section 1.2 we describe thc specification and verification ol' rca.l-time and fault-tolerant 

applications, in section 1.3 we discuss thc notion of time~, and in section 1.4 we give the 
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structure of this thesis. 

1.1 Real-Time Formalisms 

1.1.1 Programming Language and Semantics 

We start withareai-time programming language whîch is si mil ar to Occa.m [Occ88]. This 

language is equipped with parallel composition and communication via message passing 

along channels, each of which is unidirectional and connects exactly two processes. A 

delay-statement is introduced to suspend the execution for some specified time. This 

statement may occur in the guard of a guarded command (similar toa delay-statement 

in the select-construct of Ada [Ada83]). We consider the following two versions of this 

langua.ge which differ in communication mechanisms. 

In chapter 2, we study the first version in which communication is synchronous, i.e., 

a sender and a receiver both have to wa.it with communication until a communication 

partner is ava.ilable. This version is similar to the CSP langua.ge in [Hoa85]. In contrast 

with this, we investigate in chapter 3 the second version of the programming language 

where communication is asynchronous, namely, a sender does not wait to synchronize 

with a receiver, but a receiver still has to wait for a message arriving if there are no 

messages in the buffer of a particular channel. It is assumed that all channels are 

capable of buffering an arbitrary number of messages. This is similar to the asynchronous 

communication mechanism defined in [JJH90]. 

Our a.im is to develop a compositional proof system for the programming language. 

Compositionality enables us to derive the specification of a compound programming 

la.nguage construct from specifications of its constituent pa.rts without any information 

about the internal structure of these parts [Ger84,Roe85]. A good starting point for a 

compositional proof system is a compositional semantics, i.e., the meaning of a process 

can be derived from the meanings of its components. Thus, for each of the two versions, 

the meaning of the programming la.nguage is defined by a compositional semantics. To 

achieve compositionality, the sema.ntics of a process contains all possible computations 

of the process in any arbitrary environment, since the actual environment is not known 

in advance. Later, when we compose this process with some environment, impossible 

computations with respect to the given environment are excluded from the sernantics of 

the composition of the process and this environment. 

The two versionsof the programming language ha.ve different models of computation, 

since they have different communication mechanisms. For both versions, their models 

describe for each process its states, i.e., mappings from variables t.o values, and its com

munication behavior, i.e., sending and receiving of messages. In pa.rticular, the model 



1.1. REAL-TIME FORMALISMS 3 

for the synchronous version also records when a process is waiting to send or to receive 

on a specific channel. This waiting information is needed to obtain a compositional 

semantics for this language. This is justified by the fact that this extra information 

appears in the fully abstract semantics fora similar language given in [HGR87]. For the 

asyncbronous version, the model does not include waiting information of processes but 

contains explicit assumptions about the environment. This is consistent with [BH92] in 

which a fully abstract semantics for a similar language does not contain such waiting 

information. 

In order to describe the reai-time behavior of processes written in the programming 

language, we need to make assumptions about the execution time of statements. In gen

era!, there are two approaches to model the timing aspects of statements. One, taken for 

example in [NRSV90,BB91,HMP92], assumes tbat all statements except delays take zero 

time. The otber, which is taken in this thesis as wel! as in timed CSP [RR86], assumes 

that every statement takes some amount of positive time. We will use parameters to 

represent the execution time of atomie statements and the time needed for the execution 

of compound statements. The correctness of a process with respect to a specification, 

which may express timing properties, is verified relative to these assumptions. 

Another important assumption involves parallel composition. In this thesis, we use 

the maximal parallelism model [SM81,KSR+ss] to indicate that each parallel process 

runs at a distinct processor. Consequently, any action is executed as soon as possible 

without unnecessary waiting. Notice tha.t maximal parallelism has different implications 

when applied to the two versions of the language. In the synchronous case, it implies 

that a process only waits when it tries to execute an input or output statement but the 

communication partner is not available. In the asynchronous case, maximal parallelism 

implies that a process only waits when it tries to receive a message along a channel for 

which the buffer is empty. This will he explained in chapters 2 and 3. 

1.1.2 Specification 

To express properties of reai-time systems, a specifica.tion language is needed. As ob

served for example in [Lam83b], linear time tempora.llogic [Pnu77,MP82,0L82,MP91] 

is good for specifying and reasoning about untimed concurrent systems. This logic can 

express safety properties and liveness properties. Moreover, it supports reasoning in a 

simple and natura! way. Unfortunately, this logic allows only the treatment of qual

ita.tive timing requirements, such as the demand thai an event happens "eventually" 

or "always". To specify reai-time properties, we have to extend temporal logic with a 

quantitative notion of time. llasically, therc are two a.pproachcs. 

In one approach, new temporal operators are introduccd by extending the standard 
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ones with time bounds. This extension of temporallogic is called Metric Temporal Logic 

(MTL). A typical timing property that "every event pis foliowed by another event q in 

less than 5 time units" can he expressed in MTL as 

D(p-70<5 q). 

A general discussion about MTL and specification examples using MTL can he found 

in [Koy92]. This logic has been adopted to the specification of reai-time properties of 

a transmission medium [KVR83]. Verification methods based on MTL for reai-time 

transition systems can be found in [Har88,Hen91]. Compositional proof systems based 

on MTL for different versions of a programming language similar to the one stuclied in 

chapter 2 of this thesis have been formula.ted in [Hoo91]. 

In chapters 2 and 3 of this thesis, we investigate an alternative approach, called 

Explicit Clock Temporal Logic (ECTL), in which temporallogic is extended with a dis

tinguished time variabie T that explicitly refers to the values of a global doek. 

A similar logic, called RTTL (Real-Time Temporal Logic), has been used in [Ost89] 

to reason about reai-time discrete event systems. There except the time variable, the 

universa) quantifier is also allowed over global variables (i.e., variables whose values do 

not change over time). The above example ca.n then be expressed in RTTLas 

'v'x.D((pAT x)-.O(qAT<x+5)]. 

Another extension appears in [PH88,Har88,HLP90], where it is referred to as GCTL 

(Globa.l Clock Temporal Logic) and XCTL (Explicit Clock Temporal Logic), respectively. 

In addition to the time variabie T, GCTL and XCTL also use global va.riables. But it 

is assumed that all globa.l variables are universally qua.ntified and thus no quantifier 

appea.rs in any formula. 

In [AH89] a logic called TPTL (Timed Propositional Temporal Logic) has been 

proposed. Th ere globa.l variables arealso used and the explicit reference to the doek, i.e., 

the time variable, is replaced by a special freezing quantification. The freeze quantifer x. 

binds the va.lue of the doek to the quantified variabie x. An extensive discussion about 

TPTL ca.n be found in [Hen91]. The above example may be expressed in TPTL as 

D x.[p __,. Oy.(q A y <x+ 5)], 

which can he rea.d as "in every state with time x, if p holds, then there is a later state 

with time y such that q holds and y is less than x + 5". A survey about the above 

mentioned extensions of linear time tempora.! logic can be found in [AH92]. 

This exa.mple is chosen to show the different wa.ys of expression in those logies. 

Unfortuna.tely, the ECTL present.ed in this thesis cannot express the exa.mple, since it 

does not contain global variables to record the values of the doek at different states. If 
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the property is modilied as "if p holds at the beginning of the execution, then q will hold 

in less than 5 time units", then it can be expressed in ECTL as 

p-+ O(q 1\ T <start+ 5), 

where start denotes the starting time of the execution. In this thesis, we would like to 

use the ECTL-based specification language to characterize all the possible executions of 

a process. lt turns out that global variables are not needed. 

In correspondence with the two versions of the programming language, the speci

fication language based on ECTL has also two versions. In chapter 2, we present its 

synchronous version which indudes primitives comm(c, vexp), wait(c!), and wait(c?), 

which mean, respectively, that a process is communicating with its partner along chan

nel c with value vexp, a process is wa.iting to send a message a.long cha.nnel c, and a 

process is waiting to receive a message on channel c. In the asynchronous version of the 

specification language shown in chapter 3, to describe the communica.tion behavior, it is 

suflicient to include primitives send( c, vexp) and receive( c, vexp ), which denote tha.t a 

process has finished with sending a.nd receiving va.lue vexp along channel c, respectively. 

After ha.ving used an ECTL-based specification la.ngua.ge in chapters 2 a.nd 3, it ap

pears that it is not easy to specify a. system by using ECTL. As we will see in chapters 

2 and 3, proving a simple process correct needs many steps of reasoning. In chap

ter 4, a fault-tolerant protocol presented in [CASD89] will he specified and verified. 

We would like to start with a simple specification language and to follow the infor

mal proofs proposed in that paper. Therefore we adopt another specification language 

based on first-order logic. In the protocol, pa.rallel processes are assumed to commu

nicate asynchronously along communication links. The primitives for communication 

are send(p, m, l) at t and receive(p, m, l) at t, indicating, respectively, that processor p 

starts tosend messagem along link l at timet and p finishes with receiving m along l 

at timet. 

1.1.3 Verification 

To express that a process S satisfies a specification r.p, we use a correctness formula 

of the form S sat r.p. To verify that a system satisfies a specifkation, usually a proof 

system is used to derive the correctness formula. Such a proof system consists of axioms 

for atomie statements and rules for compound statements. Global proof systems, such 

as [MP82] for temporallogic, require the complete program text. In contrast with them, 

we formulate a compositional proof system to reduce the complexity of verification. 

Using a compositional proof system, we reason with spccifications of processes insteadof 

their program texts a.nd thus abstract from their implementations. Such compositional 
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proof systems have heen developed for untimed systems, e.g. [Zwi89], and reai-time 

systems, such as [Hoo91]. Other compositional theoriescan be found in [Lar90]. 

To verify compositionally that a system satisfies a requirement, there are generally 

two phases: 

1. A system is decomposed into several smaller suhsystems and, by using the speci

fications of these subsystems and an appropriate compositional proof system, we 

verify that the composition of these subsystems satisfies the the requirement of 

the system. 

This phase is performed repeatedly until it is possible to perfarm the second phase. 

2. We implement these suhsystems in some programming language and verify, by 

a proof system for this programming language, that the implementations indeed 

satisfy the specifications of those subsystems. 

This approach is illustrated in chapter 2 by verifying a small part of an avionics system. 

The principle also guides us in verifying a fault-tolerant protocol in chapter 4. 

For each of the two versions of the programming and specification languages, we 

formulate a compositional proof system. By examples we show how the proof systems 

can be used to reason about reai-time properties. These two proof systems are shown to 

he sound with respect to the semantics (i.e., all correctness formulae derivable from the 

proof system are valid) and relatively complete [Bak80,Apt81] with respect to a proof 

system for ECTL (i.e., all valid correctness formulae can he derived from the proof 

system, provided all valid ECTL formulae are axioms of the proof system). 

1.2 Reai-Time and Fault-Tolerant Applications 

For non-fauit-tolerant systems, like the ones considered in chapters 2 and 3, it is im

plicitly assumed that all computing components are correct and remain correct during 

execution of these systems, i.e., these systems (including software and hardware) are 

free from faults. In reality, however, computer systems are composed of both hardware 

and software in which faults may exist and cause failures. A failure occurs when the 

hehavior of the system deviates from its specification [RLT78]. In genera!, (software or 

hardware) faults are causes of failures and failures are manifestation of faults [LA90]. 

Such failures are taken into account in fault-tolerant systems. 

In chapter 4, we study a formalism for specifying and verifying reai-time and fault

tolerant systems and apply it to a protocol. A processor or link is correct if and only if 

it behaves as specified. Otherwise it suffers failures. We use primitives cmTect(p) at t 

and correct(/) at t to indicate, respectively, that processor p and link l are correct at 
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time t. Typica.lly for fault-tolera.nt systems, we a.lso need to express the kind of fa.ilures 

which are considered when designing such systems (e.g. how much time it takes a. spare 

generator to step in when electricity supply fails, in case of specifying a fa.ult-tolera.nt 

electricity supply system for a hospita.l). Such assumptions about failures are called 

"failure assumptions" or "failure hypotheses". 

Failures of components of a system can lead to unpredictable hehavior and unavail

ability of service. To achieve a high reliahility of a service in spite of failures, a. key 

idea is to implement the service by replicating a server process on all processors in a 

network [Cri90]. A server process is a piece of software which fulfills the specific task. 

Given a network of distributed processors and replicated server processes, verifying tha.t 

the service is indeed provided by the parallel execution of the server processes requires 

a parallel composition rule. With the assumption of maximal parallelism (i.e., each 

server process runs on its own processor), this rule states that parallel execution of 

server processes satisfies the conjunction of all server specifications, provided that each 

server specification only refers to the interface of the processor on which the server runs. 

Moreover, we need a consequence rule which enables us to weaken a specification and 

a conjunction rule which allows us to take the conjunction of specifications. To verify 

compositionally tha.t the service is provided correctly, we follow the principle presented 

in section 1.1.3 and refine the first phase into four steps: 

• First, the top-level requirement of the service should he described insome forma.l 

language. We call this description the top-level specification. 

• Second, the general system assumptions should he axioma.tized. For instance, the 

failure assumptions should he expressed and, when the service involves a lower 

level communication between processors and local clocks of processors, the com

munication mechanism and the doek synchronization assumptions should a.lso he 

formalized. 

• Third, the properties which the server process should satisfy must he characterized 

by a server specification. Such a server specifica.tion only refers to the interface of 

the processor on which the server is running. We a.ssurne that the server process 

running on processor p satisfies the server specification with parameter p. 

By the parallel composition rule, the parallel execution of the server processes 

satisfies the conjunction of the server specifications. Notice that the execution also 

sa.tisfies the system assumptions formula.ted in step 2. Thus, by the conjunction 

rule, the execution satisfies the conjunction of the server specifications and the 

system assumptions. The next, and final, step is easy to formulate. 

• Fourth, we prove that the conjunction of the server spccifications and the system 
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assumptions imply the top-level specification. Then, by the consequence rule, the 

parallel execution of the server processes satisfies the top-level specification. 

After performing these steps, it remains to implement the server process such that the 

server specificatien is satisfied. This is, however, not done in this thesis and might be a 

topic for future work. 

After this more theoretica! research, we would like to apply the forma! metbod to 

examples. As a starting point of verifying reai-time and fault-tolerant systems, we choose 

a realistic application and apply the four steps of the compositional approach to it. Since 

atomie broadcast service is one of the fundamental issues in fault-tolerance, we selected 

a.n atomie broadcast protocol as our case study. 

The atomie broadcast protocol is executed on a network of processors and links and 

is characterized by three properties [CASD89]: termination, atomicity, and order. These 

properties can he described as fellows: if a correct processor broadcasts a message then 

all correct processors should receive this message by some time bound (termination), if 

a correct processor receives a message at some time then all correct processors should 

receive this message at more or less the sametime (atomicity), and all correct processors 

should receive messages in the sameordering (order). This protocol is implemented by 

replicating a server process on all processors of the network. The parallel execution of 

these server processes should lead to the properties of the protocol. 

In [CASD89] there is a series of protoeels tolera.ting, respectively, omission failures, 

timing fa.ilures, and authentication-detectable byza.ntine fa.ilures. We chose a fairly sim

ple protocol which tolerates omission fa.ilures. When a processor suffers a.n omission 

failure, it cannot send messages to other processors. When a link s.uffers an omission 

failure, the messages tra.veling along this link may be lost. But those messages received 

by a processor are correctly received in both timing a.nd contents. In the netwerk of 

processors, each processor bas access to a local doek. It is a.ssumed that local docks of 

correct processors are synchronized within a certain bound. 

This atomie broadcast protocol is called synchronous in [Cri90] in the sense that 

the underlying communication delay between correct processors is bounded. Other syn

chronous protoeels can be found in, for instance, [BD85;Cri90]. There also exist asyn

chronous atomie broadcast protoeels which do not assume bounded message transmis

sion delay between correct processors. Examples of asynchronous protoeels are [BJ87] 

and [CM84]. Also notice that, in the chosen synchronous atomie broadcast protocol 

for this thesis the underlying communication is asynchronous in the sense explained in 

section 1.1.1, i.e., a sender does not wait to synchronize with a receiver, and messages 

are buffered by links. 
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1.3 Notion of Time 

In this thesis we assume maximal parallelism, i.e., each parallel process runs at its own 

processor. Notice that every processor has its own local doek. But, like many formalisms 

for reai-time systems (e.g. see [BHRR91]), the timing behavior of a processis described 

in chapters 2 and 3 from the viewpoint of an external observer with bis own doek, i.e., a 

global doek. Consequently, verification is done compositionally by using specifications 

in which timing is expressed by global doek values. 

In chapter 4, we specify and verify an atomie broadca.st protocol whose specification 

uses real time values as well as local doek values. Real time ca.n he considered as 

a perfect, standard, glohal doek, e.g., Greenwich standa.rd time. We have primitives 

like send(p, m, l) at t, where t refers to real time. We use Cp(t) to denote the local 

doek va.lue of processor p at real time t. Using this notation, primitives written in 

termsof real time values can he transformed into ahhreviations written in termsof local 

doek values. For instance, send(p, m, l) at~ U, which intuitively means that processor 

p sends a message m along link l at local doek time U, is an a.hhreviation of 3u : 

( send(p, m, l) at u 1\ Cp( u) U), where u refers to some real time value and U refers to 

the corresponding local doek value on processor p. We will follow [CASD89] and specify 

the properties of the atomie hroadcast protocol by using loca.I doek values. We show 

that the verification of the protocol can he done compositionally by using specifications 

in which timing is expressed by local doek values. 

In chapters 2 and 3, we assume a dense time domain called TIME over which the 

values of a global doek range. In chapter 4, we have a dense time domain called RT I ME 

over which all real time values range. Furthermore, there exists a discrete time domain 

called CV AL which contains alllocal doek va.lues. 

Comparing our notion of time with tha.t in MTL, we make thc following observations. 

In chapters 2 a.nd 3, ECTL is the basis of our specifica.tion la.nguage and thus we can 

use absolute time in the sense that time points in a specifica.tion refer directly to actual 

global doek values. For instance, the property that in less than 8 time units after the 

start of execution, process S communica.tes with value 7 on channel d is expressed as 

follows: 

S sat 0 [T <start+ 8 1\ comrn(d, 7)). 

In chapter 4, we also use absolute time a.nd it can refer to both local clock values and 

rea.l time va.lues. 

In the framework of MTL, a spccification can only use relative time in the sense that 

time points in the specification are rela.tive tosome fixcd time point. The example a.bove 

can he described in MTL·style by 
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S sat 0 <S comm(d, 7). 

Here the time points are relative to the starting point of the execution of S. 

The primitives from the specification language in chapters 2 and 3 do not refer to 

the time at which an action is happening. For example, in the specification language 

in chapter 2, we have primitive comm(c, vexp). The time when the communication 

occurs is impHeit in this primitive and it should he obtained from the context. For 

instance, from formula 0 (T = 5-+ comm(c, vexp)), we know that this communication 

will happen when the global doek reaches 5. On the other hand, the primitives from the 

specification la.nguage in cha.pter 4 do explicitly refer to the time. For example, primitive 

send(p, m, l) at t indicates clearly that processor p starts to send message m along link l 

at real timet. It appears in chapter 4 that referring to the time in the primitives makes 

the specification and verification of the protocol easier, si nee the primitives have already 

provided the timing information and thus we do not bother ourselves with the precise 

interpretation of the specification language. 

1.4 Overview 

The remainder of this thesis is structured as follows. 

In chapter 2, we follow the outline of (Hoo91] and develop a formalism for specifying 

and verifying synchronously communicating real-time systems. The synchronous version 

of the programming language is described insection 2.1. A compositional semantica for 

this version of the language can he found in section 2.2. The synchronous version of 

the specification language based on ECTL is formulated in section 2.3. Section 2.4 

conta.ins a compositional proof system for the synchronous version of the programming 

and specification languages. This formalism is applied to specify and verify a smal! 

part of an avionics system in section 2.5. Soundness and relative completeness of this 

proof system are discussed in section 2.6. The proof system and the full version of this 

chapter are publisbed in [HKZ91] and (ZHK93], respectively, which are joint work with 

J. Hooman and R. Kuiper. 

In chapter 3, we present the asynchronous version of the formalism. The asyn

chronous version of the programming language is given in section 3.1. A compositional 

semantics for this version of the language is defined in section 3.2. The asynchronous 

version of the specification language based on ECTL is described in section 3.3. A 

compositional proof system for this asynchronous version of the programming a.nd spec

ification languages is proposed in section 3.4. The soundness a.nd relative completeness 

issues are discussed in section 3.5. Most of the results in this chapter appear in [ZH92]. 

In chapter 4, we start with an introduetion about the specification and verification 



1.4. OVERVIEW 11 

of the atomie broadcast protocol in section 4.1. The top-level specification of the atomie 

braadcast service is described insection 4.2. The general system assumptions are axiom

atized in section 4.3. The properties of the server process are expressed in section 4.4. 

In sections 4.5, 4.6, and 4. 7, we verify that the parallel execution of the server processes 

leads to the desired top-level specification. Then we compare our results with [CASD89] 

insection 4.8. The primary results of this chapter appear in [ZH93b]. A full version of 

this chapter can be found in [ZH93a]. 

In chapter 5, we summarize our work and mention some related research. 

Appendix A contains proofs of lemmas in chapter 2. Soundness. and relative com

pletenessof the proof system in chapter 2 are provedinAppendices Band C, respectively. 

Proofs of some lemmasin chapter 3 appear in Appendix D. Soundness proofs of a few 

modified axioms and rules of the proof system in chapter 3 can he found in Appendix 

E. Precise specifications for the statements of the programming language in chapter 3 

are shown in Appendix F. 
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Chapter 2 

Synchronous Communication 

In this chapter, we investigate a theory for proving the correctness of synchronously 

communicating reai-time systems. In section 2.1, we present the synchronous version 

of our reai-time programming language in which parallel processes communicate via 

synchronous message passing. A compositional semantics of this language is defined in 

section 2.2. The synchronous version of our specification language is given in section 

2.3. A compositional proof system is developed in section 2.4. An application of the 

proof theory is shown in section 2.5. Soundness and completeness of the proof system 

are discussed in section 2.6. 

2.1 Reai-Time Programming Language 

2.1.1 Syntax and Informal Semantics 

We consider a reai-time programming language which is akin to Occam [Occ88]. The lan

guage is basedon a reai-time extension of CSP with nested parallelism and synchronous 

message passing via channels [KSR+ss]. A rea.J.time statement delay e is added which 

suspends the execution for e time units if e is not negative. Such a delay-statement 

may also occur in the guard of a guarded command. Processes communicate by mes

sage passing via unidirectional channels, each of which connects exactly two processes. 

Communication is synchronous in the sense that a sender or a receiver bas to wait for 

communication until a communication partner is available. 

Let VAR be a nonempty set of variables, CHANbe a nonempty set of channel names, 

and VAL be a nonempty domain of values. Let IN denotes thesetof all natura) numbers 

(including 0). The syntax of the reai-time programming language is given in Table 2.1, 

with c, c; E CHAN, x, x; E VAR, t? E VAL, n E IN, a.nd n ? 1. 

Any statement in the programming languagc is called a proccss. A write-variable is a 

variabie which occurs in an input statementor in the left hand si deofan assignment. Let 

13 
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Table 2.1: Syntax of the Programming Language in Chapter 2 

Expression e ::= fJ I x I e1 + e2 I e1 - e2 I e1 x e2 

Guard g ::= e1 = e2 I e1 < e2 I -,g I 9t V 92 

Statement S ::= skip I x e I delay e I c!e I c?x I 
S1; s2 1 a 1 *G 1 S1IIS2 

Guarded Gommand G ::= [0?=1g;-+ S;] I [Ui= 1g;;c;?x;-+ S;Ogo;delaye-+ So] 

S be any statement. Define var(S) as thesetof variables occurring in S and wvar(S) as 

thesetof all write-variables inS. Obviously, wvar(S) Ç var(S). Thesetof (directional) 

channels occurring in a statementS, denoted by dch(S), is defined as the set containing 

all channels occurring in S together with all directional channels c! and c? occurring in 

S. For instance, dch(c!5;d?yllc?x) {c,c!,c?,d,d?}. 

Informally, the statements have the following meanings. 

Atomie statements 

• skip terminates immediately. 

• x:: e assigns the value of expression e to variabie x. 

• delay e suspends execution for e time units if the value of e is not negative. 

Otherwise it is equivalent to skip. 

• c!e sends the value of expression e on channel c as soon as a corresponding input 

statement is available. Since we assume synchronous communication, such an 

output statement is suspended until a parallel process executes an input statement 

of the form c?x. 

• c?x receives a value via channel c and assigns this value to variabie x. Similar to 

the output statement, such an input statement has to wait for a corresponding 

output statement hefore a synchronous communication takes place. 

Compound statements 

• SI; s2 indicates sequentia! composition of sl and s2. 

• Guarded cammand [U i=1g; -+ S;J is executed as follows. If none of the g; evaluates 

to true, then the cammand termina.tes after the evalua.tion of the guards. Other

wise, nondeterministically select one of the g; which evaluate to true and execute 

the corresponding statement S;. 

• During an execution of guarded comma.nd [0f=1g;; c;h; -+ S;0g0 ; delay e-+ SoJ, 
first the guards g;, for i = 0, 1, ... , n, are evaluated. Next, 



2.1. REAL-TIME PROGRAMMING LANGUAGE 15 

- if none of the g; evaluates to truc, then the command terminates; 

if g0 evaluates to truc, e is positive, and at least one of the c;? x; for which 

g; evaluate to true can start reading messages in less than e time units, then 

one of the first possible e; ?x; and its corresponding S; are executed; 

if g0 evaluates to true and either eis not positive or none of thee; ?x; for which 

g; are true can start reading in less than e time units, then S0 is executed; 

if g0 evaluates to false, then the command waits until one of the c;?x; for 

which g; are true can read messages. Then one of the first possible e;?x; and 

its corresponding S; are executed. 

A guard g; which is equivalent to true is often omitted in a guarded command. 

Example 2.1.1 Observe that delay-values can he arbitrary expressions, for in

stance, x:= y; [d?x--> y :=x Udelay x--> c!x], where the value of x in delay x is 

obtained from executing the assignment x y. D 

Example 2.1.2 By means of a guarded command, we can easily express a time

out. For instance, [x > 0; c?y -+ x := y U delay 10 .....,. skip] informally means that 

if x > 0 and the input communication can take place in less than 10 time units 

then the assignment is executed, otherwise after 10 time units there is a time-out 

and skip is executed. D 

Notice that the semantics of the guarded command G in this thesis differs from 

that of Dijkstra for the case that all the boolean guards are false [Dij76], wbere it 

is interpreted tbat the program aborts. 

• *G indicates repeated execution of guarded command G as long as one of the 

guards is true. When none of the guards is true, *G terminates. 

• S1 jjS2 indicates parallel execution of S1 and S2 • No variabie should occur in both 

S1 and S 2 , i.e., var( St) n var(S2 ) = !/l. 

Hencefortb we use ::: to denote syntactic equality. 

2.1.2 Basic Assumptions 

In this chapter, we assume that there is no overhead for compound statements and a 

delay e statement takes exactly e time units if the value of eis not negative. Furthermore 

we assume given positive parameters I<a, Kc, and /(9 such that every assignment takes 

Ka time units, each communication takes Kc time units, and the evaluation of the guards 
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in a guarded command takes K9 time units. Notice that, to avoid an infinite loop in 

finite time, we assume I(9 > 0. These assumptions can be extended to more general 

cases, for instance, assignment and communication take some time between a lower and 

an up per bounds, etc .. 

We also assume the maximal parallelism model for the execution of parallel composi· 

tion, which means that each parallel process has its own processor. Therefore, a process 

only waits when it tries to execute an input or output statement and the communication 

partner is not available. Hence it is never the case tha.t one process wa.its to perform c!e 

and, simultaneously, another process waits to execute c?x. 

2.2 Compositional Semantics 

To formally define the meaning of a. process, we give a compositiona.l semantics for our 

programming language. Insection 2.2.1 wedefine a model to describe the computation 

of processes. This semantic model is used in section 2.3 to interpret our specification 

language. In section 2.2.2 we give the compositiona.l semantics which is used to define 

validity of correctness formulae, that is, to define formally when a process satisfies a 

specification. Finally, in section 2.2.3 we discuss some properties of the semantics. 

2.2.1 Computational Model 

In our semantics the timing behavior of a process is expressed from the viewpoint of an 

external observer with his own doek. Let this doek range over a time domain TIME. 

Thus, although parallel eomponents of a. system have their own, physical, local clocks, 

the observahle behavior of a system is described in terms of a single, conceptual, global 

doek. 

Assume TIME { T E IR I T ~ 0}, where IR is the set of all reals. Thus the 

time domain is dense (a doma.in is dense if between every two points there exists a 

third point) and linearly ordered. The standa.rd arithmetical operators +, -, x, and 

$ are defined on TI ME. To define the timing behavior of statement delay e, we 

have to relate expressions in the programming langua.ge to our time domain. Since 

we have assumed that delay e takes e time units if e is not negative, we also a.ssume 

{ t? E V AL I!? ~ 0} Ç TIME. 

Henceforth, we use i, j, ... to denote nonnegative integers, and r, f, r 0 , ••• to denote 

values of TIME. For notational convenience, we use a special vahte oo with the usual 

properties, sueh as oo iif; TIME and for all rE TIMEU{ oo }: T $ oo, r+oo = oo+r = oo, 

etc. 

A computation of a process is represente(l by a mapping which assigns to each point 
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of time during this computation a pair consisting of a state and a set of communication 

records. The state represents values of variables at that point of time. The communi

cation records denote the state of alfairs on the channels of the process. We use records 

of the form ( c, 19) to indicate that a communication occurs along channel c with value 

19. Moreover, the model includes additional information that shows which processes are 

waiting tosend or waiting to receive messages on which channels at any given time. Us

ing this information, the formalism enforces minimal waiting in our maximal parallelism 

model by requiring that nopair of processes is ever simultaneously waiting tosend and 

waiting to receive, respectively, on a shared channel. The informal description above is 

formalized in the following definitions. 

Definition 2.2.1 (States) Thesetof states STATE is defined as thesetof mappings 

from VAR to VAL: STATE= {sIs: VAR_... VAL}. 

Thus a statesE STATE assigns toeach variabie x a value s(x). 

Definition 2.2.2 (Variant) The variant of a state s with respecttoa variabie x and 

. { 19 if y =x a value 19, denoted by (s: x>-+ 19), IS defined as (s: x>-+ t9)(y) = . 
s(y) If y "1. x 

Definition 2.2.3 (Communication Records) Thesetof communication records 

GOM M is defined as: 

COMM = {c! I c E CHAN} U {c? I c E CHAN} U {(c,19) I c E CHAN and 19 E VAL}. 

Assume To E TIME and TI E TIME U { oo}. If T1 =I oo, let [T0 , T1] denote a closed 

interval of time points: [ro, TI] = { T E TIME I To :::; T :::; TI}. Jf T1 = oo, then [To, TI] 

is the same as [T0 ,oo) with [ro,oo) ={TE TIME I T?: To}. Similarly, (To,TI] denotes 

a left-open and right-closed interval: ( To, T1] = { T I To < T :::; TI} and [ro, TI) denotes 

a left-closed and right-open interval: [To, TI) = { T I To :::; T < TI}. The closed intervals 

will be used in the definition of a model, since we would like to observe the state and 

communication behavior at the starting and terminating points of a process. 

Then a model, representing a reai-time computa.tion of a process, is defined as follows: 

Definition 2.2.4 (Model) LetToE TIME, T1 E T/MEU{oo}, a.nd T1 ?: T0 • A model u 

is a mapping u: [ro,TI]-> STATE x p(COMM). Define begin(u) = To and end(u) =TI. 

Consider a model u and a point T with begin( u) :::; T S end( u). Then u( T) = 

(state, comm) with state E STATE a.nd comm Ç COMM. Hcnceforth we refer to 

these two fieldsof u(T) by u(T).s a.nd u(T).c, respectivdy. lnformally, if u models a 

computation of a process S, begin( u) and end( u) dcnote, resp., tlw starting and termi

nating times of the computation of S (end(a) = oo if S does not terminate). Further

more, u(begin(a)).s specifies the initia! state of the cornputa.tion, a.nd if end(u) < oo 
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then u( end( u )).s gives the final state. We will use ub to denote u( begin( u)), and if 

end(u) < oo, ue to denote u(end(u)). In genera!, u(r).s represents the values of vari

ables. The set u(r).c might contain a communication record (c,d), c!, or c? with the 

following meaning, where c E CH AN: 

• (c, 1?) E u( r ).c iff value 1? is being transmitted along channel c at timer; 

• c! E u( r ).c iff S is wa.iting to send a.long cha.nnel c at time r; 

• c? E u(r).c iff Sis waiting to receive along channel cattime r. 

To make the model convenient for sequentia] composition, the c-field at the last point 

is not used and then can have an arbitrary value. Only u" .s is interesting for the 

specification and reasoning. 

Define DCJIAN = CllAN U {c? I c E C/l AN} u {c! I c E CH AN}. Henceforth, we 

need the following definitions. 

Definition 2.2.5 (Channels Occurring in a Model) Thesetof (directional) chan

nels occurring in a model u, denoted by dch(u), is defined as 

dch(u) = Ubegin(a)$T<end(a) {dI c! E u(r).c} U {c? I c? E u(r).c} U 

{ c I there exists a {) such that ( c, 1?) E u( r ).c} 

Definition 2.2.6 (Projection onto Channels) Let cset Ç DCHAN. Define the pro

jection of a model u onto cset, denoted by [u]cset, as follows: begin([u]cset) = begin(u), 

end([u]caet) =.end(u), for any T, begin(u) :5 r :5 end(u), [u]cset(T).s = u(r).s, and 

for any r', begin(u) :5 r' < end(u), 

[u]cset( r').c { d I c! E u( r').c A c! E cset} U { c? I c? E u( r').c A c? E cset} U 

{(c, 1?) I (c, 1?) E u( r').c AcE cset} 

Definition 2.2. 7 (Projection onto Variables) Let vset Ç VAR. Define the projec

tion of a model u onto vset, denoted by u! vset, as follows: begin( a! vset) =begin( er), 

end(u! vset) end(u), for any r, begin(o-) :5 r < end(er), (er! vset)(r).c er(r).c, 

and for any r', begin(a) ::5 r' :5 end(er), and any x E VAR, 

( ! )( ') ( ) { a(r').s(x) x E vset er vset T .s x = 
erb.s(x) xrf.vset 

Definition 2.2.8 (Concatenation) The concatenation of Lwo models a 1 and a2 , de· 

noted by er1a 2 , is a model a- such that 

• if end( a 1 ) oo, then a = 171 ; 
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• if end(ut) < oo, end( ut) begin(u2), and u}.s = u~.s, then u has domain 

[begin( ut), end(u2)] and is defined as follows: 

u(r) = { Ut(r) begin(u1 ):::; T < end(ut) 
u 2( T) begin( u2 ) :::; r :::; end( u2) 

• otherwise undefined. 

19 

Definition 2.2.9 ( Concatenation of Sets of Models) The concatenation of two sets 

of models Et and E2 are defined as follows: 

SEQ(Et,E2) = {utu21 Ut EEt and u2 E E2 such that Ut0'2 is defined} 

It is easy to see that SEQ is associative, i.e., 

SEQ(Et, SEQ(E2 , E3)) = SEQ(SEQ(E~> E2), E3 ). 

Henceforth we use SEQ(Et, E2 , E3 ) to denote SEQ(Eh SEQ(E2 , E3 )). 

2.2.2 Formal Semantics 

A good starting point for the development of a compositional proof system is the for

mulation of a compositional semantics. In such a semantics the meaning of a statement 

must be defined without any information ahout the environment in which it will be 

placed. Hence, the semantics of a statement in isolation must characterize all poten

tial computations of the statement. When composing this statement with (part of) its 

environment, the semantic operators must remove the computations that are no Jonger 

possible. To be able to select the correct computations from the semantics, any de

pendency of an execution on the environment must be made explicit in the semantic 

model. 

The evaluation of an expression e, denoted by &(e), is a fundion &(e) :STATE-+ 

VAL defined by induction on the structure of e as follows: 

• &(l?)(s) = 1? 

• &(x)(s) = s(x) 

• &(et+ ez)(s) = E(et)(s) + &(e2)(s) 

• &(et e2)(s) = E(et)(s)- E(e2)(s) 

• E(e1 x ez)(s) = E(e1 )(s) x E(ez)(s) 

The evaluation of a guard g, denoted by Q(g)(s), is defined by induction on the structure 

of g as follows: 
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• Q(et < e2)(s) iff &(et)(s) < &(e2)(s) 

• Ç(-.g)(s) iff not Q(g)(s) 

• Q(gt V g2)(s) iff Q(g1 )(s) or Ç(g2)(s) 

The meaning of a process S, denoted by M(S), is a set of models representing all possible 

computations of S starting at any arbitrary time. 

Skip 

Statement skip terminates immediately without any state change or communication. 

M(skip) ={u I begin(u) = end(u)} 

Assignment 

An assignment x := e terminates after Ka time units (recall that every assignment 

statement takes Ka time units to execute). All intermediate states before termination 

are the same as the initia! state. The state at termination also equals the initia! state 

except that the value of x is replaced by the value of e at the initia! state. The c-field is 

empty during the execution period since the assignment does not (try to) communicate. 

M(x := e) ={u I end(u) =begin( u)+ Ka, for any r, begin( u)~ r <end( u), 

u(r).s = ub.s, u(r).c = ~' and ue.s = (ub.s: x 1-+ &(e)(ub.s))} 

Delay 

A delay e statement terminates a.fter e time units if e is not negative. Otherwise it 

terminates immediately. 

M(delay e) ={u I end(u) = begin(u) + max(O,&(e)(ub.s)), for any r, 

begin(u) ~ T < end(u), u(r).s = ub.s, u(r).c = 0, and ue.s = ub.s} 

Output 

In genera!, in the execution of an input or output statement, there are two periods: first 

there is a waiting period during which no communication partner is available (recall 

that communication is synchronous) and, secondly, when such a partner is available to 

communicate, there is a period (of Kc time units) during which the act u al communication 

takes place. For an output statement c!e these two pcriods are represented by two sets 

of models W ait( c!) and Send( c, e) defined below. Hence the semantics of c!e is defined 

as 

M(c!e) = SEQ(Wait(c!), Send(c, e)) with 
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Wait(c!) ={a I for any r, begin(a) ~ T < end(a), a(r).s = ab.s, a(r).c {c!}, and 

if end( a) < oo, then a• .s = ab .s} 

Send(c,e) ={a I end(a) begin(u) + I<0 for any r, begin(u) :5 r < end(u), 

a(r).s = ab.s, a(r).c = {(c,f(e)(ub.s))}, and a•.s ab.s} 

Input 

To represent all potential computations of an input statement c?x, its semantics should 

contain all possible roodels in which any possible value can he received for x. The 

value of x at the final state equals to the value in the communication record. Thus the 

semantics of c?x is defined as 

M(c?x) = SEQ(Wait(c?),Receive(c,x)), 

where Wait(c?) is similar to Wait(c!) and 

Receive(c,x) {a I end( a) begin( a)+ Kc, there exists a fJ E VAL such that, 

for any r, begin( a) ~ r < end( a), a( T ).s = ab .s, a( r ).c = {(c, fJ)}, 
and u•.s = (ab.s: x>--+ iJ)} 

Sequentia} Composition 

Using the SEQ operator defined before, sequentia) composition is straightforward: 

Since SEQ is associative, sequentia! composition is also associative. Thus we can write 

S1 ; S2; S3 without causing ambiguîty. 

Guarded Command 

For a guarded command G, first define 

- { Vi=I9i if G = 1Ui=I9i -4 S;] 
9 = Vi=o9i if G = [0i=1g;; -+ S;j]go; delaye-+ So] 

Consicier G = [0i'=1g; -+ S;J. There are two possibilities: either none of the guards 

evaluates to true and the command terminatcs after Kg time units, or at least one of the 

guards yields true and then the corresponding statement S; is execntcd. Reeall that the 

evaluation of the guards takes I<9 time units. In the scmantics below this is represented 

by statement delay K9 • 

M([0i= 1g;-+ S;]) ={a I 9(•g)(crb.s) and a E M(delay I<g)} U 

{a I there exists a k, 1 :5 k :5 n, such that Ç(gk)(ab.s) 
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Next consider G = [Ui=1g;;c;?x; _.., S;Ugo;delaye _.., So]. 

There are four possibilities for an execution of G (see section 2.1). We first define two 

a.bbreviations: 

Wait(G) ={a I Q(g)(ab.s), for any r, begin( a):::; r < end(a), a(r).s = ab.s, 

a(r).c {c;? I Q(g;)(ab.s), 1:::; i:::; n }, and if end( a)< oothen a•.s = ab.s} 

C omm( G) = {a I there exists a k, 1 :::; k :::; n, such that Q (gk )( ab .s) and 

a E SEQ(Receive(ck,xk),M(Sk))} 

Using W ait( G), we define the following extra. abbreviations: 

FinWait(G) {a I Q(g0 )(ab.s), end( a)< begin( a)+ max(O, t'(e)(ab.s)), and 

a E Wait(G)} 

TimeOut(G) ={a I Q(g0 )(ab.s), end(a) = begin(a) + max(O,t'(e)(ab.s)), and 

AnyWait(G) ={a I Q(--.g0 )(ab.s) and a E Wait(G)} 

Then the sema.ntics of G is defined as follows: 

M([0:'::1g;;c;?x; ..... S;Ogo;delaye ..... So]) = 

{a I Q(..,g)(ab.s) a.nd a E M(delay K9 )} U 

SEQ(M(delay K9 ),FinWait(G),Comm(G)) u 
SEQ(M(delay Kg), TimeOut(G), M(S0 )) U 

SEQ(M(delay K 9 ), AnyWait(G), Comm(G)) 

Iteration 

a E Wait(G)} 

For a model in the sema.ntics of the iteration statement *G, we have the following 

possi hili ties: 

• either it is the concatenation of a finite sequence of models from M( G) such that 

the last model corresponds to an execution where aJI guards evaluate to faJse or it 

represents a nonterminating computation of G, 

• or it is the concatenation of an infinite sequence of models from M(G) that all 

represent terminating computations in which not all guards yield faJse. 

This leads to the following definition: 

M(*G) = {a I there exist a k E IN, k ~ 1, and a 1 , ... , ak such tha.t a = a 1 · · · ak, 
for any i, I :::; i:::; k, 0'; E M(G), for a.ny j, I :::; j:::; k- I, end(O'J) < oo, 



2.2. COMPOSITIONAL SEMANTICS 23 

Ç(g)(o'j.s), and if end(O'k) < oothen Ç(-.g)(ut.s) otherwise Ç(g)(O'i.s)} 

U {ui there exists an infinite sequence of models u1 , 0'2 , .•• such that u = u1 u2 • • ·, 

for any i~ 1, u; E M(G), end(u;) < oo, and Ç(g)(uf.s)} 

A slight apology should be made for the semantics of *G. The semantics given above is 

not fully compositional, because it cannot be determined by the semantics of G alone. 

We still need to check if the guards of G are true. 

Parallel Composition 

The semantica of S1 IIS2 consistsof all models u such that there exist models o-1 E M(S1) 

and o-2 E M(S2 ) and the c-fields of u is the point-wise union of the c-fields of u1 and o-2 , 

provided that the following requirements are fulfilled: 

1. end(O') max(end(O't),end(uz)), to express that S1 11Sz terminates when both 

processes have terminated. 

2. Since communication is synchronous, S1 and S2 should communicate simultane

ously on shared channels which conneet them. 

3. In our execution model we assume maximal parallelism and thus two processes 

should not be simultaneously waiting to send and waiting to receive on a shared 

channel. Formally, for any c E dch( St) n dch( S2 ), and any T, begin( u) :5 r < 
end( u), we should have -.(cl E u(r).c 1\ c? E u(r).c). 

For the s-fields of o-, reeall that there are no shared variables, i.e., var(St)nvar(S2 ) = 0. 

Hence the value of a variabie x during the execution of S1 IIS2 can be obtained from the 

state of S; if x E var(S;), and from the initia! state otherwise. This leads to the following 

definition for the semantics of parallel composition. 

M(S1 IIS2 ) {u I dch(u) dch(St) U dch(S2 ), for i= 1, 2, there exist 0'; E M(S;) 

such that 

begin(u) begin(ut) = begin(u2 ), end(u) = max(end(o-t),end(o-2 )), 

{ 
o-;(r).c begin(O';) :5 r < end(ui) 

[O']dch(S,)( T ).c 
0 end(u;) :5 T <end( u) 

{ 
u;(r).s begin(u;):::; T :5 end(u;) 

(0'! var(S;))(r).s 
ui .s end( 0';) < r :5 end( u) 

for any x ;f. var( St) U var(S2 ), a.ny r, begin( u):::; r :5 end( u), 

o-(r).s(x) u~.s(x), 

and for any c E dch(S\) n dch(S2 ), a.ny r, begin( u) :5 r < end(u), 

•(cl E u(r).c 1\ c? E u(r).c)} 

We can prove that parallel composition is commutative and a.ssociative. 
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2.2.3 Properties of the Semantics 

First we define a well-formedness property of a model. 

Definition 2.2.10 (Well-Formedness) A model u, defined in section 2.2.1, is we/1-

formedifffor any c E CHAN, any iJ,iJ1,iJ2 E VAL, and any r,begin(u) ~ T < end(u), 

the following formulae hold: 

1. •( cl E u( T ).cA c? E u( T ).c), 

(Minima/ waiting: it is not allowed to be simultaneously waiting to send and 

waiting to receive on a particular channel.) 

2. •[(c,iJ) E u(r).cA cl E u(r).c] A •[(c,iJ) E u(r).cA c? E u(r).c], and 

(Exclusion: it is not allowed to be simultaneously communicating and waiting to 

communicate on a given channel.) 

3. (c,iJI) E u(r).cA (c,iJ2) E u(r).c--> iJ1 = iJ2. 
( Uniqueness: at most one va.lue is transmitted on a partietdar channel at any point 

of time.) 

Then we have the following theorem. 

Theorem 2.2.1 For any process S, if u E M(S) then 

1. dch(u) Ç dch(S), 

2. if x~ wvar(S),then for any r, begin(u) ~ T ~ end(u), u(r).s(x) = ub.s(x), and 

3. u is well-formed. 

By induction on the structure of S and the definition of well-formedness, this theorem 

can he easily proved. 

2.3 Specification Language 

We define a specification language which is based on Explicit Clock Temporal Logic, 

i.e., linear time tempora.! logic augmented with a globa.l doek variabie denoted by T. 

Intuitively, T refers to the current point of time during an execution. We use start 

and term to express, respectively, the starting and terminating times of a computation 

(term = oo for a nonterminating computation). We also use first(x) and last(x) to 

refer to the value of variabie x at the first and the last state of a computational model, 

respectively. If the computation does not terminate, then last( x) has the initia! value 

of x. Similar ideas have been used in, for instance, [Jon80] and [Jon90]. To specify 
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the communication behavior of processes, we use a primitive comm(c, vexp) to express a 

communication along channel c with value vexp. We also use comm(c) to abstract from 

the value communicated. Furthermore, the specification language includes primitives 

wait(c!) and wait(c?) to denote that processes are waiting to communicate. SimHar to 

the semantics, this is required to express maximal parallelism. By including the strong 

until operator, U , from classica! temporallogic we obtain the standard morlal operators. 

In order to give compositional proof rules for sequentia! composition and iteration, we 

add the "chop" operator C and the "iterated chop" operator C* from [BKP84]. 

In the specification language, there are two kinds of expressions, i.e., vexp and texp, 

to express values of type V AL and TIME U { oo}, respectively. A specification is 

represented by <p. The syntax of this specification language is given in Table 2.2, with 

{) E VAL, x E VAR, i-E TIME U {oo}, and c E CHAN. 

Table 2.2: Syntax of the Specification Language in Chapter 2 

Val Exp vexp ::= {) I x I first(x) I last(x) I max(vexPt,vexp2) 

Time Exp 

Specification 

vexp1 + vexp2 I vexp1 vexp2 I vexp1 x vexP2 

texp ::= i- I T I start I term I vexp I 

11)"-T ,.-

texp1 + texp2 I texp1 - texp2 I texp1 x texP2 

texp1 = texp2 I texp1 < texp2 I 
comm(c, vexp) I comm(c) I wait(c!) I wait(c?) 

'-P1 v '-P2 1 ...,'-P 1 '-P1 u '-P2 1 '-P1 c '-P2 1 '-P1 c· '-P2 

Let texp be any expression of type TIME from the specification language. Define 

var(texp) to be the set of all variables occurring in texp. Let t.p be any specification. 

Define dch( t.p) to be the set of all directional channels, i.e., the set of c, d, or c?, for 

c E CH AN, occurring in <p, and var(<p) to be thesetof all variables occurring in t.p. 

The interpretation of specifications is defined over the computational model of section 

2.2.1. First we define the value of expression vexp at model a and timeT ;:::: begin(u), 

TE TIME, denoted by V(vexp)(u,r), as follows: 

• V({))(u,r)=t? 

• V(x)(u,r) { 
u(-r).s(x) if T :5 end( a) 

ue.s(x) if T >end( a) 

• V(first(x))(u, r) = ub.s(x) 

{ 
ue s(x) if end(u) < oo 

• V(last(x))(u, r) = b. , 
17 .s(x) if end(u) = oo 

• V( max( vexp1, vexp2 ) )(o-, r) = max(V( vexpt)(o-, T ), V( vexp2 )(o-, T)) 
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• V( vexp1 0 vexp2 )( a, r) = V(vexpt)(u, r) 0 V( vexp2 )(u, r), for 0 E { +, x}. 

Next we define the value of time expression texp at model u and time r 2: begin( u), 

rE TIME, denoted by T(texp)(u,r), as follows: 

• T(f)(u,r) f 

• T(T)( u, r) = r 

• T(start)(u, r) =begin( u) 

• T(term)(u, r) =end( u) 

• T(vexp)(u, r) = V(vexp)(u, r) 

• T(texp1 0 texP2)(u, r) = T(texpt)(u, r) 0 T(texp2 )(u, r), for 0 E { +,-,x}. 

The interpretation of a specification rp at model u and timer 2: begin( u), r E TIME, 

is denoted by (u, r) p rp and defined by induction on the structure of r.p. 

• (u,r) p texp1 = texp2 iffT(texpi)(u,r) = T(texP2)(u,r). 

• (u,r) p texp1 < texP2 iffT(texpl)(u,r) < T(texp2)(u,r). 

• (u, r} p cornm(c, vexp) iff T <end( u) and (c, V(vexp)(u, T)) E u(T).c. 

• (u, r} p comm(c) iff T <end( u) and there exists a va.lue {) E VAL such that 

( c, d) E u( r ).c. 

• (u, r} p wait(c!) iff T <end( u) and c! E u(r).c. 

• (u, r} p wait(c?) iff r <end( u) and c? E u(T).c. 

• (u, T) p 'Pt V rpz iff (u, r} p 'P1 or (u, r) F 'P2· 

• (u, T} p -.rp iff not (u, T} p r.p. 

• (a, r} p rp1 U r.pz iff there exists a Tz 2: r, such that (u, Tz} p rp2, and 

for any Tt,T::; Tt < Tz, (u,TJ} p 'Pt· 

• (u, r) p 'Pl C r.pz iff 

- either (u, r) p rp1 and end( u)= oo 

or there exist models u1 and a2 such that 0" = u1u2, r ::; end(ut) < oo, 

(ut. r) p 'Pt. and (uz, begin( u2)) F 'P2· 

• (a, r) f= 'P1 c· r.pz iff 
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- either there exist a k ?: 1 and models cr1 , ••• , cr~-; such that cr cr1 · · · crk, 

(crt, T) I= CfJh T ~ end( O't) < oo, for any j, 2 ~ j ~ k-1, (crj, begin( <ij)) I= CfJh 

end(crj) < oo, and if end(uk) < oothen (O'k,begin(u~.:)} I= cp2 , otherwise 

(cr~-;, begin( uk)} I= CfJt> 

- or there exist infinitely many models cr1, cr2 , o-3, ... such that o- = cr1o-2o-3 ... , 

end(O't)?: T, for any i?: 1, end(o-;) < oo, (o-llT) I= <p1, and for any j?: 2, 

(<ij, begin( Uj)) I= 'PI· 

The substitution of an expression vexp1 for a variabie x in an expression vexP2, denoted 

by vexp2 [vexptf x], is defined as the expression obtained by replacing every occurrence of 

x in vexP2 by vexpi. This notation wiJl be used in the axiom for assignment statement. 

We also use the standard abbrevia.tions such as true = 0 0, <p1 A r.p2 = -.(...,'PI V 

...,r.pz), 'Pt --+ r.pz -.r.pt V <p2, texp1 ~ texp2 = (texp1 = texpz) V (texp1 < texpz), etc .. 

Furthermore we have the usual abbreviations from temporal logic: 

• 0 cp true U r.p ( eventually <p will be true) 

• 0 r.p ....,(> -.cp (henceforth <p will be true) 

• <p1 U <p2 ( cp1 U r.p2 ) V 0 r.p1 (weak until: either eventually <p2 wil! hold and until 

that point r.p1 holds continuously, or <p1 holds henceforth) 

Next we define validity of specifications and correctness formulae of the form S sat <p. 

Definition 2.3.1 (Valid Specification) A specification <p is valid, denoted by I= r.p, 

iff (17, begin(i7)) I= <p for any model a. 

For instance, I= T =start, I= x= first(x), and 

I= term< oo A 0 (T term--+ x 5)--+ last( x) 5. 

Definition 2.3.2 (Satisfaction) A process S sat.isfies a specification <p, denoted by 

I= S sat <p, iff (u, begin(cr)} I= <p for any 0' E M(S). 

We also say that S sat r.p hlods if I= S sat r.p. 

We give a few simple examples to illustrate our specification langua.ge. General safety 

propertiescan be specified, e.g., 

• Process S does not terminate: S sat tcnn oo. 

Note that we could also use S sat 0 -.(T term). 

• S does not perform any communication along channcl c: S sat 0 -.comm(c). 

Some examples of reai-time safety propert.ies: 
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• If S starts its execution with x = 0, then S wiJl terminate in less than 5 time units 

Vlith x= 8: 

S sat x= 0---+ (term< start+ 5) 1\ (last( x)= 8). 

• S waits to communicate on channel c and after communication on c it is waiting 

to send on channel d: 

S sat (wait(c) U (comm(c) UT= term)) C wait(d!). 

• During the execution of S, variabie x has value 5 at 3 time units after the start of 

the execution, after 5 time units x has value 8 and y has value 9, and finally after 

7 time units process S terminates with x = 10 and y = 12: 

S sat 0 [(T = start+ 3 ---+ x = 5) 1\ (T = start+ 5 ---+ x = 8 1\ y = 9) 1\ 

(T = start+ 7 ---+ x = 10 1\ y = 12)]/\ terni = start+ 7. 

Liveness properties can also be expressed: 

• S terminates: S sat term< oo. (Or, equivalently, S sat O(T =term).) 

• S either communicates along channel c infinitely oftenor eventually it waits forever 

tosend on c: S sat (0 Ocomm(c)) V (0 0 wait(c!)). 

2.4 Proof System 

In this section, we give a compositional proof system for the synchronous version of the 

programming and specification languages. This proof system wil! take all valid ECTL 

assertions as axioms. We start with axioms and rules which are generally applicable to 

any statement. Next we axiomatize the programming langua.ge by formulating axioms 

and rules for all atomie statements and compound progra.mming constructs. 

Let vexp1 and vexp2 be expressions of type VAL. The well-formedness property of the 

semantic models is axiomatized by the following axiom. For any finite cset Ç DCHAN, 

Axiom 2.4.1 (Well-Formedness) 

For any finite cset Ç DCHAN, S sat W Fcset, where 

WFcset 

MinWaitcset 

Exclusioncset 

Uniquecset 

0 (MinWaitcset 1\ Exclusioncset 1\ Uniquecset) 

A{c!,c?}Çcset --.( wait( c!) 1\ wait( c?)) 

A{c,c!}Çcset --.(comm(c) 1\ wait(c!)) 1\ A{c,c?}Çcset --.(comm(c) 1\ wait(c?)) 

Acecset corn.m.( c, vexp1) 1\ conun( c, ve.1:p2) ---+ vel: pi = vexp2 

For any finite cset Ç DCJ/AN and vset Ç V AR, define 

empty(cset) = Ac!Ecset --.wait(c!) 1\ Ac?Ecset --.wait(c?) 1\ Acecset --.comm(c) and 

inv(vset) = Axevset x= first(x). 
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The next general axiom expresses that a process does not (try to) communicate on 

channels that do not syntactically occur in the process. 

Axiom 2.4.2 (Communication lnvariance) 

For any finite cset Ç DCH AN with cset n dch(S) 0, S sat 0 empty(cset). 

Similarly, the proof system has an axiom to express that certain variables are not changed 

by a process. 

Axiom 2.4.3 (Variable Invariance) 

For any finite vset Ç V AR with vset n wvar(S) 0, S sat 0 inv(vset). 

Furthermore, we have the usual conjunction rule and consequence rule. 

Rule 2.4.1 ( Conjunction) 
Ssat S sat <p2 

S sat if'1 1\ <f!2 

Rule 2.4.2 (Consequence) 
S sat 

S sat ;p2 

Next we give axioms for the five atomie statements. Statement skip terminates imme

diately. 

Axiom 2.4.4 (Skip) skip sat term= start 

The assignment axiom expresses that x := e terminatea after Ka time units and the 

final value of x equals the value of e at the initia! state. If x occurs in the expression e, 

the initia] value of x is needed to evaluate the value of e. We use first(x) to record the 

initia! value of x. 

Axiom 2.4.5 (Assignment) 

x:= e sat (x= first(x)) U (T =term= start+ Ka A x e[first(x)fxj) 

Example 2.4.1 With this axiom and the consequence rule we can derive, for instance, 

x:= x+ 1 sat (last(x) = first(x) + 1) 1\ O(T =term= start+/(,,). 0 

Example 2.4.2 We show that we can derive 

x y + 4 sat y = 5-+ 0 (x = 91\ T =term= start+ Ka)· 

By the assignment axiom and the conscquence rulc we obtain 

x y + 4 sat O(x = y + 4/\ T =term= start+ Ka)· 

Since y f/. wvar(x := y + 4), by the variabic invariancc axiom, wc have 

x:= y + 4 sat 0 (y first(y)). 

Since I= y 5-+ 0 (first(y) = 5), by the assumption, we have 
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f- y = 5 -+ D (first(y) = 5). Then by the conjunction rule and consequence rule, we 

obtain 

x := y + 4 sat y = 5 -+ D (y = 5). 

Hence, by the conjunction rule and consequence rule again, we get 

x y + 4 sat y = 5-+ <>(x 9 AT= term= .~tart+ Ka)· D 

Statement delay e terminates after e time units if the value of e is not negative. Oth

erwise it terminates immediately like skip. 

Axiom 2.4.6 (Delay) delay e sat term start + ma x( 0, e) 

An output statement starts with waiting to send a message, and as soon as a commu

nication partner is available the communication takes place during Kc time units. Note 

that we use a weak until operator in the axiom below to allowan infinite waiting period 

(i.e., deadlock) when no partner becomes available. 

Axiom 2.4.7 (Output) 

de sat wait(c!) U (T =term- Kc A (comm(c,e) UT= term)) 

Similarly, an input statementc'!x waits to receive a value along channel c. When the 

communication finishes the value received is assigned to variabie x. Thus at the last 

state of the execution model x possesses that value. 

Axiom 2.4.8 (Input) 

c'!x sat (x= first(x) A wait(c'!)) U 

(T term Kc A ((x= first(x) A comm(c, last(x))) UT= term)) 

Using the C operator we can easily formulate an inference rulc for sequentia! composition. 

Rule 2.4.3 (Sequential Composition) 

Example 2.4.3 Con si der process x x+ 1; x := x+ 2. By the assignment axiom and 

the consequence rule we have: 

x:= x+ 1 sat last(x) = first(x) + 1 A term= start+ Ka, and 

x:= x+ 2 sat last(x) = first(x) + 2 A term= start+ Ka. 

Then the sequentia) composition rule leads to 

x:= x+ 1; x:= x+ 2 sat 

(last( x) first(x) + 1 A term, start+ Ka) C 

(last(x) = first(x) + 2 A te1·m start+ I<a)· 

By the consequence rule, we obtain 

x:=x+l;x:=x+2 sat last(:c)=fi1·st(x)+3Aterm=start+21<a· D 
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Now consider a guarded cammand G. Reeall that g is defined as (see section 2.2.2) 

_ { Yf:t Ui if G = [0f=tY• --+ S,] u= Vi=o g; if G [I] f= 1g;; e; ?x; --+ S; 0 9oi delay e --+ So] 

First we give an axiom which expresses that if none of the guards evaluates to true then 

the guarded command terminates after I<9 time units. Furthermore we express that 

there is no activity on the channels of G and no write-variable of G is changed during 

the eva.lua.tion of guards. Define Eva[= term= start+ /{9 • 

Axiom 2.4.9 (Guarded Command Evaluation) 

G sat [(inv(wvar(G)) A empty(dch(G))) U (T =start+ /(9 A inv(wvar(G)))] A 

( ...,g --+ Eval) 

Next consider a guarded cammand with purely boolean guards G [0i=1g; --+ S;]. If 

at least one of the guards yields true then a.fter the evaluation of the guards one of the 

statements S; for which g; evaluates to true is executed. This leads to the following rule. 

Rule 2.4.4 (Guarded Cammand with Purely Boolean Guards) 

S; sat "Pi, for i= 1, ... , n 

[0;'=1 g; --+ S;] sat g --+ (Eva! C Vi=t g; A tp;) 

Next we formulate a rule for G = [Df=t g;;c;?xi--+ S; U g0 ;delay e 80 ], using 

Wait inv(wvar(G)) A empty(dch(G) \ {c1 '!, ... ,cn?}) A 

(go--+T<start+max(O,e)) A l\i=1(g;<-+wait(c;?)), 

lnTime = inv(wvar(G)) A T =term A (g0 --+ T <start+ max(O,e)), 

EndTime = inv(wvar(G)) A g0 A T =term= start+ ma:r.(O, e), 

Comm (Wait U InTime) C V'i=1 .g; A "Pi A comm(c;), and 

TimeOut = (Wait U EndTime) C tp0 . 

Rule 2.4.5 (Guarded Command with 10-Guards) 

c;?x;; S; sat tp;, for i= 1, ... , n, 80 sat tp0 

[l]f=I g;;e;?x;--+ S; 0 go;delay e--+ So] sat 

g --+ (Eval C (Comm V TimeOut)) 

Observe that in the definition of GOM M we use g; A tp; A comrn(c;), where "Pi is such 

that e; ?x;; S; sat tp;. In genera), "Pi describes two parts of the computation: a possible 

waiting period for c; ?x; foliowed by a coomunîcation on channel c;, a.nd the execution 

of S;. According to the definition of well-forrnedness, adding comm( ei) to i{) i excludes 

the possibility of waiting on e;, and this is exactly what needeel in the execution of the 

guarded cammand when the communication on c, should start immediately. 

The inference rule for an iterated guarded cammand is as follows. 
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Rule 2.4.6 (Iteration) 
G sat 

Next consider parallel composition of S1 and S2• Suppose we have deduced specifications 

'-Pl and '-P2 for, respectively, sl and S2. If '-PI and '-P2 do not contain term, then we have 

the fo!Iowing simple rule. 

Rule 2.4. 7 (Simple Parallel Composition) 

contain term 

provided dch(<p;) Ç dch(S;) and var( <pi) Ç var(S;), for i= l, 2. 

If one of <p1 and <pz contains term, we have to take into account that thé termination 

times of S1 and S2 are, in genera!, different. Observe that if S1 terminates after (or at the 

sametime as) S2 then the model representing this computation satisfies <p1 A ( <p2 C true ). 

Furthermore we have to express that the variables of 82 are not changed and there is 

no activity on the channels of 82 after the termination of S2 • Similarly, for S1 and S2 

interchanged. Then it leads to the following general rule for parallel composition. 

Rule 2.4.8 (Genera) Parallel Composition) 

Let tf;; D(inv(var(S;)) A empty(dch(S;))), for i= 1,2. 

S1i1Sz sat 

provided dch(<p;) Ç dch(S;) and var(<p;) Ç var(S,), for i= 1,2. 

Example 2.4.4 Consider process c!5 11 c?x. Since we have assumed maximal paral

lelism, the communication takes place immediately and hence this process should satisfy 

comm(c, 5) U (T = term= start+ Kc A x= 5). 

By the input axiom, output axiom, and the consequence rule, we obtain c!5 sat <p1 and 

c?x sat <p2 with 

<p1 =: wait(c!) U (T = tenn- I\c A (comm(c,5) UT= term)) and 

<p2 =: wait(c?) U (T =term- Kc A (comm(c,last(x)) UT term)). 

Suppose t/;1 D empty( { c, c!}) and !/;2 = D ( inv( {x}) A empty( { c, c?}) ). 

Then the general parallel composition rule leads to 

c!5ll c?x sat (<pt 1\ (<pz C t,b2)) V (<p2 A ('-PI C 1/;t)). 
The well-formedness axiom and the conjunction rule allow us t.o add MinWait{c!,c?}, 

Exclusion{c,c!,c?}, and Unique(c} to ('PI A ('-P2 C t/;2)) V ('P2 A ('-PI C 1/JJ)). 

Consider '-Pt A (<p2 C !/lz) A MinWait(c!,c?} A Exclusion{c,c!,c?} A Uniqtte{c)· 



2.5. APPLICATION 

It implies 

[wait(c!) U (T =term- I<c A (comm(c,5) UT= term))] A 

[(wait(c?) A ...,wait(c!) A -,comm(c)) U (comm(c, last( x)) A ...,wait(c!))J A Unique{c), 

which implies 

T term- I<c A (comm(c,5) UT= term) A last(x) = 5. 

Since I= T = start, the above formula implies 

comm( c, 5) U (T = term start+ Kc A x = 5). 
Similarly, we can prove that 

1.(12 A (<pi C 1/J1) A MinWait{c!,c?} A Exclusion{c,c!,c?} A Unique{c}-> 

comm( c, 5) U (T = term start+ Kc A x = 5). 
Then, using the consequence rule again, we obtain 

c!5ll c?x sat comm(c,5) U (T =term start+ Kc A x= 5). 
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Example 2.4.5 Consider process c!O; d!l 11 d?x; c?y. Since this process leads to dead

lock, 

we should be able to prove c!O; d!I 11 d?x; c?y sat 0 (wait(c!) A wait(d?)). 

By the output axiom, the communication invariance axiom, and the consequence rule, 

we have 

c!O sat wait(c!) U comm(c) and c!O sat 0 -.comm(d). 

Using the conjunction rule and the consequence rule, we obtain 

c!O sat (wait(c!) A -.comm(d)) U (comm(c) A -,comm(d)). 

Since ((wait(c!) A -.comm(d)) U (comm(c) A -.comm(d))) C tnte-> 

(wait(c!) A -.comm(d)) U (comm(c) A ...,comm(d)), 

the sequentia! composition rule and the consequence rule lead to 

dO; d!l sat (wait(c!) A ...,comm(d)) U (comm(c) A -.comm(d)). 

Similarly, we have 

d?x; c?y sat (wait(d?) A -.comm(c)) U (comm(d) A -,comm(c)). 

Using the simple parallel composition rule, we obtain 

c!O; d!l 11 d?x; c?y sat ((wait(c!) A -.comm(d)) U (comm(c) A -,comm(d))) A 

((wait(d?) A ...,comm(c)) U (comm(d) A -.comm(c))). 

Clearly this implies 0 ( wait( c!) A wait( d?)) and hence, by the consequence rule, 

c!O; d!l 11 d?x; c?y sat 0 ( wait( c!) A wait( d?) ). 0 

2.5 Application 

In this section we illustrate the use of our formalism by spccifying and verifying a smal! 

part of an avionics systern. Deta.iled specifica.tions of the avionics systcm can he found 

in [PWT90]. Here wc only consider the design of a rclia.blc device. 
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A device is a component which receives a request from a.nd sends data. to its envi

ronment. A relia.ble device RD consists of a physical device PD and a handler H and is 

depicted by the following tigure 2.1. 

.pdata 

preq 

Fig. 2.1 R.elia.ble Device 

After receiving a. request, the physical device PD either sends some data to its environ

ment along channel pdata within a certain a.mount of time, or it fails to do so but will be 

ready for the next request on channel preq within some time bound. When the handler 

H receives a request from its environment a.long channel req, it will send a request to the 

physical device PD along channel preq and then wait for PD to send data on channel 

pdata. Then there are two possibilities: 

• If PD functions correctly, it will be ready to send some data to H on channel pdata 

within a certain amount of time. After H has received the data, it will send the 

data to its environment on channel data. 

• If PD does not function correctly, H will stop waiting aiter a certain period of 

time and an approximation of the data will be computed by a component C inside 

the handler. Then the a.pproximated data will be sent to the environment along 

channel data. 

Given a physical device, the problem is to construct a handler such that the composition 

of the physical device and the handler is a reliable device. We wil! design a handler H 

such that the parallel composition of PD and H, P D 11 H, behaves like RD, i.e., satisfies 

the given specification of RD. 

In this example, we make the following assumptions. 

• We focus on the communication behavior of the system and not on how data is 

produced. Thus we abstract from whether data. is precise or approximated and 

ignore the data. when a communication takes place. Hence data will not appear in 

any specification or process. 

• As intherest of this chapter, communications are synchronous along unidirectional 

channels and a communication takes I<c time units. 
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• Component C will take De ~ 0 time units to compute an approximation of the 

data. 

The specification of the physical device PD is given informally as follows. 

1. Initially, PD is waiting to receive a request along channel preq. 

2. When PD receives a request on channel preq, it takes Dpv ~ 0 time units to 

process the request. Then either it is ready to send data on channel pdata and 

after having sent data on pdata it is again ready for another request on channel 

preq, or it is not ready for sending on pdata but it will he ready foranother request 

on preq within DpQ ~ 0 time units. 

The implementation of PD may he in hardware or in software. Since our method is 

compositional, only the specification of PD is used to construct the reliable device. The 

formal specification of PD is given as SP EG PD in the following way. 

SPEGpv ([wait(preq?) U (comm(preq) UT term)] C 

[term= start+ Dpv] C 

[(wait(pdata!) U (comm(pdata} UT= term.)) V 

( -.comm(pdata!) UT term :$ start+ DPQ)]) c• f al se. 

The specification of the reliable device RD is informally stated as follows. 

1. Initially, RD is ready to receive a request from the environment along channel req 

within DRQ ~ 0 time units. 

2. When RD receives a request on channel req, it wil! he ready to send the data to 

the environment through channel data within DRD ~ 0 time units. 

3. When RD has sent the data through channel data, it wiJl aga.in he ready to accept 

the next request on channel req within DRQ time units. 

The forma! specification of RD is defined as SP EG RD as follows. 

SPEGRD ([term:::; start+ DRQ] C 

[wait(req?) U (comm(req) UT= term)] C 

[term:::; start+ Dnv] C 

[wait(data!) U (comm(data) UT term)]) C* false. 

Our aim is to find a handler H such that PDIIII sat SPEGnv. After luwing examined 

the requirement of RD and the speeification of PD, we propose the following specification 

for H. 

1. Initially, H should be ready to rcceive a request. from the environment along channel 

req within DRQ time units. 
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2. When H receives a request on channel req, it is immediately readytosend a request 

toPDon channel preq. After the communication on preq finishes, H is allowed to 

wait Do ;:::: 0 time units before it is ready to receive on channel pdata for at most 

D1 time units. If a communication on pdata starts in less than Di time units, then 

after this communication H is ready to send on channel data. If no communication 

occurs on pdata in less than D 1 time units, H starts to compute an approximation 

of the data by means of the component C and then is ready to send the data on 

channel data. 

3. When H has sent the data along channel data, it will again be ready to accept the 

next request on channel req within DRQ time units. 

The values of the constants Do and D1 wil! be determined later. These informal descrip

tions can be formalized in our specification language as SP EG H. 

SPECH =([term :5 start+ DRQ] C 

[wait(req?)· U (comm(req) UT= term)] C 

[wait(preql) U (comm(preq) UT term)] C 

[term = start + D0 ] C 
[(wait(pdata?) U (comm(pdata) UT term< start+ D1 +Kc)) V 
((wait(pdata?) UT= term= start+ DI) C (term= start+ De))] C 

[wait(datal) U (comm(data) UT term)]) C* false. 

Then the hand Ier H is specified by H sat SP EG H. For the physical device PD we have, 

by assumption, PD sat SPEGPD· To show that PDIIH sat SPEGRo, we apply the 

parallel composition rule. Observe that although SPEGPD and SPEGH contain term, 

we have SPEGpo C 1/J <--> SPEGpo and SPECH C 1/J <--> SPECH, for any formula 1/J. 

Then by the general parallel composition rule, we obtain P DIIH sat SP EGpoi\SP EGH. 

Let 
cset {preq?, preq!,preq, pdata?, pdatal,pdata, req?, req,data!,data} and 

WFD =: WFcset· By the well-formedness axiom, we have PDIIH sat WFD. Using the 

conjunction rule, we obtain PDIIH sat SPEGpo 1\ SPEGH 1\ W FD. If we can prove 

SPECpo 1\ SPECH 1\ W FD--> SPEGRD, then by the consequence rule, we obtain 

PDIIH sat SPECRD· Hencewe have toprave SPEGpn/\SPECH/\W FD--> SPEGRD· 

By camparing SPEGu with SPECRo, we see that the wa.iting time of H on channel 

pdata has an upper bound of D1 +max(l<c, De)· lt remains todetermine an upper bound 

on the waiting time of H on channel preq. Therefore we make the following observations. 

1. For the first communication on preq H does not need t.o wait for PD since PD is 

initially ready for preq. 
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2. Let tpn denote the maximal amount of time for PD to he ready to receive along 

preq after a. communica.tion on preq completes. Let tH denote the minimal amount 

of time for H to he readytosend along preq aftera communication on preq finishes. 

We will determine tpn and tH and then use them to derive an upper hound on 

the waiting time.of H on preq. Aftera communication on preq ends, there are two 

possihilities for PD: 

• PD functions correctly, i.e. after Dpn time units it is ready to send on pdata. 

In this case, we should require 

Dpn <Do+ D~> (1) 
i.e. H has to wait long enough to receive the data from pdata. If this re

quirement is not satisfied, H will stop waiting for PD on pdata and start 

component C to compute approximated data hefore PD is ready to send on 

pdata. Then after a next communication on req H will start waiting to send 

on preq whereas PD is still waiting to send on pdata. Hence this leads to a 

deadlock. 

After a communication on preq, H is ready to receive on pdata in D0 time 

units. Thus, assuming (1 ), PD will start the communication on pdata after 

max(Dpn, D0 ) and then he ready for the next request on preq. Hence tpn = 
max(Dpn, Do)+ Kc. 

Also H communicates on pdata after max(Dpn, Do) waiting time and then is 

ready to send on data. After the communications on data and req H is again 

ready for preq. Thus tH max(Dpn, Do)+ 3I<c· 

Ohviously tpn < tH. Thus PD is ready for preq earlier than H is and then H 

does not have to wait for PD on preq. Hence after a req communication, H 

immediately sends along preq and the sending takes Kc time units. Next, as 

above, a communication along pdata starts after max(Dpn, D0 ), which also 

takes Kc time units, and then H is ready to send on data. 

Thus in this case we obtain SPECRD provided 

max(Dpn, Do)+ 2/(c ::; DnD· (2) 

• Or PD does not function correctly, i.e. after Dpv it is not ready for pdata 

but it will he ready for the next request on pre(/ within Dpq time units. In 

this case, we have tpv = Dpn + Dpq. 

Regarding H, after it has waited D0 + D1 time units for pdata it starts to 

compute approximated data hy component C (which takes De time units) 

and then is ready for channel data. Then we have tu = Do+ D1 +De+ 2Kc. 

If tpv ::; tH, i.e. Dpn + Dpq ::; Do+ D1 +De+ 2I<c, then H does not 

have to wait for PD on preq. In this case SPECpn 1\ SPECH 1\ WFD 
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leads to 
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([term$ start+ DRq] C 
[wait(req?) U (comm(req) UT= term)] C 

[term start+ I<c] C 

[term start + D0] C 

[term start+ D1 +De] C 

[wait(data!) U (comm(data) UT= term)]) C*false 

Hence, to obtain SP ECRv, we require I<c +Do+ D1 +De $ DRv, i.e., 

I<c +Do+ Dt $ Dnv. (3) 

- If tpv > tH, i.e. Dpv + Dpq >Do+ Dt +De+ 2Kc, then H ha.s to wait 

at most tpv-tH timeunits for PD on preq. Thus SPECpvASPECHA 

WFD leads to 

([term$ start+ DRQ] C 

[wait(req?) U (comm(req) UT= term)] C 

[term start+ tpv- tH + I<c] C 

[term = start + D 0 ] C 

[term= start+ D1 +De] C 
[wait(data!) U (comm(data) UT= term)]) C* false 

Therefore we have to require tpv- tH +Kc+ Do+ D1 +De $ Dnv, i.e., 

Dpv + Dpq- I<c $ DRD· (4) 

Conditions (1), (2), (3), and (4) are the restrictions on the parameters to achieve the 

required implication. By these restrictions, we only know the relation between D0 and 

Dt. When we· implement H helow, we obtain the value of D0 and then the value of Dt 

is determined a.s well. 

Now we implement H in our programming language. We propose the following pro

cess H. 

H ::= *[ req? --+ preq!; [ pdata? --+ data! U delay D1 --+ C; data! ] ] 

where process C is such that C sat term = start+ De. 

We show that H sat SPECH. By the proof system, we can derive that H sat 'f!H with 

'f!H = ([term= start + 1<9 ] C 

[wait(req?) U (T =term- Kc A (comm(req) UT= tenn))] C 

[wait(preq!) U (T term- Kc A (comm(preq) UT= term))] C 

[term start+ K9 ] C 

[(wait(pdata?) U (T term- Kc A (comm(pdata) U 

T =term< start+ D1 +Kc))) V 

((wait(pdata?) UT= term start+ DJ) C (term stm·t +De))] C 
[wait(data!) U (T term- Kc A (comm(data) UT= term)]) C* false 
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By comparing SPECH and 'PH, we can easily derive 'PH_,.. SPECH, i.e., H sat SPECH 

and then process H is a correct implementation of the handler H, provided 

DRq ~Kg (5) 
and Do = K9 • Combining the conditions (1) through (4), we see that (1) and (3) are 

equivalent to the following condition on D1 : 

Dpv -Kg < Dt :5 DRD -Kc- Kg. (6) 
We show that (Dpv - Kg, DRD - Kc - 1<9 ] is not an empty interval, i.e., D1 can be 

found. We only have to prove that Dpv < DRv - Kc. Reeall Do K9 • If Dpv ~ D0 , 

by (2), we have Dpv + 2l<c :5 DRD and then, since Kc > 0, Dpv + Kc < DRD. If 
Dpv < Do, by (2) again, we obtain K9 + 2Kc :5 DRv, i.e. Dpv + Kc < DRD. Thus the 

condition (6) for D1 is reasonable. 

Furtbermore, by D0 = Kg, the condition (2) can he replaced by the following (2'): 

max(Dpv, K9 ) + 2Kc :5 DRD. (2') 
Hence the final restrictions on the parameters are (2'), (4), (5), and (6). 

2.6 Soundness and Completeness 

In this section, we consider the soundness and completenessof the proof system in section 

2.4. For the soundness of our proof system, we must show that every formula S sat <p 

derivable in the proof system is indeed valid. We first give a few lemmas which wiJl be 

used to prove the soundness. The proofs of theselemmascan be found in Appendix A. 

Lemma 2.6.1 For any expression e from the programming language, any model u, 

and any T ~ begin(u), t'{e)(u(r) . .s) = V(e)(u,r). 

Lemma 2.6.2 For any boolean guard g from the progra.mming language, any model 

u, and any T ~begin( u), Q(g)(u(r).s) iff (u, r) I= g. 

Lemma 2.6.3 For any expression vexp of type V AL, any model u, any cset Ç 

DCHAN, and any T::?: begin(u), V(vexp)(u,r) = V(vexp)([u]cset.T). 

Lemma 2.6.4 For any expression vexp of type V AL, any model u, any vset Ç V AR, 

and any T ~begin( u), if var(vexp) Ç vset, then V(vexp)(u, r) = l((vexp)(u! vset, r). 

Lemma 2.6.5 For any expression texp of type TIME, any model u, any cset Ç 

DCHAN, and any T 2: begin( er), T(texp)(u, r) = T(lexp)([u]cstt, r). 

Lemma 2.6.6 For any expression te:n> of type TIME, any model a, any vset Ç V AR, 

and any T ~begin( u), if var(tex71) Ç vset, Uwn T(texp)(u, r) = T(te.rp)(u! vset, T). 



40 GRAPTER 2. SYNCIIRONOUS COMMUNICATION 

Lemma 2.6. 7 For any cset Ç DCHAN and any specification rp, if dch( r.p) Ç es et, then 

for any model a and any T 2: begin( a), (a, r} f= r.p iff ([a]cset 1 r) f= r.p. 

Lemma 2.6.8 For any vset Ç VAR and any specification rp, if var(r.p) Ç vset, then 

for any model a and any T 2: begin( a), (a, r) f= r.p iff {a! vset, r) f= r.p. 

Given these lemmas, we have the following soundness theorem. 

Theorem 2.6.1 (Soundness) The proof system insection 2.4 is sound. 

To prove this theorem, we have to show that all axioms are valid and all inference 

rules preserve validity, i.e., if the hypotheses of any rule are valid, so is the condusion. 

For most axioms and inference rules, soundness follows directly from the definitions of 

semantics and given lemmas. The detailed proofs can be found in Appendix B. 

We would also like the proof system to be complete, i.e. if S sat <p is valid then it is 

derivable from our proof system. Observe that the consequence rulerelies on implications 

that are formulae in Explicit Clock Temporal Logic (ECTL), and hence the completeness 

of our proof system also requires that every valid ECTL formula is provable. Since proof 

systems for ECTL are beyond the scope of this thesis, we prove relative completeness: 

Every valid specification is derivable in our proof system, assuming that any valid ECTL 

formula can be proved. 

We first give some lemmas which will be used in the completeness proof. The proofs 

of these lemmas can be found in Appendix A. 

Lemma 2.6.9 For any model 0' and any cset Ç DCH AN, dch(O') Ç èset iff 0' = (O']cset· 

Lemma 2.6.10 For a.ny model 0' and any cset1 ,cset2 Ç DCHAN, 

if {0', begin(O')) f= 0 empty(cset2 \ cset1), then [O']csct1ucset2 [a]cset1 • 

Lemma 2.6.11 For any model 0' and any vset 1 , vset2 Ç VAR, 

if {a, begin(O')} f= 0 inu(vset2 \ tJset 1), then al (u.~el 1 U vset2 ) = 0' l uset1. 

Lemma 2.6.12 For any model a, if dch(O') Ç c,,et and (O',begin(O')) f= WF~set, then 

0' is well-formed. 

In order to prove the relative completeness of our system, we define a property of 

specifications called preciseness. 

Definition 2.6.1 (Invariant Variabie) A variabie a~ i~ i1wa1·iant with respect to a 

model a iff for all T, begin( a)~ T cnd(O'), a(r).s(:1:) .s(1~). 
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Definition 2.6.2 {Preciseness) A specification 1fl is precise fora statementS of the 

programming language in sectien 2.1 iff 

1. S sat 1f1 holàs, i.e., (a, begin( u)} I= lfl, fer any 11 E M(S); 

2. If 11 is a well-formed model, dch(a) Ç dch(S), for any variabie x f/:. wvar(S), x is 

invariant with respect toa, and (a,begin(u)) I= lfl, then 11 E M(S); and 

3. dch(lfl) = dch(S) and var(lfl) = var(S). 

A precise specificatien 1f1 for S thus charàcterizes all pessible cemputatiens of S: 1f1 is 

valid forS, and any "reasonable" computation satisfying 1f1 is a possible cemputatien of 

s. 
We first prove that for any statement S a precise specificatien can he derived from 

the axioms and inference rules (Theorem 2.6.2). We then show (in Theorem 2.6.3) that 

any specificatien 1f12 which is valid for S can be derived from a precise specificatien lfll for 

S and three predicates. Hence, relative cempleteness fellews directly (Theorem 2.6.4). 

Theorem 2.6.2 If S is a statement from the programming language in section 2.1, 

then a precise specification fer S cao be derived by using the proof system in section 

2.4. 

The proof of this theorem can be found in Appendix C. 

Theorem 2.6.3 · If lflt is precise for S and 1f12 is valid for S, then 

I= [lflt A WF.tch(.,.1 ) A 0 [empty(dch(lfl2) \ dch(lflt)) A inv(var(1f!2) \ var(lflt))]]-+ lfl2· 

Proof: Let 1f11 be precise for S and 1f12 be valid for S. Consicier a model u. Assume tha.t 

(a, begin( a)) I= lflt A W Fdch(~~>d A 0 [empty(dch(1f!2) \ dch(lflt)) A inv(var(1f!2) \ var(lflt))] 

holds. We show (a, begin( u)) I= if12· 

By (u, begin( u)} I= lflt, lemma 2.6.7leads to ([a]dch(~~>d• begin( u)) I= lflt· By lemma 2.6.8, 

([u]dch(.,.!) i var(lflt),begin(a)} I= ifii· From (u,begin(a)) I= WFdch(;<>l), hy lemma 2.6.7, 

we ohtain ([uJdch(;<>l), begin( u)) I= W Fdch(;<>l)· Then, by lemma 2.6.12, [u)dch(;<>>) is well

formed. By definition, [a]dch(op!) ! var( lfld is also well-formed. Si nee lflt is precise for 

S, we have dch(lfl1 ) dch(S) and var(1f!1 ) = var(S). By the definition of projection 

onto variables, any variabie x'/:. wvar(S) is invariant with respect to [u]dch(;<>J) i var{lfll)· 

Hence by the definition of preciseness, [u]dch('l'd ! var( ifii) E M(S). 

From (u, begin( u)) I= 0 empty(dch(1f!2 ) \ dch(lfll)), lemma 2.6.10 leads to 

[u]dch(~~>J)udch(;<>>) = [a)dch('1'1 )· Since (a,begin(u)) I= Oinv(var(1f!2) \ var(lflt)), lemma 

2.6.11 leadstoa! (var(lflt) U var(1f12)) a! var(1f11 ). Thus we obtain 

[a]dch(;<>l)udch('Pl) ! (var( lfld U var( lfl2)) = [a]dch(.",l) l var( lfld· Therefore we have 
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[O']dch('l't)Udch('h)! (var( !pi) U var(!f2)) E M(S). Since 1p2 is valid forS, we obtain 

([O']dch('l't)Udch('h) ! (var( ~Pi) U var(!f2)), begin(q)) I= !f2· From var(!f2) Ç var( !ft) U 

var(!f2), lemma2.6.8leads to ([O']dch('l't)udch(:n)• begin(q)) I= 1p2. By dch(IP2) Ç (dch(!f1)U 
dch(ip2 )), lemma 2.6.7leads to {O',begin(q)} I= lf12 • Hence this theorem holds. 0 

Theorem 2.6.4 (Relative Completeness) The proof system insection 2.4 is rela

tively complete. 

Proof: For any process S, assume that specification lP is valid for S. We prove that 

S sat <p is derivable in the proof system in section 2.4. By theorem 2.6.2, we have 

S sat <p1 where 1p1 is a precise specification forS. By the well-formedness axiom, we ob

ta.in S sat WFdch('l'•)· Since dch(ipt) dch(S), we have [dch(IP) \ dch(~P1 )] ndch(S) == ~
Then by the communication invariance axiom, we obtain S sat 0 empty( dch( lP) \ 

dch(!ft)). From var(ipt) var(S), we have [var(IP) \ var(IP1)] n var(S) == ~ and 

thus [var(cp) \ var(cpt)] n wvar(S) == ~. By the variabie invariance axiom, we obtain 

S sat 0 inv( var( cp) \var( cp1 ) ). Then the conjunction rule and the consequence rule lead 

toS sat !ftll W Fdch(<+>t) 11 0 [empty(dch(cp) \ dch(ipt)) 11 inv(var(cp) \ var(cpt))]. By the

orem 2.6.3, [!f1 11 W Fdch(<+>d 110 [empty(dch(IP) \ dch(cpt)) 11 inv(var(!f) \ var(cpl))Jl--> cp 

is va.lid and, by our relative completeness assumption, provable. Hence, by the conse

quence rule, S sat lP is derivable in the proof system. 0 



Chapter 3 

Asynchronous Communication 

In this chapter, we study, a verification theory for asynchronously communicating reai

time systems. In section 3.1, wedefine the asynchronous version of our programming 

language in which parallel processes communicate through asynchronous message pass

ing. A compositional semantica is given in section 3.2. The asynchronous version of 

the specification language is presented in section 3.3. A compositional proof system is 

shown in section 3.4. The soundness and completeness issues are discussed in section 

3.5. 

3.1 Real-Time Programming Language 

3.1.1 Syntax and Informal Semantics 

Consicier a reai-time programming language in which parallel processes communicate 

by sending and receiving messages along channels. A channel connects exactly two 

processes. Communication is asynchronous, that is, a sender does not synchronize with 

a receiver but sends its message immediately. Sirpilar to the programming language in 

chapter 2, a reai-time statement delay e is added to suspend execution for a certain 

period of time. Such a delay-statement mayalso occur in a guard of a guarded command. 

Parallel processes do not share variahles. Nested parallelism is allowed. 

Similar to chapter 2, let VAR he a nonempty set of variahles, CHAN be a nonempty 

set of channel names, and VAL be a nonempty domain of values. The syntax of the 

reai-time progra.mming language is givcn in ta.ble 3.1, with c,ci E CHAN, x, x; E VAR, 

n E IN, and n ~ 1, where IN denotes thesetof all natura] numhcrs. 

Notice that this programming language is similar to the programming language in 

chapter 2 section 2.1, except three statements invalving communication. We give the 

informal meaning of these three statements as follows: 

Atomie statements 

43 
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Table 3.1: Syntax of the Programming Language in Chapter 3 

Expression 

Guard 

Statement 

e ::= {} I x I e1 + e2 I e1 - e2 I e1 x e2 

g ::= e1 e2 I e1 < e2 I -,g I Ut V Y2 

S ::= skip I x e I delay e I c!!e I c??x I 
Sl;S2 I G I *G I StiiS2 

Guarded Gommand G ::= [Dr=1g;-+ S;] I [0i=1g;;c;??x;-+ S;Ogo;delaye-+ So] 

• c!!e sends the value of e to the buffer of channel c. We assume that there is an 

(unbounded) buffer for every channel. Since the communication is asynchronous, 

c!!e never waits for its communication partner. 

• c??x reads a value from the buffer of channel c and assigns it to variabie x. If the 

buffer is empty, c??x has to wait until a message arrives. 

Compound statements 

• The execution of a guarded oommand [0f=1g;;c;??x;-+ S;Ogo;delay e-+ S0 ] is 

similar to the execution of [0~1 g;;c;?x;-+ S;0g0;delay e-+ S0] from chapter 2, 

except that the communication in the guards here is asynchronous. 

Similar to chapter 2, any statement in this programming language is called a process. 

A write-variable is a variabie which occurs in a receive statement (i.e. c??x) or on the 

left hand side of an assignment. Let S be any statement. We a.lso use var(S) and 

wvar(S) to denote the set of variables and write-variables occurring in S, respectively. 

We define ch(S) as the set of all channel narnes occurring in S, ich(S) as the set of 

all input channel narnes occurring in S, and och(S) as the set of all output channel 

narnes appearing inS. Notice that ich(S)Uoch(S) = ch(S) and ich(S)noch(S) denotes 

thesetof internal channels. For instance, ch(c!!5) = och(c!!5) = {c}, ich(c!!5) = çS, 

ich(c!!3; d??xllc??y) = {c,d}, and och(c!!3;d??xllc??y) {c}. 

3.1.2 Basic Assumptions 

Similar to chapter 2, we assume that there is no overhead for compound statements and 

that a delay e statement takes exactly e time units if the value of e is not negative. 

We also assume given positive parameters Ka and K9 such that each assignment takes 

Ka time units and the evaluation of the guards in a gua.rded command takes K9 time 

units. The new assumption here is that we assume a positive pa.rameter Kc such that 

each sending takes Kc time units and each reading takes ]{c time units. It is possible to 

generalize these assumptions, for instance, sending and reading take different times. 
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In this chapter we also use the maximal pamllelism model to represent the situation 

that each parallel process runs at its own processor. Hence any action is executed as 

soon as possible. A process only waits when it tries to receive a message from a channel 

but the buffer for that channel is empty. 

3.2 Compositional Semantics 

In this section, we give a compositional semantics for the programming language defined 

insection 3.1. First wedefine a computational modelinsection 3.2.1. Then we describe 

the formal semantics in section 3.2.2. 

3.2.1 Computational Model 

Similar to chapter 2, the timing behavior of a process is expressed from the viewpoint 

of an external observer with his own doek. Thus we wiJl use the same time doma.in 

TIME as defined in chapter 2, i.e., TIME { T E IR I r ~ 0}. We will also use the 

notations defined there, for instance, [r0 , r1], denoting a closed interval of time points, 

( To, T1], representing a left-open and right-closed interval, and so on. 

Next wedefine a model representing a reai-time computation of a process. 

Definition 3.2.1 (Model) Let r0 E TIME, r1 E TIMEU {oo}, and r1 ~ r0 • A model 

<T is a mapping <T: [To,T1j---> STATE x p(COMM) x p(COMM), where 

STATE= {sIs: VAR---> VAL} and COMM = {(c,!?) I c E CHAN and tJ E VAL}. 

Define begin(<T) = To and end(<T) = r1 • Thesetof all moclels is denoted by MOD. 

Consider a model <Tand aT E [begin(<T),end(<T)]. Then we have o-(r) (s,S,R) with 

sE STATE, S Ç COMM, and R Ç COMM. Henceforth we refer to the three fieldsof 

o-( r) by o-( r ).s, o-( r ).S, and <T( r ).R, respectively. Informally, if o- models a computation 

of a process P, begin(o-) and end(<T) denote, resp., the starting and terminating times 

of this computation (end( u) oo if P does not termina.te). Furthermore, <T(begin(o-)).s 

specifies the initia! state of the computation, and if end(u) < oo then <T( end( <T) ).s gives 

the final state. We wil! use o-6 to denote u(begin(<T)) and, if end(o-) < oo, u• to denote 

u(end(<T)). In genera), <T(T).s represent.s the values of variables. Fora channel c and a 

value tJ E VAL, a record ( c, tJ) has the following meaning: 

• ( c, d) E <T( T ).S iff process P or the environment of P has sent value fJ along c at 

timer; 

• ( c, fJ) E <T( r ).R iff process P has rcad value ;7 from ( the buffer of) channel c at 

timer. 
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Note that, using the syntax of process P, we can observe if a message has been sent by 

P itself or by its environment. For instance, if P =: c!!5 and u rèpresents an execution 

of P, we are sure that if ( c, 5) is in some S-field of u, val ue 5 is sent by P itself, si nee 

it is assumed that each channel connects exactly two processes. On the other hand, if 

P =: c?.?x and (c, 5) occurs insomeS-field of u, value 5 is sent by the environment of P. 

In the description of the semantics we use the following definitions. 

The definition about the variant of a state s is the same as the one in chapter 2. 

Definition 3.2.2 (Input Channels Occurring in a Model) Thesetof input chan

nels occurring in a model a, denoted by ich(u), is defined as 

ich(a) = Ubegin(u)'!fr'!fend(u) {c I there exists a{) E V AL such that (c, '!?) E u(r).R} 

Definition 3.2.3 (Prefix of a Model) A model u1 is a prefix of model u 2 , de

noted by a 1 ;:: u2 , iff begin(ut) = begin(u2 ), end(uJ) $ end(a2 ), and for any T E 

[begin(ut),end(at)], a1(r) = a2(r). Define u 1 --< u 2 as a 1 :: a 2 A end(ut) < end(a2 ). 

Definition 3.2.4 (Concatenation of Models) The concatenation of two models a 1 

and a2 , denoted by a1 0'2 , is a model a defined as follows: 

• if end(O"t) oo, then u= u 1 ; 

• if end(O"t) < oo, end(O"I) = begin(a2 ), and aî.s = u~.s, then 0' has domain 

lb . ( ) d( )] d. d fi db ( ) { u1(r) TE [begin(ai),end(O't)] egtn a 1 , en a2 an ts e ne y 0' T = 
uz(r) TE (begin(u2), end(uz)] 

• otherwise u is undefined. 

Definition 3.2.5 (Sequence) A sequence q is a finite or infinite list of values. If it is 

infinite, it takes the form of (t?h t92, ... ) with iJ; E VAL, for any i ~ 1, and its length 

lql is oo. If it is finite, it has the form of (t9t, ... , {)n) for some n ~ 0, n E IN, with 

fJ; E VAL, for any i, 1 $ i $ n, and its length lql is n. If n 0, it is an empty sequence 

and denoted by {). Thesetof all sequences is denoted by QU E. 

For any nonempty sequence q, First(q) gives the first element of q. For any two 

sequences q1 and qz, q1 · q2 is the concatenation of q1 and qz. If qz is a prefix of q1, q1 - q2 

results in a sequence obtained by removing all elements of q2 from q1 , otherwise q1 - q2 

is undefined. 

Definition 3.2.6 (Buffer) A buffer is represented by a mapping which assigns toeach 

channel a sequence representing the messages in the buffer of the channel. 

Define BU F { b I b : C H AN .---. QU E} as the set of all buffers. 
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Thus b( c) specifies a sequence which represents the messages in the buffer of channel 

c. 

Next we define the sequence of messages being sent along channel c, by a process or 

an environment, aftera model a, denoted by BufS(a)(c), as follows. 

• BufS(a)(c) records every value {) for which there exists aT E [begin(a),end(a)] 

such that (c, {)) E a(T).S. 

• BufS(a)(c) is time-ordered, that is, if there exist T1 and T2 such that T1 < T2, 

(c,{)I) E a(TI).S, and (c,{)2 ) E a(T2).S, then {) 1 appears before {) 2 in BufS(a)(c). 

We can similarly define Buf R(a)(c) as the sequence of values being read by a process 

along channel c after the computation of a, namely replacing a(T).S by a(T).R in the 

corresponding places in the definition of BufS(a)(c). 

In the semantics, we assign a set of models toeach statement, representing all possible 

computations of that statement starting with an initia! buffer. To compute the resulting 

buffer after a computation a with initia! buffer b, we give the following definition. 

Definition 3.2.7 (Buffer of a Model) For any a E MOD, any c E Cl!AN, and any 

b E BU F, the buffer of channel c after a computation a starting with initia! buffer b, 

denoted by Buf(b,a)(c), is defined as Buf(b,a)(c) = (b(c)·BufS(a)(c))-BufR(a)(c). 

Thus Buf(b,a)(c) representes the sequence of values which areleftin the buffer 

of c after the execution of a which starts with initia! buffer b. The semantics of our 

programming language will he such that, for any channel c and any a from thesemantics 

of any statement S starting with any initia! buffer b, the sequcnce of messages being 

read from c is a prefix of the sequence of messages being stored at the buffer of channel 

c, i.e., Buf(b,a)(c) E QUE and thus Buf(b,a) E BUF. 

We will use Buf(b, a1a2 · · · an) to denote Buf(Buf(- · · (Buf(b, ai), a2), · · ·), an)· 

Definition 3.2.8 {Concatenation) For any F~> F2 E EU F-+ r(MOD), wedefine 

CON(F1, F2) E BU F-+ r(MOD) by 

CON(F1,F2)(b) = {a1a2l a1 E F1(b), a2 E F2(BuJ(b,aJ)), and Buf(b,aJ) E BUF}. 

It is not difficult to see that CON is associative, i.e., 

CON(F~> CON(F2, F3 ))(b) = CON(CON(F1, F2 ), F3 )(b). 

Henceforth, we use CON(FI> F2 , F3 )(b) to dcnote CON(F1 , CON(F2, F3 ))(b). 
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3.2.2 Formal Semantics 

The meaning of a process S, denoted by M(S), associates toeach element b E BU F, a 

set of models repreaenting all possible computations of S starting at an arbitrary time 

where the initia! contents of the buffer of each channel c is given by b( c). For any process 

S and a buffer b E BU F, we define M ( S)( b) by induction on the structure of S. 

The evaluation of an expression e from the programming language insection 3.1 is a 

function &( e) : ST AT E -+ V AL, which is defined similarly as in chapter 2 section 2.2.2. 

The evaluation of a guard g from the language at a state s, denoted by Q(g)(s), is also 

defined similarly as in chapter 2 section 2.2.2. 

Befare giving the semantics, we need to make a general assumption about the S

fields of any model. Since the S-fields of a model contain all the valnes sent to a process, 

especially by its environment, we do not describe those S-fields in the semantics of the 

process. Instead, they only need to obey the following assumption. 

General Assumption 

For any model o-, any c E CHAN, any r, begin(o-) :5 r :5 end(o-), and any '!91, '!92 E V AL, 

the following holds: 

(c, t7t) E o-(r).S 1\ (c, 172) E o-(r).S-+ t?t = '!92. 

lnformally, this means that there can be at most one value being sent along a channel at 

any time point. This assumption will be used in, for instance, a theorem concerning the 

relative completenessof a proof system for this asynchronous version of the programming 

language. 

We first define a predicate Jdle(u), which expresses that all states are equal to the 

initia! state and no message bas been read during the execution of u; 

Definition 3.2.9 For any model n, Idle(o-) iff for any TE [begin( u), end( u)], u(r).s = 

ub.s and u(r).R = (<). 

Skip 

Statement skip terminates immediately without any state change or communication. 

The S-fields of any model of this statement indica.te the messages sent by its environment 

and thus obey the general assumption. 

M(skip)(b) = {o- J begin(u) end(o-) and Idle(u)} 

Assignment 

Statement x e assigns the value of e to variabie x and t.ermina.tes a.ft.er I< a time units. 

All intermediate states before termination are the same as t.he initia! one. The state at 
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termination also equals to the initia! state except that the value of x is replaced by the 

value of e evaluated at the initia) state. The R-fields of any model of this statement are 

empty during the execution period since this statement does not receive messages. But 

the S-fields show the messages sent by the environment and thus also obey the general 

assumption. 

M(x := e)(b) {u I end(u) begin(u) +Ka, for any u'-< u,Idle(u'),u'.R= fii, and 

u•.s (ub.s: x f-+ C(e)(ub.s))} 

Delay 

M(delay e)(b) ={u I end(u) begin(u) + max(O,C(e)(u6.s)) and Idle(u)} 

Send 

Statement c!!e sends the value of e to the buffer of channel c. This is represented by 

a record (c, D0 ), where D0 is the value of e, in the S-field at termination. But before 

that point, there should be no record ( c, t?), for any D E V AL, in any S-field, because c 

is an output channel of .the statement itself and thus the environment cannot send any 

message along c. 

In order to express that no message should be sent along a set of channels during a 

computation, we define the following predicate. 

Definition 3.2.10 For any model u and any cset Ç C li AN, N omsg( u, es et) iff for any 

c E cset, a.ny r E [begin( u), end( u)], and any D E V AL, (c, t?) f:. O"( r ).S. 

Furthermore, it is possible that the environment of c!!e scnds some value along another 

channel d ;f= c during the execution of c!!e. Thus wc need the fol!Qwing definition, which 

expresses that the projection of a model u onto a set of channel narnes cset at S-fields 

is the same as O" except that the new S-fields contain only thosc records for which the 

channel name belongs to cset. 

Definition 3.2.11 (Projection onto Channels at S-Fields} Let cset Ç CHAN. 

Define the projection of a model 0' onto cset at S-fields, denoted by [O"J~set> as follows: 

begin([uJ~.1 ) begin(a), end([u]~•etl = end(a), 

for any rE [begin(O"),end(u)], [0"]~ •• 1(T).s = O"(T).s, [uJ~set(T).R O"(T).R, and 

[O"J! •• 1(T).S = {(c,D) I (c,D) E a(r).S and c E cset}. 

The semantics of c!!e is then defined as: 

M(c!!e)(b) {O" I end(O") begin(O") +Kc, for any 0"
1 -< O", l<lle(u'), Nomsg(u', {c}), 

a•.s = 0'b.s, O"•.Jl = 0, and ([O"Jfc})'.S = {(c,C(e)(ub.s))}} 
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Receive 

During the execution of a receive statement c??x there are generally two periods: first 

there is a waiting period during which the initia! buffer of c is empty and no message 

has been sent by its environment along channel c. Next, when the initia! buffer of cis 

not empty or some message has been sent by the environment along channel c, there is a 

period of Kc time units during which the actual reading takes place. When the reading 

finishes, x gets the first value from the buffer of channel c. Let 

WRead(c??x)(b) ={u I ldle(u), for any u'-< u, Buf(b,u')(c) = (), and 

if end(u) < oothen Buf(b,u)(c) =f:. ()} 

and 

Read(c??x)(b) ={u I end( u)= begin( u)+ K0 for any u'-< u, I die( u'), 

u•.R = {(c,First(b(c)))}, and u•.s = (ub.s: x~--+ First(b(c)))} 

Then thesemantics for c??x is defined as: 

M(c??x)(b) = CON(WRead(c??x), Read(c??x))(b) 

Sequential Composition 

To give the correct semantics of St; S2 , the models of St and S2 should agree with each 

other such that, if c is an output channel of St but not an output channel of S2 , then 

(c, d}, for any '1.9 E V AL, should not be in any S-field of the model of S2 , because cis an 

output channel of St; S2 and thus the environment of St; S2 cannot send any message 

along c. If c is an output channel of S2 but not an output channel of S1 , a similar 

reasoning holds. Let 

Agree(u1 , u2, Sll S2) =: Nomsg( u~> och(S2 ) \ och(St)) A Nom.sg(u2, och(St) \ och(S2)). 

Thesemantics of sequentia! composition is then defined as: 

M(St; Sz)(b) = 
{u1u2l u1 E M(St)(b),u2 E M(S2)(Buf(b,ut)), and Agree(Ut.U2,St,S2)} 

Guarded Command 

Define Gt = 11Ji=1g;-+ S;], G2 = [0i=1g;;c;??x;-+ S;0delay e ....... So], jj = V:':1 g; for 

G11 g = V'i:o g; for G2, and c = { c" ... , C11,} for G2. 

Consider G1 first. Th ere are two possibilities for the execution of G1 : either none of 

the boolean guards evaluates to truc and then this emumand terminates after evaluation, 

or at least one guard g; yields true and then the conesponding sta.tement Si is executed. 

Reeall that the evaluation of guards takes /{9 time units. During the evaluation 
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period, the S-fields of any model of G;, for i = 1, 2, should not contain any (c, !?) with 

c E och(G;) and iJ E V AL, because the environment of G; cannot send any message to 

och( G;) a.nd G; itself has not yet sent val u es to och( Gi). For i = 1, 2, define 

Eval(G;)(b) {u I end(a) = begin(a) + K 9 ,Idle(a), and Nomsg(u,och(G;))}. 

Then the semantics for G1 is given as follows. 

M([0r=1g; ..... S;})(b) ={u I Q(...,g)(ub.s) a.nd u E Eval(Gt)(b)} u 
{u1u2 I there exists a k, 1 :::; k:::; n, such that Ç(gk)(ut.s), 

Ut E Eval(Gt)(b), a2 E M(Sk)(Buf(b,ui)), 

and Nomsg(u2 , och(G1 ) \ och(.S,.))} 

During an execution of a guarded commanq [0~1g;; c; ??x; -+ S; Dooi delay e--> So], first 

the guards g;, for i= 0, 1, ... , n, are evaJuated. Then, 

• if none of the g; evaluates to true, then the command terminates; 

• if g0 evaluates to true, e is positive, and at least one of the e;??x; for which g; 

evaluate to true can start reading messages in less than e time units, then one of 

the first possible c; ?? x; and its corresponding S; are executed; 

• if g0 evaJuates to true and either eis not positive or none of the c;??x; for which 

g; are true can start reading in less than e time units, then 80 is executed; 

• if g0 evaluates to false, then the command waits until one of the c;??x; for which 

g; are true can read messages. Then one of the first possible c; ??x; and its corre

sponding S; are executed. 

To give the semantics for G2 , we first define two abbrevia.tions: 

Wait(G2 )(b) ={ui Ç(g)(ub.s),Idle(u),Nomsg(a,och(G2 )), for any u'--< u, any i, 

1:::; i 5 n, either Ç(...,g;)(ub.s) or Buf(b,u')(c;) = (}, 
and if end( u) < oothen there exists a k, 1 :::; k :::; n, such that 

Ç(gk)(ub.s) and Buf(b,u)(ck) ::/= {)} 

Gomm(G2 )(b) ={u I there exists a k, 1 $ k $ n, such that Ç(gk)(ub:s), 

u E M(ci<)?xk; Sk)(b), a.nd Nomsg(a,och(G2 ) \ och(Sk))} 

Notice that Wait(G2 )(b) is similar to W Read(c??x)(b). 

Using Wait(G2 )(b), wedefine the following additional abbreviations: 

FinWait(G2 )(b) {u I Ç(g0 )(ub.s),end(u) < begin(u) + nwx(O,t'(c)(ab.s)), 

and u E Wait(G2 )(b)} 

Time0ut(G2 )(b) {a1u2 I Ç(g0 )(ur.s), end( ad= bcgin(ul)+m.a;~:(O,t'(e)(a!.s)), Idle(ut), 

Nomsg(a1,och(G2 )), for any c; E c, Buf(b,ut)(c;) = (}, 
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fY2 E M(So)(Buf(b, at)), and Nomsg(a2, och(G2 ) \ och(S0 ))} 

AnyWait(G2)(b) {a I Ç(...,g0 )(ab.s) and u E Wait(G2)(b)} 

Then the semantics for G2 is given as follows. 

M([IJr=1g;; c;??x;-+ S; IJ go; delay e-+ So])(b) = 
{a I Qhg)(ryb,s) and a E Eval(G2 )(b)} U 

CON(Eval(G2 ), FinWait(G2 ), Comm(G2))(b) u 
CON(Eva/(02 ), Time0ut(G2 ))(b) u 
CON(Evai(G2 ), AnyWait(G2 ), Comm(G2 ))(b) 

Iteration 

For a model in the semantics of *G starting with a buffer b, there are two possibilities: 

• either it is a concatenation of a finite sequence of models from M(G)(bi), forsome 

b;, such that each model corresponds to an execution of G starting with b; and 

either the last model represents a nonterminating computation of G or all boolean 

guards evaluate to false at the initia! state of the last model, 

• or it is a concatenation of an infinite sequence of models from M(G)(b;), forsome 

b;, such that each model represents a terminating computation of G starting with 

b; and not all boolean guards yield false at the initia! state of each model. 

Thus we have the following semantics for *G. 

M(fu)(b) = {q I there exist a k E IN, k 2: 1, and ub ... , fYk such that u = Ut • • · fYk, 

fY1 E M(G)(b), for any i, 2:5 i :5 k, u; E M(G)(Buf(b,u1 • • ·O';_t)), 

for any j, 1 :5 j :5 k -1, end(uj) < oo,Ç(g)(aj.s), and 

if end( uk)< oothen Ç(...,g)(uz.s) otherwise Ç(g)(ai.s)} 

U {a I there exists an infinite sequence of models Ut,a2 , •.• , such that 

Parallel Composition 

CJ O't0'2 · · ·, O't E M(G)(b), for any i 2: 2, 

a; E M(G)(Buf(b, a 1 · · · a;- 1)), for any j 2: 1, 

end(aj} < oo, and Ç(g)(aj.s)} 

In order to define thesemantics of parallel composition, we first need a few definitions. 

The first definition expresses that the projection of a model a onto a set of channel 

narnes cset at R-fields is the same as a except that the new R-fields contain only those 

records for which the channel name belongs t.o c.set. 
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Definition 3.2.12 (Projection onto Channels at R-Fields) Let cset Ç CHAN. 

Define the projection of a model a onto cset at R-fields, denoted by [aJ:!et> as follows: 

begin([aJ:!.t) = begin(a), end([a]~e~) = end(a), 

for any TE [begin(u),end(u)], [u]~.t(r).s = u(r).s, [uJ~et(r).S u(r).S, and 

[u]:!.t(r).R = {(c, 19) I (c, t?) E a(r).R and c E cset}. 

The projection of a model 0' onto a set of variables vset is the same as u except that 

if a variabie does not belong to vset then its value at all states is the same as its initial 

value in a. 

Definition 3.2.13 (Projection onto Variables) Let vset Ç VAR. Define the pro

jection of a model u onto vset, denoted by a 1 vset, as follows: 

begin(a 1 vset) = begin(u), end(u1 vset) = end(a), for any TE [begin(u),end(u)J, 

(u 1 vset)(r).S = u(r).S, (u l vset)(r).R u(r).R, and for any x E VAR, 

(u! vset)(r).s(x) 
{ 

u(r).s(x) xEvset 

ub.s(x) xrtvset 

The semantics of Sti1S2 consists of all models a for which there exist models a1 E 

M(SI) and u2 E M(S2 ) such that 

• the S-fields of u are the same as those of O't and a2 because the S-fields contain 

the messages that have been sent in the whole system; 

• the R-fields of the projection of u onto ich(S;) at R-fields should be the same as 

the corresponding R-fields of u;; 

• the value of a variabie x during the execution of Stil S2 is obtained from the state of 

a; if x E var(S;), and from the initia.! state otherwise, si nee var( St) nvar(S2 ) = 0; 

• if St terminates before S2, the S-fields of a2 should not contain any {c, 17) with 

c E och(St) and 17 E V AL after St has terminated, beca.use c E och( St) implies 

c f/. och(S2 ) and the environment of StiiS2 cannot send any message to c either. 

Similarly, for St and S2 interchanged. To express this property, we have the 

following predicate Gons. 

Definition 3.2.14 For any statements St, S2 , and any moelels a 1 , a 2 , 

Gons( at, u 2 , S11 S2 ) iff 

• if end(O't):.:; end(a2), then for any c E och(S1), a.ny 1? E V AL, and any 

TE (end(a1 ), end(u2 )], (c, fJ) ~ a2(T).S; 

• if end(a2 ) <end( ai), then for any c E och(S2 ), any iJ E V AL, and any 

TE (end(a2 ),end(ut)], (c,t?) rf. a 1(r).S. 
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The initia! buffers of joint channels of S1 and 52 should not contain any message. 
" Thus, given any initia! buffer b, 

• if there exists acE ch(S1 ) n ch(S2 ) with b(c) =f. (), then M(S11IS2 )(b) 0; 

• otherwise M(Stll52)(b) = 

{u I ich(u) Ç ich(St) U ich(S2), for i= 1, 2, there exist u; E M(S;)(b) such that 

begin( u)= begin( u;), end( u)= max(end(u1 ), end(u2)), 

for any r1 E [begin( u;), end( u;)], u(r1 ).S = u;(r1 ).S, 

[u]f!h(s,)(rt).R = u;(rt).R, (u! var(S;))(rt).s u;(rt).s, 

for any r2 E (end( u;), end( u)], [u]f!h(S;)(r2 ).R 0, {u! var\S,))(r2 ).s = uf.s, 

for any x f/. var( St) U var(S2 ) and any TE [begin( u), end( u)], 

u(r).s(x) = ub.s(x) = ur.s(x), 

for any c E eh( St) n ch(S2), b( c) = (), and Gons( Ut, o-2, SI> S2)} 

Similar to chapter 2, we alsodefine aso-called well-formedness property of the semantics. 

Definition 3.2.15 (Weii-Formedness) A model u, defined in section 3.2.1, is well

formed iff for any c E CHAN, any r, begin( u) s; T s; end( u), and any t?1, t? 2 E VAL, 

the following holds: 

• (c,t?t) E u(r).RA (c,t?2) E u(r).R-+ t?1 = {)2· 

(Uniqueness: at most one vaJue is rcceived on a channel at a.ny time point.) 

And then we also have the following theorem. 

Theorem 3.2.1 For any process S and any buffer b, if u E M(S)(b), then 

• ich(u) Ç ich(S), 

• if x f/. wvar(S), then for any r, begin(u) $ r s; end( u), u(r).s(x) = ub.s(x), and 

• u is well-formed. 

This theorem can be easily proved, by induction on the structure of S. 

3.3 Specifi.cation Language 

Wedefine a specification languagc which is basedon Explicit Clock Temporal Logic, i.e., 

ordinary linear time temporallogic augmented with a global doek variabie denoted by 

T. Intuitively, Trefers to the current point of time dnring an execution. We use start 

and term to express the starting and terminating times of a computation respectively 

(term= oo fora nonterminating computation). We also use first(x) and init(c) to 
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refer to the value of x at the first state of a computation and the initia) buffer of channel 

c, respectively. Notice that last(x) (from the specification language in chapter 2) is not 

needed here. To specify the communication behavior of processes, it is sufficient to use 

two primitives send( c, vexp) and receive(c, vexp), which express sending and receiving 

of expression vexp along channel c, respectively. To abstract from values, we also use 

send( c) and receive( c). Similar to chapter 2, this specification language include the 

strong until operator, u' the "chop" operator c' and the "iterated chop" operator c·. 
In this specification language, there are three kinds of expressions, i.e., qexp, vexp, 

and texp, to express values of type QUE, VAL, and TIME U {oo}, respectively. A 
specification is denoted by r.p. The syntax of this langua.ge is given in tabel 3.2, with 

w E QU E, c E C H AN, {) E V AL, x E V AR, and f E TIME U { oo}. 

Table 3.2: Syntax of the Specification La.nguage in Chapter 3 

Que Exp 

Val Exp 

Time Exp 

Specification 

qexp ::= w I init(c) 

vexp::= {) I x I first(x) I Jirst(qexp) I max(vexpt,vexp2) 

vexp1 + vexP2 I vexp1 vexP2 I vexp1 x vexp2 

texp ::= f I T I start I term I vexp I 
texp1 + texp2 I texp1 texP2 I texp1 x texp2 

qexp1 qexp2 I texp1 = texp2 I texp1 < texp2 

send(c,vexp) I send(c) I receive(c,vexp) I receive(c) 

"P1 v 1P2 1 -.r.p I 1P1 u 1P2 1 1P1 c r.p2 I 1P1 c· "P2 

Let exp he any expression from this specification language, i.e., exp can he some 

qexp or texp. Define the input charmels of exp, denoted by i eh( exp ), to he the set of 

all channel narnes occurring iri init(c) in exp. Define the variables of exp, denoted by 

var( exp), to he the set of all variables occurring in cxp. Let r.p be any specification. 

Wedefine ich(r.p) to be thesetof all channel narnes occurring in init(c), receive(c), or 

receive(c, vexp) in ip, forsome vexp. We alsodefine tJar(ip) to be thc set of all variables 

occurring in if>· 

Next we give the interpretation of this specification language. We first define the 

value of a sequence expression qexp at model u, initia! buffer b, and time 1' ;::: begin( u), 

1' E TIME, denoted by Q(qexp)(u,b,1'), as follows. 

• Q(w)(O",b,1')=w 

• Q(init(c))(u,b,1') b(c) 

The value of expression vexp at model u, initia! buffer b, and timeT ;::: begin(u), 

1' E TIME, denoted by V(vexp)(O",b,1'), is dcfined as follows. 
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• V(t?)(u,b,r)=t? 
[' 

• V(x)(u,b,r) = { u(r).s(x) if r :5 end(u) 
u•.s(x) if r >end( u) 

• V(first(x))(u,b,r) = ub.s(x) 

• V(first(qexp) )(u, b, r) = FiT'st( Q(qexp)(u, b, r)) 

• V(max(vexPt, vexp2 ))(u, b, r) = max(V(vexpt)(u, b, r ), V(vexP2)(u, b, r)) 

• V(vexp1 0vexP2)(u, b, r) = V(vexpl)(u, b, r)0V(vexp2)(u, b, r), for 0 E { +,-,x}. 

The value of a time expression texp at model u, initial buffer b, and time r ;::: 

begin( u), rE TIME, denoted by T(texp)(u, b, r), is defined as follows. 

• T(f)(u,b,r) = f 

• T(T)(u,b,r) r 

• T(start)(u, b, r) begin( u) 

• T(term)(u,b,r) end(u) 

• T(vexp)(u, b, r) = V(vexp)(u, b, r) 

• T(vexp10vexp2 )(u, b, r) = T(vexpt)(u, b, r)0T(vexP2)(u, b, r), for 0 E { +,-,x}. 

The interpretation of a specification r.p at model u, in i ti al buffer b, and time r ;::: 

begin( u), r E TIME, denoted by (u, b, r} f= r.p, is defined by inductkm on the structure 

of r.p. 

• (u,b,r} f= qexp1 qexp2 iff Q(qexpi)(u,b,r) Q(qexp2 )(u,b,r). 

• (u, b, r} f= texp1 = texP2 iff T(texpt)(u, b, r) = T(texp2 )( u, b, r ). 

• (u, b, r) f= texp1 < texp2 iff T(texp1 )(u, b, r) < T(texpz)(u, b, r). 

• (u,b,r) f= send(c,vexp) iff r :5 end(u) and (c, V(vexp)(u,b,r)) E u(r).S. 

• (u, b, r) f= send(c) iff r :5 end( u) and there exists a() E VAL such that 

(c,t?) E u(r).S. 

• (u, b, r) f= receive( c, vexp) iff r :5 end( u) and (c, V( vexp)(u, b, r )) E u( r ).R. 

• (u, b, r) f= receive( c) iff T :5 end( u) and therc cxist.s a{) E VAL such that 

(c,t?) E u(r).R. 
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• (0', b, r) f= 'PI V 'P2 iff (q, b, r) f= 'PI or (0', b, r) f= 'P2· 

• (q, b, r) f= -.rp iff not (q, b, r) f= <p. 

• (u, b, r) f= 'P1 U 'P2 iff there exists a r2 2: r, such that (0', b, r2) f= <p2, and for·all 

Tt. T $ TI < r2, (u, b, TI) f= 'PI· 

• (u, b, r) f= 'PI C 'P2 iff 

either (u, b, r) f= 'PI and end( u) = oo, 

- or there exist models u1 and u2 such that u u1u2 , T $ end(u1 ) < oo, 

(uh b, r) f= 'PI, and (u2, Buf(b, ut), begin(u2)) f= 'P2· 

• (u, b, r) F 'PI c· 'P2 iff 

- either there exist a k 2: 1 and models u1 , • •• , uk such that u = u1 • • ·uk, 

T $ end(u1 ) < oo, {ut. b, 7} f= 'PI> for all i, 2 $i$ k 1, end( u;)< oo, 

(u;, b;, begin( u;)} f= 'PI, if end( uk) < oo then (uk, bk, begin( uk)} f= <p2, 

otherwise (uk, bk, begin( uk)) f= 'Ph and for all j, 2 $ j $ k, 

bi Buf(b,ul ... ui_t), 

or there exist infinite models u1, u2, u3, ... such that u u1 u2u3 ... , 

end(u1 )? T, (u11 b,r) f= <p1 , for all i? 2, (u;,b;,begin(u;)) f= <p1 with 

b; Buf(b,u1 • · ·u;_1 ), and for all j? 1, end(ui) < oo. 

The substitution of an expression vexp1 for a variabie x in an expression vexpz, 

denoted by vexp2 [vexpJ/x], is defined as thc expression obtained by replacing every 

occurrence of x in vexp2 by vexp1 • 

Moreover, we have the usual abbreviations from temporallogic, i.e., 0 <p, 0 <p, and 

<p1 U <p2 • Their definitions can he found in chapter 2 section 2.3. 

Definition 3.3.1 (Valid Specification) A specifica.tion <p is valid, denoted by f= <p, 

iff (u, b, begin( u)) f= <p for any buffer band any model u. 

To express that every computation of a process S satisfies an ECTL specification <p, 

we use a correctness formula of the form S sat <p. 

Definition 3.3.2 (Satisfaction) A process S satisfies a specification <p, denoted by 

f= S sat <p, iff (u,b,begin(u)} f= <p for any bufferband any model u E M(S)(b). 

The following are some examples of correctncss formullle in this spccification language. 

• S never receives any message from channcl c and never terminates: 

S sat (0 ....,receive(c)) 1\ term= oo. 
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• If S starts its execution with x = 0, S will eventually terminate and x wil! have 
(' 

value 10 at termination: 

S sat first(x) 0 ~ 0 (T =term A x= 10). 

• If the initia! buffer of channel c is empty and no message will he sent to channel 

c, then S never receives any message from c: 

S sat (init(c) =()A 0 '""send(c))--> 0 -.receive(c). 

• lf the initial buffer of c is not empty, then S will eventually receive the first value 

of the buffer for channel c: 

S sat init(c) =f. () ~ Oreceive(c, jirst(init(c))). 

3.4 Proof System 

In this section, we give a compositional proof system for our programming language in 

section 3.1. Similarly to chapter 2, this proof system will include all valid assertions of 

ECTL as axioms. We first formulate some general axioms and then give axioms and 

rules for each statement from the programming la.ngua.ge. 

For any fini te cset Ç C H AN and fini te vset Ç V AR, define 

norecv(cset) 1\cecset ...,receive(c), nosend(cset) = 1\cEcset -.send(c), and 

inv(vset) = ÀxEvset x= first(x). 

The first axiom axiomatizes the well-formedness property of the semantics. 

Axiom 3.4.1 (Well-Formedness) 

For any fini te cset Ç C H AN, S sat W Fc~et> where 

W F,;!.t = 1\cEcset receive(c, vexpi) A receive(c, vexp2) ~ vexp1 = vexP2. 

The next axiom expresses that if a channel is not an input channel of statementS, 

S will never receive a message along that channel. 

Axiom 3.4.2 (Receiving In varianee) 

For any finite cset Ç GIJ AN with cset n ich(S) = 0, S sat 0 norecv(cset). 

The variabie invariance axiom, the conjunction rule, and t.he consequence rule defined 

in chapter 2 arealso included in t.he proof system. 

The axioms for skip, assignment, and delay statements are the same as defined in 

chapter 2. 

Statement c!!e sends the value of e along channel c without waiting for its commu

nication partner. 

Axiom 3.4.3 (Send) c!!e sat -.send(c) U (1' term= start+ He 1\ scnd(c,e)) 
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Statement c??x reads the first value of the sequence of messages in the buffer of channel 

c. If there is no message available, it has to wait until a message arrives. 

Let 1/J he any specification. Define Await( 1/J) ::= ( -.tjJ) U ( 1/J AT = term). 

We formulate an axiom for c?? x by using 

W Recv(c??x) ::= D [x first(x) A ...,receive(c)] A Await[init(c) :f ()V send(c)] 

and 

Recv(c??x) ::=[x= first(x) A ...,receive(c)] U 

[T =term= start+ I<c A receive(c; x) A x = first(init(c))] 

Axiom 3.4.4 (Receive) c??x sat WRecv(c??x) C Recv(c??x) 

Sequentia! composition 81 ; 82 expresses a sequentia! execution of 81 foliowed by S2• 

Let tPl Dnosend(och(S2) \ och(S1 )) and 1/J2 = Dnosend(och(S1 ) \ och(S2 )). 

Then we have the following rule for sequentia! composition. 

Rule 3.4.1 (Sequentia) Composition) 
S1 sat 

Reeall that we have the following abbreviations (see section 3.2.2): 

G1 = [~r=t9i-+ S;], G2 = [Qf=lg;;e;??x;-+ S;Ddelay e-+ So], 

g = V'/=1 g; for Gl> g = V'i=o9i for G2, ê = {c; I gi} for G2. 

To axiomatize guarded commands, wedefine some additional abbreviations: 

Quiet(G;} ::= inv(wvar(G;)) A norecv(ich(G;)) A nosend(och(G;)), for i 1, 2, 

Quiet( G2 \ j) inv( wvar( G2) \ { Xj}) A norecv( ich( G2 ) \ {ei}) A nosend(och(G2 )), 

for j = 1, ... , n, 

and 

Eval ::= term = start+ I<g. 

First we give an axiom for the evaluation of guarded commands G1 and G2 • 

Axiom 3.4.5 ( Guarded Command Evaluation) For i = 1, 2, 

G; sat [Quiet(G;) U (T =start+ l<g A Quiet(G;))] A hï-+ Eval] 

Next we formulate a rule for G1 , by using 

Exec = Vi=t g; A <p; AD nosend(och(GJ) \och( Si)) 
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Rule 3.4.2 (Guarded Command with Purely Boolean Guards) 
" 

S; sat ~.p;, for i = 1, ... , n 

[Ui=t g;--+ S;] sat g--+ (Eval C Exec) 

For G2 , we use the following a.dditional abbreviations: 

Wait = g 1\ Await[VI$i$n g; 1\ (init(c;) #()V send(c;))] 1\ 0 Quiet(G2 ) 

Comm = V'/:1 g; 1\ 'Pi 1\ Onosend(och(Gz) \ och(S;)) 

FinComm = (g0 1\ term< start+ max(O, e) 1\ Wait) C Comm 

TimeOut =[go 1\ 0 (Ac;Eëinit(c;) = () 1\ •send(e;)) 1\ term= start+ max(O, e) 1\ 

0 Quiet(G2)] C ['Po 1\ 0 nosend(och(G2 ) \ och(S0))] 

AnyComm (•go 1\ Wait) C Comm 

Rule 3.4.3 (Guarded Command with 10-Guards) 

Statement *G denotes repeated execution of G if one of those g; in G is true. lts 

execution can be expressed by using the C* operator. 

Rule 3.4.4 (Iteration) 
G sat 'P 

Next consider parallel composition of St and S2• Suppose we have specifications 'PI and 

~.p2 for, respectively, SI and S2 • If S1 terminates after (or at the sametime as) S2 then 

the model repreaenting this computation of StiiS2 satisfies 'Pt /\( ~.p2 C true ). rurthermore 

we have to express that the variables of S2 are not changed and there is no activity on 

the channels of S2 after the termination of S2. Similarly, for St and S2 interchanged. 

Let /Buf = Acech(SJ)nch(S2 ) init(c) = () and 

t/;; 0 [inv(var(S;)) 1\ norecv(ich(S;)) 1\ nosend(och(S;))], for i= 1, 2. 

The parallel composition rule is formulated as follows. 

Rule 3.4.5 (Parallel Composition) 

provided ich(~.p;) Ç ich(S;) and var( ~.pi) Ç var(S;), for i 1, 2. 
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Example 3.4.1 We prove that 

c??xllc!t5 sat term start+ 2f(c /1. 0 (T term-+ x 5). 

By the receive axiom, we have c??x sat cp1 with 

cp1 = WRecv(c??x) C Recv(c??x), where 

WRecv(c??x) = 0 [x first(x) /1. -.receive(c)] /1. Await[init(c) # 0 V send(c)J and 

Recv(c??x) =[x= first(x) /1. -.receive(c)] U 

[T =term= start+ Kc /1. receive(c, x) /1. x first(init(c))]. 

By the send axiom, we have c!!5 sat cp2 with 

<p2 = ..,send(c) U (T =term= start+ Kc /1. send(c,5)). 
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Since ich(cp1 ) Ç ich(c??x), ich(cp2 ) Ç ich(c!!5), var(cp1 ) Ç var(c??x), and var(cp2 ) Ç 

var(c!!5), by the parallel composition rule, we have 

c??xllc!!5 sat IBufl\[(cptA(cp2 C 1/12))V(cp2/l.(cp1 C !,bJ))J 

where 

IBuf = init(c) = (), 
1/11 = 0 [inv({x}) /1. norecv({c})], and 

1/12 = Onosend({c}). 

Cbserve that, 

I Buf /1. Cf't /1. ( ct>2 C 1/12) is equivalent to 

init(c) = 0/1. [WRecv(c??x) C Recv(c??x)] /1. 

[(...,send(c) UT=start+Kcl\send(c,5)) C Onosend({c})], 

which implies 

[(-.send(c) /1. init(c) =())U (T =term= start+ I<c /1. send(c,5))] C 

[(x first(x) /1. ...,receive(c)) U (T =term= start+ Kc /1. receive(c, x) /1. 

x= first(init(c)))], 

and this leads to 

term start+ 2/(0 /1. 0 (T = term-+ x = 5). 

Furthermore, we have that, 

I Buf /1. ct>2 /1. ( Cf't C 1/11) implies 

[...,send(c) U (T =term= start+ J(c /1. .send(c,5))] /1. 

[WRecv(c??x) C Recv(c??x) C Onorecv({c})], 

which implies 

term= start+ f(c /1. [0 (T term = start+ f(c /1. send(c, 5)) C 

0 (T term= start+ I<c /1. receivc( c, a:)) C 0 norecv( { c} )], 

and this leads to 

term = start+ I<c /1. term ;::: start+ 2/(c, 

which leads to false. 

Combining these two cases, we obta.in 
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/Bu/A[(y:tA(tp2C tP2))V(<p2/\(tpt C t/>1))]-+ term start+2l<cAO (T term-+ x= 5). 

Hence, hy the consequence rule, 

c??x!lc!!5 sat term= start+ 2l<c A 0 (T term-+ x = 5). 0 

3.5 Soundness and Completeness 

In this section, we discuss the soundness and completeness of the proof system in section 

3.4. Regarding the soundness of the proof system, we must show that every formula 

S sat tp derivahle in the proof system is indeed valid. We first give some lemmas 

which will he used to prove the soundness. These lemmas can he proved similarly as 

in Appendix A for those lemmas in chapter 2 section 2.6. The proofs for some new or 

modified lemmascan he found in Appendix D. 

Lemma 3.5.1 For any expression e from the programming language, any model u, 

any buffer b, and any T ~ begin(u), f(e)(u(r).s) = V(e)(u,b,r). 

Lemma 3.5.2 For any boolean guard g from the programming language, any model 

u, any buffer b, and any T ~ begin( u), Q(g)( u( T ).s) iff (u, b, r) I= g. 

Lemma 3.5.3 For any expression qexp of type QU E, any es et Ç C H AN, and any 

buffers b1 and ~. if ich(qexp) Ç csetand for any c E cset, b1(c) b2(c), then for any 

model u and any r ~begin( u), Q(qexp)(u, bh r) = Q(qexp)(u, b2, r). 

Lemma 3.5.4 For any expression qexp of type QU E, any model 0', any buffer b, any 

cset Ç CHAN, and any T ~ begin( u), Q(qexp)(u, b, r) = Q(qexp)([u]~et• b, r). 

Lemma 3.5.5 For any expression qexp of type QU E, any model u, any buffer b, any 

vset Ç V AR, and any T ~ begin(O"), Q(qexp)(O', b, r) = Q(qexp)(u! vset, b, r). 

Lemma 3.5.6 For any expression vexp of type V AL, any es et Ç C H AN, and any 

buffers b1 and ~, if i eh( vexp) Ç es et and for any c E es et, b1 ( c) b2 ( c), then for any 

model 0' and any T ~ begin(O"), V(vexp)(u, bh r) = V(vexp)(O', b2 , r). 

Lemma 3.5.7 For any expression vexp of type V AL, any model u, any buffer b, any 

cset Ç CHAN, and any T ~ begin(O"), V(vexp)(u,b,r) V(ve:~:p)([O']~et>b,r). 

Lemma 3.5.8 For any expression vexp of type V AL, any model u, any buffer b, any 

vset Ç VAR, and any T ~ begin(u), if var(vexp) Ç vset, then V(vexp)(a,b,r) 

V(vexp)(u! vset,b,r). 
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Lemma 3.5.9 For any expression texp of type TIME, any cset ç; CHAN, and any 

buffers b1 and b2, if ich(vexp) Ç, csetand for any c E cset, b1(c) b2(c), then for any 

model u and any T 2:: begin( u), T(texp)(u, bh r) = T(texp)(u, b2 , r). 

Lemma 3.5.10 For any expression texp of type TIME, any model O", any buffer b, 

any cset Ç, CHAN, and any T 2:: begin(C!), T(texp)(O",b,r) = T(texp)([C!]~.0 b,r). 

Lemma 3.5.11 For any expression texp of type TIME, any model O", any buffer b, 

any vset Ç, V AR, and any T 2:: begin(C!), if var(texp) Ç, vset, then T(texp)(C!, b, r) = 
T(texp)(C!! vset,b,r). 

Lemma 3.5.12 For any specification <p, any es et ç; C H AN, and any buffers b1 and 

b2 , if ich(<p) Ç, csetand for any c E cset, b1(c) = b2(c), then for any model O" and any 

T 2:: begin(u), (u,b-t,r) f= <p iff (C!,~,r) f= <p. 

Lemma 3.5.13 For any cset Ç, CHAN and any specification <p, if ich(<p) Ç cset, then 

for any model O", any buffer b, and any T 2:: begin(C!), (C!, b, r) f= <p iff ([C!J~et• b, r) f= <p. 

Lemma 3.5.14 For any vset Ç VAR and any specification <p, if var(<p) Ç vset, then 

for any model u, any buffer b, and any T 2:: begin( u), (u, b, r) f= <p iff (u! vset, b, r) f= <p. 

For the soundness of this proof system, we have the following theorem. 

Theorem 3.5.1 (Soundness) The proof system insection 3.4 is sound. 

To formally prove this theorem, we have to show that all axioms are valid and all 

inference rules preserve validity. For most axioms and inference rules, the soundness 

can he proved similarly as in Appendix B for the proof system in chapter 2, i.e., by 

following the definitions of thesemantics and given lcmmas. In Appendix E, we only 

give the soundness proofs for receiving invariance,,send, receive, sequentia! composition, 

and parallel composition. 

Similarly to chapter 2, we only prove the relative completcness of the proof system 

in section 3.4, i.e., every valid specification is deriva.ble in the proof system, provided 

that any valid ECTL formula is provable. 

We give a few lemmas which wiJl be used for the completeness proof. These lemmas 

can be proved similarly as in Appendix A for lemmas from chapter 2. 

Lemma 3.5.15 For any model u and any csct Ç, DCJJ AN, ich(u) Ç, cset iff 

u= [uJ~et· 

Lemma 3.5.16 For any model u, any buffer b, and any csell>cset2 Ç, DCHAN, 

if (u, b, begin(C!)} f= D norecv(cset2 \ csett), then [C!],n.ct,umt2 [C!J~ct 1 • 
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Lemma 3.5.17 For any model a, any buffer b, and any vseit,vset2 ~VAR, 

if (a, b, b~in(a )) I= 0 inv( vset2 \ vseft ), then a ! ( vset1 U vset2 ) a l vset 1• 

Lemma 3.5.18 For any model a, any buffer b, if ich(a) ~ cset and 

(a, b, begin( a)) I= W Fc'!.n then u is well-formed. 

Similar to chapter 2, we prove the relative completeness by using a property of 

speci:fications called preciseness. 

Definition 3.5.1 (Invariant Variable) A variabie x is invariant with respect to a 

model u ifffor any r, begin(u) :5 T :5 end(a), u(r).s(x) = al>.s(x). 

Notice that although this definition is the same as definition 2.6.1, they refer to different 

computational models. 

Definition 3.5.2 (Preciseness) A specification r,p is precise fora statementS of the 

programming language in section 3.1 iff 

1. S sat <.p holds, i.e., (a,b,begin(u)) I= r,p, for any bufferband any a E M(S)(b); 

2. For any buffer band any well-formed model u, if ich(a) ~ ich(S), any variabie 

x f. wvar(S) is invariant with respect toa, and (a,b,begin(a)) I= r,p, then 

a E M(S)(b); and 

3. ich( <.p) = ich( S) and var( <.p) var( S). 

A precise specification r,p for S thus characterizes all possible computations of S: <.p is 

valid forS, and any "reasonable" computation satisfying <.pis a possible computation of 

s. 
In Theorem 3.5.2, we first show that for any statement S a precise specification can he 

derived from the proof system. Then, in Theorem 3.5.3, we prove that any specification 

r,p2 which is valid for S can he derived from a precise specification 'f'1 for S and two other 

predicates. Hence, in Theorem 3.5.4, relative completeness is proved easily. 

Theorem 3.5.2 If Sis a statement from section 3.1, then a precise specification forS 

ca.n he derived by using the proof system insection 3.4. 

This theorem can he proved similarly as in Appendix C for theorem 2.6.2. In Appendix 

F we give a precise specification for each statement from section 3.1. 

Theorem 3.5.3 If r,p 1 is precise forS and r,p2 is valid for S, then 

I= ['Pl A W F;~h('P,) 1\ 0 [norecv(ich(r,p2) \ ich(r,pt)) 1\ inv(var(r,p2) \ var(r,pJ))]]- 'P2· 
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Proof: Let 'PI be precise forS and c.p2 be valid forS. Consicier a model a and a buffer b. 

Assume that (a, b, begin( a)) f= 'PI AD [norecv(ich(c.p2)\ich(c.pt))Ainv(var(c.p2)\var(c.pt))] 

holds. We prove (a, b, begin( a)) f= c.p2. 

By (a,b,begin(a)) f= c.p11 1emma3.5.131eads to ([a]fch(cp,),b,begin(a)) f= 'PI· By lemma 

3.5.14, ([a]fch(cp,)! var(c.pt),b,begin(a)) f= 'PI· From (a,b,begin(a)) f= WFi~h(..,,), by 

lemma 3.5.13, we have ([a]fch(cp,)' b, begin( a)) f= W F;~h(cp,)' By lemma 3.5.18, [a]fch(cp!) 

is well-formed. Then by definition, [a]fch(cp,) ! var(c.pi) is also well-formed. Since 'PI 

is precise for S, we have ich(c.pi) = ich(S) and var(c.pi) = var(S). By the definition 

of projection onto variables, any variabie x ~ wvar(S) is invariant with respect to 

[a]fch(cpt)! var(c.pi)· Hence by the definition of preciseness, [a]fch(cp,)! var(c.pt) E M(S). 

From (a, b, begin( a)) f= 0 norecv(ich(c.p2) \ ich(c.pi)), lemma 3.5.16 leads to 

[a]fch(cpt)uich(cp2 ) = [a]fch(cp,)' Since (a, b, begin( a)) f= 0 inv(var(c.p2) \ var(c.pi)), lemma 

3.5.17 leads to a ! (var( c.pt) U var( c.p2)) = a ! var( c.pt). Thus we obtain 

[a]fch(cp!)uich(cp2 )! (var(c.pt) U var(c.p2)) = [a]fch(cp!)! var(c.pi)· Therefore we have 

[a]fch(cp!)uich(cp2)! (var(c.pt) U var(c.p2)) E M(S). Since 'P2 is valid forS, we obtain 

([a]fch(..,!)uich('P2) ! (var( epi) U var(c.p2)), b, begin( a)) f= 'P2· From var(c.p2) Ç var(c.pt) U 

var( cp2), lemma 3.5.14 leads to ([a]fch(cp,)uich(cp
2
), b, begin( a)) f= 'P2· By ich( <p2) Ç 

(ich(cpi)Uich(c.p2)), lemma3.5.131eads to (a,b,begin(a)) f= c.p2. Hence this theorem 

holds. D 

Theorem 3.5.4 (Relative Completeness) The proof system in section 3.4 is rela

tively complete. 

Proof: For any process S, assume that specification c.p is va.lid for S. We prove that 

S sat c.p is derivable in the proof system in section 3.4. By theorem 3.5.2, we have 

S sat 'PI where 'PI is a precise specification for S. lly the axiom 3.4.1, we have 

S sat WF;~h(cp!)' Since ich(c.pt) = ich(S), we have [ich(c.p) \ ich(c.pt)] n ich(S) = !IS. 

Then by the receiving invariance axiom, we obtain S sat Dnorecv(ich(c.p) \ ich(c.pt)). 

From var(c.pi) = var(S), we have [var(c.p) \ va1·(c.pt)] n var(S) = 0 and thus [var(c.p) \ 

var( epi)] n wvar(S) =!IS. By the variabie invariance axiom, we obtain 

S sat 0 inv( var( c.p) \var( c.pt) ). Then the conjunction rule a.nd the consequence rule lead 

toS sat 'PI A W F;~h(cp,) A 0 [norecv( i eh( c.p) \i eh( 'PI)) Ainv( var( c.p) \var( c.pt))]. By theorem 

3.5.3, [epi A W Fi~h(cp,) AD [norecv( i eh( c.p) \i eh( c.pt)) A inv( var( c.p) \var( c.pt))]]-+ c.p is valid 

and, by our relative completeness assumption, provable. Hence, by the consequence rule, 

S sat c.p is derivable in the proof system in section 3.4. 0 
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Chapter 4 

Atomie Broadcast Protocol 

4.1 Introduetion 

Computing systems are composed of hardware and software components which can fail. 

Component failures can lead to unanticipated behaviour and unavailability of service. 

To achieve a high availability of a service despite the presence of faults, a key idea 

is to implement the service by replicating a server process on all processors [Cri90]. 

RepHeation of service state information among group memhers enables the group to 

provide the service even when some of its memhers fail, since the remaining memhers 

have enough information about the service state to continue to provide it. To maintain 

the consistency of these replicated global states, any state update must be broadcast to 

all correct servers such that all these servers observe the same sequence of state updates. 

Thus a communication service is needed so that elient processes can use it to deliver 

updates to their peers. This communication service is called atomie or 1·eliable broadcast. 

We wil! refer to it as atomie broadcast. There are two sets of atomie broadcast protocols: 

synchronous ones, such as [BD85,CASD85], and [Cri90], and asynchmnous ones, such 

as [BJ87] and [CM84]. 

Synchronous atomie broadcast protocols assume that the underlying communication 

delays between correct processors are bounded. Givcn this assumption, locaJ docks of 

correct processors can be synchronized [CAS86]. Then the properties of synchronous 

atomie broadcast protocols are described in termsof local clocks as follows [CASD85, 

CASD89]: 

• Termination: every update whose broadcast is initiated by a correct processor at 

time T on its doek is delivered by all correct processors at time T + 6 on their 

own clocks, where 6 is a positive constant and is called the braadcast terminalion 

time. 

• Atomicity: if a correct processor del i vers an update at time U on its doek, then that 

67 
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update wa.s initiated by some processor and is delivered by each correct processor 

at time U on its doek. 

• Order: all correct processors deliver their updates in the same order. 

Synchronous atomie broadca.st protocols provide an upper bound for the broadcast ter

mination time. Thus they can be used in reai-time applications where deadlines must 

always be met, even in the presence of faults. On the other hand, asynchronous broad

ca.st protocols do not a.ssume bounded message transmission delays between correct 

processors. Thus they cannot guarantee a bound for the broadca.st termination time. 

Therefore a.synchronous atomie broadca.st protocols are not suitable for critica! reai-time 

applications. 

We are interested in the forma! specification and verification of reai-time and fault

tolerant systems. Since atomie broadca.st service is one of the fundamental issues in 

fault-tolerance, we choose an atomie broadca.st protocol as our case study. 

An informal description of an atomie broadca.st protocol, an implementation, and an 

informal proof which shows that the implementation indeed satisfies the requirement of 

this protocol are presented in [CASD85,CASD89]. In these papers, there is a series of 

protocols each of which tolerates omission failures, timing failures, and authentication

detectable byzantiae failures. As a starting point of verifying reai-time a.nd fault-tolerant 

systems, we choose a fairly simp ie protocol which tolerates omission failures. Henceforth, 

we use the term atomie braadcast protocol to refer to this protocol. We will follow the 

idea.s of [CASD89] as closely as possible and compare our results with it in section 4.8. 

The atomie broadcast service is implemented by replicating a server process on all 

distributed processors in a network. Thus any elient process on any processor can use this 

service. We allow more than one elient process located on one processor. Assume that 

there are n processors in the network. Pairs of processors are connected by links which 

are point-to-point, bi-directional, communication channels. A processor (link) is correct 

if and only if it behaves as specified. In the atomie broadcast protocol, it is assumed 

that only omission failures occur on processors and links. When a processor suffers an 

omission failure, it ca.nnot send messages to other processors. When a link suffers a.n 

omission failure, the messages traveling along this link may he lost. But those messages 

received by a processor are correct in time and contents. It is also assumed that the 

duration of message transmission between correct processors takes fini te time and local 

clocks of correct processors are approximately synchronized. To send an update to its 

peers, a elient process in i tiates the atomie broadcast server process located ·on the same 

processor to atomically broadcast that update. After such a request, each server process 

will deliver tha.t update to the elient processes located on the same processor. To achieve 

the order property of the service, there is a priority ordering among all processors. If 
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two updates are înitîated at different doek times, they will he delivered according to 

the ordering of their inîtiation times. If they are înitîated at the same clock time on 

different processors, they will he delivered according to the priority of their initîation 

processors. The contiguration of the service is illustra.ted in the following figure 4.1. 

\ \ deliver I 
\ \ I I 
\ \ I I 
\ \ I I 

initia.te \@/ ~:i~te- link 

Process -+-----+ 
send/ 

processor receive 
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\ deliver I 
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I 
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processor 

Fig. 4.1 Atomie Broadcast. Serviet• Configuration 

In general, to formally verify a system, weneed a proof theory which consistsof axioms 

and rules ahout the system components. To he able to abstract from implementation 

details, it is often convenient to have a compositional verification method. Composition

ality enahles us to verify a system by using only specifications of its components without 

knowing any internal informa.tion of those components. In particular, if the system is 

composed of parallel components, the proof metbod should contain a parallel composi

tion rule. Let S(p) denote the atomie broadca.st server process running on processor p, 

r.p denote a specifica.tion written in a specification language hased on first-order logic, 

and S(p) sat 'fl denote that server process S(p) satisfies specification 'fl· The parallel 

composition rule sta.tes tha.t if server process S{p;} satisfies specifica.tion r.p; and 'fl; only 

refers to the interface of p;, i.e., 'fli and 'fli do not interfere with each other, for any 

i,j = 1, 2, ... , n and i :/ j, then parallel execution of S(p;) satisfies the conjunction of 

the 'fli· This rule can be formalized as follows. 

Parallel Composition Rule 

S(p;) sat 'fl;, tp; only refers to the interface of p;, for i = 1, 2, ... , n 

S(pi)II· · ·IIS(pn} sat Ai=1 'fl; 

To prove that a component satisfies a weaker specification, we need a consequence rule. 

Na.mely, if process S satisfies 'fl and 'fl implies .,P, then S a.lso satisfies .,P. 

S sat 'fl, 'fl-+ .,P 

S sat .,P 
Consequence Rule 
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Another useful rule is the conjunction rule, which shows that if process S satisfies r.p1 

and r.p2 , then S also satisfies r.p1 A ip2 . 

Conjunction Rule 
S sat r.p1, S sat 'f>2 

S sat 'Pt A 'f>2 

Reeall that local clocks of correct processors are approximately synchronized. We show 

that the verification of the protocol can be done compositionally by using specifications 

in which timing is expressed by local doek values as follows. 

• Insection 4.2, we specify the properties of the atomie broadcàst protocol in a spec

,jfication language based on first-order logic. We call this the top-level specification 

and denote it by ABS. Thus our aim is to prove S(pt)ll· · ·IIS(pn) sat ABS. 

• In section 4.3, we axiomatize the required assumptions about the service eonfig

uration, including underlying communieation mechanism, doek synchronization 

assumption, and failure assumptions. We denote the conjunction of all these ax

ioms by AX. 

• In section 4.4, we define the properties of the atomie broadcast server proeess 

running on processor p. We call this the server process specification and denote it 

by Spec(p). The specification Spec(p) should only refer to the interface of processor 

p. We assume S(p) sat Spec(p). 

• By the parallel composition rule, we obtain S(pt)ll· · ·IIS(pn) sat /\i=1 Spec(p;). 

Since S(pt)ll· · ·IJS(pn) also satisfies AX, we prove, insection 4.5, 4.6, and 4.7, 

that 

A'i=t Spec(p;) A AX -+ ABS. 

Hence the consequence rule leads to S(pt)ll· · ·JJS(pn) sat ABS. 

• We campare our results with [CASD89] in section 4.8. 

4.2 Top-Level Specification 

We formalize the top-level requirements of the atomie braadcast protocol in this section. 

Let P he a set of processor narnes and L a. set of link names. We assume that all 

processors and links have unique names. We u se p, q, r, s, ... to denote elements of P 
and l, lh ... to denote elementsof L. Let G he the networkof processors and links, 

G= PUL. 

We assume that all real times range over a dense time doma.in called RT I ME and 

the standard arithmetic operators+, -, x, a.nd S are defined on RTIME. We use 

lower case letters, e.g. t, u, v, ... , to denote variables ranging over RT I ME. 
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Each processor has access to a local doek. We denote by Cp a function which 

represents the value of the local doek of processor p, i.e., Cp(t) is the value of the local 

doek of p at real timet. Lef all doek values range over a domain called CV AL. We 

assume that, for any T E CV AL, T ~ 0. Similarly, the standard arithmetic operators 

+, -, x, and ::::; are defined on CV AL. We use capita! letters, e.g. T, U, V, ... , to 

denote variables ra.nging over CV AL. We also use [U, V], [U, V), (U, V], and (U, V) to 

express, respectively, dosed, half-open, a.nd open intervals of doek values. 

The atomie broadcast service is implemented by a group of server processes replicated 

on all processors in the network. When a elient process initiates a server process running 

on processor p by sending a request of broadcasting update u, we call p the initiator of 

u, i.e., we interpret it as p initiales u. Similarly, when the server process delivers a.n 

update u to elient processes, we interpret it as p delivers u to elient processes. 

To formally describe the properties of the atomie broadcast protocol, we define the 

following primitives: 

• correct(p) at t: processorpis correct at real timet, i.e., no omission failure occurs 

on p at real time t. 

• correct(/) at t: link l is correct at real timet, i.e., no omission failure occurs on l 

at real timet. 

• initiate(p, u) at t: processor p finishes with receiving a request of broadcasting 

update u from a elient process located on pat real timet, i.e., p initiates u at real 

timet. 

• deliver(p, u) at t: processor p starts to send update u to elient processes loca.ted 

on p a.t real timet. 

Henceforth, we use the following abbreviations: 

• correct(p) = Vt: correct(p) at t 

• correct(l) Vt :correct( I) at t 

In [CASD89], local doek values are used to express and reason about the properties of 

the protocol. We would also like to use local doek values to describe and verify the 

protocol. For any primitive <p at t, we definc thc following abbreviations: 

• 'P atp T:::: 3t: 'Pat t 1\ Cv(t) = T 

• <p beforep T 3To : '{! atp T0 1\ To < 1' 
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• lf! inp I: 3T E I : r.p atp T, where I ç; CV AL. 

In [CASD89], assumptions about the system are simplified. For instance, it is assumed 

that message processing time on a correct processor is zero. In this paper, we will take 

all possible times spent by a correct processor into account. Then the termination and 

atomicity properties can only he described by using an upper bound and an interval, 

respectively, insteadof precise time points as in [CASD89]. 

4.2.1 Termination 

The property of termination is stated as follows: every update whose braadcast is initi

ated by a correct processor s at doek value T will bedelivered at all correct processors 

by doek value T + D1 on their own docks, where D1 is a positive constant and is also 

the braadcast termination time. 

In this paper, we take the convention that any free variabie occurring in a formula is 

universally, outermostly, quantified. Thus the termination property is formally expressed 

as follows: 

TERM = correct(s) t\ correct(q) t\ initiate(s, o') ats T-+ deliver(q, a) byq T + D1 

4.2.2 Atomicity 

The atomicity property is described as follows: if a correct processor p del i vers an update 

at doek value U, then that update was initiated by some processor s at some local time 

Tand is delivéred by all correct processors at some local doek value between U- D2 and 

U+ D2 , where D2 is a positive constant and indicates the difference of delivery times of 

an update by two correct processors. 

This property is formalized as follows: 

ATOM = correct(p) t\ correct(q) t\ deliver(p,o) atp U-+ 

3s, T : initiate( s, a) at8 T t\ del i ver( q, a) Înq [U - Dz, U + D2] 

The atomicity property claims that if any correct processor delivers an update a at time 

U on its doek, then every correct processor wiJl deliver that update at more or less 

the same time on its own doek, while the initiator of thàt update might happen to be 

correct at the initiation time . This is the difference with the termination property. 

4.2.3 Order 

The property of order is expressed in [CASD89] as follows: all correct processors deliver 

their updates in the same order. 
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Intuitively, we understand the order property as follows. Let U be any doek value. 

If a sequence of updates delivered by processor p before local time U is (a11 ••• , ak}, 

then there should exist a doèk value V such that (ai, ... , ak) has also been delivered 

by any other processor q before local time V. Notice that U and V can be different. 

Furthermore, there is no reason to exdude the possibility that more than one update 

is delivered at the same time by a processor. Therefore the set of sequences of up

dates should indude all possible sequences of updates in which those updates which are 

delivered at the same time are interleaved. 

We define the following abbreviation: 

• -.deliver(p) inp I= -.3a: deliver(p, a) inp /. 

Let IN denote thesetof all natura! numbers (induding 0). Let IN+ =IN\ {0}. We 

define List(p, U) to be the set of all possible sequences of updates delivered by p before 

local time U as follows. 

Definition 4.2.1 For any processorpand any doek value U E CV AL, define 

List(p, U) = { (ab a2, ... 'ak) I there exist k E IN+' UI' u2, ... 'uk E cv AL such that 

UI::; u2::; ... ::; uk< U, deliver(p,a;) atp U;, 

for all i= 1, 2, ... , k, -.deliver(p) inp (Ui, Ui+J), 

for all j = 1, 2, ... , k- 1, and -.deliver(p) inp [0, UI).} 

If we can prove that, for any two correct processors p and q and any doek value U, there 

exists a doek value V such that List(p, U) is a subset of List( q, V), then symmetrically 

we can also prove that for any U there exists a V such that List( q, U) Ç List(p, V). 

Hence p and q deliver their updates in the same order. Then the order property is 

formalized as follows: 

ORDER= correct(p) 1\ correct(q)---> VU3V: List(p, U) Ç Lisl(q, V) 

Notice that, by the definition of ORDER, if p delivers ai and a 2 at some doek value 

ub then q also delivers 17I and 172 at some doek value vb a.lthough UI and VI can be 

different. 

The top-level specification of the protocol is the conjunction of these three properties. 

Reeall that ABS denotes the top-level specification of the atomie braadcast protocol. 

Thus, 

ABS=: TERM 1\ ATOM 1\ ORDER. 

4.3 System Assumptions 

In this section, we axiomatize the assumptions about the syst.em. 
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4.3.1 Processors and Links 

Wedefine the following primitive fora link l. 

• link( l, p, q ): l is a physical communication channel between p and q. 

Definition 4.3.1 Define Link(p) as the set of links each of which connects p with 

a.nother processor: Link(p) = {ll3q: link(l,p,q)}. 

For a.ny p, q, and l, if l E Link(p), l E Link(q), and p :f;: q, then pand q are connected 

by l. This is expressed by the following axiom. 

Axiom 4.3.1 (Link) l E Link(p) 1\ l E Link( q) 1\ p :f;: q -+ link( I, p, q) 

We also assume that a link connects at most two processors. 

Axiom 4.3.2 (Point-to-Point) link(l,p, q) A link(l,p, r)--+ q = r 
Let FP = {p I -.correct(p)} and FL = {I I -.correct(/)}. Define F FP U FL. 

Thus F denotes the set of processors and links which are p.ot always correct, i.e., they 

experience omission failures during an exenition of the protocol. We assume that during 

a.ny protocol execution there can he at most m processors that suffer omission failures, 

where mE IN. 

One important assumption about the network is that during any execution of the 

protocol all correct processors remain connected via correct links. Otherwise bounded 

communication delays between correct processors cannot he guaranteed and thus the 

protocol cannot provide any upper bound for the broadcast termination time. Reeall 

that G is the set of all processors and links, i.e., G = P U L. Then G \ F {p I 
correct(p)} U { l I correct( l)} and it denotes the set of correct processors and links. G \ F 

ca.n be considered as a graph in which processors are vertices and links are edges. Thus 

we have the following standard definitions (see, e.g. [Gou88]) with p, q EG\ F: 

Definition 4.3.2 

• A p- q walk in G\ F is a fini te alternating sequence of correct processors and links 

that begins with p and ends with q and in which each link connects the processor 

that precedes it in the sequence a.nd the processor tha.t follows it in the sequence. 

• A p q path in G \ F is a p q walk in which no processor is repeated. 

• The length of a path is the number of links in tha.t path. 

• The distance betweenpand q, denoted by d(p,q), is the mininmm of alllengtbs of 

p- q paths in G \ F. If there is no path betweenpand q, then d(p, q) is oo. 



4.3. SYSTEM ASSUMPTIONS 75 

• G \ F is conneeled if and only if there exists a path in G \ F between any two 

processors in G \ F. 

• When G \ F is connected, the diameter of G \ F is the longest distance between 

any two processors in G \ F, i.e., max({d(p,q) I p,q EG\ F}). 

Now we can give the axiom for connectivity. 

Axiom 4.3.3 (Connectivity) G \Fis connected. 

Given axiom 4.3.3, we assume that the diameter of G \ F is d. 

4.3.2 Bounded Communication 

We define two primitives: 

• send(p, m, /) at t: processor p starts to send message m along link l at real timet. 

• receive(p, m, /)at t: processor p finishes with receiving messagem along link lat 

real timet. 

The abbreviations defined in section 4.2 also hold for these two primitives. 

Two processors connected by a link are called neighbors. When send(p, m, l) at t or 

receive(p, m, l) at t holds, l must he a link connecting p and one of its neighbors. This 

is expressed in termsof doekvalues by the following axiom. 

Axiom 4.3.4 (N eighbor) 

send(p, m, I) atq T V receive(p, m, l) atq T--+ l E Link(p) 

Two processors can send messages to each other if they are connected by a link. The 

communication between two processors is synchronous in the sense that the duration 

of the transmission of a message is bounded by two positive constauts 1 and /j with 

/,/jE CV AL and 1 ::; 6. Letpand q be two correct processors connected by a correct 

link /. Let r he any correct processor to he used as refercnce. If p sends message m 

along link l at doek value U according to the clock of r, then q will receive m along l at 

some doek value in the interval [U+/, U+ 6] according to the doek of r. 

Axiom 4.3.5 (Bounded Communication) 

correct(p) 1\ correct(q) 1\ link(l,p,q) 1\ correct(/) 1\ correct(r) 1\ send(p, m, l) atr U--+ 

rcccivc(q,m,l) inr [U +1,U +6] 

This axiom implicitly implies that the local doek function CP for correct processor p 

should he monotonie. 

Given bounded communication, the clocks of correct proceHsors can be a.ssumed approx

imately synchronized. 
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4.3.3 Clock Synchronization 

We a.ssume that when processors are correct their clocks are approximately synchronized 

within a sufficiently small, positive, constant f, 

Axiom 4.3.6 (Clock Synchronization) 

correct(p) at t 1\ correct(q) at t-+ ICp(t)- Cq(t)l < f 

It is trival to derive the following lemma. 

Lemma 4.3.1 (Ciock Synchronization) 

correct(p) 1\ correct(q)-+ IGp(t)- Cq(t)i < f 

Given axiom 4.3.6 and lemma 4.3.1, we can easily prove the following lemma.s. 

Lemma 4.3.2 For any primitive <p at t, 
correct(p) 1\ correct(q) 1\ t.p inp [U, V] -+ <p inq (U-t:, V+~'). 

Proof: Assume that the premise of this lemma holds. From <p inp [U, V], by definition, 

there exists aT such tha.t <p atp T 1\ TE [U, V]. Let t be such that C"(t) T. Then we 

have <p at t 1\ G"(t) E [U, VJ. In termsof the doek of q, we obtain er. atq Cq(t). Since 

correct(p) a.nd correct(q) hold, by the synchronization lemma 4.3.1, we have IGq(t)

G"(t)l < t:, i.e., Gp(t) f < C9 (t) < C"(t) + f. Thus we obtain U € < Cq(t) < V+ e:, 

i.e., Gq(t) E (U- f, V+ ë). Therefore we obtain <p inq (U- f, V+ t:). Hence this lemma 

holds. 0 

Lemma 4.3.3 For any primitive t.p at i, 

correct(r) 1\ correct(p) atp T 1\ <p atp T -+ <p inr (T- €, 1' + €). 

Proof: Assume that the premise of this lemma holds. Let t be such that Cp(t) T. 
Then by a.ssumption, we have <pat t. In termsof the doek of r, we have <p atr C,(t). 

From correct(p) atp T, we obtain correct(p) at t. Since correct(r) holds, by the syn

chronization axiom 4.3.6, we have ICr(t)- Cp(t)i < c, i.e., Gp(t) f < C,(t) < C"(t) + f. 
Then we obtain C,(t) E (T- f, 1' + €). Therefore we have t.p inr (T f, T + f). Hence 

this lemma holds. o 

Lemma 4.3.4 For any primitive <p at t, 

correct(r) 1\ correct(p) atr T 1\ t.p atr T -+ t.p inp (T €, T + €). 

This lemma can be proved similarly a.s lemma 4.3.3. 

The bounded communication property is also expressed in terrus of local doek values in 

the next lemma, which ca.n be proved by using axiorn 4.3.5 and lemma 4.3.2. 

Lemma 4.3.5 (Bounded Communication) 

correct(p) 1\ correct( q) A link( I, p, q) 1\ correct( I) 1\ send(p, m, l) atp U -+ 

receive(q, m, l) inq (U+ 1 c, U+ ti+ c) 
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4.3.4 Failure Assumptions 

The atomie broadcast protocol verified in this paper tolerates only omiss.ion failures. 

When a processor suffers an omission failure, it cannot send out messa.ges. More pre

cisely, if a processor p is not correct at real timet, then p is not able to send any message 

m along any link l at time t. This is also called the fail silence property of processors. 

We express this property in terrus of doek values by the following axiom. 

Axiom 4.3. 7 (Fail Silence) --.correct(p) atq T -+ --.send(p, m, l) atq T 

When a link suffers an omission failure, the messages entrusted on that link may be 

lost. But if a message has been received by a processor along a (faulty) link, then that 

message should have been correctly transmitted by that (faulty) link, i.e., that message 

is not corrupted, there are no timing errors on the message sending and receiving, etc .. 

Therefore, if a processor q receives a message m a.long link l at doek value V and q is 

correct at V according to the doek of any correct processor r, then there exists another 

processor p which has sent that message earlier along I at some time between [V -6, V -7] 
according to the doek of r. 

Axiom 4.3.8 ( Only Omission Failure) 

correct(r) A correct(q) atr V A receive(q, m, l) atr V-+ 

3p =# q : send(p, m, l) Înr [V - 6, V - 7] 

We can a.lso express tbis property in termsof local doek Vél.lues on pand q. 

Lemma 4.3.6 ( Only Omission Failure) 

correct(q) atq V A receive(q, m, l) atq V-+ 

3p =# q : [send(p, m, l) inp (V - 6 - 2t:, V 

(correct( q) -+ send(p, m, l) inp (V - 6 

Proof: Assume that the premise of the lemma holds. Consider any correct processor r. 

From receive(q, m, l) atq V, since correct(q) atq V holds, by lemma 4.3.3, we obtain 

receive(q, m, I) Înr (V- f, V+ t:). By definition, there exists a \11 E (V- t:, V+ f) such 

that receive(q, m, l) atr \11 holds. Then by the only omission failure axiom 4.3.8, we 

have 3p =# q: send(p, m, l) inr [\11-8, \11-7]. There must also exist a V2 E [\11-6, \11-ï'] 
such that 3p =# q : send(p, m, l) atr V2 • Then by the fail silence axiom 4.3. 7, we have 

correct(p) atr \12. Thus by lemma 4.3.4, we obtain 3p =# q : send(p, m, l) inp (V2 -

e, V2 +~"),i.e., =# q: send(p, rn, l) inp (V- 8 2t:, V- 1 + 2t). 

If correct(q) holds, by the only omission failure axiom 4.3.8, we have 

3p =# q : send(p, m, l) inq [V- 8, V- 1 ]. Th en there cxists a V3 E [V- 8, V -7] such that 

3p =j q : send(p, rn, 1) atq \.'a. By the fail silcncc axiorn 4.3.7, we obtain correct(p) atq \.'a. 
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Then by lemma 4.3.4, we have 3p :fo q: send(p, m, l) inp (V3 - t., Va+ c), i.e., 

3p :fo q : send(p, m, l) inp (V- 6 t, V- 1 + E). 
Hence this lemma holds. 0 

So far, we have given the required assumptions for the system. 

4.4 Server Process Specification 

For a.ny processor p, we chara.cterize the atomie broadcast server process running on p, 

i.e., S(p), by the following requirements. 

• lnitiation requirement. 

When p initiates an update u at doek timeT, it will send message < T,p,u > to 

all its neighbors immediately. When p bas waited long enough to be sure that all 

correct processors have received that message, p will convey < T, p, u > to elient 

processes. 

Notice that, in the top-level specification, only delivery of updates is important 

and thus primitive deliver(p, u) at t is used. In the server process specification, 

information about the initiation timeTand the initiator sof an update u is needed 

to implcment the top-level specification. Therefore we define another primitive 

convey(p, < T, s, u >) at t as follows: 

- convey(p, < T, s, u >) at t: processor p starts to send message < T, s, u > to 

dient processes located on p at real time t. 

Then the relation between deliver(p, u) at t and convey(p, < T, s, u >) at t is 

dear: 

deliver(p, u) at t = 3s, T : convey(p, < T, s, u >) at t 

Assume that any correct processor can send a message to all its neighbors within 

T, E CV AL time units and any correct processor can convey all the updates initi

ated at the same doek time to elient processes within Tc E CV AL time units. Let 

Tr E CV AL, T. ~ T., be the minimum time to ensure that all correct processors 

have received a message containing an update after it is initiated. These parame

ters wil! be used todetermine the values of D1 and D2 occurring in the top-level 

specification. 

We formalize the first property for p by Start(p) as follows: 

Start(p) = initiate(p, IJ) atp T --+ 
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1:/l E Link(p) : send(p, < T, p, a>, I) inp [T, T + T,] A 

convey(p, < T, p, a >) inp [T + Tr, T + Tr + Tc] 

• Relay requirement. 
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When p receives a message < T, s, a>, it will relay this message to all its neighbors 

except the one which just sent this message to itself. But it will do so only if it 

receives the message at some local time in the interval [T, T + Tr ), si nee T is the 

initiation time of a and Tr is the maximum time needed for every correct processor 

to receive this message. Later, similarly as in the initiator's case, when its doek 

reaches T + Tn p will convey < T, s, a > to elient processes. This property is 

formalized by the following formula Relay(p): 

Relay(p) = receive(p, < T, s, a >, l) atp U A U E [T, T + T,.) --+ 

1://1 E Link(p) \ { /} : send(p, < T, s, a >, 11 ) inp [U, U + T.] A 

convey(p, < T, s, a >) inp [T + Tr, T + 1~ + Tc] 

• Convey requirement. 

If processor p conveys a message < T, s, a > at time U on its doek, then there 

can be only two possibilities: either p initiated a itself at local doek value T with 

U E [T + T., T + Tr +Tc], or p received the message < T, s, a > at some doek 

value in the interval [T, T + Tr) and p ::/:. s A U E [T + 1~, T + 1~ +Tc] hol ds. 

When p initiates a at local timeT or it receives < T, s, a > at some local time in 

the interval [T, T + Tr ), we say that p learns of message < T, s, a> and define an 

abbreviation for it as follows: 

Learn(p, < T, s, a >) = ( initiate(p, a) atp TAp = s) V 

(3/ : receive(p, < T, s, a >, /) inp [T, T + T,) 1\ p ::/:. s) 

Then the requirement is formalized by the following formnla Origin(p): 

Origin(p) convey(p,< T,s,a >) atp U--+ 

Learn(p, < T, s, a >) 1\ U E [T + 1~, T + 1~ + Tc] 

• Ordering requirement. 

If two messages are conveyed by processor p, then they will be conveyed in the order 

of initiation times of updates contained in these two mcssages. If initiation times 

are the same, then they will be convcycd a.ccording to the priority of initiators. 

Therefore it is assumed that thcre is a tota.l order -< on thc set of processor narnes 

P. This tota.l order specifies a priority ordering amoug processors. 

Wedefine a lexicographica.l ordering C on pairs < T, s >. 
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Definition 4.4.1 For auy two pairs (Th si) a.nd (T11 s2), 

(T" s1 ) C (T,, s,) iff (T1 < 12) V (T1 = T, 1\ s1 -< s,). 

Then the fourth requirement is formalized by the foUowing formula. Sequen(p): 

S;equen(p) = convey(p, < T1, .s1, u1 >) atp Vt A convcy(p, < T2 ; s 2, (!2 >) atp V2 

-> (V1 <V, .., (T1,s,) C (Ti,_,,)) 

The requirements mentioned above are only for correct processors, i.e., they define the 

standa.rd behaviour of ÇOrrect processors. Since we assume that processor:; ca.n only 

suffer omi:ssion failures, we stiH necd to define wha.t is the acceptable behaviour for 

fa.ulty processors. Thus we have the following requirement for any arbitrary processor 

p. 

• Failure requirement. 

When p sends a message < Tt s 1 (j > to one neighbor at îocal time U, there can he 

only two possibiJities: either p initiateel a itself a.t localtimeT and U E [T, T + T,J 

holds, or p reçeived < T 1 s, a > a.t some local t.îme V and ccrrreci(p) atp V A U E 

[V, V+ T,) 1\ V E [T, T + T,) holds. This requirement is expressed by the following 

[ormula Source(p): 

Source(p) scnd(p,< T,s,u >)) atp U-+ 

(initiate(p,<T) atp TA U E [T, T + T,) A p: s) V 

311 , V : ( rwoxve(p, < T, s," >, 11) atp V 1\ correct(p) atp V 1\ 

p '/. s A U E [V, V + T,] 1\ V E [T, T + T,)) 

When send(p, < T, s, q > 1 l} atp U holds1 by the fait silence a.xiom 4.3. 7, it impHes 

that correci(p) at., U holds. But correct(p) atp U does not imply correci(p). lt 

is quit.e possible tha.t p is fa.ulty at some other time. That is why t.his requirement 

shouid be for a.ny processor p a.nd not. onJy for correct one. 

Reeall t.hat Spec(p) denotes the specificatîon forserver process S(p). Thus, 

Spec(p),; (correct(p) ~ Siari(p) 1\ Relay(p) 1\ Origiu(p) 1\ S<if'ten(p)] 1\ Source(p) 

We assume that server process S(1J) sat.isfies specification Spec{p). 

Axiom 4.4.1 (Server Process Specification) S(p) sat Spec(p) 

Thus the behavior of a.ny processor p is specifled by thJs a.xiom and the fail silence axiom 

4.3.7. 

4.5 Verification of Termination 

In this section, we prove that. thc terminat.ïon property of thc <ttomic broadca.<:t. protocol 

follows frorn the axloms and lemmfW gïven in the prcviotJs section~-1, To make t.he próof 
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easier, we first gi\'e some additîonallemma.s. 

The first lemma expresses that if a correct processor p receives a message < T, s~ a > 
at loca.l time U in the interval [T, T + Tr ), then its correct neighbor q·which ls not s will 

receive < T,s,a >at local time V in the interval [T,U + T, + ó + tL provided i;?. c. 

Lemma 4.1;.1 (Propagation) lf 1 ?. <, then 

wrred(p) A correct(q) A link( I,, p, q) 1\ correcl(l2 ) i\ reeeive(p, < T,s, u >,IJ) atp U i\ 

U E [T, T + T,J Aq fis-> 31: receivc(q, < T, s,a >,I) in0 [T, U+ T, + 8 + e). 

Proof: Assume that the premise of the lemma holds. Since reccive(p, < T,a~a > 
, l!) atp U holds, there are two possibilities. 

• lf lt ~ 1:: 1 then q is not the processor which just sent the message < T, 8, u > to 

p. By Relay(p), p wilJ send the message < T,s 1 a > to all its neighbors except the 

one tha.t just sent this message to ltself within T, time units, Hence p will send 

< T, s, a > to q along link 12 and thus we have 

send(p, < T, s,u >, 1,) inp [U, U+ T,J. 
By definit.ion, there exists an U1 such that 

send(p, < T,s,u >, 1,) alp U1 i\ U1 E [U, U+ T,J. 
By the bounded cornmunication lemma 4.3,5) we obta.in 

recewe(q, < T,p,u >, 12 ) inq (U1 + -y- e, U1 + 8 + <). 

Since U1 2 U a.nd U~ 1') we have U1 2 T. It is assumed that i 2 c. Thus we 

obtain U1 +t-e .2: T. Together wîth U1 ~U+ 1~, we obta.in 

31: reeeive(q, < T, s, u >.1) in,1 JT, U+ T, + 5 + <). 

• If l1 = 12, then p receives < T, p, a> from link 12 and tlms wc have 

receive(p,< T,.s,u >,l:t) atp U. 

Si nee correct(p) holds, by the only omissîon failure lemma 4.3.6, there exists a p1 

such that 

p1 fi p 1\ send(p.,< T,s,u >.l,) inp1 (U-h- e,U --y + <) 

holds. By the ncighbor axiom 4.3.4, wc have I, E Link(p) A I, E Link(p1 ). Since 

p cl p., by the link axîom 4.3.1, we obtain link(lz.p,p1 ). But it is assumed that 

link(l1 ;p,q). Thus by the point-to-point axiorn 4.3.2, we obtain Pt = q. Thus 

there exists a u2 such that 

send(q, < T, s,u >, 1,) atq U, i\ U, E (U- 5 c, U 1 + <) 

holds. Since q 'f s, by Sourcc(q), we obtain 

31, V : (receit;e(q 1 < T, s! a >, l) atq V A cOrreet(q) at<1 V A 

q'fsAU, E [V, V +1~]1\ V E JT,T+T,)). 
From V :::; U, and U, < U -1+<, we ol>tain V < U -1+cand thus V < U+ T,+h+<. 

Togetber with V ~ 1'1 we have 

31: receive(q,< T,s,u >,1) in,1 [l',U + T, + h + {). 
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Hence this lemma holds. 0 

The intuition bebind this lemma is as follows. When a correct processor p receives a 

message < T, s, u > at doek time U and it does not receive < T, s, u > from its correct 

neighbor q, p will rela.y < T, s, u > to q within T, time units. That is, the latest doek 

time at whicb p starts to send < T, s, u > to q is U + T,. Since p and q are correct 

processors, the latest corresponding doek time to U + T. on q is U + T. + t. Sending 

< T, s, u > from p to q takes at most 6 time units. Thus, the latest doek time at which 

q receives < T, s, u > is U + T, + 6 + c. Figure 4.2 shows the timing relation between 

the loca.l clocks of processors. 

0 

0 
) 

Fig. 4.2. Timing Relation Picture for Lemma 4.5.1 

Reca.ll that d is the diameter of the graph consisting of all correct processors and links. 

The following lemma shows that if Tr ~ (d- l)(T. +!i+ f) and '"f ~ t a.nd correct 

processors initiates an update u at local timeT, then any other correct processor q will 

receive < T, s, u> in the interval [T, T + d(s, q)(T. + li + t)). 

Lemma 4.5.2 (Bounded Receiving) If Tr ~ (d- l)(T, +!i+ t) and '"f ~ t, then 

correct( s) A correct( q) A initiate( s, u) at5 TA q =/= s ~ 

31: receive(q, < T, s, u>, l) inq [T, T + d(s, q)(T, + ó + t)). 

Pro of: Assume that the premise of the lemma holds. We prove this lemma by induction 

on the distance between s and q. Sinces =/= q, we start with d(s,q) = 1. 

• d(s, q) = 1. Since both s and q are correct processors, by the definition of 

d(s,q), they are connected by some correct link. Let l he that link. Then we 

obta.in link(l,s,q) A correct(l). By the server process specification axiom 4.4.1 

and correct(.s), we have Start(s). From Start(s) and initiate(s,u) at8 T, s 

will send the message < T, s, u > to all its neighbors within T. time units. 

Thus it will also send < T, s, u > to processor q along link !. Thus we have 

send(s, < T, s,u >,/)ins [T, T + T,]. 
By definition, there exists a U such that 
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send(s, < T,s,a >, l) at8 U I\ U E [T,T + T.]. 
By the bounded communieation lemma 4.3.5, we obtain 

receive(q, < T, 8,a >, l) inq (U+ 'Y- ;;., U+ 6 + t). 
Since it is assumed that 'Y:::: t, together with U:::: T, we obtain U+"'- c::::: T. 
By U < T + T., we obtain 

receive(q, < T, s, a>,/) inq [T, T + T, + 6 +~:),i.e., 

3/: reeeive(q, < T,s,a >,I) Înq [T,T + d(8,q)(T. + 6 + ë)). 
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• d( 8, q) k + 1 with k :::: 1. By definition, there must ex i st a link /2 and a processor 

q1 such that link( 12, q1, q) I\ correct( 12) I\ correct( qt) I\ d( s, qt) = k I\ d( qll q) 1 

holds. By the induction hypothesis, we have 

311 : receive(q1 , < T, s, q >, 11) inq1 [T, T + k(T. + 6 + f)). 
By definition, there exists a Vi sueh that 

3/t : (receive(qt, < T, s,a >, lt) atq1 Vi I\ V1 E [T, T + k(1~ + 6 + t)) ). 

Since Tr:::: (d l)(T. + 6 + c) and d 2 k + 1, where dis the diameter of G \ F, we 

obtain 

k(T. + 6 + t) $ Tr and thus we have 

311 : (receive(q11 < T, s, q >, lt) atq1 V1 I\ Vi E [T, T + Tr) ). 

Since 'Y:::: t, by the propagation lemma 4.5.1, we have 

31: receive(q, < T, s, q >, l) inq [T, Vi + T, + 8 + t), i.e., 

31: receive(q, < T, s, a>, l) inq [T, T + (k + l)(T. + 6 + t)). 

Hence we have proved 

3/: receive(q, < T, s, q >, 1) inq [T, T + d(s, q)(T. + 6 + ~:)). 

Hence this lemma holds. 0 

This lemma can be informally explained as follows. When a correct processor s initiates 

an update a at doek timeT, it will send message < T, s, q > to all its neighbors within 

T. time units, i.e., the latest doek time at which 8 starts to send < T, s, a > to all its 

neighbors is T + T •. Suppose q1 is a correct neighbor of s. Then the latest eorresponding 

doek time to T + T. on q1 is T + T, + L Sending < T, s, q > from 8 to q1 takes at most 6 

time units. Thus the latest doek time at which q1 receives < T, s, q > is T + T, + 6 + f. 

Then q1 will relay < T, s, q > to all its neighbors except s within T, time units, i.e., the 

latest doek time at which q1 starts to send < T, s, q > to its neighbors is T + 2T. + 6 + f. 

Suppose q2 is a correct neighbor of q1 but q2 :/= s. Then the latest corresponding doek 

time to T + 2T. + 6 + f on q2 is T + 2T. + 8 + 2€. Similarly, sending < T, s, a > from q1 to 

q2 takes at most 6 time units. Thus the latest doek time at which q2 reeeives < T, s, q > 
is T + 2T, + 26 + 2t. This procedure can go on until evcry correct processor has received 
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< T, s, t1 >. Figure 4.3 shows the timing rela.tion between the loca.l docks of processors. 

c. 
0 T : T+ T. 

0 

Cqz 
0 T + 2T. + 26 + 2f 

Fig. 4..3. Timing R.ela.tion Picture for Lemma 4.5.2 

The next lemma shows that if a correct processor s initiates <1 at local doek time T, 

then every correct processor q will convey < T, s, <1 > in the interval [T + T., T + T, +Tc] 
according totheir own clocks, provided T.?: d(T, + é + f) a.nd "f ?: f. 

Lemma 4.5.3 (Convey) If T. ?: d(T. + 6 + f) and 'Y?: f, then 

correct( s) 1\ correct( q) 1\ initiate( s, <1) at5 T ....... convey( q, < T, s, u >) inq [T + T., T + 
T. + T.]. 

Proof: Assume that the premise of the lemma. holds. We prove this lemma in two cases. 

• d(s,q} = 0. By definition, we have s = q. By the server process specification a.xiom 

4.4.1 and correct(q), we have Start(q). From Start(q) a.nd initiate(s, <1) at5 T 1\s = 
q, we obta.in 

convey(q,< T,s,<1 >) inq [T + T.,T+ T, + T.]. 

• d(s,q) > 0. By definition, we have s :/= q. Since T. ?: d(T. + é + f) and 1 ?: t:, by 

the bounded receiving lemma 4.5.2, we obtain 

31: receive(q, < T, s, u>, I) Înq [T, T + d(s, q)(T. + é + E)), i.e., 

31: receive(q, < T, s,u >, l) Înq [T, T + T,). 

By Relay(q), we obta.in convey(q, < T, s, u>) Înq [T + Tr, T + Tr + T.]. 

Hence this lemma holds. D 

Next we prove tha.t the termination property follows from the a.xioms and lemmas given 

before. 

Theorem 4.5.1 (Termination) If T, ?: d(T. + é + t:), 'Y ?: f, and D1 ?: T. + T., then 

correct(s) 1\ correct(q) 1\ initiate(s, u) at5 T-+ deliver( q, <1} byq T +Dl> 

i.e., the termination property TERM holds. 
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Proof: Assumethat the premise of this theorem holds. Since T, ~ d(Ta+b+f) and 1' ~ f, 

by the convey lemma 4.5.3, we obta.in convey( q, < T, s, u>) Înq [T + T,, T + T, +Te]. 

By definition, we obta.in deliver(q, u) inq [T + Tr, T + T, +Tc]· 

Since D1 ~ T + r + T0 , we have deliver(q,u) byq T + D1• 

Hence this theorem holds. D 

4.6 Verification of Atomicity 

In this section, we prove the atomicity property of the atomie broadcast protocol. We 

first show some lemmas which will help prove the atomicity property. 

The next lemma states that if correct processor p receives message < T, s, u > at 

some local time in the interval [T, T + T, ), then that update u was initiated by processor 

s at local timeT, provided 1' > 2e:. 

Lemma 4.6.1 (Initiation) If 1' > 2f, then 

correct(p) 1\ receive(p, < T, s, u>, l) Înp [T, T + T.)-+ initiate(s, u) at8 T. 

Proof: Assume that the premise of the lemma holds. By definition, there exists a V 
such that 

correct(p) 1\ receive(p, < T, s, u >, l) atp V 1\ V E [T, T + T,) (1) 
holds. By the only omission failure lemma 4.3.6, there exists a s1 and a Ut such that 

St ;f: p 1\ send(sl! < T, s, u>, l) ats1 Ut 1\ Ut E (V 6- 2e:, V 1' + 2f). (2) 

By Source(st), there exist lt and Vt such that 

( initiate( St, u) at81 T 1\ St = s) V (3) 
receive(s1 , < T, s, u>, lt) at81 Vi 1\ correct(sl) ats1 Vi 1\ 

St ;j: s 1\ Ut E [lti, Vi + T.)A Vt E [T, T + T,) (4) 

hol ds. 

If (3) holds, we have proved initiate(s,u) at8 T. 

If (3) does not hold, then s1 is not the initiator of u and (4) holds. 

By (l) and (4), we obta.in V E [T,T + Tr) and Vi E [T, T + T,). 

From (2), we have Ut < V 1 + 2e:, i.e., V> Ut+ 1 2t. From (4), we have Ut ~ l/i. 
Thus we obtain V > Vi + 1 2t, i.e., V Vi > 1- 2f. 

From receive( sh < T, s, u >, 11 ) at81 Vi and correct( st) at81 V1 in ( 4 ), we obta.in by the 

only omission failure lemma 4.3.6 another processor s2 ;j: s1• If s2 is not the initiator of 

u, we follow the above steps and then obtain another processor s3 ;j: s2• This procedure 

can continue until we obtain a processor .~k-t such that sll ... , sk-I are not the initiator 

of u, where k E JN+ 1\ k ~ 2. Since k is arbitray and 1 > 2e, let k 2: (V- T)/(1'- 2t). 

Then, for any i = 2, 3, ... , k- 1, there exist l; and V; such tha.t 



86 GRAPTER 4. ATOMIC BROADCAST PROTOCOL 

s; ~Si-I 1\ receive(s;, < T, s, a>, I;) at8i V; 1\ correct(s;) at8i V; A 

s;~s A V;E(T,T+T,) Alf;_, V;>Î-2€) 

holds. From lf;_1 -V; > "/- 2t and V- V} > Î 2f, we obtain V V; > i("/ 2t), for 

any i;;; 1,2, ... ,k 1. From receive(s~c- 1 ,< T,s,a >,l~c- 1 ) atsk-l V~c-to by the only 

omission failure lemma 4.3.6, there exists a processor Sk ~ sk_ 1 such that 

send(sk, < T, s, u>, l~c_t) in8k (Vk-1 - 6 2f, Vk-1 - 7 + 2f) holds. 

By Source(sk), there exist l~c and Vk such that 

(initiate(sk,u) at8k TA sk = s) V (5) 

receive(sk, < T, s, (}' >, lk) atsk V~c A Sk ~ sA vk E (T, T + Tr) (6) 
hol ds. 

If (6) holds, similar as before, we ca.n derive V~c_ 1 V~c > 1-2e. From V- V; > i( 7- 2e), 

we obtain V V~c > k("'- 2t). Since 1 > 2e and k:?: (V T)/{"1- 2E), we have V~c < T 

and thus (6) does not hold. Therefore (5) must holcl, i.e., s~c is the initiator of u. Hence 

this lemma holds. D 

Wedefine an ahbreviation Firstrec(p, < T, s,u >, 1} atp U, 

is one of the first correct processors which have received < T, s, u > according to 

their own clocks, as follows: 

Firstrec(p, < T, s, u >, l) atp U = correct(p) A receive(p, < T, s, u >, l) atp U A 

'Vp', l', U' : ( correct(p') A p' ~ pA receive(p', < T, s, u >, l') atp• U' -> U' ~ U) 

The next lemma shows that if p receives < T, s, u > at local time U, p is one of the first 

correct processors which have received < T, s, u >, and s is faulty, then any processor q 

which is not p and has sent < T, s, u > to p earl i er than U is a faulty processor. 

Lemma 4.6.2 (Faulty Sender) 

Firstrec(p, < T, s,u >, 11 ) atp U A -.correct(s) 1\ send(q, < T, s, a>, 12 ) atq V A 

U > V 1\ q ~ p-> -.correct(q) 

Proof: Assumethat the premise of the lemmaholds. From sen(l(q, < T, s, a >,/2 ) atq V, 

by Source(q), we ohtain 

(initiate(q,u) atq T 1\ q = s) V (1) 

3l',U': (receive(q,< T,s,a >,I') atq U' A correct(q) atq U' AVE [U',U' + T,] ). (2) 

Then there exist two possihilities: 

• if (1) holds, then q s and thus, by assumption, -.correct(q) holds; 

• if (2) holds, we have V:?: U'. Sirree U> V, we obtain U> U'. 

If correct(q) holds, by Firstrec(p,< T,,q,a >,I) atp U, we should have U'::;::: U 

and thus it leads toa contradiction. Thus -.correct( q) holds. 
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For both cases, we obtain •correct( q). Hence this lemma hol ds. 0 

The following lemma shows that if p receives < T, s, u > at local time V, p is one 

of the first correct processors which have received < T, s, u >, and s is faulty, then 

V< T + m(T, + 8 + 2e), where mis the maximum number of faulty processors in the 

network, provided 'Y ~ 2e. 

Lemma 4.6.3 (First Correct Receiving) If 'Y ~ 2t:, then 

Firstrec(p, < T, s, u>, l) atp V A ...,correct(s) ....:; V < T + m(T, + 8 + 2e). 

Proof: Assume that the premise of the lemma hol ds. From receive(p, < T, s, u > 
, l) atp V and correct(p), by the only omission failure lemma 4.3.6, there exists a s1 and 

a Ut such that 

s1 ;:/:pA send(st, < T,s,u >,1) at81 Ut A Ut E (V 8- 2t:, V-"(+ 2t:) 

holds. Thus we have 

V < Ut + 8 + 2t: and Ut < V - 1 + 2t: .. (1) 
Since Firstrec(p, < T, s, u >, l) atp V holds, by the faulty sender lemma 4.6.2, s1 is a 

faulty processor, i.e., ..,correct( st) holds. By Source(st), there exist 11 and V1 such that 

(initiate(st. u) at81 TA St =sA Ut E [T, T + T.) ) V (2) 

( receive( St,< T, s, u >, lt) at81 V1 A correct( st) at81 Vi A 

St ;:/: s A Ut E [Vi, Vi + T,] A Vi E [T, T + T,) ). (3) 
holds. Then there are two possibilities. 

• If (2) holds, then St is the initiator of u and we have Ut :5 T + T,. 

From (1), we obtain V < T + T. + 8 + 2t. 

Since •correct(s) holds, there is at least one faulty processor, i.e., the maximum 

number of faulty processors m ~ 1. 

Thus we obtain V < T + m(T, + 8 + 2t:). 

• If (3) holds, then together with (1 ), we obtain 

V < Vi + T. + 8 + 2t:. (4) 

From receive(sb < T,s,u >, lt) at81 Vi and correct( st) at81 Vi, by the only omis

sion failure lemma 4.3.6, there exist s2 and U2 such that s2 has sent < T, s, u > to 

St along link lt at doek time U2. 

Similar as before, we have u2 E (Vi - 8- 2t:, Vi- Î + 2t:}, i.e., u2 < VI - Î + 2t:. 

Si nee it is assumed that 1 ~ 2t, we obtain U2 < Vi. 
From (1), we have Ut <V- 1 + 2t. By 1 ~ 2E, we have U1 <V. 

From (3), we have Vi :5 U1 and thus Vi < V. Therefore we obtain U2 < V. 

Then by the faulty sender lemma 4.6.2, ...,correct(s2 ) holds. 

By Source(s 2 ), we obtain a formula similar as (2) and (3). 
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If s2 is not the initiator of a, we follow the above steps and then obtain another s3 

which is also a faulty processor, by the same reason as for s2• Since there are at 

most m fa.ulty processors, we cannot continue this procedure infinitely. We must 

obtain as~; with k s:; mandit is the initiator of a. 

Thus we have faulty processors s11 ••. , Sk- 1 which are not the initiator of a. For 

any i = 2, 3, ... , k- 1, by the only omission failure lemma 4.3.6 and Source(s;), 

there exist l; and V; such that 

s; "1. s;-t A receive(s;, < T, s, a>, l;) at8 • V; A correct(s;) at8 • V; As; ;/:. s A 
1 1 

Vi-t < V; + T, + 15 + 2f 

holds. Then we obtain 

Yt < vk-t + (k- 2)(T. + 8 + 2t). (5) 

From receive(sk-1>< T,s,a >,l~ç_t) atsk-l VA:-1 and co1·rect(sk-t) at8k-l Vk-1> 

by the only omission failure lemma 4.3.6, there exists a uk such that 

Sk "1. Sk-1 A send(sk, < T, s, (J >, lk-d atsk uk A uk E (Vk-t- 8 2t, vk-t- Î + 2t:) 

holds. Then we obtain Vk-t < Uk+ 6 + 2e. 

Together with (5), we obtain 

Yt <uk+ (k- 2)T. + (k- 1)(6 + 2t). 

Since Bk is the initiator of a, by Source(sk), we have 

initiate(sk,a) at8k TA sk sA Uk E [T, T + T,]. 
Together with (6), we obtain 

\11 < T + (k- l)(T. + 6 + 2t:). 

Combining (4) and (7), it results in V< T + k(T. + 8 + 2t:}. 

Since k s:; m, we finally obtain V < T + m(T, + 8 + 2t). 

(6) 

(7) 

Hence this lemma holds. 0 

Here we give an intuitive explanation of the lemma 4.6.3 for the case m = 2. Assume that 

s1 and s2 are faulty processors and connected by a link l. Suppose that s2 initiated an 

update a at local timeT. As we have seen from the proof of thc lemma, s2 behaved in the 

same way as a correct initiator. Namely, s2 will send the message < T, s2 , a > to all its 

neighbors within T. time units according to its own doek. Wh en s1 receives < T, s2, a > 
from s2 at some local time V, it is derived (by Source( s1)) tha.t correct( s1 ) at81 V holds. 

By the only omission failure lemma 4.3.6, sending < T, s2 , a > from s2 to St takes at 

most 6 + 2t: time units as measured on the doek of SJ. Thus the latest doek time at 

which s1 receives < T, s2 , a > is T + T. + 8 + 2L Then s1 will relay < T, s2 , a > to 

all its neighbors except s2 within T. time units according t.o its own doek, as a correct 

processor will do. Suppose p is a correct neighbor of SJ. Since s1 is faulty and p is 

correct, by the only omission failure lemma 4.3.6 again, sending < T, s2 , a > from St to 
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p takes at most 6 + 2~ time units as measured on the doek of p. Thus the latest doek 

time at which p receives < T, s2, u > is T + 2T, + 2fi + 4t. Then we have the following 

figure 4.4, which is similar to figure 4.3, but the upper bound is slightly different. 

0 

0 

0 

T :T+T. 
I 
I 
I 

T+T. I T+2T&+ó+2t 
I 
I 
I 

f::2f ± {j=i 
T+2T.+2fi+4t 

Fig. 4.4. Timing Relation Picture for Lemma 4.6.3 

' C.-: 

) 

c" 

The following lemma shows that if p receives < T, s, u > at local time U in the interval 

[T, T + T, ), pis one of the first correct processors which have received < T, s, q >, and s 

is faulty, then any other correct processor q wil! receive < T, s, e1 > at some loca.l time in 

the interval [T, U +d(p, q)(T.+ó + t:)), provided T, ~ (d+m -l)(T. +ó) + (d+2m -l)t 
and 'Y ~ 2co. 

Lemma 4.6.4 (Correct Receiving) If T, ~ (d+m-l)(T. +ó) +(d+2m-l)t and 

'Y ~ 2t, then 

Fir strec(p, < T, s, u >, l') atp U A U E !T, T + T,) A -.correct( s) A correct( q) A p ~ q -+ 

3/: receive(q, < T, s, u>, l) inq !T, U+ d(p, q)(T, + ó + t)). 

Pro of: Assume that the premise of the lemma holds. We prove this lemma by induction 

on the distance betweenpand q. Since p ~ q, we start with d(p,q) = 1. 

• d(p,q) = 1. By definition, pand q are oonnected by some correct link. Let that 

link bel. Then we have link(l,p, q) A correct(l). 

From Firstrec(p, < T, s, e1 >, l') atp U, by the only omission failure lemma 4.3.6, 

there exist a P1 and a U1 such that 

PI~ pA send(pi, < T,s,u >, n atpl UIA ul E (U- {j- co, U- 'Y + t) 

holds. Since "Y ~ 2t:, we have 'Y > t. Thus we obtain U > U - 1 + t and tben 

U > U1 • By the faulty sender lemma 4.6.2, we have •correct(pi). Tbus oorreet 

processor q is not that sender p1• 

By Relay(p), p wil! send < T,s,u > to q along link l within T. time units. Tbus 

we have send(p, < T, s, e1 >, l) inp [U, U + T.]. 
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By definition, there exists an X such that 

send(p, < T, s, 11 >, l) atp X 1\ X E [U, U+ T,) 

holds. By the bounded communication lemma 4.3.5, we obtain 

receive(q, < T, s, a>, l) inq (X+ 1- t, X+ 8 + t). 
Since X~ U and U~ T, we have X~ T. By 1 ~ 2t, we obtain X+ 1- t ~ T. 

Together with X < U + T., we have proved 

3/: receive(q, < T, s, 11 >, l) inq [T, U+ T. +ti+ t), i.e., 

31: receive(q, < T, s, 11 >, l) Înq [T, U+ d(p, q)(T. +ti+ t) ). 

• d(p, q) k + 1 with k ~ 1. By definition, there must exist a processor q1 and a 

link l2 such that corred(qt)l\correct(l2 )1\link(l2 ,q1 ,q)l\d(p,qt) = kl\d(q1 ,q) = 1 

holds. By the induction hypothesis, we have 

3lt : receive(ql> < T, s, 11 >, lt) inq1 [T, U+ k(T. + 6 + t)). 
By definition, there exists a Vl. such that 

311 : (receive(qh < T, s, 11 >, lt) atq1 V} 1\ V} E [T, U+ k(T. + 6 + ~;)) ). 
Since Firstrec(p, < T, s, a >,I') atp U and 1 ~ 2t holds, by the first correct 

receiving lemma 4.6.3, we have U< T + m(T. +ti+ 2t). Thus we obtain 

311 : (receive(qh < T, s, 11 >, lt) atq1 V} 1\ V} E [T, T+(k+m)(T.+6)+(k+2m)t) ). 

Since T, ~ (d + m- l)(T. + é) + (d + 2m- 1)t: and k S d -1 hold, we have 

311 : (receive(q1 ,< T,s,a >,11) atq1 V} 1\ Vl. E [T,T+ T.) ). 

Since correct(q) and -.correct(s) hold, we obtain q ;f:. s. 

By assumption, 1 ~ 2t. Then by the propagation lemma 4.5.1, we have 

31: receive(q, < T, s, 11 >, /) Înq [T, V}+ T. + 6 + t), i.e., 

3/: receive(q,< T,s,a >,I) inq [T,U + (k + l)(T. +6 + t)). 
Therefore we have proved 

31 : receive( q, < T, s, a >, /) inq [T, U+ d(p, q )(T. + ti + t:) ). 

Hence this lemma holds. 0 

Next lemma shows that if correct: processor p learns of < T, s, a >, then any correct 

processor q also learns of< T,s,a >, provided T. ~ (d + m)(T. + 6) + (d + 2m)e and 

ï > 2t:. 

Lemma 4.6.5 (All Learn) If T, ~ (d + m)(T. + 6) + (d + 2m)e and Î > 2t, then 

correct(p) 1\correct(q) 1\ Learn(p, < T,s,a >)--> Learn(q, < T,s,a >). 

Proof: Assume that the premise of Lhe lemma hol ds. By Learn(p, < T, s, 0' > ), we have 

(initiate(p,O')atpT/\p:s)V (1) 

311 : (receive(p, < T, s, a >, 11 ) inp [T, T + 1~) 1\ p ;f:. 8) (2) 
From (2), si nee Î > 2t, by the init.iation lemma 4.6.1, we obtain initiale( .s, 0') at8 T. 
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Since either (1) or (2) hold, we obtain initiate(s,u) at8 T from the premise. 

We have to prove Learn(q, < T, s, u>), i.e., the following formula holds: 

(initiate(q,u) atq T /1. q Es) V 

(3/2 : receive(q, < T, s, u >, 12 ) Înq [T, T + T,) /1. q :1; s). 

There are two possibilities: 

• if sE q, then we have initiate(q, u) atq T /1. q s holds, i.e., (3) holds; 

• if s :1; q, we prove that ( 4) holds by the following two cases. 

91 

(3) 

(4) 

1. If correct(s) holds, since Tr ;:: (d + m)(Ts + 8) + (d + 2m)e a.nd 1 > 2e, by 

the bounded receiving lemma 4.5.2, we obtain 

312: receive(q, < T, s, u>, lz) inq [T, 1' + d(s,q)(Ts + 8 + €)), i.e., 

312 : receive(q, < T, s, u>, 12 ) inq [T, T + 1~) /1. q :1; s, 

i.e., ( 4) hol ds. 

2. lf -.correct(s) holds, then by receive(p, < T, s, u>, lt) inp [T, T + Tr), there 

exists a processor p1 which is one of the first correct processors that have 

received < T, s, u > in the interval [T, T + T,) according to their own clocks. 

Thus, there exist /3 and U such that 

Firstrec(p1 , < T,s, u>, 13) atp1 U /1. U E [T, T + T,) holds. 

Since 1 > 2~:, by the first correct receiving lemma 4.6.3, we obtain that p1 

receives < T, s, u> at local time U with U < T + m(Ts + 8 + 2e). 

Then we have also two cases: 

- if q E Ph then by Firstrec(pt, < T, s, u >,la) atp U, we have 

receive(q, < T, s, u>, la) inq [T, T + m(Ts + li + 2e)), i.e., 

312 : receive(q, < T, s, u>, 12 ) Înq [T, T + m(T. + 8 + 2E)); 

if q :1; p1 , since 1 > 2e, by the correct receiving lemma 4.6.4, we have 

: receive(q, < T, s, u>, 12 ) Înq [T, U+ d(p, q)(T. + li + e)), i.e., 

: receive(q, < T, s, u>, 12 ) inq [T, T + m(T. + li + 2e) + d(p, q)(T8 + 
8 + e)). 

Combining both cases, si nee d(p, q) ~ d, we obtain 

312 : receive(q, < T, s, u>, !2) inq [T, T + (d + m)(T. + li) + (d + 2m)t} 

Since T,;:: (d + m)(T. + li) + (d + 2m)e, together with s :1; q, we have 

(312 : receive( q, < T, s, u >, lz) Ïnq [T, T + Tr) /1. q :1; s ). 

Thus for both cases, ( 4) holds. 

Hence this lemma holds. 0 
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Next lemma. expresses tha.t if correct processor p conveys < T, s, u > at some local time 

U, then any correct processor q conveys < T, .s, u> in the interval [T + T., T + T, +Tc], 

provided T~ ~ (d + m)(T, + 6) + (d + 2m)t and 1 > 2L 

Lemma 4.6.6 (All Convey) If T, ~ (d + m)(T. + 6) + (d + 2m)c and 1 > 2~:, then 

correct(p) A corred(q) A convey(p, < T, s, a>) atp U-+ 

convey( q, < T, s, a >) inq [T + TroT+ T, + Tc]. 

Proof: Assume tha.t the premise of this lemma holds. By the server process specifica

tion axiom 4.4.1 and corred(p), we have Origin(p). From Origin(p) and 

convey(p, < T, s, a>) atp U, we obtain Learn(p, < T, s, a>). Since T, ~ (d + m)(T, + 
6) + ( d + 2m )t a.nd 'Y > 2~:, by the alllearn lemma 4.6.5, we have 

Learn(q, < T,s,u >),i.e., 

(initiate(q,a)atqTAq s)V 

(31: receive(q, < T,8,u >,1) inq [T,T + T.) A q '# s). 

If (1) holds, by Start(q), we have convey(q, < T, s, a>) inq [T + T" T + T. +Tc]. 

If (2) holds, by Relay( q ), we have convey( q, < T, s, 0' >) Înq [T + T" T + T, +Tel· 

Thus for both cases, we obtain convey( q, < T, s, a >) inq [T + T" T + Tr + Tc]. 
Hence this lemma holds. 

(1) 
(2) 

0 

Next we prove a theorem which shows that the atomicity property follows from the 

a.xioms a.nd lemmas given before. 

Theorem 4.6.1 (Atomicity) If Tr ~ (d + m)(T. + 6) + (d + 2m)f, 'Y > 2t, and 

D2 ~Tc, then 

correct(p) A correct(q) A deliver(p,a) atp U-+ 

3s, T : initiate( s, a) at8 T A del i ver( q, a) Înq [U - D2 , U + D2], 

i.e., the a.tomicity property ATOM holds. 

Proof: Assume that the premise of the theorem hol ds. From deliver(p, a) atp U, by 

definition, there exist 8 and T such that convey(p, < T, s, a >) atp U hol ds. By the server 

process specification a.xiom 4.4.1 and corred(p), we have Origin(p). By Origin(p), we 

obtain 

Learn(p, < T, s, a >)A U E (T + T" T + T. +Tc], i.e., 

( ( initiate(p, a) atp TAp .5) V 

(31 : receive(p, < T, s, a >, l) inp [T, 1' + 1',) A p '# s)) A 

u E IT + T., T + TT + Tc]. 

From (1), we have initiate(s,a) at5 T. 

(1) 

(2) 

(3) 

From (2), si nee 'Y > 2t:, by the init.iation lemma. 4.6.1, we obt.ain initiale( s, a) ats T. 

Thus for both cases, we have 
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3s, T: initiate(s, u) at8 T. (4) 
From convey(p, < T, s, er >) atp U, since T, ;::: ( d + m )(T. + 6) + ( d + 2m )e and 'Y > 2e, 

by the all convey lemma 4.6.6, we have 

convey(q, < T, s, u>) Înq [T + T" T + T, +Tc]· 

From (3), we have T E [U T, Tc, U-T,]. 

Hence we obtain convey(q, < T, s, u>) inq [U- Tc, U+ Tel· 

By definition, we obtain deliver( q, u) inq [U- T0 U+ Tc]· 
Since D2 ;::: Tc, we have 

deliver( q, u) Înq [U - D2 , U + D2 ]. 

Combining (4) and (5), this theorem holds. 

4. 7 Verification of Order 

(5) 
D 

The order property of the atomie broadcast protocol will be proved in this section. We 

first give two lemmas which will be used to prove the order property. 

The following lemma shows that, for any correct processors p and q, if p conveys 

< T, s, u > at local time U, q conveys < T, s, u > at local time V, and no update is 

delivered by p in the interval [0, U), then there is also no update delivered by q in the 

interval [0, V), provided Tr;::: (d + m)(T. + 8) + (d + 2m)e and "Y > 2e. 

Lemma 4.7.1 (First Delivery) If T,;::: (d + m)(T, + 8) + (d + 2m)e and "Y > 2e, 

then 

correct(p) 1\ convey(p, < T, s, u >) atp U 1\ 

correct( q) 1\ convey( q, < T, s, u >) atq V 1\ 

...,deliver(p) inp [0, U)-+ ...,deliver(q) inq [0, V). 

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) inq [0, V) 

holds. By definition, there exist s0 , To, and Vo such that 

convey( q, < T0 , s0 , u0 >) atq Vo 1\ Vo E [0, V) hol ds. 

By assumption, we have convey(q, < T, s, 0' >) atq V. 

From Vo <V, by Sequen(q), we obtain (To, so) C (T, s). 

Since Tr 2::: ( d + m )(T. + 6) + ( d + 2m )t and Î > 2e, by the all convey lemma 4.6.6, we 

have convey(p, < T0 , s0 , cro >) inp [T + T., T + Tr + Tc], i.e., there exists a Uo E CV AL 

such that convey(p, < T0 , s0 , cr0 >) atp U0 holds. 

By assumption, we have convey(p, < T, s, u >) atp U. 

Since (To,so) C (T,s), by Sequen(p), we obtain Uo <U. 

From Uo E CV AL, we have Uo 2 0 and thus Uo E [0, U). 
Therefore we obtain convey(p, < T0 , s0 , <70 >) atp U0 1\ Uo E [0, U), i.e., 

deliver(p, u0 ) inp [0, U). 
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But by assumption, we have -.deliver(p) inp [0, U). 

Thus it leads to contradiction and then deliver( q) inq [0, V) does not hold, i.e., 

-.deliver(q) Înq [0, V) holds. 

Hence this lemma holds. 0 

Next lemma shows that, for any correct processors p and q, if p conveys < T1 , s1 , q 1 > 
at doek time U1 and < T2 , s2 , <12 > at doek time U2 , q conveys < T., s1 , <11 > at doek 

time Vi and < T2 , s2 , <12 > at doek time V2 , and there is no update delivered by p in 

the interval (U.,U2 ), then there is also no update delivered by q in the interval (Vi, V2), 

provided Tr 2:: (d + m)(T. + h) + (d + 2m)c and "{ > 2t. 

Lemma 4.7.2 (No Delivery) If Tr 2:: (d + m)(T. + 6) + (d + 2m)f and "'> 2f, then 

correct(p) 1\ convey(p, < r., St, G"t >) atp Ut 1\ convey(p, < T2, s2, (12 >) atp u2 1\ 

correct(q) 1\ convey(q, < T11 s.,q1 >) atp Vi 1\ convey(q, < T2 ,s2 ,<T2 >) atp ~ 1\ 

-.deliver(p) inp (Ut,U2 ) -t -.deliver(q) inq (Vi, V2 ). 

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) inq (Vt, V2 ) 

holds. By definition, there exist s and T such that convey(q,< T,s,u >) inq (Vi, V2) 

holds. Then there exists a V such that convey(q, < T, s, ri >) atq V 1\ V E (Vi, V2) 

hol ds. 

By assumption, we have convey( q, < Th s1o (J1 >) atp Vi. 
Since Vi <V, by Sequen(q), we obtain (Tt,St) C (T,s). 

Simila.rly, from assumption, we have convey(q, < T2 , s2 ,<T2 >) atp V2 • 

Since V<~. by Sequen(q) again, we obtain (T,s) C (T2 ,s2 ). 

From convey(q, < T,s,q >) atq V, since Tr 2:: (d + m)(1~ + 6) + (d + 2m)E and "{ > 2~:, 
by the all convey lemma 4.6.6, we have convey(p, < T, s, (J >) inp [T + T" T + Tr +Tc], 

i.e., there exists a U such that convey(p, < T, s, (J >) atp U hol ds. 

By assumption, we have convey(p, < Tt. St. <Tt >) atp U1 . 

Since (T.,st) C (T,s), by Sequen(p), we obtain Ut< U. 

Simila.rly, from assumption, we have convey(p, < T2 , s2 , (12 >) atp U2 • 

Since (T,s) c (T2,s2 ), by Sequen(p), we obtain U< U2. 

Thus we obtain convey(p, < T, s, q >) atp U 1\ U E (Ut, U2 ). 

By definition, we have delivcr(p,q) inp (UI>U2 ). 

But from assumption, we have -.delivcr(p) inp (Ut.U2). 

Thus it leads to contra.diction and then deliver(q,q) inq (Vi, l/2 ) does not holds, 

i.e., -.deliver(q) inq (Vi, V2 ) holds. 

Hence this lemma holds. 

Next we prove, by the following theorem, that the order property holds. 

0 
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Theorem 4.7.1 (Order) If Tr;::: (d + m)(Ts + 8) + (d + 2m)t and 1 > 2t, then 

correct(p) À correct( q) --+ V'U3V : List(p, U) Ç List( q, V), 

i.e., the order property holds. 

Pro of: For any doek value U E CV AL, assume (uh u2, ... , uk) E List(p, U). By 

definition, there exist k E JN+, U11 U2 , ... , Uk such that Ut $ U2 $ ... $ U,. < U, 

deliver(p,u;) atp U;, for i:::::: 1,2, ... ,k, -.deliver(p) inp (Ui,Ui+t), for j == 1,2, ... ,k-1, 

and -.deliver(p) inp [O,Ut)· From deliver(p,ui) atp U;, there exist s; and T; such that 

convey(p, < T;, s;, u; >) atp U; holds. Let V = U+ Tc; We prove that, by induction on 

k, there exist l/i, \12, ... , V,. such that l/i $ V2 $ ... $V,.< V, 

convey(q,< T;,s;,u; >) atq V;, for i= 1,2, ... ,k, -.deliver(q) inq (ltJ,ltJ+t), for j = 
1,2, . .. ,k-1, and ...,deliver(q) Înq [0, l/i) hold. 

• k = 1. By assumption, we have convey(p, < T1 , s1 , u1 >) atp U1 and 

-.deliver(p) inp [0, Ut). 

Since T, 2: ( d + m )(T. + 6) + ( d + 2m )E and 1 > 2t, by the all convey lemma 4.6.6, 

we obtain convey(p, < Tt, St, O't >) inp [Tt + T., T1 + Tr + Tc] and 

convey(q, < Tt, St, O't >) inq [Tt + T., Tt + Tr +Tc]. 

Thus we have Ut E [Tt + T., T1 + T, +Tc]· Since Ut <U, we obtain T1 + Tr <U. 

There exists a lli E CV AL such that 

convey(q, < T1, St, Ut >) atq lli À lli E [Tt + T., Tt + Tr +Tc] holds. 

Then we have l/i $ Tt + T, +Tc and thus l1i < U+ Tc, i.e., l1i < V. 

By the first deliver lemma. 4. 7.1, we also obtain -.deliver(q) Înq [0, Vt). 

• k > 1. By the induction hypothesis, there exist l/i, V2 , ••• , V,._1 such that V1 $ 

V2 $ ... $ V"_1 , convey(q, < T;, s;,u; >) atq V;, for i 1, 2, ... , k- 1, 

-.deliver(q) inq (Vj, "J+1), for j 1, 2, ... , k- 2, and ...,deliver(q) Înq [0, lli) hold. 

By assumption, we have convey(p, < Tk, s,., uk >) atp U". 

By the all convey lemma 4.6.6, we obtain that there exists a Vk such that 

convey( q, < Tk, Sk, O'k >) atq V,. À vk E [Tk + T., Tk + Tr +Tc] holds. 

Since Uk-t $ Uk, we prove Vk-t $V" by the following two cases. 

1. Assume Uk-t < U". By assumption, we have 

convey(p, < n-h Sk-1> O'k-l >) atp uk-1 and convey(p, < Tk, sk, O'k >) atp U~o. 

Since Uk-l < Uk, by Sequen(p), we obtain (Tk-h s,._t) C: (Tk, Bk)· 

From the induction hypothesis and above, we have 

convey(q, < Tk-1> sk-t. O'k-1 >) atq Vk- 1 and convey(q, < T,., s,., O'k >) atq V,.. 

Since (Tk-t,Sk_t) c: (T~<;,Sk), by Sequen(q), we obtain vk-1 < vk. 

2. Assume Uk-1 = Uk. 

Suppose Vk-l < V,.. Similar as above, we obtain U"_1 < Uk which does not 



96 GRAPTER 4. ATOMIC BROADCAST PROTOCOL 

hold. 

Suppose Vk-1 > Vk. Similarly, we obtain Uk- 1 > Uk which also does not hold. 

Therefore only V~,;_ 1 V~; holds. 

Combining these two cases, we obtain V~;_ 1 5 V". 

Similar as the case for k = 1, we have Uk E [T~; + Tn Tk + T, +Tc] and Uk < U. 

Thus we obtain Tk + T, <U. Since V~; 5 Tk + T, +Tc, we have Vk <U+ Tc, i.e., 

vk <V. 
By assumption, we have -.deliver(p) Înp (U~;- 1 , Uk)· 
Then by the no delivery lemma 4.7.2, we obtain -.deliver(q) Înq (Vk_ 1 , Vk). 

Hence we have proved that there exist V}, v;, ... , V,.. such that V1 ::; V2 5 ... 5 V,.. < V, 

convey(q,< T;,s;,d; >) atq v;, for i= 1,2, ... ,k, -.deliver(q) inq (Vj,\lj+1), for 

j 1, 2, ... , k- 1, and ..,deliver(q) inq [0, V}) hold. 

Since convey(q, < T;, s;, u; >) atq v; implies del i ver( q, ui) atq v;, we obtain 

deliver(q,u;) atq v;, for i= 1,2, ... , k. 

Therefore we have {ut.u2 , ••• ,u~;) E List(q, V). 

Hence for any U there exists a V, i.e., V= U+ Tc, such that List(p, U) ç; List(q, V). 

Thus this theorem holds. D 

We have proved that, if T, ~ (d + m)(T. + ö) + (d + 2m)~:, 1 > 2e, D1 ~ Tr +Tc, and 

D2 ~ Tc, then the termination, atomicity, and order properties hold. Since Tr is the 

minimum time to ensure that all correct processors have receivecl a message containing 

an updates a.fter it is initiated, we take T, = (d + m)(T. + ö) + (d + 2m)~:. Since D1 

is the broa.dcast termination time, it shoulcl be as smal! as possible and thus we take 

D1 = Tr +Tc. Similarly, since D2 indicates the difference of delivery times of an update 

by two correct processors, it should be also as small as possible and therefore we take 

D2 =Tc. 

Reeall that AX is the conjunction of all axioms for the system, Spec(p;) is the 

specification for the server process running on processor p;, and ABS is the top-level 

specification of the protocol, i.e., ABS:::: TERMAATOMA ORDER. Hence we have 

proved N/=1 Spec(p;) A AX --.. ABS, provided T, (d + m)(T, + ö) + (d + 2m)t, 

Î > 2f, Dt == T. + T"' and D2 = 1~. 

4.8 Comparison 

Comparing our paper with [CASD89], the basic ideas of proving properties of the pro

tocol are similar. The assumptions and proofs prcsented in [CASD89] are simplilied and 

informal. For instance, it is assumed there that when a correct processor p initiates 
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an update, it takes zero time units for p to send a message to all its neighbors. In 

our framework, it takes at most T, time units. Similarly, when p receives a. message, 

[CASD89] a.ssumes zero time units for p to relay the message to its neighbors, but we 

a.ssume at most T, time units. We also assume that p will take at most Tc time units to 

convey updates initiated at the same doek time to elient processes. 

Reeall that dis the diameter of the graph consisting of all correct processors and links, 

m is the maximum number of faulty processors in the network, ó is the upper bound of 

message transmission delay between two correct processors a.s mea.sured on any correct 

processor, and t is the maximum deviation of local docks of correct processors. 

The minimum time to ensure that all correct processors have received a message 

containing an update after it is initiated is T, in our paper with T, (d + m)(T. + 
ó) + (d + 2m)t, which is more detailed than that in [CASD89], where it is ó. with 

ó. = (d + m)ó + t:. If we a.ssume T, 0, then we have T. (d + m)ó + (d + 2m)t: 

and thus Tr is similar a.s ó. except the part concerning t:. Consequently, the broadca.st 

termination time in our framework, which is D1 with D1 = T. + Tc, is not exactly the 

same a.s that in [CASD89], which is ó.. If we also a.ssume Tc 0, then we have D1 T. 

and thus D1 is similar a.s ó.. 

In this paper we express the termination property by using deliver(q, u) byq T + D1 

insteadof deliver(q, u) atq T + D1 • In the termination theorem 4.5.1, we have proved 

that if initiate(s,u) at8 T, then deliver(q,u) Înq [T + T.,T + T, +Tc]· If we assume 

Tc = 0, since D1 = T.+ Tc, we obtain deliver( q, u) atq T + D1• Therefore the termination 

property described here can be reduced to that in [CASD89] if Tc 0. 

Similarly, if Tc = 0, then the atomicity property expressed in this paper can also be 

reduced to that in [CASD89]. In the atomicity theorem 4.6.1, we have proved that if 

deliver(p, u) atp U, then deliver(q, u) Înq [U- Tc, U+ Tel· If Tc =.0, then we obtain 

deliver(q,u) atq U. 

To prove the atomicity property, we necd to show that if a correct processor p delivers 

u at some time U, then u was initiated by some processors at some doek timeT. This 

is not proved in [CASD89]. We haveprovedit in lemma 4.6.1 by using a.vailable timing 

information. There we need a lower bound for message transmission delay between two 

correct processors. Thus we add a lower bound "'( in the bounded communication axiom 

4.3.5. This lower bound is also used in other lemma.s, e.g. the propagation lemma 4.5.1 

and the first correct receiving lemma 4.6.3. 

The behavior of any processor p is specified by the fail silence axiom 4.3. 7 and the 

server process specification axiom 4.4.1. Notice that axiom 4.3.7 and formula Soorce(p) 

hold for any arbitrary processor p, i.e., even if p is faulty. To prove the atomicity 

property, we have to show that if a correct processor p delivers an update u a.t local 

time U, then u wa.s initiated by some processor and u wil! be delivered by each correct 
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processor in the interval [U -D2 , U +D2] according totheir own clocks. By the initiation 

lemma 4.6.1 and Origin(p), we can prove that there exists a processor s which initiates 

u at some local timeT. If sis correct, by the server process specification axiom 4.4.1, we 

have Start( s ), Relay( s ), a.nd Origin( s ). Then we ca.n derive that each correct processor 

will deliver u in the interval [U- D2 , U+ D2]. But if s is not correct, all we have is 

Source(s) and axiom 4.3.7. Then we ca.n only use them and other axioms to reasou 

backwards to prove the atomicity property. This idea. is represented in the first correct 

receiving lemma 4.6.3. 

In [CASD89], it is required that a processor will relay a message to its neighbors 

only if it receives the message for the first time. We do not require this in our paper. 

When a processor receives a message it will alwa.ys relay the message to its neighbors. 

The requirement in [CASD89] is to make the server process more efficient and avoid 

memory overflow. Since we focus ourselves on the correctnessof the protocol, this is not 

oonsidered here. 

An assumption mentioned in [CASD89], but not in this paper, is that the resolution 

of processor clocks is fine enough so that separate doek readings yield different va.lues. 

This is an assumption for the implementation of the protocol. In this paper, we only 

express those assumptions needed for our verification and nothing more. Therefore 

another assumption of [CASD89], namely that there is a finite bound on the number of 

messages any processor can send per time unit, is also not included. 

Just before the deadline of this thesis, we received the comments on this chapter from 

the first author of [CASD89]. According to [Cri93], the doek synchronization assumption 

can he made to allloca.l clocks of processors, not only to loca.l clocks of correct processors, 

since we only a.llow omission failures in the protocol. If a loca.l doek could suffer from 

omission failures, the processor having that doek could exhibit Byza.ntine behavior (e.g. 

timestamp different updates with the sametimestamp ). Thus the doek synchronization 

axiom 4.3.6 can be strengthencel as 

Lemma 4.3.1 then can he removed. 

Ha.ving done this, some axioms and lemmas eau be simplified and their proofs will 

he easier. For instance, the only omission failure axiom 4.3.8 wil! look like 

corred(q) atr V 1\ receive(q,m,l) atr V-. :lp i. q: send(p,rn, I) inr [V 6, V- 1] 

And the only omission failure lemma 4.3.6 wil! become 

corred(q) atq V 1\receive(q, m, I) atq V -. :lp i. q : send(p, m, l) inp [V -6 -€, V -l+t]. 



Chapter 5 

Conclusions 

5.1 Summary 

In chapters 2 and 3 of this thesis, we developed two versions of a formalism to specify 

and verify reai-time systems, one of which was for synchronously communicating reai

time systems and the other was for asynchronously communicating reai-time systems. 

We started with two versions of an Occam-like programming language. One version 

contained synchronous communication primitives and the other included asynchronous 

communication primitives. We gave a compositional semantics for this programming 

language. The specification language (also with two versions according to the commu

nication mechanism) for systems written in this programming language was based on 

Explicit Clock Temporal Logic (ECTL). A compositional proof system was formulated 

for each version of the programming and specification languages. These two proof sys

tems were shown to be sound with respect to the semantics and relatively complete with 

respect to a proof system for ECTL. We also demonstrated the use of the formalism 

for synchronous communication by specifying and verifying a small part of an avionics 

system. 

In chapter 4, we specified and verified an atomie broadcast protocol tolerating omis

sion failures. As we saw in this thesis, using ECTL-based formalism to reason about 

properties was not easy. We would like to descri he the protocol in an intuitive and infor

mal way. Therefore the specification language for the protocol was not based on ECTL 

but on first-order logic. We described the top-level requirements of the atomie broadcast 

protocol and the server process in the specification language. We also axiomatized the 

lower level communication mechanism, doek synchronization assumptîons, and failure 

assumptions. Thereafter we proved, by using an assertional, compositional approach, 

that parallel execution of the server processes on a networkof distributed processors sat

isfied the top-level specification of the protocol. Hence we formally verified the protocol 

99 
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which was only informally proved in [CASD89]. This increased our confidence that the 

properties of the protocol were indeed guaranteed by the parallel execution of the server 

processes. 

Notice that, in the top-level specification of the protocol, in the axioms about the 

service system, and intheserver process specification, we used local doekvalues instead 

of global doek values. An essential idea of the atomie broadcast protocol was that the 

messages used to braadcast among processors contained time stamps which recorded 

the initiatien time of updates. These time stamps were in terms of local clocks and 

were used to achieve the so-called order property of the protocol. Following [CASD89], 

other properties of the system, for instanee the bounded communication axiom and the 

only omission failure axiom, were also expressed using local clocks. This suggested that 

reasoning ahout the protocol in terms of local docks would be easy and natura]. After 

verifying the protocol, this turned out to be true. The doek synchronization assumption 

for correct processors made the specificatien and verification of the protocol in terms of 

local clocks values meaningful. This is new in real-time specification and verification, 

since many formal methods only use global doek values, see e.g. [BHRR91]. 

Also observe that the formal metbod we used is compositional. This enables us to 

use only the specification of the server process to verify the protocol, without knowing 

any implementation details of the server process. Thus we can separate the concern of 

implementing the server from the concern of forma! verification of the protocol. 

As we have seen from this thesis, specifying and verifying reai-time fault-tolerant 

systems are not easy. Applications of the ECTL-based proof systems show that proving a 

simple process correct needs a lot of effort. Moreover, the specification language contains 

the chop operator C and the iterated chop operator C* which make the reasoning even 

more difficult. However, in [RP86] there are some nice axioms and rules for the chop 

operator, for example: ( 'f't C 'f'2) C <p3 <f't C ( 'f'2 C <f'3), ( 'f'I V 'f'2) C <p3 <f'l C 'f'3 V 'f'2 C 'f'3, 

<p1C(<p2 V<p3) = <p 1 C<p2 V <p1C<p3, etc., where <p;, for i= 1, 2,3, are formulae interpreted 

over sequences of states. Furthermore, one of our aims in this thesis is to formulate a 

compositional proof systern which can provide elegant rules for compound statements 

including sequential compositîon and iteratîon. As shown in the thesis, it is reasonably 

easy to derive properties from forrnulae containing chop operators in an intuitive way or 

by reasoning at the semantic level. 

5.2 Related Work 

We mention some research results which are rela.ted to our work. In [Lam83a], interest

ing examples, e.g., the alternating bit protocol, are specified using gcneralized temporal 

logic (i.e., with predicates), but time is not considcred. Compositional proof systems 
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based on temporallogic can be found in [8KP84,8KP85,NDG086], where time is also 

not concerned. Untimed modular verification of communication protocols (induding the 

alternating bit protocol) using temporallogic and history variables is shown in [H083]. 

How to compose untimed specifications are extensively discussed in [AL90], where the 

precise distinction between a system and its specification is examined. In (AL92), prob

Ieros arised in reai-time systems are addressed and a formal framework provided by 

TLA (the Temporal Logic of Actions) is used to study these problems. A state-based, 

compositional semantics for reai-time programs is proposed in (GJ88], where it roodels 

termination, failure, divergence, deadlock, and startvation. A distributed reai-time arbi

tration protocol is verified compositionally in [Hoo93], which follows the sameprinciple 

presented in this thesis. Reai-time extensions of CCS [Mil89] are proposed in [MT90, 

Yi91]. A hierarchy of untimed and timed roodels fór CSP [Hoa85] is presented in [Ree89], 

which enables one to reason about concurrent processes in a uniform fashion with the 

minimum of complexity. A complete set of inference rul es for reasoning about timed CSP 

processes is given in [DS89]. Untimed process algebra for synchronous communication 

in [8K84] is extended with reai-time in [8891]. Another algebra for timed processes is 

suggested in [NRSV90J. A calculus of durations to reason about design and requirements 

for reai-time systems, which is an extension of Interval Temporal Logic, can be found 

in [CHR91]. This calculus is used in [CHRR92] to express specifications for shared pro

cessors. Process algebras dea.ling with asynchronous communicatiom mechanism appear 

in [Mil83,8KT85,JJH90,8892]. A trace-based modeland proof system for asynchronous 

networkis presented in [Jon85]. A compositional semantics for an asynchronous version 

of CSP can be found in [8H92]. 

There is also some progress on the specification a.nd verification of (real-time and) 

fault-tolerant systems. A rigorons programming approach for fault-tolerant systems is 

presented in [Cri85], where only sequentia! programs are considered. A compositional 

proof system for fault-tolerant programs written in a CSP-like language are shown 

in [JMS87]. Mechanica! verification of a 8yzantine fault-tolerant a.lgorithm for doek 

synchronization is described in. [RH9l,Sha.92]. A reliable braadcast protocol proposed 

in [CM84] is formally verified in [Yod92], where the so called "modal primitiverecursive" 

fundions are used. In [Pel91] CSP is used to design and verify fault-tolerant systems. 

Deontic logic is applied in [Coe92] to specify layered fault-tolerant systems in a natura! 

way. A compositiona.l semantics for fault-tolerant reai-time systems appears in [CH92], 

where the occurrence of failures are allowed and the effect of these fa.ilures is described in 

the reai-time beha.vior of programs. Fault-tolerant reai-time systems are specified using 

"Minima! Three-Sorted Modal Logic" in [CW92]. A trace-based compositional network 

proof theory for fault-tolerant systems is shown in [SH93], where the fault hypothesis 

which specifies the class of fanlts that must he tolerated is an important feature. This 



102 CHAPTER 5. CONCLUSIONS 

is a.lso a key point in a traced-based compositional framework for refinement of fault

tolerant system proposed in [SC93J. Exception handling in process algebra can be found 

in [BCG92], where ACP [BK84] is extended with an exception handling construct and 

the theory is applied to an fault-tolerant system presented in [Pel91]. 



Appendix A 

Proofs of Lemmas in Chapter 2 

Proof of Lemma 2.6.1 

Consicier any expression e from the programming language, any model u, and any r ~ 

be9in(u). We prove &(e)(u(r).s) V(e)(u, r) by induction on the structure of e. 

• e = t'J. &(t?)(u(r).s) = {} = V(t'J)(u, r). 

• e =x. &(x)(u(r).s) u(r).s(x) V(x)(u, r). 

• e e1 0 e2 , where 0 E { +,-,x}. By the induction hypothesis, we have, for 

1,2, &(e;)(a(r).s) = V(e,)(u,r). Then &(e1 0 e2 )(u(r).s) 

&(e1 )(u(r).s) 0 &(e2)(u(r).s) =V( el)( u, r) 0 V(e2 )(u, r) = V(e1 0 e2 )(u, r). 

Proof of Lemma 2.6.2 

Consicier any boolean guard 9 from the programming language, any model u, and any 

r ~ be9in(u). We prove Ç(9)(u(r).s) iff (u, r) by induction on the structure of 9· 

• 9 = e1 = e2 • Ç(e1 = e2)(u(r).s) iff &(eJ)(a(r).s) = &(e2 )(u(r).s) iff, 

by lemma 2.6.1, V(e1 )(u, r) = V(ez)(u, r) iff (a, r) f= e1 ez. 

• 9 = e1 < ez. Similar to the proof for g e1 = ez. 

• 9 = -.91 . Ç(-.gt)(a(r).s) iff not Ç(9J)(u(r).s) iff, by the induction hypothesis, 

not (u, r) f= 91 iff (u, r) f= -,91· 

• 9 = 9t V 9z· Q(gt V 92)( u( r ).8) iff Ç(9t)( u( r) .s) or Ç(g2 )( a( r ).s) iff, by the induction 

hypothesis, (a, r) f= 91 or (a, r) I= 9z iff (a, r) f= 91 V 92· 
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Proof of Lemma 2.6.3 

Consider any expression vexp of type VAL, any model u, any cset Ç DCHAN, and 

any T ~ begin(u). We prove V(vexp)(u,T) V(vexp)([u]cset,T) by induction on the 

structure of vexp. 

• vexp=.{). V(#)(u,T)=# V({))([u]cset,T). 

• vexp =x. By definition, if T::; end( u), then u(T).s(x) [u]cset(T).s(x), Le., 

if T::; end([u]cset), then V(x)(u,T) = V(x)([u]cset,T). 

If T >end( u), then V(x)(u, T) u•.s(x) = [!7]~ •• 1.s(x), Le., 

if T > end((u]cset), then V(x)(u, T) V(x)([!7]cset, T). 

Hence V(x)(O',T) V(x)([!7]cset.T). 

• vexp = first(x). V(first(x))(u, T) = ub.s(x) = [!7]~ •• 1.s(x) = V(first(x))([a]c••t. r). 

• vexp =. last(x). If end(u) < oo, then V(last(x))(u,T) = u•.s(x) = [!7]~ •• 1.s(x) = 
V(last(x))([a]cset, r). If end( u)= oo, then V(last(x))(O', r) 0'

0.s(x) [!7]~ •• 1.s(x) 

= V(last(x))([!7]cset> r). 

• vexp = max( vexp11 vex1J2). By the induction hypothesis, we have, for i 1, 2, 

V(vexp;)(a,T) V(vexp;)([!7]cse1,T). Then 

V( max( vexpl! vex1J2))(<7, T) = max(V(vexpt)(O', T), V( vex1J2)(<7,.T)) 

= max(V( vexpi)([a]cset, T ), V( vexp2)([a]cset 1 r)) = V(max( vexp1, vex1J2))([!7]cset> T). 

• vexp = vexp1 0 vex112, where 0 E { +,-,x}. By the induction hypothesis, 

we have, for i 1, 2, V(vexp;)(u, r) = V(vexp;)([u]cset> r). Thus 

V(vexp1 0 vexp2 )(!7, T) V(vexpt)(u, T) 0 V(vexp2)(!7, r) 

= V(vexpt)([a]cset 1 T) 0 V(vex1J2)([a]cset 1 T) = V( vexp1 0 vexp2)([!7]cset> T). 

Proof of Lemma 2.6.4 

Consider any expression vexp of type VAL, any model u, any vset Ç VAR, and any 

T ~ begin(a). We prove, by induction on vexp, that if var(vexp) Ç vset, then 

V(vexp)(O', r) = V(vexp)(q! vset, T). 

• vexp =. t?. V(t?)(<7, T) = # V(t?)(!7! vset, r). 

• vexp =.x. var(vexp) {x} and thus x E vset. By definition, if T $ end(O"), 

then O'(T).s(x) (!7! vset)(r).s(x), i.e., if T::; end(O" l vset), then V(x)(u, r) = 
V(x)(u! vset, r). lf T > end( u), then V(x)(O', r) = ue.s(;1:) (u l vset)".s(:c), 

i.e., if T > end(u! vset), then V(x)(O',T) = V(x)(O' l vset, r). 

Hence V(x)(<7, r) = V(x)(q! vset, r). 
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• vexp = first(x). var(vexp) {x} and then x E vset. Thus V(first(x))(u,r) = 

ub.s(x) (al vset)b.s(x) = V(first(x))(a l vset,r). 

• vexp = last(x). var(vexp) = {x} and then x E vset. If end(a) < oo, then 

V(last(x))(a, r) a•.s(x) (al vset)'.s(x) = V(last(x))(u! vset,r). 

If end(a) = oo, then V(last(x))(a,r) = ub.s(x) =(al vset)b.s(x) = 
V(last(x))(a l vset, r). 

• vexp = max(vexpt, vexp2 ). For i= 1, 2, var(vexp;) Ç var(vexp) Ç vset. Then by 

the induction hypothesis, V(vexp;)(u,r) = V(vexp;)(a l vset,r). Then 

V(max( vexpt, vexP2))( a, r) max(V( vexpl)( u, r), V( vexP2)(u, r)) = 
max(V(vexpt)(a! vset, r), V(vexp2 )(a! vset, r)) 

V(max(vexp1,vexp2 ))(u! vset,r). 

• vexp = vexp1 8 vexP2, where 8 E {+,-,x}. For i 

var(vexp) Ç vset. Then by the induction hypothesis, 

V(vexp;)(a,r) = V(vexp;)(a! vset,r). Thus 

V(vexp1 8 vexp2 )(u, r) V(vexpi)(a, r) 8 V(vexp2 )(u, r) 

1,2, var(vexp;) Ç 

V(vexpt)(u! vset, r) 8 V(vexP2)(a! vset, r) = V(vexp1 8 vexp2 )(u! vset, r). 

Proof of Lemma 2.6.5 

Consider any expression texp of type TIME, any model u, any cset Ç DCHAN, and 

any r ;::: begin( u). We prove T(texp)(u, r) = T(texp)([u]cset. r) by induction on the 

structure of texp. 

• texp f. T(f)(u,r) = f = T(f)([a]cset,r). 

• texp = T. T(T)( u, T) T = T(T)([u]cset, T ). 

• texp start. T(start)(u, r) =begin( u)= begin([u]csed = T(start)([u]cset, r). 

• texp: term. T(term)(a,r) end(cr) end([a]csed T(term)([u]cset.T). 

• texp = vexp. By lemma 2.6.3, we have V(ve:rp)(cr, r) = V(vexp)([u]cset, r). 

Then T(vexp)(cr,r) = V(vexp)(u,r) = V(veX]>)([u]cset,T) T(vexp)([u]c8et,r). 

• texp texp1 0 texp2 , where 0 E { +,-, x}. By the incluction hypothesis, 

we have, for i= 1, 2, T(texpi)(u, r) = T(texp;)([u]cact• r). Then, by definition, 

T(texp1 0 texp2)(cr, r) T(te;q)J 0 texp2)([a]cset• r). 
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Proof of Lemma 2.6.6 

Consider any expression texp of type TIME, any model u, any vset Ç VAR, and any 

r;::: begin( u). We prove, by induction on texp, that if var(texp) Ç vset, then 

T(texp)(u, r) == T(texp)(u! vset, r). 

• texp:f. T(f)(u,r) f=T(f)(u!vset,r). 

• texp = T. T(T)(u, r) T = T(T)(u! vset, r). 

• texp: start. T(start)(a,r) = begin(u) = begin(a! vset) 

T( start)( a ! vset, r ). 

• texp: term. T(term)(a,r) end(u) end(u! vset) T(term)(a! vset,r). 

• texp: vexp. var(texp) = var(vexp) and thus var(vexp) Ç vset. By lemma2.6.4, 

V(vexp)(a, r) = V(vexp)(a! vset, r). Then 

T(vexp)(a, r) = V(vexp)(a, r) V(vexp)(u! vset, r) = T(vexp)(a! vset, r). 

• texp = texp18tex!J2, where 8 E { +,-,x}. For i= 1, 2, var(texp;) Ç var(texp) Ç 

vset. By the induction hypothesis, T(texp;)(a,r) = T(texp;)(e1! vset,r). Then, 

by definition, T(texp1 8texp2)(u,r) = T(texp1 8texp2 )(u! vset,r). 

Proof of Lemma 2.6. 7 

Consider any cset Ç DCHAN and any specification t.p. We prove that if dch(t.p) Ç cset 

then, for any model CT and any r;::: begin( u), (u, r} I= '{i iff ([C1]cset, r} I= t.p, by induction 

on the structure of t.p. 

• t.p = texp1 == tcx!J2. {a, r} I= texp1 = teXJ"I<J iff T(texpJ)(u,7) = T(texp2 )(u, 7) iff, 

by lemma2.6.5, T(texpt)([u]cset 1 T) = T(texp2)([u]cset,r) iff ([a]cset 1 T) I= texp1 = 

iCXJJ2. 

• '{i= texPt < tex!J2. Similar to the proof for i.p = texp1 texp2 • 

• t.p = comm(c, vexp). dch(~.p) = {c} and thus c E c.~et. I-Ience (e1, r) I= comm(c, vexp) 

iff r < end( a) and (c, V( ve.1:p)(a, r)) E u( r ).c iff, by definition and lemma 2.6.3, 

7 < end([u]cset) and (c, V(vexp)([u]cset• r)) E [a]cset(r).c iff 

((u]cset.T} I= comm(c,vexp). 

• '{i= comm(c). dch(~.p) {c} and thus c E cset. Hence (O", r) I= comm(c) iff 

7 < end(u) and there exists a value {) such that (c,11) E a(r).c iff T < end([u]cset) 

and there exists a value 1J such that ( c, t'J) E (u]csct( T ).c iff ((u]csch r) I= comm(c). 
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• r.p wait(c!). dch(r.p) {c!} and then c! E cset. Hence (u,r) F wait(c!) iff 

T < end(er) and c! E er(r).c iff T < end([er]cset) and c! E [er]cset(r).ciff 

([er]cset 1 r) F wait( c!). 

• r.p wait(c?). dch(r.p) {c?} and then c? E cset. Hence {er, r) F wait(c?) iff 

T <end( er) and c? E er(r).c iff T < end([er]cset) and c? E [er]cset(r).c iff 

{[u]cseh r) F wait( c?). 

• r.p = r.p1 Vr.p2 . For i= 1,2, we have dch(r.p;) Ç (dch(r.pi)Udch(r.p2 )) = dch(r.p) Ç cset. 

Hence (er, r) F 'PI Vr.pz iff {er, r) F 'PI or (er, r} F r.p2 iff, by the induction hypothesis, 

{[er]cset, r) F 'Pl Of ([er]cset, r) F '{>2 iff ([er]cset• r} F '{>tV \f2· 

• r.p = -.r.p1 and r.p <.p1 U r.p2• Similar to the proof for <.p = r.p1 V r.p2 • 

• r.p = r.p1 C r.p2 • For i 1,2, we have dch(r.p;) Ç dch(r.p) Ç cset. 

Hence (er, r) F '{>t C '{>2 iff 

- either (u, r) I= <.p1 and end( er)= oo iff, by the induction hypothesis, 

{[u]cse!) r) F 'PI and end([er]cset) = 00 iff ([u]cset, r) F 'PI c '{>2; 

- or there exist models u1 and er2 such that er = u1u2 , r :5 end( ut) < oo, 

(ubr} I= 'Pil and (erz,begin(u2 )) F r.pz iff, by the induction hypothesis, 

there exist models er1 and Uz such that er = er1 erz, {[ert]cset, r) F '{>t, and 

([erz]cset, begin( erz)) F '{>2 iff, there exist models [ udcset and [uz]cset such that 

[ ericset hlcset[er2]cset. ([udc••t. r) I= 'Pt. and ([er2]c••fl begin([erz]cs.d) I= 'P2 iff 

([er]cset, r) F 'Pt C 'P2· 

• r.p = r.p1 C* <.pz. Similar to the proof for <.p r.p1 C 'P2· 

Proof of Lemma 2.6.8 

Consider any vset Ç VAR and any specification r.p. We prove, by induction on r.p, 

that if var(r.p) Ç vset then, for any model er and any T ~ begin(er), (u,r} F r.p iff 

(u l vset, r) F r.p . 

• '{> = texpl teXPz. ror i= 1,2, var(texpi) ç var(r.p) ç vset. Hence 

{er, r) F texp1 texp2 iff T(texpt)(er, r) = T(texpz)(er, r) iff, by lemma 2.6.6, 

T( texpt)(er! vset, r) = T(te:r;p2 )( 0' l vset, T) iff (u ! vset, r) F texp1 = texp2 • 

• r.p = texp1 < texp2 • Similar to the proof for r.p = texp1 texp2 • 

• <.p = comm( c, vexp). var( vexp) var( <.p) and thus var( vexp) Ç vset. Hence 

(o-, r) F comm(c, vexp) iff T < end( a) and (c, V(vexp)(a, r)) E er(r).c iff, by 
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definition and lemma2.6.4, r < end(a l vset) and 

(c, V(vexp)(a l vset, r)) E (al vset)(r).c iff (al vset, r) f= comm(c, vexp). 

• <p :::: comm(c). (a, r} f= comm(c) iff r < end( a) and there exists a value iJ such 

that (c, 17) E a(r).c iff T <end( al vset) a.nd there exists a value i) such that 

(c, t?) E (al vset)(r).c iff {al vset, r) f= comm(c). 

· • <p = wait(c!). (a, r) I= wait(c!) iff T <end( a) a.nd c! E a(r).c iff r <end( al vset) 

and c! E (al vset)(r).ciff (al vset,r) f= wait(c!). 

• <p = wait(c?). (a, r) I= wait(c?) iff T <end( a) a.nd c? E a(r).c iff 

T <end( al vset) and c? E (al vset)(r).c iff (al vset, r) f= wait(c?). 

• <p:::: <p1 V <pz. For i 1,2, var(<p;) ~ var(<p) ~ vset. Hence (a,r) I= <p1 V <p2 iff 

(a, r} I= <p1 or (a, r} I= <p2 iff, by the induction hypothesis, (a l vset, r) I= <p1 or 

(a l vset, r} I= 1./)2 iff (a ! vset, r} f= 1./)t V 1./)2· 

• <p:::: -.~.p1 and <p = <p1 U <p2• Similar to the proof for <p <p1 V 1./)2· 

• <p:=<p1 C <p2 . Fori 1,2,var(<p;)~var(<p)~vset. Hence(u,r) l=cp1 C <p2 iff 

- either (a, r} f= <p1 and end( a)= oo iff, by the induction hypothesis, 

{a l vset, r) f= <p1 and end( a! vset) = oo iff (a l vset, r} f= 1./)1 C <p2; 

- or there exist models u1 a.nd u2 such that u = a 1a 2 , T :5 end(a) < oo, 

{a1; r} I= 'PI> and (a2 , begin(u2 )) f= <p2 iff, by the in duetion hypothesis, there 

exist models u1 and u2 such that u u1a 2 , (a1 l vset, r} f= <ph and (a2 l 

vset, begin( a 2)} I= <p2 iiT, there exist models a 1 l vset and a 2 l vset such that 

al vset =(at l vset)(u2l vset), (ut l vset, r) f= <p1, and 

(u2 ! vset, begin(a2 l vset)) I= <pz iff (u l vset, r) f= ip1 C 'P2· 

• <p :::: <p1 c· <p2• Similar to the proof for <p :::: <p1 C <p2• 

Proof of Lemma 2.6.9 

Consider any model a and cset ~ DCHAN. We prove that dch(u) ~ cset iff a [a]cset· 

By the definition of projection ont.o variahles, begin(u) begin([u]csed, end(u) = 

end([u]cset), and for any Th begin(a) :S Tt :S end(u), u(rt).s = [u]cset(rt).s. Then 

we only have to prove tb at, for any r, begin( u) :S r < end( u), dch( u) ~ es et iff 

a(r).c = [a]cset(r).c. 



Let c E CHAN and {) E VAL. By definition, for any r, begin( u)$ T <end( u), 

and 

[u]cset(T).c = {cl I c! E ~:r( r).c i\ dE cset} U {c? I c? E a(r).c i\ c? E cset} U 

{(c,iJ) I (c,1~) E a(r).ci\ c E cset} 

dch(a) Ubegin(o-)~T<end(") {c! I cl E a(r).c} U {c? I c? E u(r).c} U 

{ c I there exists a {) such that ( c, t?) E a( T ).c} 
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Assume dch(u) Ç cset. We show u(r).c = [u]cset(T).c, for any T, begin(u) :5 T < 
end(u). If c! E u(r).c, then d E dch(u). By the assumption, c! E cset and thus 

c! E [u]cset(r).c. Similarly, if c? E a(r).c then c? E {u]cset(r).c, and if (c, iJ) E u(r).c, then 

(c,t9) E [u]cset(r).c. Thus u(r).c Ç [~:r]cset(r).c. On the other hand, if c! E [u]cset(r).c, 

then c! E u(r).c. If c? E [a]cset(r).c, then c? E u(r).c. If (c, !?) E [u]cset{T).c, then 

( c, t?) E a( T ).c. Therefore [o-]cset( T ).c Ç a-( T ).c. Hence a-( T ).c = [o-]cset( T ).c. 

Now assume a(r).c =.; [o-]cset(r).c, for any r, begin(~:r) $ r <end( a-). We prove dch(a) Ç 

cset. Consider any cl E dch(u). By definition, there exists ar, begin( u)$ T < end(a), 

such that cl E o-(r).c. By the assumption, c! E [O']cset(r).c a.nd then c! E cset. Similarly, 

if c? E dch(u), then c? E cset, and if c E dch(o-), then c E cset. Hence dch(a) Ç cset. 

Hence the lemma holds. 

Proof of Lemma 2.6.10 

Consider a model u and two sets csetil cset2 Ç DCHAN. We prove that 

if (a,begin(u)) p Oempty(cseh \csett), then [a]c .. t,ucset2 = [o-]cset1 • 

By the definition of projection onto channels, begin([o-]csct1ucset2 ) = begin([a]csetJ, 

end([a]cset1ucset2 ) end([a]cset1 ), and for any T, begin(o-) $ T $ end(u), 

[O']cset 1ucset2 (r).s = o-(r).s = [o-]cset 1 (r).s. Then we only have to prove, for any r, 

begin(a) $ T < end(u), [o-]cset1ucset2 (r).c [o-]cset 1 (T).c. 

Since cset1 U csetz cset1 U (cset2 \ cset1), we obtain [O']cset 1uc.,ct2 [O']cset1u(cset2 \cset1 ) 

and then [a]cset,Ucset2 (T).c = [a-]cset1U(cset2 \cset!)(T).c = [o-]cset1 (r).c U [a](cset2 \csett)(r).c. 

We show [o-](cset 2 \csctt)(r).c = 1/S. 

Assume (a, begin( a-)) p 0 empty( c.set2 \es et I). For any c E cset2 \ cset 1, by definition, 

we have (O",begin(o-)) p 0---.comm(c). Thus, for any r, begin(o-) $ T < end(u), and for 

any value {) E VAL, (c,iJ) ~ o-(r).c. Thus (c,!?) ~ [o-](c . .et2 \csetl)(r).c. Similarly, for any 

c! E csetz \ csett, we obtain d ~ [a](cset2 \csetl)(r).c, and for any c? E csetz \ cset1, c? ~ 

[o-](cset,\csett)(r).c. Hencc [o-](cset,\cscti)(T).c = 0 and then [o-]cset,ucset2(r).c = [O']cset,(T).c. 

Thus the lemma hol ds. 
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Proof of Lemma 2.6.11 

Consider a model q and two sets vset1 , vset2 Ç VAR. We prove that 

if (q, begin(q)} F 0 inv(vset2 \ vsett), then u l (vset1 U vset2) =u l vset1 • 

By the definition of projection onto variables, 

begin( u! (vset 1 U vset2 )) =begin( u! vsetl), 

end(u! (vset 1 Uvset2 )) = end(u! vsett), and for any r, begin(u) s; r s; end(u), 

(u! (vset1 U vset2))(r).c =(u l vsett)(r).c. 

We only have to prove (q! (vset 1 U vset2 ))(r).s (u! vsett)(r).s. 

. . { u( r ).s( x) if x E vset1 U vset2 BY defimtton, we have (u l (vsett Uvset2))(r).s(x) = b • 
q .s( x) otherwtse 

If x E vset1 U vset2 , since vset1 U vset2 vset1 U (vset 2 \ vset1 ), we have x E vset1 or 

x E vset2 \ vset1. Assume (u,begin(u)) F Oinv(vset2 \ vset1 ). Then for any x E 

vset2 \ vsett, any r, begin(u) S:: r s; end(u), we obtain u(r).s(x) = ub.s(x). 

{ 
q(r).s(x) if x E vset1 

Thus, (u l (vset1 U vset2))(r).s(x) = b • 
u .s( x) otherwtse 

Hence (q! (vset 1 U vset2 ))(r).s =(u l vsett)(r).s and thus this lemma holds. 

Proof of Lemma 2.6.12 

Consider a model u. We prove that if dch(u) Ç cset and (u, begin( u)) F W Fcset, then 

u is well-formed. 

Assume (q, begin(q)} F W Fcaet· Then 

{u, begin( u)} F 0 (MinWaitcset (\ Exclusioncset A Uniqttecsed· Hence, for any T ;::: 

begin( u), 

1. (q,r} F -.(wait(c!) A wait(c?)), for any {c!,c?} Ç cset; 

2. (q, r) F -.(comm(c) A wait(c!)), for a.ny {c, c!} Ç es et, a.nd 

(q, r) F -.( comm(c) A wait(c?) ), for any { c, c?} Ç es et; 

3. (u, r} F comm(c, vexpt) A comm(c, vexp2)-> vexp1 vexp2 , for any c E cset. 

Given the interpretation of specifications (section 2.3), this implies, for any r 2 begin(q), 

1. -.(c! E u(r).c Ac? E q(r).c), for any {c!,c?} Ç cset; 

2. There does not exist a value t? E VAL such that 

(c,t?) E u(r).cAc! E u(r).cor (c,1?) E u(r).c/\c'? E q(T).c. 

Thus, for a.ny vahte {} E VAL, 



..,((c,d) E u(r).cl\ c! E u(r).c), for any {c,c!} Ç cset, and 

-,((c,d) E u(r).c/\ c? E u(r).c), for any {c,c?} Ç cset; 

3. (c, V(vexp1 )(u, r)) E u(r).c 1\ (c, V(vexJJ2}(u,r)) E u(r).c-+ 

V(vexpl)(u, r) = V(vexp2 )(~, r), for any c E cset. 
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Since vexp1 and vexp2 are arbitrary expressionsof type VAL, let t7t. d2 E VAL be 

such that 1J1 = vexp1 and {h = vexp2 • Hence d1 = V(vexpl)(u, r) and 

d2 = V(vexp2 )(u, r). Thus, for any T;::: begin( u), 

(c,t7I) E u(r).c 1\ (c,d2) E u(r).c-+ d1 = '172, for any cE cset. 

Notice tha.t if c! cf; cset then, by dch(u) Ç cset, we have c! cf; dch(u) and thus c! tf. u(r).c, 

for any r, begin( u) ~ T < end( u). Similarly, if c? cf; cset then c? f/:. u( T ).c and if c tf. cset 

then, for any value t7 E VAL, (c,d) f/:. u(r).c. Thus, for any c E CHAN, for any values 

iJ,ih,fJ2 E VAL, and for any T, begin(u) ~ r < end(u), we have: 

1. -.(cl E u(r).c 1\ c? E u(r).c); 

2. ...,( ( c, fJ) E u( T ).c 1\ c! E u( T ).c) and -.( ( c, t?) E u( T ).c 1\ c? E u( T ).c); 

3. (c, -91 ) E u(r).c 1\ (c, fJ2) E u(r).c-+ iJ1 = tlz. 

Hence u is well-formed. 
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Appendix B 

Soundness of the Proof System 

Chapter 2 

• lll 

To prove the soundness of a proof system, we must show that every axiom in the proof 

system is indeed valid and every inference rule preserves validity, i.e., if the hypotheses 

of an inference rule are valid, so is the conclusion. 

Well-Formedness 

Consider any procee S and any finite set c.set Ç DCHAN. We prove that the well

formedness axiom 2.4.1 is valid. 

For any q E M(S), by theorem 2.2.1, q is well-formed, that is, for any r, begin(q) :5 
T < end(q), any c E CHAN, and any {Jh fJ2 , {} E VAL, we have: 

1. -,(c! E q(r).c/\ c? E q(r).c), 

2. -.((c,{J) E q(r).c/\ c! E u(r).c) 1\ -.((c,{}) E u(r).c/\ c'! E u(r).c), and 

For any expressions vexp1 and vexP2 of type VAL and any r, begin( u) :::; T < end(q), 

we have V(vexpJ)(u, r) E VAL and V(vexp2 )(u, r) E VAL. Since {} 1 and tJ 2 are arbitrary 

values in VAL, we can replace {} 1 and {} 2 by V(vexpt)(u, r) and V(vexPz)(u, r), respec

tively. Thus, for any T, begin( 0') :5 T < end( er), any {) E VAL, and any expressions 

vexph vexPz, we have: 

1. ..,( c! E q( T ).c 1\ c? E q( T ).c), for any c with { c!, c?} Ç cset, 

2. -.(( c, {}) E u( T ).c 1\ c! E q( T ).c), for any c with { c, c!} Ç cset, 

-.((c,{}) E q(r).c/\c? E u(r).c), for any c with {c,c?} Ç cset, and 

113 
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3. (c, V(vexp1 )(u,r)) E u(r).c A (c, V(vexp2 )(u,r)) E a(r).c-+ 

V(vexPJ)(u, r) = V(vexP2)(u, r), for any c E cset. 

By the interpretation of specifications, we obtain that, for any r, begin( a) :5 r < end( a), 

any iJ E VAL, and any vexPl and vexp2: 

1. (u, r) I= 1\{ct,c?}Çc..et -.(wait(c!) A wait(c?)); 

2. (u, r) I= 1\{c,c!}Çc..et -.(comm(c) A wait(c!)) A À{c,c?}Çcset -.(comm(c) A wait(c?)); 

3. (u, r) I= Acec8et comm(c, vexPJ) A comm(c, vexP2)-+ vexp1 = vexP2. 

Furthermore, for any r 1
;::: end(u), any c E cset, and any vexp, we have 

(u, r') I= -.wait(c!) A -.wait(c?) A -.comm(c) A -.comm(c, vexp). 

Thus, for any r;::: begin( u), and any vexPJ and vexp2 , we obtain: 

1. (u, r) I= À{c!,c?}Çuet -.(wait(c!) A wait(c?)); 

2. (u, r) I= À{c,c!}Çuet -.(comm(c) A wait(c!)) A À{c,c?}Çcset -.(comm(c) A wait(c?)); 

Thus, hy definition, (u,begin(u)} I= D(MinWaitcset A Exclusioncset A Uniquecset) and 

then (u, begin( u)) I= W Fc••t· Hence, axiom 2.4.1 is indeed valid. 

Communication lnvariance 

Consider any process S and any set cset Ç DCHAN such that cset n dch(S) = 0. We 

prove that the communication invariance axiom 2.4.2 is valid. 

For any u E M(S), by theorem 2.2.1, we ohtain dch(u) Ç dch(S) and then 

csetndch(u) = 0. Thus, hy definition of dch(a), for any r, begin(a) :5 r < end(u), we 

have: 

1. If c E cset, then there does not exist any vahte {) such that ( c, {)) E u( r ).c; 

2. If c! E cset, then c! f/_ u(r).c; 

3. If c? E cset, then c? f/_ u( r ).c. 

Thus, for any r, begin(u) :5 T <end( a), we obtain: 

1. (u, r) I= -.comm(c), for any c E cset; 

2. (u, r) I= -.wait(c!), for any c! E cset; 



3. (o-, r) f= -.wait( c?), for any c? E es et. 

Furthermore, for any c E CHAN and any 7 1 2 end( u),. we have 

(o-, r') f= -.comm(c) A -.wait(c!) A -.wait(c?). 

Thus, for any T 2 begin(o-), we have (o-, r) f= empty(cset) and then 

(u, begin(o-)) f= 0 empty(cset). 

Hence axiom 2.4.2 is valid. 

Variabie Invariance 
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Consicier any process S and any vset Ç V AR with vset n wvar(S) = 0. We prove that 

the variabie inva.riance axiom 2.4.3 is valid. 

For any <1 E M(S), any x E vset, a.nd a.ny T, begin(o-) ~ T ~ end(u), by theorem 

2.2.1, we obtain u(r).s(x) = ub.s(x). Then, by definition, we obtain V(x)(o-,r) = 
V(first(x))(u,r) and thus (u,r) f= x = first(x). For any T

1 > end(u), by defini

tion, we have V(x)(u,r') = ue.s(x) ub.s(x) V(first(x))(o-,T'). Then we obtain 

(o-, r') f= x = first(x). Hence, for any T 2 begin(o-), we have (u, r} f= x first(x), 

i.e., (o-,begin(u)) f= O(x first(x)). Since x E vset, we have (o-,begin(u)} f= 
AxEvset 0 (x= first(x)), i.e., {u, begin(o-)} f= 0 AxEvset(x = first(x)). Hence we obta.in 

(o-, begin(o-)) f= 0 inv( vset) and thus axiom 2.4.3 is valid. 

Conjunction 

We prove that the conjunction rule 2.4.1 preserves va.lidit.y. 

Assume that S sat <p1 and S sat <p2 are va.lid. For any u E M{S), we obtain 

(u, begin(o-)} f= <p1 . Similarly, we have (u, begin( u)} f= <p2 . Hence we obtain 

(11, begin( u)) f= <p1 A <p2 , i.e., rule 2.4.1 preserves validity. 

Consequence 

We prove tha.t the consequence rule 2.4.2 preserves va.lidity. 

Assume that S sat <p 1 and <p1 _.... <p2 are valid. For any u E M(S), we obtain 

(u,begin(u)} f= <p1 • By the implication, we have (u,bcgin(u)} f= <p2 • Thus rule 2.4.2 

preserves validity. 
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Skip 

We prove that the skip axiom 2.4.4 is valid. 

Consider any u E M(skip). We have begin(u) = end(u) and then 

(u, begin( u)} I= term start. Hence axiom 2.4.4 is valid. 

Assignment 

We prove that the assignment axiom 2.4.5 is valid. 

For any u E M(x := e), for any r, begin(u) ~ T < end(u), we obtain u(r).s(x) = 

a0.s(x). By definition, we have (a, r} I= x = first(x). From the semantics, we 

have ae.s(x) = &(e)(ab.s). By lemma 2.6.1, we obtain V(x)(O',end(a)) t'(e)(O'b.s) 

V(e)(O', begin( a)). By definition, we have V( e)(<1, begin( a)) = V( e[first(x )/x])(a, begin(O')) 

= V(e[first(x )/x])( a, end( a)). Hence V(x )( 0', end(<1)) V( e[first(x )/x])( 0', end(a)) 

and then (u,end(u)) I= x= e[first(x)/x]. Since end(O') = begin(a) +Ka, we obtain 

(<1, end( u)) I= term= start+ I< a and (<1, end(<1)} f= T =term. Thus, we obtain 

(u,begin(u)) I= (x first(x)) U (T term start+ IC 1\ x e[first(x)fx]), i.e., 

axiom 2.4.5 is valid. 

Delay 

We prove that the delay axiom 2.4.6 is valid. 

Consider any a E M(delay e). By lemma 2.6.1, &(e)(<1b.s) V(e)(u,begin(u)). Since 

u E M(delay e), we have end( u) begin( u)+ max(O,&(e)(O'b.s)). Hence we obtain 

end( u) begin(O') + max(O, V(e)(<1, begin(<1))) and then 

(u, begin( u)) I= term= start+ max(O, e), i.e., axiom 2.4.6 is valid. 

Output 

We prove that the output axiom 2.4.7 is valid. 

Consider a.ny 0' E M(c!e). Then there are two possibilities: 

1. either end(<1) oo a.nd u E Wait(c!), i.e., for a.ny T 2:: begin( a), 

u(r).comm {c!}; 

2. or thereexist models O'J and u2 such that a u1u2 , u1 E Wait(c!), a 2 E Send(c,e), 

and end(u1) < oo. That is, there exists aT E TIME such that, end( at)= r, for 
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any Tt 1 begin(ai) :5 Tt < end(at), at(TI).s = ar.s, CTt(Tt).c = {c!}, af.s at.s, 

end(az) = begin(a2) + I<c, for any Tz, begin(crz) :5 r2 < end(a2), a2(r2).c = 

{(c,&(e)(a~.s))}, a2(r2).s a~.s, and a2.s =a~·~· 

That is, 

L either end( a)= oo and, for any r ~begin( a), (a, r) f= wait(c!), i.e., 

(a, begin( a)) f= D wait(c!); 

2. or, from a = a 1a 2 , we can derive that there exists a r E TIME such that, for 

any T~t begin(a) :5 r1 < r, (a,r1) f= wait(c!). Since end(a1 ) < oo, we obtain 

begin(a2 ) = end(a1 ) T. By lemma 2.6.1, for any r2 , T :5 r2 <end( a), &(e)(a~.s) 

V(e)(a2 ,begin(a2 )) V(e)(a2,r2 ). Thus we have (a,r2 ) f= comm(c,e). Since 

end(a2) = begin(az) +Kc, we obtain end( a) 7 +Kc and then (a, 7) I= T = 
term- Kc as wellas (a, end( a)) I= T =term. Therefore we have 

(a,begin(a)) I= wait(c!) U (T =term- Kc{\ (comm(c,e) UT= term)). 

Hence we obtain (a,begin(a)) f= wait(c!) U (T term- Kc f\ (comm(c,e) UT= 

term)), i.e., axiom 2.4.7 is valid. 

Input 

We prove that the input axiom 2.4.8 is valid. 

Consider any a E M(c?x). There are two possibilities: 

1. either end(a) oo and a E Wait(c?), i.e., for any 7 ~ begin(a), a(7).c = {c?}, 

and a(7).s = ab.s; 

2. or there exist models a 1 and a2 such that a = a 1 a 2 , a 1 E W ait( c?), a2 E 

Receive( c, x), and end( at) < oo. That is, there exists a 7 E TIME such that, 

end(a1 ) r, for any T1> begin( ai) :5 T1 <end( at), a 1(r1).s at.s, a 1(rt).c = {c?}, 

ai.s = a~.s, end(a2 ) = begin(a2 ) + l<c, there exists a value {} E V AL such that, 

for any 72 , begin(a2 ) :5 r 2 < end(a2 ), a 2(72).c = {(c, 1?)}, a 2(r2).s = a~.s, and 

a2.s = ( a~.s : x i-+ tJ). 

That is, 

1. either end( a) oo, for any r ~begin( a), (a, r) I= wait(c?) and 

(a,7) I= x first(x), i.e., (a,begin(a)/ I= D(x .fi1·st(x)f\wait(c?)); 

2. or, from er a1a 2 , we obtain begin(a2 ) = cnd(aJ) = r. Thus for any Tt, 

begin( a) :5 7 1 < r, (a, r1 ) f= x first(x) f\ wait(c?), for any r2 , r :5 72 < 
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end(u), (u,r2 } f= x first(x) A comm(c,l?). Since end(u2 ) = begin(u2 ) +Kc, 

we obta.in end( u) T + Kc and then (u, r) f= T = term - Kc as .well as 

(u, end( u)} f= T term. Hence we have (u, r) f= T = term Kc A ((x = 

first(x) A comm(c,l?)) UT= term). From O"".s(x) =iJ, by definition, we ob

tain that, for any r2,r :5 Tz < end(O"), V(last(x))(O',Tz) = d. Thus we have 

(u,r} f= (x = first(x) A comm(c,last(x))) U T = term. Therefore we ob

ta.in (u,begin(u)) f= (x first(x) A wait(c?)) U (T term- Kc A ((x = 

first(x) A comm(c, last(x))) UT= term)). 

Hence we have (u,begin(O')} f= (x= first(x) A wait(c?)) U (T =term- I<c A ((x= 

first(x) A comm(c, last( x))) UT= term)), i.e., axiom 2.4.8 is valid. 

Sequentia! Composition 

We prove that the sequentia! composition rule 2.4.3 preserves validity. 

Assume that SI sat 'PI and Sz sat r.p2 are valid. We show that S1; S2 sat 'PI C t.pz is 

also valid. Consider any u E M(SI;S2 ). Then there exist O'I E M(SI) and u2 E M(S2 ) 

such that u= UIUz. By definition, end( ui)~ begin( ui)· From sl sat 'PI and Sz sat r.pz, 

we obtain (uh begin(u1)) f= t.p1 and (u2 , begin(uz)) f= r.p2 . By the definition of the C 
operator, we have (u, begin( ut)) f= (/)I C r.p2 , i.e., (u, begin(i7)} f= r.p1 C r.pz. Hence, rule 

2.4.3 preserves validity. 

Guarded Command with Purely Boolean Guards 

Consider G = IOi=1g; -+ Si]. We prove that the guarded command evalua.tion axiom 

2.4.9 is valid for G. 

For any u E M(G), there are two possibilities: 

1. either Ç{-.g)(O'b.s) and a E M(delay K9 ); 

2. or there exists a. k, 1 :5 k :5 n, such that Ç(gk)(ab.s) and a E M(delay K9 ; Sk)· 

That is, 

1. either, from Ç( -.g)(ub.s ), by lemma 2.6.2, we obtain (u, begin( a)} f= -.g. Since 

a E M(delay Kg), we have end( u) begin( a)+ /{9 and then 

{u, begin( u)) f= term start+ Kg. Reeall Eval =term= start+ Kg· Hence we 

have (u, begin( a)) f= --.9 -7 Eval. 

From the sernantics, for any r1 , begin(a) $ r1 $ end(a), we have a(r1 ).s = ab.s 

and then (u, 1'J} f= 1\xewvar(G) x = fiT· st( x), i.e., (a, TJ} f= inv( wvar( G)). A lso, for 
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any r2 , begin(a) :S: Tz < end(a), we have a(r2).c 0, i.e., 

(a, Tz) f= Àc!Edch(G) -.wait(c!) 1\ Àc?Edch(G) -.wait(c?) 1\ Àcedch(G) •comm(c). 
Thus we obtain (a, Tz} f= empty(dch(G)). We also have (a, end( a)} f= T = 

start+ /(9 • Then we have 

(a, begin( a)) f= (inv(wvar(G))I\empty(dch(G))) U (T = start+/(9 1\inv(wvar(G))). 

Therefore we have 

(a, begin( a)) f= [(inv(wvar(G))I\empty(dch(G))) U (T = start+/(9 1\inv(wvar(G)))] 

/\( -.g -+ Eval); 

2. Or, by Ç(gk)(ab.s), we obtain Ç(g)(ab.s) and then (a,begin(a)) f= g. Then we 

have (a, begin( a)) f= -._g-+ Eval. Since a E M(delay K9 ; Sk), there exist models 

a 1 E M(delay Kg) and a 2 E M(Sk) such that a a 1a 2 . From a 1 E M(delay Kg), 

we obtain the same result as previous case, i.e., 

(<r1 ,begin(at)) f= (inv(wvar(G))I\empty(dch(G))) U (T = start+K91\inv(wvar(G))). 

Thus we obtain 

(a,begin(<r)) f= [(inv(wvar(G))I\empty(dch(G))) U (T = start+I<gl'linv(wvar(G)))] 

/\( •g -+ Eval). 

Hence we conclude that axiom 2.4.9 is indeed valid for G [0~t9i-+ S;]. 

Next we prove tha.t the guarded command with purely boolean guards rule 2.4.4 preserves 

validity. 

Assume S; sat 'Pi are valid, i= 1, 2, ... , n. Consider a.ny <rE M(G). 

1. If Ç(o.g)(<r".s) holds, then we have (<r, begin(<r)} f= -.g a.nd then 

(a, begin( <r)) f= [J -+ ( Eval C V'/=1 9i 1\ 'Pd · 

2. If Ç(gk)(<rb.s) holds, then we obtain Q(g)(<rb.s) and then (<r,begin(<r)) f= g. 
Since <r E M(delay 1<9 ; Sk), there exist roodels <r1 E M(delay K9 ) and <r2 E 

M(Sk) such that a= <r1a2 • Thus we have end( at) = begin(<r1 ) + /(9 and then 

(<r11 begin(<rt)) f= Eval. From the assumption, Si sat 'Pi are valid, i = l, 2, ... , n. 

Since <r2 E M(Sk), we have (<r2 ,begin(<r2 )) f= 'Pk· From Ç(gk)(<rb.s), we obtain 

Ç(gk)(<r~.s) and then (a2,begin(az)) f= 9k· Thus we have (az,begin(<r2)} f= gki\'Pk 

and then (<r2 , begin(<r2 )) f= V'/=1 g; 1\ 'Pi· Since begin( at) $; end(<rt) < oo, by the 

def'inition of the C operator, we obtain {a, begin( a1 )} f= Eval C V'/=1 g; 1\ '{);, i.e., 

(<r, begin(<r)) f= Eval C Vi=t g; 1\ <.p;. 

Thus we have (a, begin(a )} f= [J -+ (Eval C V'/=1 b; 1\ 'Pi)· 

Hence rule 2.4.4 preserves validity. 
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Guarded Command with 10-Guards 

Consider G = [Ui=1g;; c;?x; ---+ S; 0 g0 ; delay e---+ So]. We first prove that the guarded 

command evaluation axiom 2.4.9 is also valid for G. 

Let a E M(G). There are four possibilities: 

1. Q(-.g)(a6.s) and 0' E M(delay 1<9 ); 

2. or 0' E SEQ(M(delay I<9 ),FinWait(G),Comm(G)); 

3. or a E SEQ(M(delay K 9 ),Time0ut(G),M(S0 )); 

4. or a E SEQ(M(delay K9 ),AnyWait(G),Comm(G)). 

Following the proof of axiom 2.4.9 for the case G = !Ui::1g; -+ S;], we conclude that 

axiom 2.4.9 is also valid for G [Qi=1g;;c;?x;---+ S; 0 g0 ;delay e---+ S0]. 

Next we prove that the guarded command with io.guards rule 2.4.5 preserves validity. 

Assume c;? x;; S; sat <p;, i 1, 2, ... , n and S0 sat <po are valid. 

L If Q(-.g)(a6.s), then we have (0', begin(q)) f= -.g. Thus we obtain 

(0', begin( a)} f= g-+ (Eval C (Comm V TimeOut)). 

2. If a E SEQ(M(delay I<9 ), FinWait(G), Comm(G)), then there exist models 

a 1 E M(delay K 9 ), cr2 E FinWait(G), and 0'3 E Comm(G) such that a= 0'10'2a 3 • 

From 0'1 E M(delay I<9 ), we obtain end( at) begin(O'i) + K9 and then 

(O'hbegin(O'J)) f= term= start+ K9 , i.e., (0'1 ,begin(0'1 )) f= Eval. 

From 0'2 E F'inWait(G), we obtain end(0'2 ) < begin(a2 ) + max(O,E(e)(a~.s)), 
Q(go)(O'~.s), for any r2, begin(0'2) :S: r2 < end(a2), u2(r2).s 0'~.s, 

0'2(r2).c = {c;? I Q(g;)(a~.s), 1 :S: i :S: n}, and O'~.s u~.s. Then for any 

r~, begin(a2 ) :S: r~ :S: end(cr2 ), we have (a2,rn f= inv(wvar(G)). For any r2 , 

begin(cr2 ) :S: r2 < end(a2 ), we obtain (a2 ,r2) f= empty(dch(G) \ {c1?, ... ,c"?}). 

By assumption, we have c;? E a 2(r2).c iff Q(gi)(a~.s), for any i, 1 :S: i :S: n. Then we 

have (0'2 , r2 ) f= wait(c;?) iff (a2 , begin(a2 )) f= g; iff (a2 , r2 ) f= g;. Thus we obtain 

(112,r2} f= l\i=1 g; +-+ wait(c;?). From en.d(a2 ) < begin(112 )+max(O,t'(e)(u~.s)), 
we have, for any r~, begin(u2 ) :S: T~ :S: end(u2 ), (a2 ,r~) f= T < start+max(O,e). 

From Ç(g0 )(a~.s), we have (u2 ,r~) f= g0 and then (a,begin(a)) f= g. Thus 

(a2 , r~) f= g0 ---+ T < start+max(O, e ). It is obvious that (a2 , end( a 2 )) f= T = term 

holds. Hence we obtain 

(a2 ,begin(u2 )} f= [(inv(tlmm·(G)) 1\ empty(dch(G) \ {c1?, ... ,en?}) 1\ (go-+ T < 
start+ max(O,e)) 1\ l\~ 1 (g; +-+ wait(c;'?))] U (inv(wvar(G)) 1\ T term 1\ (go-+ 

T <start +max(O,e))), i.e., (0'2 ,begin(0'2 )) f= Wait U lnTirne. 
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From a 3 E Comm(G), there exists a k, I $ k $ n, such that Ç(gk)(a;.s) and 

a3 E SEQ(Receive(c,, xk), M(S,.)). Then {a3, begin(a3)) F gk, a3 E M(c,.,?xk; Sk), 

and (a3,begin(a3)} F comm(ck)· By assurnption, ck?xk;Sk sat 'Pk is valid. Thus 

we have (a3 , begin( u a)} F i.fk and then (u a, begin( O'a)} F g,. 1\ i.fk 1\ comm(c,.). 

Hence we obtain (0'3, begin(0'3)) F V'i=1 g; 1\ <p; 1\ comm( c;). 

Then we have (azaa, begin(uz)) F (Wait U InTime) C Vi=I g; 1\ <p; 1\ comm(e;), 

i.e., (az0'3, begin(u2 )} F Comm. 

By 0' = a 1a 2a3, we obtain (0', begin(O')) F Eva[ C Comm. 

Hence we have (a, begin( a)} F g-+ (Eva! C Comm); 

3. If 0' E SEQ(M(delay Kg), TimeOut(G), M(S0 )), there exist models 

0'1 E M(delay Kg), 0'2 E TimeOut(G), and u3 E M(S0 ) such that u= u1 u20'3 . 

a1 E M(delay Kg) implies (a1 ,begin(111 )} F Eva!. 

O'z E TimeOut( G) implies Ç(go)( u~.s) and end( a 2 ) begin(u2 )+max(O, &(e)(a~.s)). 

Thus we have (u2 , begin(a2 )} F g0 and then (a, begin( a)) Fg. By lernma2.6.1, we 

have end( a 2) = begin( a2 )+rnax(O, &( e)( 4s)) begin(a2 )+rnax(O, V( e)(a2 , end(0'2 ))) 

and then (a2 ,end(a2 )} FT= term= start+ max(O,e). Similar to previous 

case, we can also derive that, for any r2 , begin(u2 ) $ r2 < end(a2 ), (0'2,r2 } F 
empty(dch(G) \ {ci?, ... ,cn?}) 1\ (go -+ T < start+ max(O,e)) 1\ A.i=1(g; +-> 

wait(c;?)), and for any r~, begin(u2 )::; r~::; end(u2 ), {a2 , r~} F inv(wvar(G))I\g0 • 

Hence, we obtain (u2 ,begin(a2 )) F Wait U EndTirne. 

Since So sat <po is valid, we have {u3 , begin( a 3 )} F 'Po· 

Thus we obtain (a2a 3 , begin( a 2)) F (W ait U EndTime) C t.p0 , i.e., 

(uzaa, begin(uz)} F TimeOut. 

By a u1 u2u3 , we have (u, begin( a)) F Eval C TimeOut. 

Hence we obtain (a, begin( a)) F g-+ (Eval C TirneOut); 

4. If a E SEQ(M(delay Kg),AnyWait(G),Comm(G)), then there exist models 

0'1 E M(delay Kg), u 2 E AnyWait(G), and a3 E Comm(G) such that a a 1a 20'3 • 

0'1 E M(delay I<9 ) implies (ahbegin(a!)) F Eval. 

O'z E AnyWait(G) implies Q(-,g0 )(a~.s) and then we have (a2 ,begin(t1'2 )} F -.g0 • 

Thus we have (a2 ,begin(a2 )) f= g0 -+ T <stad+ max(O,e). From the seman

tics, we obtain Ç(g)(a~.s) and then (u2 ,begin(u2 )) F. g, i.e., (u,begin(u)) F jj. 

Sirnilar to previous cases, we can dcrivc that, for any r 2 , begin(0'2 ) $ T2 < 
end(az), (a2,r2} F empty(dch(G) \ {ct?, ... ,c"?}) A A'i:1(g; <--> wait(c;?)}, for 

any r~, begin(a2 ) $ r~ ::; end(a2 ), (a2 ,r~) F inv(wvar(G)) 1\ (go -+ T < 
start+ max(O, e)), and (a2 , end(a2 )) F T = term. If end(a2 ) = oo, we have 

(0'2 , begin(a2)} F 0 Waii. Jf end(a2 ) < oo, we obtain 

(a2 , begin(a2 )) F Wait U lnTimc. Hence we have 
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(u2 , begin(u2 )) f= Wait U /nTime. 

U3 E Comm( G) implies (u3, begin( u3)} f= Vi=1 g; /\ ip; /\ comm( c;). 

Thus we obtain (u2u3, begin(u2)) I= (W ait U InTi me) C V'(=1 g; /\ ip; /\ comm(c;), 

i.e., (u2u3,begin(u2)) f= Comm. 

By u= u1u2u3, we have (u, begin( u)) I= Eval C Comm. 

Hence we have {u,begin(u)) f= g-+ (Eval C Comm). 

Hence rule 2.4.5 preserves validity. 

Iteration 

We prove that the iteration rule 2.4.6 preserves validity. 

Assume G sat 'P is valid. We prove that *G sat (g /\ lP) C* ( -.9 A lP) is also valid. 

Consider any u E M(*G). There are two possibilities: 

1. either there exist a k € IN, k 2: 1, and models u1 , u 2, ••• , uk such that u = 

u1u2 ••• uk, for all i, 1 ::; i::; k, u; € M(G), for all j, 1 ::; j ::; k- 1, end( ui) < oo, 

Q(g)(u~.s), and if end(u~~:) < oothen Q(..,g)(ui.s) otherwise Q(g)(uZ.s), 

2. or there exist an infinite sequence of models u1, u2, ... such that u= u1u2 ... , for 

all i 2: 1, u; € M(G), end(u;) < oo, and Q(g)(uf.s). 

Since G sat tp is valid, we obtain (u;, begin( u;)) I= tp, for all u; € M ( G). Then, 

1. either there exist a k € IN, k 2: 1, and models u~o u2 , ••• , uk such that 

u = U1t12···uk, for all j, 1 ::; j ::; k- 1, {uj,begin(uj)} f= tp, end(ui) < oo. 

From Q(g)(u~.s), by lemma 2.6.2, (ui, begin( u;)) f= g. Then (u;,begin(ui)) I= 
gA tp. If end(uk) = oo, from Ç(g)(ui.s), we obtain (uk,begin(uk)} f= [J. By 

(uk,begin(u")) f= tp, we obtain (uk,begin(uk)) f= !JA lP· IC end(uk) < oo, by 

Q( -.g)(ui.s ), we have (u~~:, begin( uk)) f= -.g /\ tp; 

2. Orthere exist an infinite sequence of models Ut. u2, ••. such that u= u1u2 ••• , for 

all i 2: 1, (u;, begin( u;)) f= tp, end( u;) < oo, and (u;, begin( u;)) f= [J. Thus, for all 

i 2: 1, we obtain (u;, begin( u;)) I= 9 A lP· 

By the definition of the C* operator, we obtain (u, begin(q )) i= (.9 A lP) C* { -.g /\ cp ), i.e., 

rule 2.4.6 preserves validity. 

Parallel Composition 

We prove that the general parallel composition rule 2.4.8 preserves va.lidity. Then the 

simple parallel composition rule 2.4.7 preserves validity as wcll. 
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Assume S; sat tp;, 1/J; = 0 [inv(var(S;)) A empty(dch(S;))], dch(cp;) Ç dch(S;), and 

var( <p;) Ç var( S; ), for i = 1, 2. We show the validity of S1IIS2 sat ( <p1 A ( <p2 C 1/J2)) V 

(<p2A (<f't C 1/Jt)). Consicier any a E M(StJIS2)· Then dch(a) Ç dch(SI) U dch(S2), and 

for i E {1,2}, there exist a; E M(S;) such that begin(a) begin(a1 ) = begin(a2 ), 

end(u) max(end(ut),end(u2 )). Suppose end(at);::: end(a2 ). Then end(u) = end(ui). 

We prove (u,begin(u)) I= <f'tA (cpzC 1/J2). 

• First we prove (u, begin( u)) I= <p1 • From the semantics, we have that, for any 

r, begin(ut) $ T < end(ut), [u l var(S1 )]dch(S1)(r).c Ut(r).c, for any T
1
, 

begin(a1 ) $ T
1 $ end(ut), [u l var(St)]dch(Sl)(r').s a1(r').s. Since 

begin([u ! var(St)]dch(St)) begin(u) = begin(ut), end([a l var(St)]dch(S1 )) = 
end(u) end(a1 ), we obtain [u l var(St)]dch(SI) a 1 . Since u1 E M(St) and 

St sat <f't> we have ([al var(St)]dch(SJ), begin( u)) I= 'Pt· Since dch(cpt) Ç dch(St) 

and var(<pt) Ç var( St), lemma 2.6.7 and lemma 2.6.8lead to {u, begin( a)) I= <p1• 

• Next we prove (u, begin( u)) I= 'f!z C 1/J2. 

- If end(a2 ) = oo, since end( u)= end( ut);::: end(u2 }, we have end(a2 ) end( a)= 

oo. Similarly, we can derive (u,begin(u)) I= cp2 • By the definition of the C 

operator, we obtain (u, begin( u)) I= 'f!2 C 1/J2; 

- If end( u2) < oo, from S2 sat 'P2 and u2 E M(S2 ), we obta.in (u2, begin(a2 )) I= 'P2· 

We define a model a3 such that begin(u3 ) = end(a2 ), end(u3 ) end(a), 

for any r, begin(aa) $ T < end(u3), aa(r).c [u]dch(~)(r).c, for any T
1
, 

begin( a 3 ) $ r' $ end( u3 ), a 3 ( T ).s = a2 .. s. Th en we have (u3 , r') I= inv( var(S2)). 

For any rf > end(a3 ), we also have (a3, r{) I= inv(var(S2)). Hence we 

obtain (u3 , begin( u3)) I= 0 inv( var(S2) ). From the semantics, for any r, 

end(u2) $ T < end(u), [u]dcll(Sz)(r).c ç,j. That is, for any r, begin(u3) $ 

T < end(a3 ), u3 (r).c = ç,j. Thus we have (a3 , r) I= empty(dch(S2)). For 

any r1 > end(u3 ), we also have (u3 ,r1) I= empty(dch(5'2 )). Then we obtain 

(u3 , begin(u3 )) I= 0 empty(dch(S2 )). Thus we have 

(u3, begin(u3)) I= 0 [inv(var(S.)) A empty(dch(S2))], i.e., {a3,begin(u3)) I= 
1/J2. By the definition of the C operator, we obtain (a2u3, begin(u2 )) I= <p2C'IjJ2• 

Next we prove [a! var(S2)]dch(Sû u2a3. Let a= [u l var(S2)]dch(Sz)· 

By definitions, we have 

( ( ))( { 
u2(r).s begin(a2 ) ~ T $ end(u2) 

o-(r).s al var s2 r).s = 
u3(r).s end(u2 ) < T ~ end(a) 

a(r).c [ I ( ) { 
u 2(r).c begin(u2 ) $ T < end(u2) 

U dch(Sz) T .C = 
u 3 (r).c end(u2 ) ~ T < end(a) 
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Hence ii u2u3. Thus ([u! var(Sz)]dch(S2 ),begin(uz)) F r.pz C 1/Jz. Since 

dch(r.p2 ) Ç dch(Sz) and var(r.p2 ) Ç var(S2 ), we have dch(r.p2 C 1/Jz) Ç dch(S2 ) 

and var(r.p2 C 1/;2 ) Ç var(S2 ). Then lemma 2.6.7 and lemma 2.6.8 lead to 

{u, begin( u)) F <pz C 1/Jz. 

Therefore we have proved (u, begin( u)) F '-PI 1\ ( r.pz C 1/J2). 
Similarly, for end( ui)< end(u2 ), we can show (u, begin( u)) F r.p2 /\ (r.p1 C 1/;1 ). 

Hence the general parallel composition rule 2.4.8 preserves validity. 



Appendix C 

Preciseness of the Proof System 

Chapter 2 

• In 

To prove the preciseness theorem 2.6.2, we show that for any statement S we can prove 

S sat 'fi where 'fi is precise for S, namely, 

1. S sat 1.fi holds, i.e., (u, begin( a-)) I= i.p, for any a- E M(S}; 

2. If a- is a well-formed model, dch(o-) Ç dch(S), for any variabie x t/. wvar(S), x is 

invariant with respect toa-, and (u, begin( a-)) I= i.p, then a- E M(S); and 

3. dch('f!) = dch(S} and var('f!) var(S). 

By induction on the structure of S, we show that, for any statement S, S sat 'fi holds 

where 1.fi is precise for S. 

For all the cases, the proof of the first requirement follows from the soundness theorem 

(Theorem 2.6.1) and the proof of the third requirement is easy. Hence we only give here 

the proof of the second requirement. 

Skip 

By the skip axiom, skip sat term start. We show that term start is precise 

for statement skip. Consider a well-formed model a- such that (u, begin( a-)) I= term= 

start. Then we have end( a-) begin( a-) and hence a- E M(skip). Hence term= start 

is precise for skip. 

Assignment 

Let 1.fi = (x = first(x)) U (T = term = start+ Ka 1\ x = e[first(x)fx]). By the 

assignment axiom, x e sat 'fi· We show that 1.fi is a precise specifica.tion for x e. 

125 
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Consider a well-formed model u such that dch(u) Ç dch(x := e) and any variabie 

y ~ wvar(x := e) is invariant with respect to u. Thus we obtain dch( u) !0, i.e., for any 

Tt. begin(u) 5 r1 < end(u), u(r1 ).c p. Furthermore, for any variabie y :j; x, for any 

r2 , begin( u)$ T2 $end( u), we have u(T2 ).s(y) = ub.s(y). Assume (u, begin( u)) f= <p. 

Then we obtain end(u) = begin(u) +Ka and, for any T1 , begin(a) :::; T1 < end(u), 

u(r1).s(x) u 6.s(x), and ue.s(x) V(e[first(x)jxl)(a,end(a)). By definition, we 

have V(e[first(x)fx])(u, end( u))= V( e[first(x )/x])( a, begin(a)) = V(e )(u, begin(a)) = 
C(e)a6.s. Thus, for any Th begin(a) $ T1 < end(a), a(r1 ).s = ub.s, ae.s = (ub.s: x~--+ 

C(e)u6.s). Hence u E M(x := e). Thus <pis a precise specification for x:= e. 

Delay 

Let <p =term start+ max(O, e). By the delay axiom, delay e sat <p. We show that <p 

is a precise specification for delay e. Consider a wel!-forn1ed model u such that dch( a) Ç 

dch(delay e) and any variabie y i wvar(delay e) is invariant with respect to u. Thus we 

obtain dch(u) = 0, i.e., for any Tt, begin(u):::; T1 < end( u), u(r1 ).c = !0. Furthermore, 

for any r2, begin( u)$ r2 $end( u), we have u(r2 ).s ab.s. Assume (u, begin( u)) f= <p. 

Thus end(a) begin(u) + max(O, V(e)(u,begin(u))) = begin(u) + max(O,t'(e)(ub.s)). 

Hence a E M(delay e). Therefore <pis a precise specification for delay e. 

Output 

Let <p = wait(c!) U (T =term~ /(cl\ (cornm(c, e) UT= term)). By the output axiom, 

c!e sat <p. We show that <p is precise for c!e. Consider a well-formed model u such 

that dch(a) Ç dch(c!e) and any variabie y 1:. wvar(c!e) is invariant with respect to u. 

Then we obtain dch( u) Ç { c, c!} and, for any variabie y, any T, begin( u) $ r :::; end( u), 

u(r).s(y) = ub.s(y). Hence u(r).s ub.s. Assume (u,begin(u)) f= e.p. Then there are 

two possibilities: 

• either {u,begin(u)} f= Dwait(c!), 

• or {u, begin( u)) f= wait(c!) U (T term~ I<c 1\ (cornm(c, e) UT= term)). 

That is, 

• eitherfor any T ~ begin(u), (u,T} f= wait(c!), i.e., r < end(u) and thus end(u) = 

oo. By definition, for any T ~ begin( u), cl E u( T ).c. Si nee u is a well-formed model, 

for any value {) E VAL and any T, begin( u) $ r < end( a), -.(c! E u(r).c 1\ c? E 

u(r).cand -.(c! E u(r).c/\(c,t9) E u(T).c) are valid. Then we obtain u(r).c {c!}. 

Together with u(r).s ub.s, we have a E M(c!e); 
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• or there exists a r :2': begin( a), r E TIME, such that, for any r1, begin( a) $ r1 < T, 

(a, Tt) I= wait(c!) and (a,r) I= T =term- Kc A (comm(c,e) UT term). We 

split a into two models a 1 and a 2 such that a ::= a 1a 2 with end(at) r. Thus 

begin(a2 ) = end(ai) = T. Then we obtain that, for any Tt. begin(a1 ) $ r 1 < 
end(a1 ), a 1 (ri).c = {c!}. Together with a(r).s = ab.s, for any r, begin(a) $ 

T $ end( a), we obtain a 1 E W ait( c!). From (a, r) I= T term - Kc, we obtain 

T = end(a)- I<c and then end(a2 ) = T +Kc begin(a2 ) + I<c. From (a,r) I= 
comm(c, e) UT= term, we can derive that, for any r2 , begin(a2 ) S r2 < end(a2 ), 

(c, V(e)(a2,r2 )) E a 2 (r2).c. By the well-formedness of a and the invariance of 

variables, a 2(r2 ).c = {(c, V(e)(a2 , begin(a2 )))} {(c,f(e)a~.s)}. Together with 

a(r).s = ab.s, for any r, begin(a) $ T $ end(a), we obtain a2 E Send(c,e) and 

hence a E M(c!e). 

Therefore r.p is precise for de. 

Input 

Let r.p :=(x= first(x)Await(c?)) U (T term-I<cA((x first(x)Acomm(c, last(x))) 

U T = term)). By the input axiom, c?x sat r.p. We show that r.p is precise for 

c?x. Consicier a well-formed model a such that dch(a) Ç dch(c?x) and any variabie 

y ~ wvar(c?x) is invariant with respect toa. Then dch(a) Ç {c,c?} and, for any 

r, begin(a) $ T S end(a), for any variabie y 'f: x, a(r).s(y) = ab.s(y). Assume 

(a, begin( a)) I= r.p. There are two possibilities: 

• either (a, begin( a)) I= 0 (x= first(x) Await(c?)); 

• or (a, begin( a')) I= (x Jirst(x) A wait(c?)) U [T =term- I<c A ((x= first(x) A 

comm(c,last(x))) UT term)]. 

That is, 

• either end(a) oo, for any T :2': begin(a), a(r).s(x) = ab.s(.r), and c? E a(r).c. 

trom the invariance of variables different from x and thc wcll-formedness of a, we 

obtain, for any r ;:::: begin( a), a( r ).s = erb.s and a( r ).c = { c?}. Hence a E M(c?x); 

• or there exists ar :2': begin( a), rE TTME, such that, for any Tt, begin( er)$ r1 < r, 

(a, r1) I= x first(x) A wait(c!) and {er, r) I= T =term- Kc A ((x first(x) A 

comm(c,last(x))) UT= term). We split a into two models a 1 and a2 such that 

er er1er2 with end( al) r. Then begin(a2 ) = end(aJ) = r. We obtain that, for 

any r1 , begin( at):::; r1 <end( at), er1(rt).s = er~.s, er1(rJ).c = {c?}. From (a, r) I= 
T term- IC, we have T = end( a)- I<c and thus end(az) = begin(er2) + I<c. 
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We can also derive that, for any 7 2 , begin(u2 ) :5 7 2 < end(u2 ), (u2, 7 2 ) f= x = 
first( x) A comm( c,last( x)). Together with· the in varianee of variables different 

from x, wethen have u2(r2 ).s u~.s. Since u = u 1u 2 and uf.s(x) u~.s(x), 

we obtain u~.s = ut.s. Thus u 1 E Wait(c?). By definition, V(last(x))(u2,r2 ) 

ui.s(x). Let {) u~.s(x). Hence by the well-formedness of u, we obtain, for any 

1"2, begin(u2 ) :5 r2 < end(172), u2(72).c = {(c, iJ)}. Furthermore, we also have 

ui.s = (u~.s: x 1-t iJ). Hence 172 E Receive(c,x) and then 17 E M(c?x). 

Hence !.p is precise for c?x. 

Sequentia! Composition 

Consider s = SI; s2. By the induction hypothesis, we can derive SI sat 'Pl and 

S2 sat ~.p2 , where ~.p 1 and ~.p2 are precise for S1 and S1o respectively. By the commu

nication invaria.nce a.xiom, we obta.in 

St sat 0 empty(dch(S2 ) \ dch(St)) and S2 sat 0 empty(dch(SJ) \ dch(S2 )). 

By the variabie invariance axiom, we obtain 

St sat 0 inv(wvar(S1 ; S2 ) \ wvar(SJ)) and S 2 sat o inv(wvar(S1; S2)\ wvar(S2)). 

Then, using the conjunction rule, we have 

S 1 sat 'Pl A 0 (empty(dch(S2) \ dch(S1 )) A inv(wvar(S1 ; S2) \ wvar(S1))) and 

S2 sat ~.p2 A 0 (empty( dch(St) \ dch(S2 )) A inv(wvar(S1 ; S2) \ wvar(S2))). 

Hence, by the sequentia! composition rule, SI; s2 sat r.p with 

r.p = [!fJt A 0 (empty(dch(S2 ) \ dch(S1)) A inv(wvar(S1 ; S2) \ wvm·(S1)))] C 

[!fJ2 A 0 (empty(dch(S1) \ dch(S2 )) A inv(wvar(S1 ; S2) \ wvar(S2)))]. 

We prove that !.p is precise for SI; s2. 
Consider a well-formed model u such that dch(u) Ç dch(S1;S2) and any variabie 

y f. wvar(S1;S2 ) is invariant with respect to 17. Assume (u,begin(u)) f= 'P· There 

exist u 1 and u 2 such that u= 171u 2 , end(171 ) > begin(17), 

(u11 begin( ut)) f= ~.p 1 A 0 ( empty( dch(S2 ) \ !lch(St)) A inv(wvar(S1 ; S2 ) \ wvar(S1 ))), and 

(u2 ,begin(u2 )) f= !.pz A O(empty(dch(St) \ dch(Sz)) A inv(wvar(S1 ; S2 ) \ wvar(Sz))). 

From (1711 begin( uJ)) f= 0 empty(dch(S2 ) \ dch(St) ), lemma 2.6.10 leads to 

[u]dch(Sl)udch(S2 ) [u]dch(St)· From dch(u) Ç dch(St; Sz) dch(St) U dch(Sz) and 

u UtUz, we obtain dch(ut) Ç dch(St) U dch(82 ). Thus, by lemma 2.6.9, we have 

Ut = [17t]dch(S1 )udch(S2 ) [17t]dch(SJ). By lemma. 2.6.9 again, we obtain dch( U1) Ç dch( St). 

From (171 ,begin(u1)) f= Dinv(wvar(S1 ;Sz) \ wvar(SI)), we know that any variabie 

x E wvar(St; Sz) \ wvar(SI) is invariant with respect to u 1 . By the assumption, any 

variabie y f. wvar( S1 ; S2 ) is inva1·iant with respect to u. Thus any variabie z f. wvar( S1 ) 

is invariant with respect to u1 • Since u is well-formed, both <71 and 172 are also well-
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formed. Together with (O"t> begin(O"I)) ~ 'Pl and the preciseness of 'PI for sh we ob

tain 0"1 E M(S1 ). Similarly, (!2 E M(S2). By O" 0"10"2 and the definition of SEQ, 

(! E M(S1 ; S2 ). Then <.pis precise for S1 ; S2. 

Guarded Cammand with Purely Boolean Guards 

Consicier G [l)f=1g; --+ S;]. By the induction hypothesis we can derive S; sat <.p;, 

i= 1, ... n, where <.p; is precise for S;. By the variabie invariance axiom, 

S; sat Oinv(wvar(G) \ wvar(S;)). By the communication invariance axiom, 

S; sat 0 empty( dch( G) \ dch( Si)). Th en by the conjunction rule, we have 

S; sat <.p; A 0 (inv(wvar(G) \ wvar(S;)) A empty(dch(G) \ dch(S;})). 

By the guarded command evaluation axiom, the guarded command with purely boolean 

guards rule, and the conjunction rule, we obtain G sat <.p with 

<.p = [(inv(wvar(G)) A empty(dch(G))) U (T =start+ Kg 1\ inv(wvar(G)))jl\ 

(...,g --4 Eval) A [g--+ (Eval C Vf=1 (g; A 'Pi 1\0 (inv(wvar(G) \ wvar(S;))I\ 

empty(dch(G) \ dch(S;)))))] 

We prove that <.p is precise for G. 

Consicier a well-formed model O" such that dch( O") Ç dch( G) and any variabie y çf:. 

wvar(G) is invariant with respect to O". Assume (O", begin(O')) ~ t.p. We prove that 

O" E M( Oi=1g;--+ S;). By assumption, thereexists aT~ begin(O") such that ((!, r) ~ T 

start+l<gl\inv(wvar(G)) and, for any r11 begin(O") ~ r1 < r, (O",r1) ~ inv(wvar(G))t\ 

empty(dch(G)). Then we have T = begin(O") +Kg and, for any rr, begin(O') ~ rf :::; 

r, any y E wvar(G), O'(r{).s(y) = O'b.s(y). Together with the invariance of vari

ables y çf:. wvar(G), we obtain O'(r{).s = (!b.s. Since dch(O") Ç dch(G) and (O",r1 ) ~ 

empty(dch(G)), we obtain (!(rt).c = 0. 

Next consider the validity of g. There are two possibilities. 

• If ((!,begin((!))~...,[}, lemma 2.6.2 implies 9(.....,g)((!b.s). By assumption, 

((!,begin(u)) ~term= start+ /{11 and hence end(O") = bcgin(u) + /(9 • Thus, 

end((!) r =begin((!)+ K 9 and then 0' E M(delay K9 ). 

• lf (0', begin((!)}~ g, then (O", begin(O")) ~ (tcnn =stad+ /\9 ) C 

Vi:_1 (g; A 'Pit\ 0 (inv(wvar(G) \ wvar(S;)) 1\ empty(dch(G) \ dch(S;)))). 

By definition of the C operator, there exist modcls 0'1 and (!z such that O" = 
(!1(!2 , (0' 11 begin((!1)} ~ term. =start+ Kg, and (0"2 ,bcgin(0"2 )) ~ Vi:_ 1(g; t\ 

'Pit\ D (inv(wvar(G) \ wvar(S;)) t\ empty(dch(G) \ dch(S;)))). Thus end((!t) 

begin(O"t) + /{9 • From begin(O') = begin(O'I), we obtain 0'1 E M(delay K9 ). 

Since end(al) < =, by the definition or .,.1.,.2 , wc have end(.,.J) = begin((!2 ) 

and (!i-s = (J~.s. Furthermore, thcre must cxist a k, 1 :::; k :::; n, such that 
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(a2 , begin(a2 )} I= 9k /\'fik 1\0 ( inv( wvar( G) \ wvar(S;)) 1\empty( dch( G) \ dch(Sk))). 

From (o2 ,begin(o2 )} I= 9k, by lemma 2.6.2, Ç(gk)(o~.s). From (a2 ,begin(a2 )} I= 
Oinv(wvar(G) \ wvar(Sk)), any variabie x E wvar(G) \ wvar(Sk) is invariant 

with respect to o2 • By assumption, any variabie y t}. wvar( G) is invariant with 

respect to a. Thus, any variabie z t}. wvar(Sk) is invariant with respect to 

a 2 • From (a2 ,begin(a2 )) I= Oempty(dch(G) \ dch(Sk)), lemma 2.6.10 leads to 

[o2]dch(G)udch(S0 ) [oz]dch(So)· Since dch( G)Udch( Sk) dch( G), we obtain [oz]dch(G) 

= [a2]dch(S•)· From a= a1o2 and dch(o) Ç dch(G), we have dch(a2 ) Ç dch(G). By 

lemma 2.6.9, it implies a2 = (az]dch(G) and then 02 = (az]dch(S•)· By lemma 2.6.9 

again, we obtain dch(o2 ) Ç dch(Sk). Since a is a well-formed model, o1 and o2 are 

also well-formed. Together with (a2 , begin(o2 )) I= '{ik and the preciseness of 'Pk for 

S~c, az E M(Sk)· By a= a1o2 and Ut E M(delay K 9 ), we obtain Ç(gk)(ab.s). By 

the definition of SEQ, we have oE M(delay ](9 ; Sk)· 

Both cases leadtoa E M([0i=t9i--+ S;]). Hence r.p is precise for 10~1 b;--+ Si]. 

Guarded Command with 10-Guards 

Consicier G := [0i=1g;;c;?x;--+ S; 0 g0 ;delay e-> S0]. By the induction hypothesis, we 

have c;? x;; S; sat r.p; and S0 sat r.p0 , where 'Pi is precise for c;? x;; S;, i 1, 2, ... , n, and 

'Po is precise for S0 • By the variabie invaria.nce axiom, the communication invariance 

axiom, and the conjunction rule, we obtain 

c;?x;; S; sat 'Pi 1\0 (inv(wvar(G) \ wvar(c;?x;; S;)) 1\ empty(dch(G) \ dch(c;?x;; S;))). 

Similarly, we have S0 sat 'Po 1\ 0 ( inv( wvar( G) \ wvar(S0 )) 1\ empty(dch( G) \ dch(So))). 

By the guarded rommand evaluation axiom, the guarded command with 10-guards rule, 

and the conjunction rule, we obtain G sat 'Ij; with 

'Ij;:= [(inv(wvar(G)) 1\ empty(dch(G))) U (T =start+ ]{9 1\ inv(wvar(G)))]I\ 

(..,g-> Eval) 1\ (g-> (Eva/ C (NComm V NTimeout))] 

where 

NComm := (Wait U lnTime) C 'lj;1 , NTimeOut (W ait U EndTime) C 'lj;2 

with 

.,P1 = Vi'=1[gi 1\ 'Pi 1\ comm(ci) 1\ 0 (inv(wvar(G) \ wvar(c;?x;; S;)) 1\ 

empty(dch(G) \ dch(c;?x;; S;)))] 

'lj;2 :='Po 1\0 (inv(wvar(G) \ wvm·(So)) A empty(dch(G) \ dch(So))) 

We prove tha.t 'Ij; is precise for G. 

Consicier a well-formed model o such that dch(a) Ç dch(G) and any variabie y €/. 

wvar( G) is invariant with respect toa. A ss urne (a, begin(<J)) I= 'Ij•. We prove a E M( G). 

Similar to the preciseness proof for G := [IJ i=1g; --+ Si], wc have that, for any rb 
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begin(cr) :::; r1 < begin(cr) + K9 , crh).c = 0, and for any r:, begin(cr) :::; r; :::; 

begin( u)+ K9 , cr(r:).s crb.s. 

Next consider the validity of g. There are two possibilities. 

• If (cr,begin(cr)) I= ~g, lemma 2.6.2leads to Ç(-.g)(crb.s). By assumption, we have 

(cr,begin(cr)) I= term= start+ K9 and then end(cr) begin(cr) + K9 • Then we 

obtain erE M(delay Kg)· Hence erE M(G). 

• If (er, begin( u)) I= g, then we have (er, begin( u)) I= (term= start+ K9 ) C 

[((Wait U InTime) C '1/Jt) V ((Wait U EndTime) C 'ifJ2 )]. 

For this case, consider the further three possibilities. 

1. If (cr,begin(cr)} I= (term= start+ K9 ) C ((Wait U InTime)C '1/JJ), then there 

exist models cr1 and cr2 such that er cr1 o-2 , (uh begin( crJ)) I= term= start+ I<9 , 

and (cr2 ,begin(o-2 )} I= (Wait U InTime) C 'ifJ1 • Then we have end(cri) 

begin(cri) + I<9 • By begin(o-) begin(cr1 ), we obtain o-1 E M(delay Kg)· 

Furthermore, there exist models CTzt and crn such that cr2 = o-21 crzz, 

(cr211 begin(cr2I)) I= Wait U lnTime, and (cr22 ,begin(cr22 )) I= 7/J1 . We prove that 

cr21 E FinWait(G) U AnyWait(G) and cr22 E Comm(G). 

By definition, there exists a r2 ;::: begin( o-21) such that (cr21 , r2 ) I= inv( wvar( G)) A 

(T = term) A (g0 --> T < start + max(O, e)) and for any r~, begin( cr21 ) :::; r~ < Tz, 

(cr21, r~} I= im1(wvar(G)) 1\ empty(dch(G) \{cl?, ... , en?}) A (go --> T < start+ 

max(O,e)) 1\ A'i=1 (g; ;-+ wait(c))). Then we obtain end(cr2J) = r2 and, for any 

y E wvar(G), for any r~', begin(cr21 ) :::; r~' :::; r2 , cr21 (r;').s(y) = cr~1 .s(y). To

gether with the in varianee of variables y t/: wvar( G), we obtain cr21 ( r~').s = cr~1 .s. 

Since er is a well-formed model, so are cr21 and cr22 • From above, we obtain 

CTz1 (r~).c = {c;? I Ç(g;)(o-~1 .s),l:::; i:::; n}. By assumption, (o-,begin(cr)) I= jj. 

By lemma 2.6.2, Ç(g)(crb.s) and hence Ç(.g)(cr~ 1 .s). 
If (cr21,begin(cr21)) I= go, lemma2.6.2leads to Ç(go)(a~1 .s). From (cr21>r2} I= 9o-+ 

T <start+ max(O,e), we obtain r2 < begin(o-21} + max(O,t'(e)(cr21 (r2 ).s)). Then 

we have end(cr2J) < begin(cr21 )+ rnax(O,t'(e)(o-~ 1 .s)) and then cr21 E FinWait(G). 

If (o-2t.begin(cr2J)) I= ..,go, we obtain O"zJ E AnyWait(G). 

Next consider cr22 . Since (a22 , begin(CTzz)) I= 7/J1 , there exists a k, 1 :::; k :::; n, such 

that (cr22 , begin(cr22 )) I= gk À 'fik 1\comm(ck) 1\0 (inv(wvar(G) \ wvar(q?xk; Sk)) 1\ 

empty(dch(G) \ dch(c~?xk; Sk))). From lemma 2.6.2, we have Ç(gk)(cr~2 .s). From 

(cr22 , begin( a 22 )) I= 0 (inv( wvar( G)\wvar(ck ?xk; Sk))), any variabie x E wvar( G)\ 

wvar( ck ?xk; Sk) is invariant with respect to o-22 . 13y assumption, any variabie y t/: 
wvar(G) is inv<1.riant with respect toa. Thus, any variabie z ~ wvar(ck?xk; Sk) is 

invariant with respect to O"zz. By lemma 2.6.1 0, [an]drlt(G)udch(c• ?x.;S•) [cr;z]dch(c• ?x.;S•) 
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and then [t:rzz]dch(G) [uzz]dch(ck ?x.;S•)· Using dch( a) Ç dch( G), we obtain 

dch(azz) Ç dch(u) Ç dch(G). By lemma 2.6.9, an = [an]dch(G)· Thus, 

0"22 = [a2z]dch(c,.?x.;S•)· By lemma 2.6.9 again, we have dch(a22) Ç dch(ck?xk; Sk)· 

Together with the well-formedness of a 22 , (az2 , begin( u22 )) I= 'Pk, and the precise

ness of 'Pk for ck?xk;Sk, we obtain an E M(ck?xk;Sk)· Since M(q?xk;Sk) = 

SEQ(M(ck?xk), M(Sk)) and (uzz, begin(uz2)) I= comm(ck), we have 

Uzz E SEQ(Receive(ck,xk), M(Sk)). Thus we obtain a22 E Comm(G). 

By t:Tz UztUz2, we obtain 

u2 E SEQ(FinWait(G), Comm(G)) u SEQ(AnyWait(G), Comm(G)). 

By u= u1az and u1 E M(delay K 9 ), we have 

u E SEQ(M(delay K 9 ),FinWait(G),Comm(G)) u 
SEQ(M(delay K9 ),AnyWait(G),Comm(G)) and hence u E M(G). 

2. If (u, begin( u)) I= (term = start+ I<9 ) C 0 W ait, there ex i st u1 and a2 such that 

u = u1u2 , (ut, begin( at)) I= term = start + K 9 , and (u2 , begin( u2)) I= 0 W ait. 

Then Ut E M(delay /{9 ). From {a2 ,begin(u2 )) l= OWait, we obtain that, for 

any Tz ;:.::: begin(uz), (t:rz, Tz) l= Wait. Hence we have (az, rz) l= go -> T < 
start+max(O, e ). If {az, rz) l= go, we obtain r2 < begin(uz)+max(O, t:( e )(u( Tz).s )). 

But it can not be true. Hence (u2,r2 ) f= ....,90· By lemma 2.6.2, Ç(•g0 )(uz(Tz).s) 

and then Ç(•g0)(u~.s). Next we prove end(a2 ) = oo. Suppose end(a2 ) < oo. By 

definition, for any r3 ;:.::: end(u2 ), we have {u2,r3 ) l= empty(dch(G)). By assump

tion, (u,begin(a)) l= g. Since Ç(-.g0 )(ab.s), there exists a k, 1 $ k $ n, such that 

(u,begin(u)) l= 9k· Then, for any Tz? begin(a2), (u2 ,rz) I= wait(ck) and hence 

{a2 , r2} l= ..,empty(dch(G)). This contradiction leads to end(u2 ) = oo. We also 

have u2 (r2).s u~.s and a2(r2 ).c = {c? I Ç(g;)(u~.s), 1 $i$ n}. Hence 

t:r2 E AnyW ait( G). 

We can easily find a model which belongs to Comm(G). Let u3 be a model such 

that a3 E Comm(G). By the definition of SEQ, we have 

0"20"3 E SEQ(AnyWait(G),Comm(G)). Since end(a2 ) = oo, we have O"z173 u2. 

Thus 

a2 E SEQ(AnyWàit(G), Comm(G)). 

Together with u= a1a2 and a1 E M(delay I<9 ), we obtain 

u E SEQ(M(delay I<9 ),AnyWait(G),Comm(G)) and hence a E M(G). 

3. If (a,begin(u)) l= (term= .~tart+ I<9 ) C ((Wait U EndTime) C "P2), there 

exist u1 and u2 such tha.t u u1a2 , (ul> begin(a1 )) l= tenn = stad+ l<g, and 

(u2 ,begin(u2 )) I= (Wait U EndTimc) C '4>2 • Thus u1 E M(delay K9 ). 

Furthermore, there exist models 0"21 a.nd a22 such tha.t u2 = Uzt a22, 

{a21 ,begin(u2t)) l= Wait U EndTime, a.nd (a22 ,begin(a22 )) f= 'fj;z. We prove that 
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o-21 E TimeOut(G) and o-22 E M(S). 

By definition, there exists a Tz ;::-:: begin(a21) such that (a21 ,72 ) f= EndTime and, 

for any 7~, begin(azi) :5 7~ < 'Tz, (azt,r~} f= Wait. Then we have (a211 72} I= 
inv( wvar( G)) I\ g0 I\ T = term start + max(O, e ). Then end( a 2t) = r2 = 
begin(a21)+max(O, &( e)(a21 ( 7 2 ).s )) and, by lemma 2.6.2, Ç(g0 )(a21 ( r2).state). We 

also have that, for any r~', begin(o-21 ) :5 r~' :5 r2 , a21 (rf).s = a~1 .s and, for any r~, 

begin(azt) :5 r~ < Tz, 1Tzt(r2).c {c;? I Ç(g;)(o-~1 .s), 1 :5 i :5 n}. Thus end(o-21) = 

begin(a2t)+ max(O,t.'(e)(o-~ 1 .s)) and Ç(go)(a~1 .s). Henceo-21 E TimeOut(G). 

Next consider o-22 • Since (a22 , begin(1122 )) f= 'ljJ2 , any variabie x E wvar(G) \ 

wvar(S) is invariant with respect to 1122 • By assumption, any variabie y t/. wvar(G) 

is invariant with respect to o-. Hence, any variabie z t/. wvar(S) is invariant 

with respect to O'zz. By lemma 2.6.10, [o-zz]dch(G)udch(S) = [o-zz]dch(S) and then 

[azz]dch(G) = [addch(S)· Using dch(a) Ç dch(G), we have dch(a22 ) Ç dch(a) Ç 

dch( G). By lemma 2.6.9, 0'22 [o-zz]dch(G) and hence i7zz = [azz]dch(S)· By 

lemma 2.6.9 again, dch(a22 ) Ç dch(S). Tagether with the well-formedness of o-22 , 

{0'22, begin(O'n)) f= i.po, and the preciseness of i.po for So, we obtain u22 E M(S). 

By O"z O'ztlTzz, we have O"z E SEQ(TimeOut(G),M(S)). 

By 11 o-1u2 , we obtain o-E SEQ(M(delay I<9 ),Time0ut(G),M(S)) and hence 

o-E M(G). 

Thereforeall thecases lead toO' E M(G). Hence,'I/J ispreciseforG = [0f::1g;;c;?x;;S;-+ 

S; D go; delay e-+ So]. 

Iteration 

Consider *G. By the induction hypothesis, we can derive G sat 1.p where 1.p is precise for 

G. By the iteration rule, *G sat 1/J with 1/J = (9 A ~.p) C* (..,gA ~.p). We prove that 1/J is 

precise for *G. 

Consider a well-formed model o- such that dch( u) Ç dch( *G) and any variabie y if:. 
wvar(*G) is invariant with respect to 0'. Thus, dch(O') Ç dch(G) and any variabie 

y if:. wvar( G) is invariant with respect to u. A ss urne (u, begin( 0')) I= 1/J. By definition of 

the C* operator, there are two possibilities: 

1. either there exists a k ;::-:: 1 and models u1 , 0'2 , ..• , O'Je such that a = 0'1 a 2 ••• O'Je, for 

any j, 1 :5 j :5 k l, end(O'j) < oo, (uj, begin(uj)} f= g I\ i.p, and if end(o-~:) < oo, 

then (uk, begin( uk)} f= ..,9 I\ ~.p, otherwise (uk, begin(O'k)} f= fj I\ i.p, 

2. or there exist infinite models 0'1 , CTz, . .. such that u = 111 0'2 .•. , for any j ~ 1, 

end(o-j) < oo, {CYj, begin(O'J)} I= g 1\ "P· 
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That is, 

1. Either there exists a k 2::: 1 and models O't, 0'2 , ••• , O'k such that 0' = 0'1 O'z ... O'k, for 

any j, 1 ~ j ~ k -1, end(O';) < oo, Q(jj)(O'j.s) (by lemma 2.6.2). Since 0' is well

formed, so are 0'1 , 0'2 , ... , O'k. By dch( 0') Ç dch( G), we obtain dch( O'j) Ç dch( G). 

Together with the invariance of variables y ~ wvar( G) and the preciseness of r.p 

for G, we have O'j E M(G). Similarly, we have O'k E M(G). If end(O'k) < oo, by 

lemma2.6.2, we obtain Q(-.jj)(O't .. ~), otherwise Q(jj)(ut.s); 

2. Orthere exist infinite models O't,0'2, ••• such that 0' O'JO"z .. . , for any j 2::: 1, 

end(O';) < oo, Q(jj)(O'j.s), and O'j E M(G). 

Both cases lead to 0' E M(*G). Hence, (jj A r.p) C* (-.gA r.p) is precise for *G. 

Parallel Composition 

Consider S S1 IIS2 • By the in duetion hypothesis, we can derive S1 sat r.p1 and S2 sat r.p2 

with r.p1 and 1.fJ2 precise for St and Sz, respectively. From preciseness, dch( r.p;) Ç dch( S;) 

and var(r.p;) Ç var(S;), for i= 1,2. Then we can apply the general parallel composition 

rnle and obtain S1 IIS2 sat 'Ijl with 'Ijl = ( r.p1 A ( r.p2 C 'lj;2)) V ( r.p2 A ( r.p1 C l,i;t)) where 

'Ijl; = 0 (inv(var(S;)) A empty(dch(S;))], for i = 1, 2. We prove that 1,1; is precise for 

StiiS2. 

Let u he a well-formed model such that dch(u) Ç dch(S1 IIS2 ) and any variabie y ~ 

wvar(S1 IIS2 ) is invariant with respect to 0'. Assume (u,begin(O')) I= 1,1;. By the well

formedness of 0', for any c E CHAN, any r, begin(O') ~ T < end( 0' ), -,( c! E 0'( T ).cA c? E 

u(r).c) holds. Suppose (u, begin( u)) I= r.p1 A (r.p2 C 1,1;2 ). Define a 1 as 

[u! var(S1)]dch(S,)· From (u, begin( a)) I= r.p1 and var(r.pJ) Ç var(S1 ), lemma 2.6.8 leads 

to (u l var(S1 ),begin(O')} I= r.p1. By dch(r.p1 ) Ç dch(SJ) and lemma 2.6.7, we obtain 

([u l var(SJ)]dch(SI), begin( u)} I= I.{Jt, i.e., (a~o begin( ut)) I= 'PI· Since 0' is well-formed, 

u1 is also well-formed .. By the definition of u and O't, any variabie y ~ wvar(S1) is 

invariant with respect to u1 . Together with the preciseness of r.p1 for S1 and dch( ut) Ç 

dch(S1), we ohtain u 1 E M(S1 ). 

Next oonsider (0', begin( a)) I= r.p2 C 'ljJ2 • There exist models 0'3 and a4 such that 0' = 0'3a4 , 

(ua,begin(ua)) I= I.{J2, and (a4,begin(a4)} I= 'I/J2· Define u2 as [a3 ! var(Sz)]dch(S2 )· 

Similarly, by lemma 2.6.8 and lemma 2.6.7, we obta.in a 2 E M(S2 ). 

Notice that end(u) = end(a3a 4 ) 2::: end(u3 ) = cnd(a2 ) and cnd(a) = cnd(u1 ), hence 

end(u) = max(end(ut),end(u2 }). lt is clear that begin(a) = bcgin(ad = begin(u2 ). By 

definitions, we have that, for i 1, 2, 
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I l ) . { 17;(r).t be_qin(o-,) S: r < (:nd(11,) 
0" dch(s,)( 7 .c ~ ~ 

0 tnd( 0"1) :::: 7 < ~:nrl( 17) 

, { o-,(r).8 lu:gin(O",)::; 7::; {:wl(!7,) 
(a- 1 var(S,))(r).$ ;= 

O';',s end{o-;) < r :S end(a) 

By the a .. •Burnption, any variabie y ~ IIIV(Lr(St[IS2 ) is inv<~.ri;l.Tlt w.r .. t. toa, Thu~, any 

variabk x~ var(S't[IS2) is Învi:l.riaut w.r.t. toa, i,c., for ;u1y r, begin(O") ~ r :s; tnd(a), 

a(r) ... ~(x) = O"•.s(x). Furt.}H~trnore, for any :r. ~ var(Sdl-'i2 ), first <\.~~umc x ~ var(Sl). 

Then by thc ddlnition of a 1, wc h<~.ve 1Tb.8(.1~) = a~.s(x). Tbcrc ;tre two possibilîties: 

• if x E var(S2). t.lwu by the ddinition of 0"1 , we have o-•.s(x) o:: O'~ .. ~(x), 

This leads to o-• . .s(x) = O"j' .. s(x), for i= 1,2 .. 

Second, whcn x f/:. vm·(S2), wc ;\.~!!.in !Hwe 0"
0.s(x).::: IT~.-~(:1:). 

Hence, for a.ny variabic :r ~ va1·(St[IS2 ), for ;l.Tly r, br.gin(O") ~..; r $ oa/(0'), we obtaîn 

o-(r) .. ~(x) = 0'~.s(x), for 1 '-" l, 2.. 

Thus a E M(St!IS1)-

Similarly, if {a,begin(a)) f= 'fl'l (\ (<p1 Cth), we can al5o prove that ff E M(SJ!IS~)

Therefore >,/J is in deed pr<~cise fot· S'1 1152 • 
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Appendix D 

Proofs of Lemmas in Chapter 3 

Lemma 3.5.1 and lemma 3.5.2 can be proved similarly as in Appendix A for lemma 

2.6.1 and lemma 2.6.2, respectively. Notice that adding a buffer b does not influence the 

proofs. 

Proof of Lemma 3.5.3 

For any expression qexp of type QU E, any cset Ç CH AN, and any buffers b1 and ~~ if 

ich(qexp) Ç csetand for any c E cset, b1(c) = ~(c), we prove that, for any model q and 

any r :2: begin( q), Q( qexp)(q, bt, r) = Q(qexp)(q, b2 , r) by induction on the structure of 

qexp. 

• qexp =. w. Q(w)(q, bh r) w = Q(w)(q, b2 , r). 

• qexp=. init(c). Q(init(c))(q,b1 ,r) b1(c) = ~(c) Q(init(c))(q,~,r). 

Proof of Lemma 3.5.4 

For any expression qexp of type QU E, any model q, any buffer b, any cset Ç CH AN, 

and any r :2: begin( q ), we prove Q(qexp)( q, b, r) = Q(qe:~:p)([O"J~en b, r) by induction on 

the structure of qexp. 

• qexp w. Q(w)(q,b,r) = w = Q(w)([qJ~enb,r). 

• qexp=. init(c). Q(init(c))(a,b,r) = b(c) Q(init(c))([aJ~et>b,r). 

Proof of Lemma 3.5.5 

For any expression qexp of type QU E, any model a, any buffer b, any vset Ç V AR, and 

any r :2: begin(a), we prove Q(qexp)(a,b,r) Q(qexp)(a! vset,b,r) by induction on 

137 
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the structure of qexp. 

• qexpEw. Q(w)(a,b,r) w Q(w)(alvset,b,r). 

• qexp init(c). Q(init(c))(a, b, r) = b(c) = Q(init(c))(a l vset, b, r). 

Proof of Lemma 3.5.6 

For a.ny expression vexp of type V AL, any es et Ç C H AN, and any buffers b1 and ~' 

if ich(vexp) Ç cset and for any c E cset, b1(c) == b2(c), we prove, by induction on 

the structure of vexp, that for any model a and any T ~ begin( a), V( vexp)(a, bt, T) 
V(vexp)(a, ~. r). 

• vexp x. By definition, if r ~ end(a), then V(x)(a,b1 ,r) = a(r).s(x), i.e., 

V(x )(a, bh r) = V(x )(a, b2 , r). If r > end( a), then V(x )(a, bt, r) = ae.s(x ), i.e., 

V(x)(a,b1 ,r) V(x)(u,~,r). Hence V(x)(a,b1,r) = V(x)(a,b2 ,r). 

• vexp = first(x). V(first(x))(a, bl> r) = ab.s(x) V(first(x))(a, b2 , r). 

• vexp E first(qexp). ich(vexp) ich(qexp) and thus ich(qexp) Ç cset. By lemma 

3.5.3, Q(qexp)(u,bt,r) ::= Q(qexp)(a,b2 ,r). Then V(.first(qexp))(u,bhr) 

First( Q(qexp)(u, b1 , r)) ::= First( Q( qexp)( u, b2 , r)) V(first(qexp) )(u, b2 , r). 

• vexp = max(vexpt, vexp2 ). Dy the induction hypothesis, we have, for i 1, 2, 

V( vexp;)(a, b1 , r) = V( vexp;)(u, b2 , r). Th en 

V(max( vexpl! vexp2 ))(u, b1, r) = max(V( vexpt)( u, b1, r ), V( vexp2 )(a, bh r)) 

max(V(vexp1 )(u, b2, r ), V(vexp2 )( a, b2, r )) V(max( vexp1 , vexp2 ))( u,~. r). 

• vexp = vexp1 0 vexPz, where 0 E { +,-,x}. By the induction hypothesis, 

we have, for i= 1, 2, V(vexp;)(u, bl> r) V(vexp;)(u, b2 , r). Thus 

V(vexp1 0 vexp2 )(u, b1 , r) = V( vexp1 )(u, bt, r) 0 V( vexp2 )(u, b1 , r) 

== V(vexpt)(u, bz, r) 0 V(vexpz)(u, bz, r) V(vexp1 0 vexpz)(u, bz, r). 

Proof of Lemma 3.5.7 

For any expression vexp of type V AL, any model u, any buffer b, any cset Ç C H AN, 

a.nd any r ~ begin(u), we prove V(vexp)(a,b,r) V(vexp)([aJI!,nb,r). 

The proof is similar to the proof for lemma 2.6.3 except the following case: 
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• vexp = first(qexp). By lemma 3.5.4, Q(qexp)(a,b,r) = Q(qexp)([aJ~et,b,r). 
Then V(Jirst( qexp) )(a, b, r) = First( Q( qexp)( a, b, r )) = First( Q(qexp)([aJ~et> b, r)) = 
V(Jirst(qexp))([aJ[!et> b, r). 

Proof of Lemma 3.5.8 

For any expression vexp of type V AL, any model a, any buffer b, any vset Ç V AR, and 

any r 2: begin( a), if var(vexp) Ç vset, we prove 

V(vexp)(a,b,r) = V(vexp)(a! vset,b,r). 

This proof is similar to the proof for lemma 2.6.4 except the following case: 

• vexp = first(qexp). By lemma3.5.5, Q(qexp)(a,b,r) = Q(qexp)(a! vset,b,r). 

Then V(Jirst( qexp))( a, b, r) = First( Q( qexp)( a, b, r )) = 
First(Q(qexp)(a! vset,b,r)) = V(Jirst(qexp))(a! vset,b,r). 

Proof of Lemma 3.5.9 

For any expression texp of type TIME, any es et Ç C IJ AN, and any buffers bi and 

b2, if ich(vexp) Ç cset and for any c E cset, bi(c) = b2(c), we prove, by induction on 

the structure of texp, that for any model a and any r 2: begin( a), T(texp)(a, bb r) = 
T(texp)(a, b2, r). 

• texp = T. T(T)(a, bi, r) = r = T(T)(a, b2 , r). 

• texp =start. T(start)(a, bi, r) =begin( a)= T(start)(a, b2, r). 

• texp =term. T(term)(a,b1,r) = end(a) = T(term)(a,b2,r). 

• texp = vexp. By lemma 3.5.6, we have V( vexp)(a, bb r) = V(vexp)(a, b2, r). 

Then T( vexp)( a, bi, r) = V( vexp)( a, bb r) = V( vexp)(a, b2, r) = T( vexp)(a, b2, r). 

• texp = texpi 8 texp2, where 8 E { +,-,x}. By the induction hypothesis, 

we have, for i= 1,2, T(texp;)(a,bi,r) = T(texp;)(a,b2,r). Then, by definition, 

T(texpi 8 texp2)(a, b1 , r) = T(texp1 8 texp2)(a, b2, r). 

Lemma 3.5.10 and lemma 3.5.11 can he proveel similarly as in Appendix A for lemma 

2.6.5 and lemma 2.6.6, respectively. 
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Proof of Lemma 3.5.12 

For any specification tp, any cset Ç CH AN, and any buffers b1 , b2, if ich(tp) Ç csetand 

for any c E cset, b1 ( c) b2 ( c), we prove, by induction on the structure of tp, that for 

any model 0' and any r ;::: begin(O'), {0', bi, r) I= t.p iff (0', bz, r) I= tp. 

• 'P qexpi = qexp2. (u, bt, r) I= qexpi = qexpz iff Q( qexp1 )(u, b1, r) = 
Q(qexpi)(O', b11 r) iff, by lemma 3.5.3, Q( qexp1)(u, b2 , T) Q( qexp2)(0', bz, r) iff 

{u, bz, r) I= qexp1 = qexpz. 

• 'P texp1 = texPz. {u,bt,r) I= texp1 = teXPz iffT(texpi)(u,bt,r) = 
T(texP2)(u,bt,r) iff, by lemma3.5.9, T(texpt)(u,b2,T) = T(texp2)(u,bz,T) iff 

{u, b2 , r) I= texp1 = texJJ2. 

• 'P = texp1 < texp2 • Similar to the proof for 'P = texp1 texJJ2. 

• 'P send(c,vexp). ich(tp) ich(vexp) and thus ich(vexp) Ç cset. Hence 

(u,bt,r) I= send(c,vexp) iff r::;: end(u) and (c, V(vexp)(u,b1,T)) E O'(r).S iff, by 

lemma 3.5.6, r::;: end( u) and V(vexp)(u, bz, r)) E u(T).S iff 

(0', b2 , r) I= send(c, vexp). 

• 'P = send(c). (u, b1 , r) I= send(c) iff T::;: end( u) and there exists a {JE V AL such 

that (c,{J) E u(r).S iff (O',b2,r) I= send(c). 

• 'P = receive( c, vexp ). ich( 'P) { c} U ich( vexp) and thus i eh( vexp) Ç es et. Hence 

(O',b1,r) I= receive(c,vexp) iff r::;: end(u) and (c, V(vexp)(u,bllr)) E u(r).R iff, 

by lemma 3.5.6, r ::;: end( a) and (c, V( vexp)(u, b2, r)) E u( r ).R iff 

(a, bz, r) I= receive(c, vexp). 

• 'P = receive(c). (a,b1or) I= 1'eceive(c) iff r::;: end(a) and there exists a fJ E VAL 

such that ( c, iJ) E u( r ).R iff (a, b2 , r) I= receive( c). 

• 'P ='PI V C/)2 • For i= 1, 2, ich('Pi) Ç (ich(tpi) U ich(tp2 )) ich(tp) Ç cset. Hence 

(a, bl! r) I= 'PI V tp2 iff (a, b1 , T) I= tp1 or (a, b1, r) I= 'Pz iff, by the induction 

hypothesis, (u, b2 , r) I= 'PI or (a, bz, i) I= tpz iff (a, b2 , r) I= 'P1 V 'P2· 

• 'P = -.tp1 and tp tp1 U tp2• Simila.r to the proof for if! = if!J V 'P2· 

• 'P = C/)1 C tp2 . For i=.:: 1, 2, ich(C{);) Ç ich(tp) Ç c.set. Hence (a, b1o r) I= 'Pt C 'P2 iff 

- either (a, bh r) I= tp1 a.nd end(a) oo itr, by the indudion hypothesis, 

(a, bz, r) I= tp1 and end( a) oo iff (a, b2, T} I= 'P1 C 'P2, 
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- or there exist models u1 and a2 such that u = a 1a 2, r ::; end(ai) < oo, 

(aJ,bbr) I= 'P11 and (u2,Buj(bt,a!),begin(a2)) I= 'P2 iff, since for any c E 

cset, b1(c) = bz(c) and thus Buf(b11 al}(c) Buf(bz,a1 )(c), by the induction 

hypothesis, there exist models a1 and a2 such that a = a1a2, (ah b2, r) I= 'Ph 

and (az, Buf(b2, a1), begin(u2)) I= 'P2 iff (a, b2, r) I= 'Pt C 'P2· 

• 'P = 'Pt C* 'P2· Similar to the proof for 'P = 'Pt C 'P2. 

Proof of Lemma 3.5.13 

For any es et Ç CHAN and any specification <p, if i eh( 'P) Ç cset, we prove, by induction 

on the structure of 'P· that for any model a, any buffer b, and any r 2::: begin(a), 

{a, b, r) I= <p iff ([aJ:..o b, r) I= 'P· 

• 'P = qexp1 = qexp2. (a,b,r) I= qexp1 = qexp2 iffQ(qexpt)(a,b,r) Q(qexp2)(a,b,r) 

iff, by lemma3.5.4, Q(qexpt)([aJ~et>b,r) Q(qexp2)([a]~.1 ,b,r) iff 
([aJ:..o b, r) I= qexp1 = qexp2. 

• 'P = texp1 = texp2. (a, b, r) I= texp1 texp2 iff T( texr,1 )(a, b, r) = T(texP2)(a, b, r) 

iff, by lemma3.5.10, T(texpt)([aJ:a.1,b,r) = T(texp2 )([a]t!.0 b,r) iff 

([aJ~et> b, r) I= texpt = texp2. 

• 'P = texp1 < texJl2. Similar to the proof for 'P := texp1 = texJ~. 

• r.p:::: send(c, vexp). (a, b, r) I= send(c, vexp) iff r ::; end( a) and 

( c, V( vexp)(a, b, r)) E u( r).S iff, by definition and lemma 3.5. 7, r $ end([aJ~et) 

and (c, V( vexp)([aJ:!.11 b, r)) E [uJ:a.b ).S iff ([aJt!.o b, r) f= send(c, vexp). 

• <p := send(c). (a, b, r) f= send(c) iff r $end( a) and there exists a tJ E V AL such 

that ( c, 19) E a( r ).S iff, by definition, r ::; end([aJ:!.tl and there exists a tJ E V AL 

such that (c,t?) E [aJ:..1(r).S iff ([uJ:aet>b,r) f= send(c). 

• r.p receive(c, vexp). ich('P) = {c} U ich(vexp) and thus c E cset. Hence 

(a,b,r) f= receive(c,vexp) iff T ::; end(a) and (c, V(vexp)(a,b,r)) E a(r).R iff, 

by definition and lemma 3.5.7, r ::; enll([a]t!.1) and (c, V(l•exp)([aJt!.nb,r)) E 

[aJ:..1(r).R iff ([uJ:.et>b,r) f= receive(c,ve.1:p). 

• 'P := receive(c). ich('P) = {c} and thus c E cset. Ifcnee (a,b,r) \= receive(c) iff 

T ::::; end( u) and there exists a iJ E V AL such that ( c, t9) E a( T ).R iff, by definition, 

r::; end([aJ:a.1 ) and there exists a t9 E V AL such that (c, !?) E [u]~.1 (r).R iff 
([aJ:..P b, r} I= receive( c). 
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• !(.1 := !(.11 V !(.12• For i 1, 2, ich(lf!i) Ç (ich(cpt) U ich(cp2)) = ich(cp) Ç cset. Hence 

(a, b, r) I= !(.lt V!(.l2 iff (u, b, r) I= lf't or (u, b, r) I= lf'2 iff, by the in duetion hypothesis, 

{[a]~et> b, r} I= !(.11 or ((uJ:..P b, r} I= 'P2 iff ([uJ:.et> b, r) f= 'PI V 'P2· 

• !(.1 = -.!(.11 and !(.1 = lf't U !(.12• Similar to the proof for cp 'PI V cp2• 

• !(.1 !(.11 C !(.12• Fori=1,2,ich(lf'i)Çich(r)Çcset. Hence(a,b,r} f=r.p1 C r.p2iff 

either (a,b,r) I= !(.11 and end(a) = oo iff, by the induction hypothesis, 

([aJ:..1 , b, r) I= tp1 and end([aJ:..1) = oo iff ([aJ:.et> b, r} f= rt C 'P2, 

or there exist models a1 and a 2 such that a a 1a 2 , r $ end(ai) < oo, 

(at, b, r) I= cp1 , and (az, Buf(b, at), begin( a 2 )) f= VJz iff, by the induction hy

pothesis, there exist models faJJ:..t and [a2J:..t such that [aJ:..t = [a1J:..1 [az]~1 , 

([at]:.." b, r) f= 'Ph and (hJ:.et> Buf(b, al), begin(az)) I= cpz iff, since 

ich(cp2 ) Ç csetand for any c E cset, Buf(b, ai)(c) = Buf(b, [a1J:..1)(c), by 

lemma. 3.5.12, there exist models (a1J:..t and [a2J:.et such that 

[aJ:.et = [at]~et!a2]~.o {[atJ:.et> b, r) I= VJI, and 

([u2J:..1, Buf(b, [at]~.1 ), begin(hJ:..1)} f= !(.12 iff ([uJ:..1, b, r} I= t{}t C 'P2· 

• VJ =: lf't C* r.p2 • Similar to the proof for cp =: cp1 C rz· 

Proof of Lemma 3.5.14 

For any vset Ç VAR and any specification cp, if var(cp) Ç vset, we prove, by induction 

on tp, tha.t for any model a, any buffer b, and any r ?:: begin( a), (a, b, r) I= tp iff 

(a ! vset, b, r} I= tp. 

• tp qexp1 qexp2 • (a,b,r}f=qexpi qexp2 iffQ(qexp1 )(a,b,r)=Q(qexJJ2)(a,b,r) 

iff, by lemma 3.5.5, Q(qexp1 )(a! vsef, b, r) = Q(qexPz)(a! vset, b, r) iff 

(a ! vset, b, r) I= qexPt = qexpz. 

• tp texpi = texp2• For i = 1, 2, var(texp;) Ç vm·( cp) Ç V8et. Hence 

(a,b,r} I= texp1 = teXPz iff T(texp!)(u,b,r) = T(texp2 )(u,b,r) iff, by lemma 

3.5.11, 

T(texp1 )(a ! vset, b, r) = T( texp2 )( u! vset, b, r) iff 
(u ! vset, b, r) f= texp1 = texp2. 

• tp = send(c,t1exp). var(cp) = var(vexp) and tltus var·(vcxp) Ç vset. Hence 

(a, b, r) I= send( c, vcxp) iff r ::; end( a) and ( c, V( vexp)( a, b, r)) E u( r ).S iff, 
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by definition and lemma 3.5.8, r::; end( a! vset) and 

(c, V(vexp)(a l vset, b, r)) E (a! vset)(r).S iff (a! vset, b, r} I= send(c, vexp). 

• r.p send(c). (a, b, r) I= send(c) iff r :::; end( a) and there exists a iJ E V AL 

such that (c,iJ) E a(r).S iff, by definition, r::; end(a! vset) and there exists a 

iJ E V AL such that (c, iJ) E (a! vset)(r).S iff (a! vset, b, r) F send(c). 

• r.p = receive(c,vexp). var(r.p) == var(vexp) and thus var(vexp) Ç vset. Hence 

(a, b, r) I= receivc(c, vexp) iff r::; end( a) and (c,V(vexp)(a, b, r)) E a(r).R iff, 
by definition and lemma 3.5.7, r :::; end( a! vset) and 

(c, V(vexp)(a! vset,b,r)) E (a! vset)(r).R iff (a! vsct,b,r) I= receive(c,vexp). 

• r.p = receivc( c). (a, b, r) I= receivc( c) iff T ::; end( a) and there exists a iJ E V AL 

such that (c, iJ) E a(r).R iff, by definition, r ::; end( a! vset) and there exists a 

{) E V AL such that (c, iJ) E (a! vsct)(r).R iff (a! vsct, b, r) I= receive(c). 

• <p = r.p1 V r.p2 • For i== I, 2, var(r.p;) Ç (var(r.p1 ) U var(r.p2 )) == var(r.p) Ç vset. Hence 

(a, b, r) F r.p1 V <pz iff (a, b, r) F r.p1 or (a, b, r) F <pz iff, by the induction hypothesis, 

(a ! vset, b, r) I= r.p1 or (a ! vset, b, r) I= r.p2 iff (a ! vset, b, r) I= r.p1 V r.p2 • 

• <p = -.r.p1 and <p = r.p1 U r.p2 • Similar to the proof for <p = 'Pt V r.p2. 

• r.p r.p 1 C r.p2 • For i= 1,2, var(r.p;) Ç var(r.p) Ç vset. Hencc (u,b,r) F r.p1 C r.p2 iff 

- either (a, b, r) F r.p 1 and end( a)= oo iff, by the induction hypothesis, 

(a ! vset, b, r) I= r.p1 and end( a ! vset) oo iff {a! vsct, b, r) F r.p1 C <pz, 

- or there exist models a 1 and u2 such that a = u1u2 , r :::; end(ut) < oo, 

(a1 ,b,r) I= 'Pll and (az,Buf(b,at),bcgin(az)) F r.p2 iff, by the induction 

hypothesis, there exist models a 1 ! t.Jset and u2 ! vset such that 

u! vset = (u1 ! vset)(a2 l vset), (u1 ! vset, b, r) I= 'Pt. and 

(a2 ! vset, Buf(b, at), begin( a2 )) F r.p2 iff, by definition, 

Buf(b, at) = Buf(b, a1 ! vset), there exist models a1 ! vset and u2 ! vset 

such that a! vset = (a1 ! vset)(a2 ! vset), (a1 ! vset, b, r) I= 'Pb and 

(a2 ! vset, Buf(b, a1 l vset), begin(a2l vset)) I= 'P2 iff 

(u l vset, b, r) F 'Pt C 'P2· 

• r.p = r.p 1 C* r.p2. Similar to the proof for <p ~ 'PI C 'P2· 

Lemma 3.5.15, lemma 3.5.16, lemma 3.5.17, and lemma 3.5.18 can be proved similarly 

as in Appendix A for lemma 2.6.9, lemma 2.6.10, lemma 2.6.11, and lemma 2.6.12, 

respectively. 
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Appendix E 

Soundness of the Proof System 

Chapter 3 

• In 

To prove the soundne.'ls of a proof system, we must show that every axiom in the proof 

system is indeed valid and every inference rule preserves validity. 

To prove that S sat <p for some S and r.p, we have to show tha.t, for any buffer b and 

any model u E M(S)(b), (u,b,begin(u)) I= <p. 

Here we only give the proofs for receiving invariance, send, rcceive, sequentia! oom

postion, and parallel composition. The others ca.n he proved sound silimarly as in 

Appendix B. 

Receiving luvarianee 

Consider any process S and any channel c E es et withes et Ç C H AN and csetnich(S) = 
!11. We prove that the receiving invariance axiom 3.4.2 is valid. 

For any buffer b, any erE M(S)(b), by the theorem 3.2.1, we obatin ich(u) Ç ich(S) 

and then cset n ich(cr) = 1<1. For any c E cset, any {} E V AL, and any r, begin(u) :5 
r :5 end(u), by definition, (c,{}) 1. cr(r).R. Thus wc obtain (cr,b,r} I= ...,receive(c). For 

any r' > end(u), by definition again, we have (a,b,r') I= ..,receive(c}. Hence for any 

r 2': begin( a), we have {u, b, r) I= ...,receive(c), i.e., (a, b, begin( a)} I= D ..,receive(c). 

From c E cset, we have (a,b,begin(a)) I= AcEcsetO...,receive(c), i.e., (a,b,begin(a)) I= 
0 AcEcset ...,receive( c). Thus we obta.in (u, b, begin( u)) I= 0 norecv( es et) and then a.xiom 

3.4.2 is valid. 

Send 

We prove tha.t the send axiom 3.4.3 is vaJid. 

145 
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For any bufferband any a E M(c!!e)(b), we have end( a) = begin(a)+Kc, for any a'-: a, 

Idle(a'), Nomsg(a',{c}), a•.s = ab.s, a•.R 0, and ([a]fc})".S = {(c,t'(e)(ab.s))}. 

By definition, we obtain {a, b, begin( a)) I= term = start+ Kc. Furthermore, for any 

r, begin(a) $ T < end(a), any {} E VAL, we have (c,t9) f/-_ a(r).S, i.e., (a,b,r} I= 
...,send(c). By lemma 3.5.1, we also obtain (a,b,end(a)) I= send(c,e). Thus we have 

(a, b, begin( a)) I= ...,send(c) U (T =term= start+ I<cAsend(c, e)) and then the axiom 

3.4.3 is valid .. 

Receive 

We prove tha.t the receive axiom 3.4.4 is valid. 

For any buffer b and any a E M(c??x)(b), there exist models a 1 and a2 such that 

a u1u2, a 1 E W Read(c??x)(b), and 172 E Read(c??x)(Buf(b,a1 )). F'rom a 1 E 

WRead(c??x)(b), we obtain ldle(a1) and thus (cr17 b,begin(a1 )) I= D[x first(x) A 

...,receive(c)]. We also have Buf(b,crD(c) = (), for any er~ -: !71 • That is, for any 

r, begin(cr1 ) $ T < end(cr1 ), and any {} E V AL, b(c) = (} and (c, t9) f/. a 1(r).S. 

Thus we have (cr17 b, r) I= init( c) = () A -.send( c). If end( at) = oo, then we ob

tain (ut,b,begin(at)) I= D[init(c) ()A -.send(c)J. If end(cr1 ) < oo, by these

mantics, we have b(c) # () or (c,t9) E O"i.S, forsome {} E VAL. Thus we have 

(a1 , b, end(cr1 )) I= T == termA(init(c) # ()V send( c) ). Hence we have (u17 b, begin(cr1 )) I= 
[init(c) == ()A -.send(c)J U [T = term A (init(c) # (}V send(c))]. Thus we ob

ta.in {cr1 , b, begin(u1)) I= Await[init( c) f: {) V send( c)] and thus (a17 b, begin( cri)} I= 
W Recv(c??x). 

Let b' = Buf(b,at). From cr2 E Read(c??x)(Buf(b,ut)), i.e., a 2 E Read(c??x)(b'), we 

obtain end(cr2 ) begin(cr2 ) +Kc, for any u;-: a2 , ldle(a;), cr~.R {(c, First(b'(c)))}, 

and a~.s (u~.s: x~ First(b'(c))). Thus, for any r, begin(a2 ) :Sr< end(a2 ), we have 

cr2(r).s a;.s and a2(r).R = y:j. We a.lso have a2.s(x) = First(b'(c)). Then we obta.in 

(a2,b1,end(a2)) I= receive(c,x)l\x = first(init(c)). Hence we have (a2 ,b',begin(az)) I= 
[x first(x) A -.receive(c)J U [T term star·t +Kc A receive(c,x) A x 

first(init(c))J, i.e., {a2 , Buf(b, ai), begin(cr2 )) I= Recv( c??x ). 

Since a a 1u2, by the definition of the C operator, we obtain 

(cr,b,begin(a)) I= W Recv(c??x) C Recv(c??x). Hence the receive a.xiom 3.4.4 is valid. 

Sequentia! Composition 

We prove tha.t the sequentia] composition rule 3.4.1 preserves va.lidity. 
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Assume that S1 sat r.p1 and S2 sat r.p2 are valid. Let 'I/J1 0 nosend(och(S2 ) \ och(S1 )) 

and 'I/J2 0 nosend(och(St) \ och(S2)). We show that S1; S2 sat (r.p1 A '1/JI) C (r.p2 A 'I/J2 ) 

is also valid. 

For any buffer b, consider any a E M(S1 ; S2 )(b). Then there exist u1 and u2 such 

that u u1a2, a1 E M(St)(b), u2 E M(S2)(Buj(b,ut)), and Agree(u1 ,a2 ,S1 ,S2). By 

definition, Agree(at, u2 , St, Sz) = N omsg(ui> och(S2 ) \ och(S1)) A N omsg( u2, och(S1 ) \ 

och(S2 )). From Nomsg(at,och(S2 ) \ och(SI)), we have, for any r, begin(o-t) ;S; r 5 
end(u1 ), any c E och(S2 ) \och( St), and any {) E V AL, (c, {J) tJ. D"t(r).S. Thus we obtain 

(ut. b, r) I= ...,send( c). For any r' > end( ui), by definition, we also have (a-t, b, r') I= 
...,send(c). Then weobtain (u1 ,b,begin(ut)) I= o...,send(c). SincecE och(S2 )\och(S1 ), 

we have (o-b b, begin( ut)} I= l\ceoch(S2 )\och(S,) 0 ..,send(c), i.e., 

(a-t. b, begin( at)} I= 0 l\ceoch(S2 )\och(S!) ...,send( c). Hence we obtain 

(ui> b, begin(u1 )) I= 0 nosend(och(S2) \och( St)) and then (o-11 b, begin( ut)) I= 1/J1 • From 

S1 sat <.pt, we obtain (ah b, begin( ut)) I= r.p1 . Thus we have (ut. b, begin( ut)) I= r.p1 1\ 1/J1 • 

Simila.rly, we can derive (a2 , Buf(b, ut), begin(o-2 )) I= r.p2 A 'I/J2• By the definition of the 

C operator, we have (er1o-2,b,begin(at)) I= (r.p1 /\'I/J1) C (r.p2/\'I/J2), i.e., (er,b,begin(o-)} I= 
(r.ptA 1/;1 ) C (r.p2/\ 'I/J2). Hence the rule 3.4.1 preserves validity. 

Parallel Composition 

Assume S; sat <.p;, /Buf 1\cech(Sl)nch(Sz) init(c) = (}, 1/J; 0 [inv(var(S;)) 1\ 

norecv(ich(S;)) 1\ nosend(och(S;))], ich(r.p;) Ç ich(S;), and var(r.p;) Ç var(S;), for i 

1,2. We show the validity of SdiSz sat I Bttf 1\ [('Pt 1\ (r.p2 C ~12)) V (r.p2 A ('Pt C '1/Jt))]. 

For any buffer b, consider any erE M(S1 IIS2 )(b). Then ich(er) Ç ich(St) U ich(S2), and 

for iE {1, 2}, there exist a; E M(S;)(b) such that. begin( er)= begin( a-t)= begin(o-2 ), 

end( a-)= max(end(u1 ), end(u2 )), for any c E eh( SI)() ch(S2 ), b(c) = (). By definition, 

we have (er,b,begin(er)) I= /Buf. Suppose end(er1 ) ~ end(er2 ). Then end(er) = end(o-t). 

We prove (er, b, begin( a-)} I= 'PI 1\ (r.p2 C 1/J2). 

• First we prove (a,b,begin(a)) I= r.p 1 • From the semantics, we have that, for any r, 

begin(ert) ;S; r ;S; end(at), [er l var(S1 )]~h(SJ)(r).S er(r).S = o-1(r).S, 

[er l var(St)]~h(SJ)(r).R = [er]~h(S,)(r).R a1(r).R, [a l var(SI)]~h(S,)(r).s = 
(a- l var(St))(r).s = a 1(r).s. Since begin([o- l var(S1 )]~h(SJ)) begin(u) = 
begin(erl), end([er l var(S1 )]~h(SI)) =end( er) end( er!), we obtain 

[a-! var(St)]~h(St) 0"1. Since a1 E M(SJ)(b) and S1 sat 'PI> we have 

([u! var(SJ)J~h(St)>b,begin(er)) I= r.p1 • Since ich(r.pl) Ç ich(St) and var(r.pt) Ç 

var(S1),lemma3.5.13 and lemma3.5.14lcad to (er,b,begin(a)) I= 1p1• 

• Next we prove (a, b, begin( er)) I= <.pz C 1/Jz. 
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- lf end(crz) oo, since end( er)= end( er!) 2:: end(er2 ), we have end(er2 ) =end( er) 

oo. Similarly, we can derive (er, b, begin( er)) f= rp2. By the definîtion of the C 

operator, we obtain (er, b, begin(u)) f= r 2 C 1/J2 ; 

- If end(u2 ) < oo, from S2 sat rp2 and er2 E M(S2 )(b), we obtain (er2 , b, begin(u2 )) f= 
rp2 • Wedefine a model u3 such that begin(u3 ) = end(er2 ), end(u3 ) end(er), 

for any r, begin(er3) < r:::; end(cr3), u3 (r).s = u~.s, er3 (r).R = [cr]~h(s,)(r).R, 

cr3(r).S = cr1(r).S, <r~.s = cr~.s, cr;.R = ([cr]~h(s2 y.R, and for any c E 

och(S2), any tJ E V AL, ( c, tJ) ~ cr~.S. By the semantics, [cr]~h(s,)( r ).R = (ij 
and thus er3 (r).R =(ij. Since end(cr2 ) :::; end( cri), by Cons(er1 , er2 , St, S2 ), for 

any r', end(u2 ) < r':::; end( ui), any c E och(S2 ), and any tJ E V AL, (c, fJ) 1;. 
cr1 (r').S. That is, for any r, begin(cr3 ) < r:::; end(er3 ), (c, tJ) 1;. cr3 (r).S. Then 

we obtain 

(cr3, Buf(b, erz), r) f= inv( var(Sz)) A norecv(ich(Sz)) A nosend( och(Sz)). 

For any r' > end(cr3), we also have 

(cr3, Buf(b, cr2), r') f= inv( var(S2 )) A norecv( ich(S2)) A nosend(och(S2 ) ). 

Thus we obtain 

(u3,Buj(b,a2 ),begin(cr3)) f= D[inv(var(S2 ))Anorecv(ich(S2 )) A 

nosend(och(S2 ))], i.e., (a3 ,Buf(b,az),begin(cr3)) f= 'lj;2 • By the C operator, 

we obtain (a2a3, b, begin(az)) f= 'P2 C 1/Jz. 

Now we prove er2cr3 = [a! var(Sz)]~h(S2 ). Let Ö' = [cr! var(Sz)]~h(S,)· 
By definition, 

ëi'(r).s (al var(S
2
))(r).s = { crz(r).s begin(az) $ T $ end(a2) 

cr3 (r).s end(a2) < r $ end(cr) 

ëi'(r).R = [er]~h s (r).R = { a2(r).R begin(cr2 ):::; r $ end(cr2) 
1 >) a3(r).R end(a2) < r $ end(cr) 

ü(r).S cr(r).S = { az(r).S begin(a2):::; r:::; end(u2 ) 

a1(r).S = er3(r).S end(a2 ) < T $ end(a) 

Hence Ö' a 2cr3 and then we have (a, b, begin(cr)) f= rp2 C 'lj;2 • Since 

ich(rpz) U ich('lj;z) Ç ich(S2 ) and var('Pz) U var('lj;z) Ç var(Sz), by lemma 

3.5.13 and lemma3.5.14, we obtain (a,b,begin(a)) f= r 2 C '1/Jz. 

Hence we have proved (a,b,begin(a)) f= rp1 A ('P2 C 1/Jz). 

Similarly, for end(a1 ) < end(a2 ), we can show (cr,b,bcgin(a)) rp2 A ('P1 C 1/JJ). 
Thus the parallel composition rule 3.4 .. 5 preserves va.lidity. 



Appendix F 

Precise Specifications for 

Statements in Chapter 3 

The preciseness theorem 3.5.2 can he proved similarly as in Appendix C for the theorem 

2.6.2. Here we only give a precise specification for each statement from the programming 

language insection 3.1. 

The precise specifications for skip, assignment, and delay statements are the same 

as those given in Appendix C, respectively. 

Send 

A precise specification for statement c!!e is 

...,send(c) U (T =term= start+ Kc 1\ send(c,e)). 

To prove that this is a precise specification for c!!e, we need to use the general 

assumption on the S-fields of a model which is given in section 3.2.2. 

Receive 

A precise specification for statement c??x is W Recv(c??x) C Recv(c??x) with 

WRecv(c??x) = 0 [x= first(x) 1\ ....,receive(c)J 1\ Await[init(c) =J ()V send(c)J 

and 

Recv(c??x) =[x= first(x) 1\ ...,receive(c)J U 

[T =term start+ Kc 1\ receive(c, x) 1\ x= first(init(c))]. 
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Sequentia! Composition 

Assume that !f'; is precise for S,, for i = 1, 2. A precise specification for S1; S2 is 

[!f't A 0 (inv(wvar(S1 ; S2) \ wvar(St)) A norecv(ich(S2 ) \ ich(S1 )) A 

nosend(och(S2 ) \ och(St)))] C 

[!f'2 A 0 (inv(wvar(S1 ; S2) \ wvar(S2 )) A norecv(ich(St) \ ich(S2 )) A 

nosend( och( S1 ) \ och( S2))) ]. 

Guarded Command with Purely Boolean Guards 

Assume that ({'; is precise forS;, for i= 1, ... , n . 

. A precise specification for Gt = [ 0 :;,1g; -> S;] is 

[Quiet(Gt) U (T start+ K9 A Quiet(GI))]A [--,9-> Eval]A 

[g -> (Eval C Vi""1 g; A({'; A 0 (inv( wvar( Gt) \ wva~·(S;)) A norecv(ich( G1 ) \ ich(S;)) A 

no.~end(och(Gt) \ och(S;))))]. 

Guarded Command with IQ-Guards 

A ss urne that ({'o is precise for S0 and ({'; is pree i se for ct?? x;; S;, for i = 1, ... , n. 

A precise specification for G2 [ Oi=1g;; c; ??x; -> S; Ogo; delay e -> So] is 

[Quiet(G2) U (T =start+ /(9 A Qttiet(G2))]A hi-> Eval] A 

[g-> (Eval C (N FinComm V NTimeOut V N AnyComm.))] 

where 

NFinComm (g0 /\term<start+max(O,e)AWait) C NComm 

NComm := y:;,1 g; A ~.p; A o (inv(wvar(G2 ) \ wvar(c;??x;; S;)) A 

norecv(ich(G2 ) \ ich(c;??x;; S;)) A nosend(och(G2 ) \ och(c;??x;; S;))) 

NTimeOut := [go A 0 (Ac,Eë init(c,) = () A --,send( c;)) A te1·m = start+ max(O, e) A 

0Quiet(G2 )] C 

[!f'o A 0 (inv(wvar( G2 ) \ wvar(S0 )) A norecv( ich( G2 ) \ ich(So)) A 

nosend(och(G2 ) \ och(So)))] 

NAnyComm (•g0 A Wait) C NComm 

Iteration 

Assume tha.t 1.p is precise for G. A precise specification for *G is (!J A <.p) C* ( --,9 A <.p ). 



Parallel Composition 

Assume that <.p; is precise for S;, for i = 1, 2. A precise specification for S1 IIS2 is 

!Buf A [('f>t A ('f>2 C tP2)) V ('f>2 A ('f>l C tj>t))J, 
where 

IBuf = Àcech(S,Jnch(S2 ) init(c) = (), 
t/>; = D [inv(var(S;)) A norecv(ich(S;)) A nosend(och(S;))], for i= l, 2. 
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Samenvatting 

In dit proefschrift onderzoeken we formalismen waarin de correctheid van reai-time en 

fout-tolerante systemen bewezen kan worden. Reai-time systemen worden gekarakte

riseerd door quantitatieve tijdseisen betreffende het optreden van gebeurtenissen. Ty

pische voorbeelden van zulke systemen zijn te vinden in nucleaire energie centrales, 

industrieële procesbesturing en vliegtuig systemen. De correctheid van deze reai-time 

systemen hangt niet alleen af van hun functionele gedrag maar ook van hun timing. Ge

zien de complexiteit van veel reai-time systemen is het niet eenvoudig om te garanderen 

dat aan hun functionele en timing eisen is voldaan. Nog moeilijker is het om correct

heid te garanderen als componenten kunnen falen. In reai-time systemen worden vaak 

fout-tolerante technieken toegepast om een zekere service te kunnen blijven leveren bij 

het optreden van fouten. Technieken om fout-tolerantie te bereiken zijn in het algemeen 

gebaseerd op het efficiënt benutten van redundantie. De introductie van redundantie 

zal echter het tijdsgedrag van een systeem beïnvloeden. Dit wijst op een sterke relatie 

tussen reai-time en fout-tolerantie. 

Om het ontwerpen van een reai-time en fout-tolerant systeem te formaliseren is een 

specificatietaal een eerste vereiste. Zo'n taal moet in staat zijn de eisen van een sys

teem precies te beschrijven. Een formele beschrijving van de eisen wordt een specifi

catie genoemd. Een mogelijke aanpak voor het verifiëren dat een programma aan een 

specificatie voldoet is het ontwerpen van een bewijssysteem bestaande uit axioma's en 

afleidingsregels. In dit proefschrift ligt de nadruk op het ontwerpen van bewijssystemen 

die compositioneel zijn. Een compositioneel bewijssysteem stelt ons in staat een systeem 

te verifiëren door alleen de specificaties van de componenten te gebruiken, zonder kennis 

van hun interne structuur, en zo te abstraheren van hun implementatie. 

Dit proefschrift bestaat ruwweg uit twee delen die hieronder beschreven worden. 

Reai-Time Formalismen 

Om een compositioneel bewijssysteem te ontwikkelen beschouwen we twee versies van 

een reai-time programmeertaal waarin parallelle processen communiceren door middel 

van het sturen van boodschappen. In de eerste versie is communicatie synchroon, dat wil 
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zeggen dat zowel zender als ontvanger wachten met communiceren totdat er een commu

nicatie partner beschikbaar is. In de tweede versie is communicatie asynchroon, hetgeen 

betekent dat de zender zijn boodschap onmiddellijk verstuurt zonder op een partner te 

wachten, terwijl een ontvanger nog steeds moet wachten als er geen boodschap beschik

baar is. Als startpunt voor de ontwikkeling van een compositioneel bewijssysteem geven 

we een compositionele semantiek voor elk van deze twee versies van de programmeertaal. 

De comp~itionele semantiek zal gebruikt worden als basis voor de interpretatie van 

de specificatietaaL In de hoofdstukken 2 en 3 van dit proefschrift is de specificatietaal ge

baseerd op Explicit Clock Temporal Logic (ECTL). ECTL is een uitbreiding van lineaire 

tijd temporele logica met een speciale tijdsvariabele die expliciet refereert aan waarden 

van een globale klok. Overeenkomstig de programmeertaal zijn er van de specificatietaal 

ook twee versies, een synchrone en een asynchrone versie. 

We ontwikkelen een compositioneel bewijssysteem voor elk van de twee versies van 

de programmeertaal en de specificatietaaL Er wordt bewezen da.t beide bewijsmethoden 

gezond zijn met betrekking tot de semantiek (dat wil zeggen, alle in het bewijssysteem 

afleidbare formules zijn geldig) en relatief volledig zijn met betrekking tot een bewijs

systeem voor ECTL (dat wil zeggen, alle geldige formules kunnen in het bewijssysteem 

afgeleid worden, mits alle geldige ECTL formules axioma's van het bewijssysteem zijn). 

De synchrone versie van het formalisme wordt in dit proefschrift toegepast bij het spe

cificeren en verifiëren van een klein deel van een vliegtuig besturingssysteem. 

Real-Time en Fout-Tolerante Toepassing 

Na deze meer theoretische studie, waarbij het formalisme gebaseerd is op ECTL, on

derzoeken we de specificatie en verificatie van realistische toepassingen. Omdat atomie 

broadcast een van de fundamentele concepten is in fout-tolerantie, kiezen we voor de 

bestudering van een atomie broadcast protocol. Dit protocol wordt uitgevoerd in een net

werk van processoren en communicatieverbindingen daartussen, en kan gekarakteriseerd 

worden door drie eigenschappen: terminatie, atomiciteit en ordening. Deze eigenschap

pen kunnen als volgt geformuleerd worden: als een correcte processor een boodschap 

broadcast dan dienen alle correcte processoren deze boodschap te ontvangen binnen een 

bepaalde tijdslimiet (terminatie), als een correcte processor een boodschap ontvangt op 

een bepaald tijdstip dan dienen alle correcte processoren deze boodschap op ongeveer 

het zelfde tijdstip te ontvangen (atomiciteit), en alle correcte processoren dienen bood

schappen in dezelfde volgorde te ontvangen (ordening). De atomie broadcast service 

wordt geïmplementeerd in een netwerk van gedistribueerde processoren door het repli

ceren van een speciaal server proces op elke processor in het netwerk. Parallelle executie 

van de server processen dient te leiden tot deze drie eigenschappen van het protocol. 
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Een processor of een communicatieverbinding is correct als het zich gedraagt zoals 

gespecificeerd. Anders faalt het. Het gekozen protocol is ontworpen om omission fouten 

te tolereren. Als een processor een omission fout vertoont dan kan het geen boodschap

pen versturen naar andere processoren. Als een communicatieverbinding te lijden heeft 

van een omission fout dan kunnen boodschappen die via de link verstuurd worden ver

loren gaan. Boodschappen die door een processor ontvangen worden zijn echter correct 

betreffende timing en inhoud. Elke processor heeft toegang tot een lokale klok. Er wordt 

veronderstelt dat lokale klokken van correcte processoren gesynchroniseerd zijn binnen 

een zekere marge. 

De specificatietaal in de hoofdstukken 2 en 3 is gebaseerd op ECTL waarin de speciale 

tijdsvariabele kan refereren aan waarden van een globale klok. Gezien de complexiteit 

van ECTL formules en het streven om de formele verificatie nauw te laten aansluiten 

bij de intuïtieve correctheidsargumenten, kiezen we in hoofdstuk 4 een andere specifica

tietaal gebaseerd op eerste-orde logica. 

De verificatie van het protocol geschied als volgt. Allereerst worden de eigenschappen 

van het protocol beschreven. Ten tweede worden het onderliggende communicatie me

chanisme, de kloksynchronisatie aanname en de aannames over het. optreden van fouten 

geaxiomatiseerd. Ten derde wordt het server proces gekarakteriseerd door een formele 

specificatie. Ten vierde bewijzen we dat parallelle executie van de server processen tot de 

gewenste protocol eigenschappen leidt. Het protocol wordt compositioneel geverifiëerd 

door gebruik te maken van specificaties waarin de timing Viln componenten uitgedrukt 

wordt met behulp van lokale klok waarden. Dit in tegenstelling tot gebruikelijke reai

time verificatiemethoden, inclusief onze bewijssystemen van de hoofdstukken 2 en 3, 

waarin timing uitgedrukt wordt met behulp van waarden van een globale klok. 

Een natuurlijke voortzetting van dit werk is het implementeren van het server proces 

in een bepaalde programmeertaal en het verifiëren da.t een implementatie inderdaad 

correct is. Dit wordt echter niet in dit proefschrift geda.a.u en behoort tot toekomstig 

werk. 
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Stell~ngen 

behorende bij het proefschrift 

Clocks, Communications, and Correctness 

van 

P. Zhou 



1. Consjder tbe following two verslons of a real-timc programming language in whîch 

parallel processes communicate by message passing «long unldiredion.a.l channels. 

In the firsL \'Crsion, the communication is synchronous, Le,, both sender and re~ 

ceiver have to wait until a communîcation pa.rtner is available. In the second 

version 1 the communlcation is asynchronous, namely, a scn<ler does noL walt for 

a recelver, but a receiver still ha.~ to wait fora message arrivJng if there are no 

messages in the buffer for a specific channeL To obtain a <'Álmpositiona.l seman

tics for the synchronous version of the language 1 tbc model of oomputation should 

record the information Lha.L a process is waiting tosend or Lo receive on a pa.rtic~ 

ular channeL For the asynchronous versîon, however, such waiting informatioii is 

noL needed, but explicit a.ssumplions abouL the environment are contained in the 

model. 

See chapters 2 and 3 of this thesis. 

2. Maximal Parollelisrn [KSR+88] means that each parallel process runs at a distind 

processor. Therefore each process is executed without unnecessary waiting. ~'hen 

applied to tbe two versionsof the programming lnnguage mentioned above1 it bas 

different implications. For t.he synchronous versîon 1 H implles that a. process only 

waits when it tries to execnte a.n input or output statnment but the communicalion 

partner is noL available. 1n Lbc asyitchroitous case) however, it eitforces that a 

process only wa.i.Ls when it tries to receive a message along a channel whi1e the 

buffer for that channel is empty. 

See. cbapters 2 and 3 of this thesis. 

[KSR+ssj R. KoymaM, R.K Shynmasunda.r, W.-P. de Rocvcr, R. Gerth, and 

S. Arun-Kumar. ComposîLîonal scmantics for real~time dlstributed cornputing. 

lnformation and Computation, 79(3):210-256, 1988. 

3. ECTL (this thesis), RTTL ([Ost89j), XCTL (IHLP90j), and TPTL ([Hen91J) are 

reai-time cxtensions of linear temporal logic. A compnrison between lbem can 

he made ;u:cording to tbeir use of the time variahle 1 global variablest unl\·ersal 

quantificat.ioll, a.nd freczt: quantification (wbich bind;; t he valuc of the doek to tbc 

quanlified variahlc): 

t1me var. global 11ar. um'vcr·sal qmm. frcc.::c qtum. 

ECTL yes 110 110 no 

RTTL yes yc,s yes no 

XCTL !/C8 yc.;; 110 110 

TPTL ilfJ ye.« 110 !JUf 



[Ost89j .J. Ostroff. Temporal Logic for Real- Time. Systems. Ad vaneed Software 

Developrnent Series. Research Studi~s Press, 1989. 

[HLP90] E. Hare!, 0. Lichtenstein, and A. Pnueli. Explicit doek ternporallogic. 

In Proceedings Symposium on Logic in Computer Sc.iencc., pages 402-413, 1990. 

[Hen91] T. Hcnzinger. The Tempora./ Spc.cifica.l.ion and Vcrifieation of Reai-Time 

Systems. PhD thesis, Stanford University, I 991. 

4. The atomie braadcast protocol in chaptcr 4 of this thesis is verified compositionally 

by using specifications about the protocol in which timing is expressed by loca.l 

clock values. This is new in rea.l-time specification and verification, sincc until 

now most methods for program verification use only global doek values, see e.g. 

[BHRR91]. 

[BHRR91] J.W. de Bakker, C. Huizing, W.-P. de Roever, and G. R.ozenberg(Eds.). 

Real-Time: Thcory in Practice, REX Workshop Proceedi11gs. LNCS 600, Springer

Verlag, 1991. 

5. Tn Western society, Chinese nan_1es are usually transformcd into English spellings 

consisting of letters. Such a transformation is possible for any Chinese name. On 

the other hand, an English spelling corresponding toa possible Chinese name can 

a.lso be converled into a Chinese name. Th is conversion, hmvever, is nota fundion 

in the mathematica! sense, as many different Chinese n<lmes have the same English 

spelling. 

6. A possible topic for future work is to dcvelop a fault-tolcrant proof system. Such a 

proof system can be formulated similarly to [CH92] where the behavior of a process 

is partitioned into the normal behavior a.nd the fault beha.vior {that describes the 

behavior if a fault occurs). 

[CH92] J. Coenen and J. Hoom<tn. A cornpositionnl s~ruantics for fault-tolerant 

real-timesystems. In fOnn.al Tc.clmiqucs ilr Real- Time mul Fa11il- Tolerant Systc.ms, 

pages 33-51. J. Vytopil (Ed.), LNCS 5ïl, Springer-Verlag, 1992. 

Î. A key point to a compositional semantics is that !.he s~mantics of a component 

should contain all the possible cxecutions of thc component in any environment. 

A dictionru·y1 which givf!S me<tnings to thc words of a la.ngu<lgc, can be considered 

as a scmantics. In reality, most of the dictionaries are nol. compositional, because 

they usually do not list all the meanings of a word in any context. 

8. From the amount of vcrification steps in chaptcrs 2 <tnd ;J of this thesis and espe

cially of the verification of the atomie hroa<lcast protocol in chaptcr 4, it follows 

that the only future for tb is field is in supporting it by mechanica! verification. 



9. Thesemantics of a syntactic construct is not always uniquely defined. For instance, 

Tangram is an ancient Chinese game [Elf76], but it is also a VLSI-programming 

language [Ber92]. Nevertheless, we have to tolerate this phenomenon. 

[Elf76] J. Elfers. Tangram: the Ancient Chinese Shapes Game. Penguin Books, 

1976. 

[Ber92] K. van Berkel. Handshake Circuits: an Intermediary between Communi

cating Processes and VLSI. PhD thesis, Eindhoven University of Technology, the 

Netherlands, 1992. 

10. A highly educated woman around thirty is usually on the horns of a dilemma: to 

pursue her career or to have children. In Western society, these two cannot he 

carried out in parallel: choosing one implies that the other has to he dela.yed. 


