
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A Logical Interface Description Language for Components

F. Arbab, M.M. Bonsangue, F.S. de Boer

Software Engineering (SEN)

SEN-R0020 July 31, 2000

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301650525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R0020
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

A Logical Interface Description Language
for Components

Farhad Arbab and Marcello M. Bonsangue

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

E-mails: farhad@cwi.nl and marcello@cwi.nl

Frank S. de Boer

Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

E-mail: frankb@cs.uu.nl

ABSTRACT
Motivated by our earlier work on the IWIM model and the Manifold language, in this paper, we

attend to some of the basic issues in component-based software. We present a formal model for such

systems, a formal-logic-based component interface description language that conveys the observable

semantics of components, a formal system for deriving the semantics of a composite system out of

the semantics of its constituent components, and the conditions under which this derivation system

is sound and complete. Our main results in this paper are the theorems that formulate the notion

of compositionality and the completeness of the derivation system that supports this property in a

component-based system.

2000 Mathematics Subject Classi�cation: 68N15, 68N99, 68Q10, 68Q55, 68Q60

1998 ACM Computing Classi�cation System: D.1.3, D.1.5, D.2.4 F.1.1, F.3.1 F.3.2

Keywords and Phrases: Components, component interface, dynamic interconnection structure, asyn-

chronous communication, speci�cation, veri�cation, semantics

Note: Work carried out under the project SEN 3.1 \Formal Methods for Coordination Languages"

2

Table of Contents

1 Introduction : 3
1.1 Comparison with Related Work : 4

2 The Observable Behavior of Components : 5
3 Component-Based Systems : 6
4 A Logical Interface Description Language : 7

4.1 Expressing Absence of Deadlocks : 11
5 Composing Component Interfaces : 12

5.1 Completeness and Compositionality : 13
6 Conclusion and Future Work : 15

References 16

1. Introduction 3

1. Introduction

Building applications out of software components is currently a major challenge for Software Engi-
neering. The urgency and importance of this challenge are intensi�ed by the continuous rapid growth
of the supply and demand for software (components) on the internet, and the prospect of mobile
computing. There are close ties between many of the issues investigated in the coordination research
community in the past decade or so, on the one hand, and some of the basic problems in Component
Based Software Engineering, on the other.
Motivated by our earlier work on the IWIM model and the Manifold language, in this paper we

introduce a formal logic-based interface description language for components in component-based sys-
tems. We consider components as black box computational entities that communicate asynchronously
via unbounded FIFO bu�ers. Each such FIFO bu�er is called a channel and has a system-wide unique
identity. The identity of a channel can also be communicated as a value through channels. This allows
dynamic recon�guration of channel connections among the components of a system.
The interface of a component describes its observable behavior abstracting away its implementation

in a particular programming language. The interface of a component contains �ve elements: a name,
a channel signature, and three predicates, namely a blocking invariant, a precondition, and a post-
condition. The name of a component uniquely identi�es the component within a system. The channel
signature of a component is a list of channels representing its initial connections. The blocking invari-
ant is a predicate that speci�es the possible deadlock behavior of the component. The precondition is
a predicate that speci�es the contents of the bu�ers of the initial external channels (i.e., the ones in
the channel signature) of the component. The postcondition is a predicate that speci�es the contents
of the bu�ers of the external channels that exist upon termination.
In order to simplify our presentation in this paper, we restrict ourselves to component-based systems

that consist of a static number of components and channels, although the connections in the system
can change dynamically and in an arbitrary manner. Semantically, we describe the behavior of a
component by a transition system, abstracting away from its internal details and the language of its
implementation. We de�ne the observable behavior of a component in terms of sequences of values, one
for each channel-end that the component has been connected to. Thus, we abstract away the ordering
among the communications on di�erent channels. The observable behavior of a component-based
system is given by the set of �nal global states of successfully terminating computations, provided
that the system is deadlock-free. The existence of a deadlocking computation is considered a fatal
error. A global state records for each channel the contents of its bu�er.
The main contribution of this paper is to show that it is possible to reason about the correctness of

an entire system compositionally in terms of the interface speci�cations of its components, abstracting
away their internal implementation details. Our notion of correctness of a component-based system
is based on the above-mentioned concept of observable behavior. This extends the usual notion of
partial correctness by excluding deadlocks.
Compositionality is a highly desirable, but elusive, property for formal models of component-based

systems. For compositionality to hold, the formal system that relates the semantics of the whole
system to that of its individual components must constitute a proof method that is both sound and
complete. We show that our proof method is generally sound. On the other hand, it is not generally
possible to derive the formal semantics of a whole system as a composition of the local semantics of its
components only. Consequently, completeness of our proof method does not generally hold. However,
we show that it is possible to obtain completeness for component-based systems that satisfy certain
restrictions. Indeed, we show that these restrictions are both necessary and su�cient conditions for
completeness.
To achieve completeness, we impose two restrictions on component-based systems. First, we restrict

to channels that are one-to-one and uni-directional. This means that every channel is an exclusively
point-to-point communication medium between a single producer and a single consumer. The producer
or the consumer of a channel loses its exclusive control of its channel-end by writing its identi�er end
to another channel. Subsequently, a component may dynamically (re)gain the exclusive control of a

4

speci�c end of a channel, simply by reading its identi�er as a value from another channel. This allows
dynamic recon�guration of channel connections among the components in a system.
The second restriction imposes certain constraints on the forms of global non-determinism allowed

in a system. We elaborate on this in Section 5.1.
We proceed as follows. In the next section we de�ne a semantic model for components and de�ne its

observable behavior. In Section 3, we de�ne the semantics of a component-based system. In Section 4,
we introduce a formal language to describe interfaces of components, and formally de�ne its semantics.
Finally, in Section 5, we introduce a sound compositional proof system that allows to derive a system-
wide correctness speci�cation from the interface speci�cations of its components. We end this section
by showing the completeness of the proof system for a certain class of component-based systems.

1.1 Comparison with Related Work
Over the past few years several component infrastructure technologies, such as Corba [16], Ac-
tiveX [14], and JavaBeans [12], have been developed, each of which embodies a di�erent notion of
\software components". Indeed, none of these technologies o�ers a formal de�nition of a component,
and none of the twenty-or-so informal de�nitions for \component" commonly found in the literature
on component-based systems is exact enough to be formalizable. Following [4], we strongly advocate
a formal framework for componentware, to reect the essential concepts in existing component-based
approaches.
Our model for component-based systems is inspired by works in (1) architectural description lan-

guages, like UniCon [18], and (2) coordination languages, like Manifold [3]. Our model supports
heterogeneity and reusability of components and provides modularity of description. Components
communicate asynchronously and anonymously via identi�able channels. Thus, our model di�ers
from models of asynchronously communicating process like CSP [13], parallel object-oriented lan-
guages [6], and actor languages [1], where communication between the processes, objects, or actors, is
established via their identities.
Our notion of the interface of a component includes a description of its observable behavior. This

is in contrast to most current interface description languages [16] which specify only some syntactic
characteristics of a component, and thus reduce the analysis of a component-based system to mere
syntactic consistency checks.
To the best of our knowledge, only [5] takes a similar semantical approach to the de�nition of

a component interface. However, their model does not allow for dynamic recon�guration of the
connections, and gives no formal language for the description of the semantical information in a
component interface. They, as well as many other systems, allow multiple interfaces for a single
component. While our model has no speci�c features to support multi-interface components, it does
not preclude them either: our model simply deals with component interfaces and is oblivious to the
possible associations of (one or more) component interfaces with actual components.
Our semantic approach is based on the one taken in [7] for a language, introduced in [2], for

describing conuent dynamically recon�gurable data-ow networks. In this paper we abstract away
the syntactic representation of components, show the necessity of conuence to obtain a compositional
semantics, and present a proof method for reasoning about the correctness of a component-based
system. Generalization of data-ow networks for describing dynamically recon�gurable or mobile
networks has also been studied in [9] and [11] for a di�erent notion of observables using the model of
stream functions.
Our computational model provides a framework for the study of the semantic basis of assertional

proof methods for communicating and mobile processes. As such, our approach is di�erent than the
various process algebras for mobility, like the �-calculus [15] or the ambient calculus [10].

2. The Observable Behavior of Components

Components are the basic entities of a system. They interact by means of exchanging values via
channels. A channel is an unbounded FIFO bu�er. It represents a reliable and directed ow of

2. The Observable Behavior of Components 5

information from its source to its sink. A component may send a value to a channel only if it is
connected to its source. Similarly, it may receive a value from a channel only if it is connected to its
sink. The identity of the source or the sink of a channel itself can also be communicated via a channel.
As such, the connection topology in a system can dynamically change. Initially, we assume that each
component is connected to a given set of sources and/or sinks of some channels. This de�nes the
initial connection topology of a system.
In this section we introduce a formal model of the observable behavior of a component in terms of

a transition system that abstracts away its internal behavior [8]. The internal behavior itself may be
implemented in di�erent programming languages.
For the rest of this paper, let Chan be a set of channel identities with typical elements c; c0; : : :,

and let Chan be the set fc j c 2 Chang. For a channel c 2 Chan , we denote by c its source-end and
associate the channel identity c with its sink-end. The source-end c and the sink-end c of a channel c
are also called its channel-ends. Furthermore, let Val be a set of values, with typical elements u; v ; : : :,
that includes both c and c for every c 2 Chan . We denote by Act the set of communication actions
of the forms c!v and c?v for each c 2 Chan and v 2 Val , which respectively denote the sending and
the receiving of a value v through a channel c. We assume the read action c?v is destructive: as a
result of this action, a value v is irrevocably removed from the FIFO bu�er of c.

De�nition 2.1 A component C is speci�ed by a transition system hL; i ; r ;�!i, where L is a set of
(control) locations, with typical element l ; i 2 L is an initial location; r is a set of channel-ends
to which the component is initially connected; and �!� L � Act � L is a transition relation that
describes the communication behavior of the component. As usual, we use s

a
�! s 0 to indicate that

(s ; a; s 0) 2�!.

Intuitively, a component may send a value v to the source-end of a channel c by performing a
c!v action, and may receive a value v from the sink-end of a channel c by performing a c?v action.
If in some location, a component is willing to receive a value from the sink of a channel c, then
it should be willing to accept any value from that sink. We call this property `input reactiveness'
formally expressed as the following condition that must be satis�ed by the transition relation of every
component hL; i ; r ;�!i:

8l
c?v
�! l 0 : 8u 2 Val : 9l 00 2 L : l

c?u
�! l 00 :

In other words, we restrict to component-based systems that cannot put selection constraints on the
values they receive. This restriction is introduced for technical convenience only (speci�cally, it allows
a slightly simpler deadlock analysis).
A component can communicate only via channel-ends to which it is actually connected. Initially, a

component C b=hL; i ; r ;�!i is connected only to the channel-ends in its r . Other channel-ends can be
used only after the component receives their identities through other channels. Formally, we require
that, for every computation i

a1�! l1
a2�! : : :

an�! ln of C :

1. if an = c?v then c 2 r or there exists a preceding input aj = d?c, 1 � j < n and d 6= c; and

2. if an = c!v then c 2 r or there exists a preceding input aj = d?c, 1 � j < n.

Note that the source end of a channel may be received through the sink end of the same channel,
whereas its sink end, of course, cannot be received through the channel itself.
Next, we de�ne the observable behavior of a component by mapping each computation to the

sequence of values the component sends or receives through each channel-end. Information about the
deadlock behavior of a component will be given in terms of a so-called ready set [17] consisting of those
channel-ends on which the component is waiting for input. Note that as such, we do not have any
information about the ordering among the communications of a component through di�erent channel-
ends. In practice, this abstraction simpli�es reasoning about the correctness of the entire systems, as

6

the value sent or received by a component at a particular point in time will be independent of the time
other values are sent or received through other channels. However, we will record some information
about when channels are exported.
To record when a channel (end) is exported by a component, we extend the set of values with a

special element 62 Val . Let Val = Val [fg. We de�ne a component state to be a function s that
maps the sink of each channel c 2 Chan to a sequence s(c) 2 Val�

of values received from the channel

c, and the source of each channel c 2 Chan to a sequence s(c) 2 Val�

of values sent to the channel c.

The occurrence of the symbol in a sequence w1 � �w2 � � � � indicates that the channel-end c (or c)
was exported in between the sequences of read (or sent) values w1;w2; : : :.
For each component C b=hL; i ; r ;�!i we formally model its observable behavior by means of a

transition relation �!�! on con�gurations of the form hl ; si, where s denotes a component state as
de�ned above. This relation is de�ned as the least relation which satis�es the following rules:

l
c?v
�! l 0

hl ; si �!�!hl 0; s [s(c) � v=c]i

l
c!v
�! l 0 and v 62 Chan [Chan

hl ; si �!�!hl 0; s [s(c) � v=c]i

l
c!v
�! l 0 and v 2 Chan [Chan

hl ; si �!�!hl 0; s [s(c) � v=c][s(v) � =v]i

Here s [a=x] denotes the function that maps x to a and otherwise acts as s . The e�ect of an input
communication on a state s is that the received value is appended to the sequence s(c) of values
received so far from the channel c. Similarly, the e�ect of an output on a state s is that the sent value
is appended to the sequence s(c) of values sent so far along the channel c. Moreover, if the sent value
is a channel-end, is appended to the sequence associated with that channel-end.
We now formally de�ne the observable behavior of a component.

De�nition 2.2 Let C b=hL; i ; r ;�!i be a component and s be a component state. We denote by �!�!�

the reexive transitive closure of the transition relation �!�!. Moreover, hl ; si 6�!�! indicates that no
further transition is possible from hl ; si, i.e., l is a �nal location. Finally, let D be the set of locations l

from which only input transitions l
c?v
�! l 0 are possible. The observable behavior O(C)(s) of component

C in an initial state s is de�ned as a pair hT ;Ri where:

T = fs 0 j hi ; si �!�!�hl ; s 0i 6�!�!g

R = f(s 0; fc j l
c?v
�! l 0g) j hi ; si �!�!�hl ; s 0i; l 2 Dg :

Thus, the semantics of a component in isolation consists of the set T of all �nal states of successfully
terminating computations, plus the set R of all those reachable states that may give rise to a deadlock,
together with a corresponding ready-set. Given a reachable state which may give rise to a deadlock,
its corresponding ready-set contains all channels on which the component is ready to perform an input
action.

3. Component-Based Systems

A component-based system � consists of a �nite collection of components C1 k � � � k Cn . In order
to specify the dynamics of a system, we introduce the set � of system states, with typical element
�. A system state � is a function that maps each channel sink c and channel source c to a sequence
of indexed values (k ; v), where k 2 f1; : : : ;ng and v 2 Val . The index k indicates that it was the
component Ck that sent or received the value v through the given channel end. We restrict ourselves
to those system states � that are pre�x invariant, i.e., for every channel the sequence of values received
from its source is a pre�x of the sequence of values delivered through its sink:

8c 2 Chan : Val(�(c)) v Val(�(c)) :

4. A Logical Interface Description Language 7

Here, v denotes the pre�x relation among sequences, and, for a sequence w of indexed values
(k1; v1); (k2; v2); � � � (kn ; vn), Val(w) denotes the sequence of values v1; v2; � � � vn obtained from w by
removing the indices and the occurrences of the control symbol , if any.
Observe that, given a system state � and a channel c, the sequence that is the di�erence between

Val(�(c)) and Val(�(c)) is the contents of the bu�er of c in �, denoted as buf (�; c).
Let Ck b=hLk ; ik ; rk ;�!k i, k = 1; : : : ;n, and � 2 �. The observable behavior of a component-based

system � = C1 k � � � k Cn is de�ned in terms of a global transition relation �! on global con�gurations
of the form hl ; �i, where l 2 L1 � � � � � Ln and � denotes a system state as de�ned above. We de�ne
�! as the least transition relation satisfying the following three rules:

lk
c?v
�!k l 0k and buf (�; c) = w � v

h(l1; : : : ; lk ; : : : ; ln); �i �! h(l1; : : : ; l 0k ; : : : ; ln); �[�(c) � (k ; v)=c]]i

lk
c!v
�!k l 0k and v 62 Chan [Chan

h(l1; : : : ; lk ; : : : ; ln); �i �! h(l1; : : : ; l 0k ; : : : ; ln); �[�(c) � (k ; v)=c]i

lk
c!v
�!k l 0k and v 2 Chan [Chan

h(l1; : : : ; lk ; : : : ; ln); �i �! h(l1; : : : ; l 0k ; : : : ; ln); �[�(c) � (k ; v)=c][�(v) � (k ;)=v]i

A component receives a value v from a channel-end c only if v is the �rst element of the bu�er of
channel c (which is thus non-empty). Otherwise it blocks. On the other hand, a component can
always append a value to the bu�er of a channel c by sending it through the channel-end c.
Let i denotes the tuple (i1; : : : ; in) of initial locations. By l we denote a tuple (l1; : : : ; ln) of locations

li , i = 1; : : : ;n. Furthermore, we use the symbol � 62 � in hi ; �i) � to denote the existence of a
deadlocking computation starting from state �. This means that hi ; �i �!� hl ; �0i and from the
con�guration hl ; �0i no further transition is possible, although for some location lk of l there exists

a transition lk
a

�!k l 0k , for some communication action a and location l 0k . Furthermore, hi ; �i) �0

indicates a computation that starts from � and successfully terminates in a system state �0. This
means that hi ; �i �!� hl ; �0i and for all locations lk of l , communication action a, and location l 0k ,

there is no transition lk
a

�!k l 0k .
We now de�ne the observable semantics of a component-based system.

De�nition 3.1 Let � = C1 k � � � k Cn , with Ck b=hLk ; ik ; rk ;�!k i, k = 1; : : : ;n and let i denote the
tuple (i1; : : : ; in) of initial locations. We de�ne

O(�)(�) =

�
� if hi ; �i) �,
f�0 j hi ; �i) �0g otherwise.

Thus, O(�)(�) collects all the �nal states of the system that correspond to its successfully termi-
nating computations, if it involves no deadlocks. Deadlock itself is considered a fatal error.

4. A Logical Interface Description Language

We introduce a formal assertion language for specifying the observable behavior of a component
C b=hL; i ; r ;�!i via an interface. The interface of a component consists of the following:

� the name of the component;

� an initial set of external connections (the sinks and/or sources of some channels);

� a blocking invariant;

� a precondition;

� a postcondition.

8

The blocking invariant speci�es the possible deadlock behavior of a component. The precondition
speci�es the contents of the bu�ers of the initial external channels, and the postcondition speci�es the
sequences of values received from and delivered to the external channels that exist upon termination.
The above speci�cation of a component involves a multi-sorted assertion language which includes

the sort Chan of channel-sinks and the sort Chan of channel-sources. In fact, c and c are introduced
as constants in the assertion language for every c 2 Chan . Apart from the sort of values that can
be transmitted along channels (which thus includes the set Chan [Chan) our speci�cation language
includes the sort of (�nite) sequences of values. Finally, we assume that the sort set of Chan and
Chan is given.
We denote by Var , with typical elements x ; y ; z ; : : :, the set of all variables. For each sort we

assume that a set of variables of that sort is given, and that these sets of variables are disjoint for
di�erent sorts. We denote by S the underlying signature of many-sorted operators f and predicates
p. It includes, for example, the usual sequence operations like append, pre�x, etc., and the usual set
operations of union, intersection, etc. An example of a useful operator is �, that can be applied to a
channel-end resulting into the other channel-end. Thus applying this operator to the sink-end of a
channel c returns its corresponding source-end c, and, likewise, c = c.
Given the above multi-sorted signature S, we introduce the following set of expressions of the

assertion language (we omitt sort restrictions).

De�nition 4.1 An expression e of the assertion language is de�ned as follows (we omit the type
information).

e:: = c j c j x j e # j e #k j f (e1; : : : ; en);

where k 2 f1; : : : ;ng, f 2 S denotes an operator, c 2 Chan, and x 2 Var.

The local semantics of an expression e is formally given by E(e)(!)(s), where ! is a function that
assigns to each variable a corresponding value (of the correct type), and s is component state. We
have that

� E(c)(!)(s) = c;

� E(c)(!)(s) = c;

� E(x)(!)(s) = !(x);

� E(e #)(!)(s) = s(E(e)(!)(s))

� E(e #k)(!)(s) = s(E(e)(!)(s))

� E(f (e1; : : : ; en)(!)(s) = f (E(e1)(!)(s); : : : ; E(en)(!)(s)), associating an operator f with its in-
terpretation.

The constants c and c, thus, denote the sink and the source of the channel c, respectively. The value
of a variable is given by !. Given an expression e denoting a channel-end, the expressions e # and e #k
both denote the sequence of values associated with that channel-end in the component state s . We
will see later that these two expressions will receive a di�erent interpretation at a global level. The
de�nition of the semantics of a complex expression is standard.
Next, we introduce the syntax of assertions.

De�nition 4.2 An assertion � of the assertion language is de�ned as follows.

�:: = p(e1; : : : ; en) j :� j � ^ � j 9x (�)

Here p 2 S denotes a many-sorted predicate, and x 2 Var is a variable.

4. A Logical Interface Description Language 9

By s ; ! j= � we denote that the assertion � is true with respect to a variable-assignment ! and a
component state s . This de�nition is standard. For example,

s ; ! j= p(e1; : : : ; en) if and only if p(E(e1)(!)(s); : : : ; E(en)(!)(s)) ;

associates a predicate p with its interpretation. Thus, given the pre�x relation v2 S on sequences,
the assertion

c #v d #

expresses that the sequence of values received through the channel c is sent along the channel d .
As another example, we show how to express in our assertion language that a channel x has been

known to a given component initially connected to channels in a set r . In order to do so, we assume
the presence of an operator setchan in our signature S whose interpretation is to return the set of
sinks and sources of all channels occurring in a given sequence of values. Moreover, we use �y(�) as
a shorthand for a set-quanti�er that gives the smallest set y for which � holds (it is not hard to see
that such a quanti�er can be expressed in our assertion language). That a channel x has been known
to a component can now be expressed as

x 2 �y (r � y ^ 8z (z 2 y ! setchan(z #) � y)):

In other words, the set of channels that have been known to a component is the smallest set containing
the channels to which the component is initially connected, plus, for every channel, those channels
stored in its associated sequence of values.
It is worthwhile to observe that we have the following algebraic characterization of the operator

setchan :

setchan(") = ;
setchan(c � w) = fcg [setchan(w)
setchan(c � w) = fcg [setchan(w)

setchan(v � w) = setchan(w) v 62 Chan [Chan :

Here " denotes the empty sequence. Generally, reasoning about the properties of channels as expressed
by our assertion language involves algebraic axiomatizations of the data types of sets and sequences.
The following de�nition introduces the notion of the interface of a component.

De�nition 4.3 The observable interface of a component is a labeled tuple of the form

hId : C ;Chan : r ; Inv : I (z);Pre : �(r);Post : (r)i

Here z is a variable that ranges over sets of channel sinks only, and �(r) and (r) denote assertions
with occurrences of r .

The blocking invariant I (z), which denotes an assertion with free occurrences only of the variable
z , speci�es the possible deadlock behavior of C . It holds in all those component states where the
component C is committed to get a value from channels in z , possibly blocking it. The assertions
�(r) and (r) denote the usual pre- and postconditions, where r denotes the set of channel-ends to
which C is initially connected. For notational convenience only, we assume that initially the bu�ers of
all the channels in r are empty (so we do not need a precondition). We then abbreviate a component
interface by a triple I (z): Cf (r)g. As a simple example, the interface

z = fcg _ z = fdg: Cfc #= d #g

denotes a component named C , initially connected to the sinks of two channels, namely c and d and
to the source of d . The component receives values from either c or d , and upon termination every
values it has read from c it has been output to d in the same order.
Formally, we have the following semantics for component interfaces:

10

De�nition 4.4 Let C b=hL; i ; r ;�!i be a component, and let O(C) = hT ;Ri be its observable seman-
tics. We de�ne

j= I (z): Cf (r)g

if for all variable assignment !, component state s 2 T and ready pair (s 0; r 0) 2 R, we have s ; ! j= (r)
and s 0; ! j= I (r 0). Here I (r 0) denotes the result of replacing every occurrence of z in I by r 0.

Basically, we have the same assertion language for the speci�cation of correctness properties at the
level of a system of components.

De�nition 4.5 Let � = C1 k � � � k Cn be a component-based system, with r1; : : : ; rn sets of initial
connections for each component in the system. A system correctness speci�cation for � is of the form
f�(r)g�f (r)g, where r = r1 [� � � [rn , and �(r) and (r) denote assertions with occurrences of r .

The assertions �(r) and (r) denote the usual pre- and postconditions. For technical convenience
only, we assume that the bu�ers of all channels in r are empty. Consequently, we do not need to
consider the precondition. Thus, we abbreviate a system speci�cation as �f (r)g.
In order to de�ne the semantics of a system-wide correctness speci�cation for a system � = C1 k

� � � k Cn , we introduce a di�erent system-wide interpretation for the assertion language. The semantics
of an expression e is now given by G(e)(!)(�), where � is a system state of �. The main di�erence
between the system-wide and the component-level interpretations is that we de�ne for expression e
of sort channel-source or channel-sink,

� G(e #)(!)(�) = �(G(e)(!)(�))

� G(e #k)(!)(�) = �(G(e)(!)(�))#k ,

where #k projects a sequences of indexed values into the sequence of values (including the control
symbol) indexed by k . Algebraically,

"#k = "
((k ; v) � w)#k = v � (w #k); v 2 Val
((j ; v) � w)#k = w #k ; j 6= k :

At the level of the global assertion language, the expressions c # and c #, thus, denote sequences of
indexed values (k ; v), where k 2 f1; : : : ;ng is the index for the actor component Ck involved in the
reading or the writing of v .
Analogous to the component-level interpretation, we denote by �; ! j= � that � is true with respect

to the variable assignment ! and system state �. An assertion � is valid, indicated by j= �, if �; ! j= �,
for every � and !.
As an example, we have for every channel c, the global validity of the assertion axiomatizing the

FIFO nature of c:

Val(c #) v Val(c #);

where Val is algebraically characterized by

Val(") = "
Val((k ;) � w) = Val(w)
Val((k ; v) � w) = v �Val(w); v 2 Val :

The global validity of the above assertion follows from the fact that all system states are pre�x
invariant.
As another example, given two sequences w1 and w2 and that w1 � w2 yields the su�x of the

sequence w1 determined by its pre�x w2, the global interpretation of the expression

Val(c #)�Val(c #)

4. A Logical Interface Description Language 11

denotes the contents of the bu�er of a channel c. In the sequel, we abbreviate this expression as
buf (c). Note that, generally, we cannot denote the bu�er of a channel by an expression interpreted
in the state of a component.
We formally de�ne the semantics of a system-wide correctness speci�cation in terms of the above

system-wide interpretation of the assertion language.

De�nition 4.6 Let C1; : : : ;Cn be some components with (disjoint) initial connection sets r1; : : : rn ,
respectively. Let � = C1 k � � � k Cn be a component-based system, and r = r1 [� � � [rn . We de�ne
j= �f (r)g if O(�)(�0) 6= � and for all � 2 O(�)(�0) we have that �; ! j= (r), for every variable
assignment !. Here (for simplicity) �0 is the system state mapping each channel in r to the empty
sequence ".

A global speci�cation �f (r)g, thus, is valid if � does not have a deadlocking computation and
every successfully terminating computation in � results in a system state that satis�es (r).

4.1 Expressing Absence of Deadlocks
As a major example, we show how to express the absence of deadlocks in a system � = C1 k � � � k Cn

in our assertion language. First we need to introduce the assertion � #k that we derive from � by
replacing every occurrence of the operator# by#k . As discussed previously, this latter operator selects
from a labeled sequence of values the sequence of only those values labeled by the index k .
Assume the interface speci�cations I1(z1):C1f 1g; : : : ; In (zn):Cnf ng are given for the components

of �. Let I and denote the sequences of assertions I1; : : : ; In and 1; : : : ; n , respectively. Under
our system-wide interpretation, the following assertion then de�nes �(I ;) to holds on all possible
deadlock states in the system �.

�(I ;)b=^
i

(I 0

i _
0

i) ^
_
i

I 0

i ^
^
i

(I 0

i ! 8x 2 zi (buf (x) = �)):

Here, I 0

i denotes the assertion Ii #i and, similarly, 0

i denotes the assertion i #i . Note that the logical
structure of this assertion reects the semantic de�nition of a global deadlock situation given that
I 0

i represents the state of the component Ci as it tries to input from a channel in the set zi , and
 0

i represents its state of the component Ci upon termination: the �rst conjunct expresses that each
component Ci of the system is either terminating in a state satisfying 0

i or it tries to input from a
channel in the set zi in a state satisfying I 0

i . The second conjunct guarantees that there esists at least
one component that tries to input from a channel, and the third conjunct expresses that all those
components are actually blocked beacause the channels on which they are inputting are empty.
We explain the above assertion using a simple system � = C1 k C2. In �, the component C1

repeatedly writes a value to the channel d and subsequently reads a value from the channel c. The
component C2, on the other hand, repeatedly reads a value from d and subsequently writes that value
to c. Let r1 = fc; dg and r2 = fc; dg be the sets of initial connections of C1 and C2, respectively.
Also, let I1(z1) and I2(z2) denote the assertions

jc # j< jd # j ^ z1 = fcg ^ 8z 62 r1(z #= �)

and

jd # j = jc # j ^ z2 = fdg ^ 8z 62 r2(z #= �);

respectively, where the operation jw j gives the length of the sequence w . Intuitively, the assertion
I1(z1) states that the number of values read from the channel c by the component C1 is strictly smaller
than the number of values written to the channel d by C1 as it is about to read from c. Furthermore,
it states that the component C1 reads only from the channel c and writes only to the channel d . On
the other hand, the assertion I2(z2) states that the number of values read from d by the component C2

12

is exactly equal to the number of values read from c by C2, as it is about to read from d . Furthermore,
it states that the component C2 reads only from the channel d and writes only to the channel c.
We assume that C1 and C2 do not terminate, so that we can take false as the postcondition for both

components. The assertion �(I ;) for I = I1(z1); I2(z2) and = false ; false , thus, logically reduces
to the assertion

I1 #1 ^I2 #2 ^buf (c) = � ^ buf (d) = �; (1)

which holds if the system can deadlock. Next, we prove that this assertion leads to a contradiction.
We have

jc #1 j< jd #1 j ^ jd #2 j = jc #2 j: (2)

Moreover, from buf (c) = � ^ buf (d) = � it follows that

jc # j = jc # j ^ jd # j = jd # j: (3)

Since C1 and C2 are the only components and

8z 62 r1(z #1= �) and 8z 62 r2(z #2= �)

we derive from (3) the assertion

jc #1 j = jc #2 j ^ jd #2 j = jd #1 j; (4)

that is in contradiction with assertion (2). Since the assertion (1), above, describes all possible
deadlock situations, we conclude that the system � cannot deadlock.

5. Composing Component Interfaces

In this section, we introduce a compositional proof system that allows us to derive a system-wide
correctness speci�cation from the interface speci�cations of the constituent components of a system.
In order to formulate this proof system, we observe that the following property holds for this

projection operator.

Lemma 5.1 For every assertion �, variable assignment !, and system state � we have that

�; ! j= �#k if and only if �#k ; ! j= � ;

where � #k denotes the component state resulting from applying #k to every sequence of labeled values
�(c) and �(c) for all c 2 Chan, i.e., �#k (c) = �(c)#k .

In other words, the above lemma states that the system-wide interpretation of �#k is the same as
the component-level interpretation of �.
We now formulate our proof system for deriving system-wide correctness formulas.

De�nition 5.2 Let � = C1 k � � � k Cn be a component based system and let I1(z1):C1f 1g, : : :,
In (zn):Cnf ng be the interfaces of its components. We denote by ` �f g that the system correctness
formula �f g is derivable from the following proof system:

Ii(zi): Cif ig and j= :�(I ;)

�f
V

i (i #i)g

�f g and j= ! 0

�f 0g

where I = I1(z1); : : : ; In(zn) and = 1; : : : ; n .

In order to prove the soundness of the �rst and main rule of our proof system, we �rst need to show
that the validity of the assertion :�(I ;) guarantees the absence of deadlocks. Indeed, the validity
of the component-level correctness speci�cations Ii (zi): Cif ig, for each i 2 f1; : : : ;ng, implies that

5. Composing Component Interfaces 13

every deadlocked system state � of � satis�es the assertion �(I ;). More speci�cally, let O(Ci)(s0) =
hTi ;Ri i, where s0 assigns to every channel-end the empty sequence (for notational convenience only,
we assume that all channels are initially empty). Then either � #i2 Ti or (� #i ; ri) 2 Ri , for some
set of input channels ri on which the component Ci is blocked in the system state �. By the validity
of Ii (zi): Cif ig, we thus derive that either � #i ; ! j= i or � #i ; ! j= Ii(ri). Moreover, since � is a
deadlock state, we have that �#i ; ! j= Ii(ri) implies that �; ! j= 8x 2 ri (buf (x) = �). Summarizing the
above, and using Lemma 5.1, we conclude �; ! j= �(I ;). Similarly, it follows that every successfully
terminating computation in � results in a �nal state � such that �; ! j=

V
i (i #i).

Theorem 5.3 For every component based system � = C1 k � � � k Cn we have that ` �f g implies
j= �f g.

5.1 Completeness and Compositionality
The main rule of our proof system for deriving system-wide speci�cations allows compositional rea-
soning in terms of the interface speci�cations of the constituent components of a system. Therefore,
completeness of the proof system semantically boils down to showing that the observable behavior of
a system can be obtained in a compositional manner from the observable behavior of its components.
Generally, although compositionality is a highly desirable property, it is not readily present in the
formal models of component-based systems. In fact, our abstract semantics for components decouples
the inherent ordering of the transmission and reception of values through di�erent channels, and is
not compositional in the general case. The following example illustrate this.
Consider the following three transition systems describing three di�erent components (we omit all

transitions derivable by the input reactiveness property).

�

a?u
{{{

}}{{{ b!v

GGG

##GGG

�

b!v
��

�

b!v
��

�

b!v
��

�

a?u
��

�

a?u
{{{

}}{{{ a?u

CCC

!!CCC

�

a?u
��

�

c?w
��

�

d!z
��

�

d!z
��

�

c?w
��

�

d!z
www

{{www c?w

CCC

!!CCC

�

d!z
��

�

c?w
��

�

c?w
��

�

d!z
��

�

c?w

GGG

##GGG

�

d!z
{{{

}}{{{
� � � � �

It is not hard to see that all three components have the same observable behavior. However, consider
a system consisting of one of these components together with the following one:

� b?v // � a!u // � d?z // � c!w // �

If the system includes the component in the middle then it may deadlock, whereas deadlock is not
possible if it includes the rightmost or leftmost component.
The above example shows two situations where compositionality breaks down, leading to violation

of the completeness of our proof system. The crux of these counter-examples is that the environment
is allowed to inuence the nondeterministic behavior of a component. In order to prevent this, we need
to identify the forms of external nondeterminism that must be forbidden, to obtain a compositional
characterization of the observable behavior of a system in terms of the observable behavior of its
components.
There are three reasons why a component may exhibit a nondeterministic behavior that can be

resolved by the inuence of the environment: (1) a nondeterministic choice involving input actions;
(2) receiving a value from a channel-end shared with other components; and (3) sending a value to a
channel-end shared with other components.

14

We rule out the �rst kind of external non-determinism by requiring a component to be input
conuent. Formally, a component C b=hL; i ; r ;�!i is said to be input conuent if, for all l 2 L,

1. if l
c?v
�! l1 and l

c0
!v 0

�! l2 then there exists l 0 2 L such that l1
c0
!v 0

�! l 0 and l2
c?v
�! l 0;

2. if l
c?v
�! l1 and l

c?v
�! l2 then l1 = l2; and

3. if l
c?v
�! l1 and l

c0
?v 0

�! l2 with c 6= c0 then there exists l 0 2 L such that l1
c0
?v 0

�! l 0 and l2
c?v
�! l 0.

In other words, a nondeterministic choice involving an input communication (on di�erent channels)
may delay that communication but cannot discharge it. Note that this is the case when di�erent input
actions are executed by parallel processes within a component. Returning to our counter-example,
the left component violates the �rst condition and the middle component violates the second one.
To avoid the interference caused by the sharing of channel-ends among several components, we

restrict to channels that are uni-directional and one-to-one. This means that every channel is an
exclusive point-to-point communication medium between a single producer and a single consumer.
The producer or the consumer of a channel must then lose its exclusive ownership of its end of a
channel when it writes the name of that channel-end to a channel. Subsequently, a component may
dynamically regain the exclusive ownership of a speci�c end of a channel, by reading its identity as a
value from another channel. This way, the components in a system can dynamically recon�gure their
channel connections.
A formal characterization of uni-directional and one-to-one channels is expressed in the two condi-

tions below. We require that every component in a system is input conuent and that every computa-
tion i

a1�! l1
a2�! : : :

an�! ln in every component C b=hL; i ; r ;�!i satis�es the following two conditions:

1. if an = c?v then either c 2 r and ak 6= e!c, for all 1 � k < n and e 2 Chan ; or there exists
1 � i < j such that ai = d?c, d 6= c, and ak 6= e!c for all j � k < n and e 2 Chan .

2. if an = c!v then either c 2 r and ak 6= e!c, for all 1 � k < n and e 2 Chan ; or there exists
1 � i < j such that ai = d?c and ak 6= e!c, for all j � k < n and e 2 Chan .

Thus, a component can communicate via a channel-end only if (1) it has once been connected to the
channel-end (either because the channel-end is included in the set of the initial connections of the
component, or because the component has received the identity of the channel-end through a read
action on another channel); and (2) the component has not subsequently relinquished its ownership
of the channel-end by writing the identity of the channel-end to a channel.
We now show that the observable behavior of a system consisting of input conuent components

(with exclusively point-to-point channels) can be described as a composition of the observable behavior
of its components. Let � = C1 k � � � k Cn be a component-based system with O(Ck)(sk) = hTk ;Rki,
k 2 f0; : : : ;ng, as the semantics of its components. We de�ne the set

F
k Tk of system states � such

that for every k there exists a component state s 0k 2 Tk with �(c) #k= s 0k (c) and �(c) #k= s 0k (c),
for every channel c. Recall that #k denotes the projection operation that, for a given sequence w of
indexed values, yields the sequence of values indexed by k .
Similarly, we de�ne the set

F
i hTi ;Rii of system states � such that there is at least one k for which

there exists a ready-set (s 0k ; r) 2 Rk such that �(c) = � for every c 2 r and �(c) #k= s 0k (c), and for
every k for which this does not hold, there exists a component state s 0k 2 Tk with �(c)#k= s 0k (c).
The following theorem states that for a system � = C1 k � � � k Cn composed of input-conuent

components connected only by point-to-point, uni-directional channels, we can describe the semantics
of �, O(�), as a composition of the semantics of its components, O(Ck), k = 1; : : : ;n.

Theorem 5.4 Let � = C1 k � � � k Cn be as described above. Let � be a system state and sk = � #k ,
k = 1; : : : ;n. Given O(Ck)(sk) = hTk ;Rk i, for k 2 f1; : : : ;ng, we have

O(�)(�) =

� F
i Ti if

F
i hTi ;Rii = ;

� otherwise.

6. Conclusion and Future Work 15

Assuming that we can express in the assertion language the observable behavior O(C) of a com-
ponent C , we derive as a consequence of the above compositionality theorem the following (relative)
completeness theorem.

Theorem 5.5 For every component-based system � = C1 k � � � k Cn where the behavior of every
component Ck b=hLk ; ik ; rk ;�!k i is input conuent, and components are connected only by point-to-
point, uni-directional channels, we have that j= �f g if and only if ` �f g.

6. Conclusion and Future Work

The work reported in this paper is a further development of [2] and [7]. In [2] a language for dynamic
networks of components is introduced, and in [7] a compositional semantics for its asynchronous subset
is given. In this paper we abstract from the syntactical representation of a component and present a
sound and complete description of a system in terms of the interfaces of its components.
For simplicity, in this paper we restricted the class of component-based systems by disallowing

dynamic creation of components and channels. Our semantic framework, however, can easily be
extended to relax these restrictions, as shown in [7]. Currently, we are investigating other forms of
communication among components in systems that retain a compositional semantics with respect to
our notion of observables.
We also intend to extend our proposed assertional language with features we borrow from temporal

logic, in order to reason about the reactive behavior of a component.

Acknowledgements We like to thank the Amsterdam Coordination Group, especially Jaco de Bakker,
Falk Bartels and Jerry den Hartog for discussions and suggestions about the contents of this paper.
Thank also to Erika A'braham-Mumm for her helpful comments.

16

References

1. G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation Journal of
Functional Programming, 1(1):1-69, 1993.

2. F. Arbab, M.M. Bonsangue, and F.S. de Boer. A coordination language for mobile components.
In Proc. of SAC 2000, pages 166{173, ACM press, 2000.

3. F. Arbab, I. Herman, and P. Spilling. An overview of Manifold and its implementation. Concur-
rency: Practice and Experience, 5(1):23{70, 1993.

4. K. Bergner, A. Rausch, M. Sihling, A. Vilbig An integrated view on componentware: concepts,
description techniques, and development process. In R. Lee, editor, Proc. of IASTED Conference
on Software Engineering, pages 77{82, ACTA Press, 1998.

5. K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A formal model for componentware.
In M. Sitaraman and G. Leavens, editors, Foundation of Component-Based Systems, Cambridge
University Press, 2000.

6. F.S. de Boer. Reasoning about asynchronous communication in dynamically evolving object
structures. In Theoretical Computer Science, 2000.

7. F.S. de Boer and M.M. Bonsangue. A compositional model for conuent dynamical data-ow
networks. In B. Rovan ed., Proc. 25th MFCS, LNCS, 2000.

8. M.M. Bonsangue, F. Arbab, J.W. de Bakker, J.J.M.M. Rutten, A. Scutell�a, and G. Zavattaro.
A transition system semantics for the control-driven coordination language MANIFOLD. Theo-
retical Computer Science, 240(1), July 2000.

9. M. Broy. Equations for describing dynamic nets of communicating systems. In Proc. 5th COM-
PASS workshop, volume 906 of LNCS, pages 170{187, 1995.

10. L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. of Foundation of Software Science and
Computational Structures, volume 1378 of LNCS, pages 140-155, 1998.

11. R. Grosu and K. St�len. A model for mobile point-to-point data-ow networks without channel
sharing. In Proc. AMAST'96, LNCS, 1996.

12. JavaSoft. The JavaBeans component architecture, 1999. Available on line at the URL:
http://java.sun.com/beans.

13. He Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and asynchrony. In Proc. of

References 17

IFIP Working Conference on Programming Concepts and Methods, pages 459-478, 1990.

14. Microsoft Corporation. ActiveX Controls, 1999 Available on line at the URL:
http://www.microsoft.com/com/tech/activex.asp.

15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and II. Information
and Computation 100:1, 1992, pp. 1{77.

16. Object Management Group. CORBA 2.1 speci�cations, 1997. Available on line at the
URL:http://www.omg.org.

17. E.-R. Olderog and C.A.R. Hoare. Speci�cation-oriented semantics for communicating processes.
Acta Informatica 23:9{66, 1986.

18. M. Shaw, R. De Line, D. Klein, T. Ross, D. Young and G. Zelesnik. Abstraction for software
architectures and tools to support them. IEEE Transactions on Software Engineering 21(4):356{
372, 1995.

