57 research outputs found

    Efficient Implementation of Complementary Golay Sequences for PAR Reduction and Forward Error Correction in OFDM-based WLAN systems

    Get PDF
    In this paper the use of complementary Golay sequences (CGS) for peak-to-average power ratio (PAR) reduction and forward error correction (FEC) in an orthogonal frequency division multiplexing (OFDM)-based wireless local area network (WLAN) system is explored; performance is examined and complexity issues are analyzed. We study their PAR reduction performance depending on sequence lengths and we have found that, for the case that the number of sub-carriers differs from the sequence length, some interesting relationships can still be stated. Regarding their error correction capabilities, these sequences are investigated considering M-PSK constellations applied to the OFDM signal specified in IEEE 802.11a standard. Computational load for both Golay encoding and decoding processes is addressed and we provide an exhaustive analysis of their complexity. In order to overcome memory restrictions and speed up algorithmic operations, a novel algorithm for real-time generation of the Golay Base Sequences is proposed and evaluated giving as a conclusion that these sequences can be real-time generated with actual Digital Signal Processors (DSP). Our proposal lies on an efficient permutation algorithm that obtains the current permutation without the need for generating previous ones. Its complexity is calculated and turns out to be significantly low; the advantages are specially appreciated at the decoding stage. We also introduce a hybrid solution to get a trade-off between complexity and memory requirements. Moreover, the whole system is also implemented in a DSP to validate the proposal in a prototype, where its feasibility has been confirmed.This work has been partly funded by the Spanish government with projects MACAWI (TEC 2005-07477-c02-02) and MAMBO (UC3M-TEC-05-027)

    Implementation of multi carrier-code division multiple access-frequency division multiple access with beyond 4G specifications

    Get PDF
    Hybrid code division multiple access techniques present the open door for the future of code division multiple access and wireless communications. Multicarrier CDMA is the most popular type of hybrid CDMA because of its robustness against multipath fading channels and flexible multiple access capability. MC-CDMA is a predictable technique for future high data rate wireless communication systems according to these appealed properties. The main drawback of MC-CDMA is the power level in uplink, i.e. the ratio of peak power to the average power is high and leads to high instantaneous power which is required in transmission of mobile station. However, there are many researchers working towards reducing the level of the transmitted power. This research presents new method of peak to average power ratio (PAPR) reduction. The proposed method is making use of the characteristics of uplink for current 4th Generation (single carrier frequency division multiple access) which has low PAPR into current MC-CDMA system to reproduce a new MC-CDMA system (MC-CDMA-FDMA) with low PAPR and keep all the characteristics of the basic MC-CDMA system. MC-CDMA-FDMA reduced the level of power from 10 dB to 2 dB in case of 64 FFT size and Walsh Hadamard code is used in spreading block. In addition bit error rate has been reduced from 96x10-5 bps to 82x10-5 bps comparing to SC-FDMA bit error rate. The proposed system also has high flexibility to deal with modern communication systems with minimum required hardware at the base station through optimization of FFT size. The simulation results show that MC-CDMA-FDMA system will be a good candidate for beyond 4th Generation for mobile communication

    Multi-carrier code division multiple access

    Get PDF

    Orthogonal multicarrier modulation for high-rates mobile and wireless communications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN037085 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Sequences design for OFDM and CDMA systems

    Get PDF
    With the emergence of multi-carrier (MC) orthogonal frequency division multiplexing (OFDM) scheme in the current WLAN standards and next generation wireless broadband standards, the necessitation to acquire a method for combating high peak to average power ratio (PMEPR) becomes imminent. In this thesis, we will explore various sequences to determine their PMEPR behaviours, in hopes to find some sequences which could potentially be suitable for PMEPR reduction control under MC system settings. These sequences include mm sequences, Sidelnikov sequences, new sequences, Golay sequences, FZC sequences and Legendre sequences. We will also examine the merit factor properties of these sequences, and then we will derive a bound between PMEPR and merit factor. Moreover, in the design of code division multiple access (CDMA) spreading sequence sets, it is critical that each sequence in the set has low autocorrelations and low cross-correlation with other sequences in the same set. In the thesis, we will present a class of GDJ Golay sequences which contains a large zero autocorrelation zone (ZACZ), which could satisfy the low autocorrelation requirement. This class of Golay sequences could potentially be used to construct new CDMA spreading sequence sets

    Oblique Sounding and HF Communication Techniques for Very Long Haul Ionospheric Links

    Get PDF
    El sistema de comunicació ràdio d’alta freqüència (HF, en anglès) és usat arreu del món per agències governamentals i no governamentals sempre que calgui una alternativa a les comunicacions via satèl•lit: vaixells a alta mar, avions fora de cobertura de xarxes ràdio amb visió directa, operacions militars, zones on la infraestructura ha estat destruïda per algun tipus de desastre o bé zones llunyanes sense cap altre tipus de comunicació. La ràdio HF representa una alternativa, o un sistema de backup al satèl•lit per a comunicacions de llarg abast i en redueix els costos, evita la vulnerabilitat i els problemes de sobirania. En aquesta tesi s’ha estudiat l’enllaç HF entre la base antàrtica espanyola Juan Carlos I, situada a l’illa Livingston a l’arxipèlag de les Shetland del Sud, i Espanya. L’objectiu d’aquest treball és estudiar els problemes que afecten la propagació; és a dir, la relació senyal a soroll i interferència, la dispersió multicamí i la dispersió per efecte Doppler, i dissenyar la capa física d’un enllaç HF de baixa velocitat, poca potència i llarg abast. Pel que fa aquest últim punt es fan un parell de propostes: espectre eixamplat per seqüència directa (DSSS, en anglès) i multiplexació per divisió en freqüència ortogonal (OFDM, en anglès). El repte que es planteja és el de la definició de les característiques dels símbols que millor encaixen en aquest canal per tal d’obtenir un benefici de la diversitat temporal i freqüencial que ofereix el canal. Des de l’any 2003 diverses campanyes han permès estudiar aquest canal HF, però no va ser fins la campanya 2009/2010 que s’obtingué un foto de les característiques, diürnes i nocturnes, de la ionosfera. En els articles que es presenten en aquesta tesi hem estès el rang freqüencial d’estudi respecte a investigacions prèvies i hem mostrat diferències de comportament entre el dia i la nit. Hem usat els resultats de la caracterització del canal per a dissenyar i comparar la bondat dels símbols DSSS i OFDM. Ambdues possibilitats han resultat ser candidates a implementar l’enllaç HF entre l’Antàrtida i Espanya. Tot i així, ambdues tècniques representen visions diferents de la implementació del mòdem: mentre que DSSS obté bons resultats a baixa velocitat en entorns amb baixa relació senyal a soroll, OFDM aconsegueix tasses de velocitat més elevades en canals més benignes.Los sistemas de radio de alta frecuencia (HF, en inglés) son usados por agencias gubernamentales y no gubernamentales en todo el mundo siempre que se necesite una alternativa a las comunicaciones por satélite: barcos en alta mar, aviones fuera del rango de cobertura de las redes radio de visión directa, operaciones militares, zonas donde la infraestructura ha sido destruida por algún desastre. Ésta ofrece una alternativa, o representa un sistema de backup, a las comunicaciones vía satélite, evitando los costes, la vulnerabilidad y los problemas de soberanía de las comunicaciones por satélite. En esta tesis se ha estudiado el enlace HF entre la base antártica española Juan Carlos I en la isla Livingston, en las Shetland del sur y España. El objetivo de este trabajo es el estudio de las limitaciones de la propagación ionosférica (como la relación señal a ruido e interferencia, la dispersión multicamino y la dispersión por efecto Doppler) y el diseño de la capa física de un enlace HF de baja velocidad, baja potencia y largo alcance. Se han estudiado un par de propuestas para este enlace, como son el espectro ensanchado por secuencia directa (DSSS, en inglés) y la multiplexación por división en frecuencia ortogonal (OFDM, en inglés). El reto ha sido definir las características que mejor se adecuan a este enlace para poder aprovechar la diversidad temporal y frecuencial que ofrece el canal HF. Desde el año 2003 diversas campañas de sondeo han permitido estudiar el canal HF pero no es hasta la campaña 2009/2010 que se consigue una fotografía de la actividad ionosférica tanto nocturna como diurna. En los artículos que se presentan en esta tesis hemos extendido los estudios previos a todo el rango de frecuencias HF y hemos mostrado las diferencias entre el día y la noche. Hemos usado estos resultados de caracterización del canal para diseñar y comparar símbolos DSSS y símbolos OFDM. Ambas posibilidades han resultado ser posibles candidatas para implementar un enlace HF de baja velocidad entre la Antártida y España. Sin embargo ambas técnicas representan dos aproximaciones distintas a la implementación del módem. Mientras que DSSS consigue un buen funcionamiento a baja velocidad en escenarios con baja relación señal a ruido, OFDM consigue tasas de transmisión más altas en escenarios más benignos.High Frequency (HF) radio is used by governmental and non nongovernmental agencies worldwide whenever an alternative to satellites for sky wave communication is needed: ships at sea, aircraft out of range of line-of-sight radio networks, military operations, disaster areas with communication infrastructure destroyed or distant regions lacking other communications. It offers an alternative to satellites, or a backup, for long-haul communications, thus avoiding the costs, vulnerabilities and sovereignty concerns of satellite communications. In this thesis the HF link between the Antarctic Spanish Station Juan Carlos I in Livingston Island, South Shetlands and Spain is studied. The aim of this study is to address the impairments that affect HF propagation (i.e., signal-to-noise plus interference ratio, multipath and Doppler shift and spread) and to design the physical layer of a low rate, low power and long-haul HF link. Some proposals regarding this last issue are addressed, i.e., direct sequence spread spectrum (DSSS) and orthogonal frequency division multiplexing (OFDM). The challenge is to define the symbol characteristics that best fit the link to benefit from time and frequency diversity that offers the HF channel. Since 2003 several transmission campaigns have allowed to study the HF channel but it is not until the 2009/2010 campaign that we have achieved a whole picture of both diurnal and nocturnal ionospheric activity. In the papers presented in this thesis we have extended the previous research to the whole range of HF frequencies and we have shown the differences on performance between day and night. We have used the results from channel characterization to design and compare the performance of DSSS and OFDM symbols. Both techniques have turned out to be possible candidates to implement a low rate HF link between Antarctica and Spain. However, both techniques stand for different approaches of the modem: DSSS achieves good performance at low data rate in low SNR scenarios, whereas OFDM achieves higher data rate in benign channel

    Design and performance of CDMA codes for multiuser communications

    Get PDF
    Walsh and Gold sequences are fixed power codes and are widely used in multiuser CDMA communications. Their popularity is due to the ease of implementation. Availability of these code sets is limited because of their generating kernels. Emerging radio applications like sensor networks or multiple service types in mobile and peer-to-peer communications networks might benefit from flexibilities in code lengths and possible allocation methodologies provided by large set of code libraries. Walsh codes are linear phase and zero mean with unique number of zero crossings for each sequence within the set. DC sequence is part of the Walsh code set. Although these features are quite beneficial for source coding applications, they are not essential for spread spectrum communications. By relaxing these unnecessary constraints, new sets of orthogonal binary user codes (Walsh-like) for different lengths are obtained with comparable BER performance to standard code sets in all channel conditions. Although fixed power codes are easier to implement, mathematically speaking, varying power codes offer lower inter- and intra-code correlations. With recent advances in RF power amplifier design, it might be possible to implement multiple level orthogonal spread spectrum codes for an efficient direct sequence CDMA system. A number of multiple level integer codes have been generated by brute force search method for different lengths to highlight possible BER performance improvement over binary codes. An analytical design method has been developed for multiple level (variable power) spread spectrum codes using Karhunen-Loeve Transform (KLT) technique. Eigen decomposition technique is used to generate spread spectrum basis functions that are jointly spread in time and frequency domains for a given covariance matrix or power spectral density function. Since this is a closed form solution for orthogonal code set design, many options are possible for different code lengths. Design examples and performance simulations showed that spread spectrum KLT codes outperform or closely match with the standard codes employed in present CDMA systems. Hybrid (Kronecker) codes are generated by taking Kronecker product of two spreading code families in a two-stage orthogonal transmultiplexer structure and are judiciously allocated to users such that their inter-code correlations are minimized. It is shown that, BER performance of hybrid codes with a code selection and allocation algorithm is better than the performance of standard Walsh or Gold code sets for asynchronous CDMA communications. A redundant spreading code technique is proposed utilizing multiple stage orthogonal transmultiplexer structure where each user has its own pre-multiplexer. Each data bit is redundantly spread in the pre-multiplexer stage of a user with odd number of redundancy, and at the receiver, majority logic decision is employed on the detected redundant bits to obtain overall performance improvement. Simulation results showed that redundant spreading method improves BER performance significantly at low SNR channel conditions

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Design and Analysis of OFDM System for Powerline Based Communication

    Get PDF
    Research on digital communication systems has been greatly developed in the past few years and offers a high quality of transmission in both wired and wireless communication environments. Coupled with advances in new modulation techniques, Orthogonal Frequency Division Multiplexing (OFDM) is a well-known digital multicarrier communication technique and one of the best methods of digital data transmission over a limited bandwidth. The main aim of this research is to design an OFDM modem for powerline-based communication in order to propose and examine a novel approach in comparing the different modulation order, different modulation type, application of Forward Error Correction (FEC) scheme and also application of different noise types and applying them to the two modelled channels, Additive White Gaussian Noise (AWGN) and Powerline modelled channel. This is an attempt to understand and recognise the most suitable technique for the transmission of message or image within a communication system. In doing so, MATLAB and embedded Digital Signal Processing (DSP) systems are used to simulate the operation of virtual transmitter and receiver. The simulation results presented in this project suggest that lower order modulation formats (Binary Phase Shift Keying (BPSK) and 4-Quadrature Amplitude Modulation (QAM)), are the most preferred modulation techniques (in both type and order) for their considerable performance. The results also indicated that, Convolutional Channel Encoding (CCE)-Soft and Block Channel Encoding (BCE)-Soft are by far the best encoding techniques (in FEC type) for their best performance in error detection and correction. Indeed, applying these techniques to the two modelled channels has proven very successful and will be accounted as a novel approach for the transmission of message or image within a powerline based communication system

    On Efficient Signal Processing Algorithms for Signal Detection and PAPR Reduction in OFDM Systems

    Get PDF
    The driving force of the study is susceptibility of LS algorithm to noise. As LS algorithm is simple to implement, hence it’s performance improvement can contribute a lot to the wireless technology that are especially deals with high computation. Cascading of AdaBoost algorithm with LS greatly influences the OFDM system performance. Performance of Adaptive Boosting based symbol recovery was investigated on the performance of LS, MMSE, BLUE were also compared with the performance of AdaBoost algorithm and MMSE has been found the higher computational complexity. Furthermore, MMSE also requires apriori channel statistics and computational complexity O(5N3) of the MMSE increases exponentially as the number of carrier increases. For the Adaboost case the computational complexity calculation is little different.Therefore, in the training stage of the AdaBoost algorithm, the computational complexity is only O(nT M) Furthermore, as it is a classification algorithm so in the receiver side we will require a separate de-mapper (or decoder) to get the desired data bits, i.e., a. SAS aided DCT based PAPR reduction 1326 and b. SAS aided DCT based PAPR reduction. A successive addition subtraction preprocessed DCT based PAPR reduction technique was proposed. Here, the performance of proposed method was compared with other preexisting techniques like SLM and PTS and the performance of the proposed method was seen to outperform specially in low PAPR region. In the proposed PAPR reduction method, the receiver is aware of the transmitted signal processing, this enables a reverse operation at the receiver to extract the transmit data. Hence the requirement of sending extra information through extra subcarrier is eliminated. The proposed method is also seen to be spectrally efficient. In the case of PTS and SLM it is inevitable to send the side information to retrieve the transmit signal. Hence, these two methods are spectrally inefficient. Successive addition subtraction based PAPR reduction method was also applied to MIMO systems. The performance of the SAS based PAPR reduction method also showed better performance as compared to other technique. An extensive simulation of MIMO OFDM PAPR reduction was carried out by varying the number of subcarriers and number of transmitter antennas. A detailed computational complexity analysis was also carried out. BATE aided SDMA multi user detection. A detailed study of SDMA system was carried out with it’s mathematical analysis.Many linear and non linear detectors like ML, MMSE, PIC, SIC have been proposed in literature for multiuser detection of SDMA system. However, except MMSE every receivers other are computational extensive. So as to enhance the performance of the MMSE MUD a meta heuristic Bat algorithm was incorporated in cascade with MMSE
    corecore