1,215 research outputs found

    Double-Negation Elimination in Some Propositional Logics

    Full text link
    This article answers two questions (posed in the literature), each concerning the guaranteed existence of proofs free of double negation. A proof is free of double negation if none of its deduced steps contains a term of the form n(n(t)) for some term t, where n denotes negation. The first question asks for conditions on the hypotheses that, if satisfied, guarantee the existence of a double-negation-free proof when the conclusion is free of double negation. The second question asks about the existence of an axiom system for classical propositional calculus whose use, for theorems with a conclusion free of double negation, guarantees the existence of a double-negation-free proof. After giving conditions that answer the first question, we answer the second question by focusing on the Lukasiewicz three-axiom system. We then extend our studies to infinite-valued sentential calculus and to intuitionistic logic and generalize the notion of being double-negation free. The double-negation proofs of interest rely exclusively on the inference rule condensed detachment, a rule that combines modus ponens with an appropriately general rule of substitution. The automated reasoning program OTTER played an indispensable role in this study.Comment: 32 pages, no figure

    Merging fragments of classical logic

    Full text link
    We investigate the possibility of extending the non-functionally complete logic of a collection of Boolean connectives by the addition of further Boolean connectives that make the resulting set of connectives functionally complete. More precisely, we will be interested in checking whether an axiomatization for Classical Propositional Logic may be produced by merging Hilbert-style calculi for two disjoint incomplete fragments of it. We will prove that the answer to that problem is a negative one, unless one of the components includes only top-like connectives.Comment: submitted to FroCoS 201

    Rejection in Łukasiewicz's and Słupecki's Sense

    Get PDF
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz and developed by his student Słupecki, the pioneers of the method, which becomes relevant in modern approaches to logic

    A Spectrum of Applications of Automated Reasoning

    Full text link
    The likelihood of an automated reasoning program being of substantial assistance for a wide spectrum of applications rests with the nature of the options and parameters it offers on which to base needed strategies and methodologies. This article focuses on such a spectrum, featuring W. McCune's program OTTER, discussing widely varied successes in answering open questions, and touching on some of the strategies and methodologies that played a key role. The applications include finding a first proof, discovering single axioms, locating improved axiom systems, and simplifying existing proofs. The last application is directly pertinent to the recently found (by R. Thiele) Hilbert's twenty-fourth problem--which is extremely amenable to attack with the appropriate automated reasoning program--a problem concerned with proof simplification. The methodologies include those for seeking shorter proofs and for finding proofs that avoid unwanted lemmas or classes of term, a specific option for seeking proofs with smaller equational or formula complexity, and a different option to address the variable richness of a proof. The type of proof one obtains with the use of OTTER is Hilbert-style axiomatic, including details that permit one sometimes to gain new insights. We include questions still open and challenges that merit consideration.Comment: 13 page

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Some Concerns Regarding Ternary-relation Semantics and Truth-theoretic Semantics in General

    Get PDF
    This paper deals with a collection of concerns that, over a period of time, led the author away from the Routley–Meyer semantics, and towards proof- theoretic approaches to relevant logics, and indeed to the weak relevant logic MC of meaning containment

    Categorical Abstract Algebraic Logic: Referential π-Institutions

    Get PDF
    Wójcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wójcicki asserts that a logic has a referential semantics if and only if it is selfextensional. Referential semantics was subsequently studied in detail by Malinowski and the concept of selfextensionality has played, more recently, an important role in the field of abstract algebraic logic in connection with the operator approach to algebraizability. We introduce and review some of the basic definitions and results pertaining to the referential semantics of π-institutions, abstracting corresponding results from the realm of propositional logics

    Suszko's Problem: Mixed Consequence and Compositionality

    Full text link
    Suszko's problem is the problem of finding the minimal number of truth values needed to semantically characterize a syntactic consequence relation. Suszko proved that every Tarskian consequence relation can be characterized using only two truth values. Malinowski showed that this number can equal three if some of Tarski's structural constraints are relaxed. By so doing, Malinowski introduced a case of so-called mixed consequence, allowing the notion of a designated value to vary between the premises and the conclusions of an argument. In this paper we give a more systematic perspective on Suszko's problem and on mixed consequence. First, we prove general representation theorems relating structural properties of a consequence relation to their semantic interpretation, uncovering the semantic counterpart of substitution-invariance, and establishing that (intersective) mixed consequence is fundamentally the semantic counterpart of the structural property of monotonicity. We use those to derive maximum-rank results proved recently in a different setting by French and Ripley, as well as by Blasio, Marcos and Wansing, for logics with various structural properties (reflexivity, transitivity, none, or both). We strengthen these results into exact rank results for non-permeable logics (roughly, those which distinguish the role of premises and conclusions). We discuss the underlying notion of rank, and the associated reduction proposed independently by Scott and Suszko. As emphasized by Suszko, that reduction fails to preserve compositionality in general, meaning that the resulting semantics is no longer truth-functional. We propose a modification of that notion of reduction, allowing us to prove that over compact logics with what we call regular connectives, rank results are maintained even if we request the preservation of truth-functionality and additional semantic properties.Comment: Keywords: Suszko's thesis; truth value; logical consequence; mixed consequence; compositionality; truth-functionality; many-valued logic; algebraic logic; substructural logics; regular connective
    corecore