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Abstract

This paper deals with a collection of concerns that, over a period of time,
led the author away from the Routley–Meyer semantics, and towards proof-
theoretic approaches to relevant logics, and indeed to the weak relevant logic
MC of meaning containment.
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1 Introduction
It is hoped that the concerns dealt with in this paper will help to round out the
philosophical discussion around ternary relation semantics, which was the subject of
the Third Workshop, held at the University of Alberta, Edmonton, Canada, during
May 16–17, 2016, for which this paper was written.

Whilst these concerns form a rather motley collection, the main point to be made
is that proof theory and semantics have distinct interpretations, with special refer-
ence to disjunction and existential quantification. (See Section 3.1 below for the
details.) One should especially note that the author supports the proof-theoretic
interpretation over the semantic one, this contributing to the concern about seman-
tics in general. (See Section 3.2 for this point.) Though the author has given some
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earlier presentations of these two distinct interpretations, this is the first time such
material would appear in published form.

Another major point is the importance of decidability in establishing a two-
valued meta-logic, whilst completeness is of lesser value than the current literature
espouses. (Sections 3.3 and 3.4 deal with these respective points.) This again covers
new ground.

2 Some Concerns about the Routley–Meyer Semantics

2.1 The Complexity of Fine’s Semantics for Quantified Relevant
Logics

Logics need to include quantifiers and lead into (non-logical) applications in order
for logic to be applied and thus be a worthwhile study. The central value of logic is in
its application to mathematics, computer science, science in general, and to familiar
everyday arguments. However, sentential matters largely define the logic one is
using, since the main di�erentiation between logics occurs at the sentential level.
The addition of quantifiers is more clear-cut and its other premises are determined
largely by the (non-logical) concepts to which one is applying the logic. So, sentential
logic is still a worthwhile study in itself, but one still should be able to indicate
how such a logic would be extended into applications, which would pass through
quantification.

At the sentential level, the ternary-relation semantics of Routley and Meyer,
culminating in their book [43], does have a somewhat bearable complexity, with its
string of semantic postulates capturing the appropriate properties of the ternary
relation R, and Priest in [39] sets out corresponding tree methods that can by-
and-large be used to determine validity or invalidity of sentential formulae. Bear
in mind that some strong relevant logics such as R and T are undecidable at the
sentential level. This result being due to Urquhart in [48], but nevertheless some
weaker relevant logics such as RW, TW, DW and DJ are decidable (see Fine [26]
and Brady [10, 11] and [15]). The undecidability for these strong logics does mean
that there is a certain inner complexity in them. (For axiomatizations of the above
logics, see Section 2.3 below.)

However, when we pass to Fine’s variable-domain semantics for quantified rele-
vant logics in [28], there is a step up in complexity mainly due to the variability of
domains from world to world. This complexity is so much so that there is a general
lack of corresponding use in the literature to determine the validity or otherwise
of quantified formulae. Further, there is also a general lack of research work into
Fine’s quantified semantics, with Mares’ addition of the identity relation and his and
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Goldblatt’s alternative semantics being the main contributions the author is aware
of. (See Mares [31] and Mares and Goldblatt [29].) Also, Priest in [40] sets out a
tree method for the quantified relevant logic BQ and its familiar relevant extensions,
and with identity, but for constant-domain semantics only. Without knowledge of
completeness for a quantified logic such as B with respect to such a semantics, this
tree method also works by-and-large, as it does for the strong sentential logics such
as R in his [39].

Furthermore, one also has the task of interpreting Fine’s semantics, leaving one
with the two questions of what a semantics for a logic ought to look like and what the
logical concepts of the connectives and quantifiers are. (More on this in Sections 3.1
and 4.1.) Recall too that Routley in [42] put forward the proposal for a constant-
domain quantified semantics, but Fine showed that the logic RQ is incomplete with
respect to this type of semantics. As far as the author is aware, this incompleteness
is still an open question for weaker relevant logics such as DW or DJ, though this
will seem doubtful when Section 3.4 is taken into account. It was at this point that
the author started to become disillusioned with the ternary semantics in general,
especially as I had spent a lot of time trying to make this constant-domain semantics
work.1 Here, I was having di�culty in establishing witnesses for existential quantifi-
cation within a domain that is constant across worlds. The author is now of the view
that in applying quantified inferential logic, the domain of quantification should be
constant. It is understandable that for quantified modal logics that possible worlds
might have di�ering domains from world to world, but this is not clear for practi-
cal non-modalized examples such as Peano arithmetic. Indeed, logical applications
generally have fixed domains of objects, such as natural numbers or sets, and one
should not have to vary such a domain when replacing classical logic by a supposedly
superior logic. Further, in any proof theory with quantification, except maybe in
a modal logic, it is understood that each quantifier is applied to the same domain,
although sub-domains can be determined by a restricting predicate. (There will be
some more on this point later in Section 4.1.)

The author’s general concern with complexity is as follows. Put oneself in the
mind of a reasoner conducting a simple inference step and ask the question: what
is the rationale or justification for the inference? Here, we are assuming that any
complexity that does occur results from the transitivity of a sequence of inferences.
One can understand if the reasoner says that he or she is preserving truth in that
the truth of the consequent or conclusion follows, given the truth of the premises
and/or antecedent. One can also understand if the reasoner says that he or she

1Indeed, this paper will sketch out the subsequent journey undertaken by the author over many
years, although not in strict historical order.
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is preserving meaning through a meaning analysis of premises and/or antecedents.
The author cannot think of any other criteria that could be going on in the mind of
such a reasoner, except perhaps a combination of both, though many systems have
been created and their semantics has been studied over the years. In the case of
a combination however, one can reduce it to single inference steps involving only
one of the two preservations. Further, such criteria need to be simple as such a
reasoner is not going to embrace much complexity in making and justifying a single
inference step. The logic governing the step would be clean and clear, based on
well-understood concepts. (There is some complexity to follow, but the reason for
it will be explained in each circumstance.)

2.2 The Lack of a Single Logical Concept Captured by the Routley–
Meyer Semantics

In a group paper Beall et al. [3], it was argued that the inferential concept captured
by the ternary relation R of the Routley–Meyer semantics was that of conditionality.
This is a broad concept intended by the above group of authors to accommodate
the various logics which can be given such a semantics and this is very inclusive,
ranging from B to R and beyond to classical logic, with very few logics missing out.
However, this does not tell us what the specific inferential concepts pertaining to
these logics are.

Len Goddard verbally made the point at the time when the Routley–Meyer
semantics was introduced in the early 1970s that the semantic postulates are just
in one-one correspondence with the axioms. Essentially, his idea was that one could
more-or-less determine the semantic postulate for a given axiom and vice versa.
What he thought was needed here was a semantics that characterised a particular
logic through a semantic rendition of a particular concept of inference.

The problem for relevant logics is that there are far too many of them and, as
such, there is a lack of definition in the concept of relevance. If we take relevance
as meaning relatedness, which is its immediately intuitive concept, this is, by itself,
not a suitable concept upon which to base a logic as it is too vague. Relevance,
as determined in its sharper form by the variable-sharing property (if A æ B is a
theorem then A and B share a sentential variable), has been taken as a necessary
condition for a good logic, but not a su�cient one, leaving a plethora of systems to
consider. The strong relevant logics such as R, satisfying this property, are based on
technical criteria such as the neatness in the presentation of their natural deduction
systems rather than on a specific logical concept. (That natural deduction systems
are more complex for logics weaker than R can be seen in Brady [6].) This lack
of concept makes application di�cult, as there needs to be some logical concept
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prior to the non-logical applied concepts so that the application can be completed
by embracing both logical and non-logical concepts.

Historically, this di�culty has borne out in a number of ways. Meyer tried to
prove that the Disjunctive Syllogism rule, ≥A, A æ B ∆ B, was admissible for
relevant arithmetic based on the logic R, but ultimately a counter-example was found
(see Meyer and Friedman [36]). This is an example of what was seen as an important
admissible rule of the logic R, not extending to arithmetic based on R. Furthermore
and more clearly, Meyer showed that the irrelevant implication, x = y æ .p ¡ p,
is derivable from the Extensionality Axiom in the form: x = y æ . x œ { x : p } ¡
y œ { x : p }, also based on R. This example shows up the di�culty of maintaining
relevance in an application, given that the variable-sharing property holds for this
form of Extensionality Axiom when applied to free variables. (See Meyer [35] and
[33] on relevant arithmetic and Brady [12] for Meyer’s example from set theory.)

So, one does need some further specification to fix upon a particular logic, which
we will consider within the following section.

2.3 The Lack of Facility to Drop the Distribution Axiom in the
Routley–Meyer Semantics

As an answer to Section 2.2 and as stated in Section 2.1, there are essentially two key
semantic concepts relating to logic, that of truth and meaning. These two concepts
can be used to provide an understanding of inferential connectives and rules. Truth-
preservation clearly applies to rules A ∆ B, these being meta-theoretic in nature
and based on the notion of a deductive argument. (See Brady [23] for discussion of
this, and also the relationship between this (classical) deduction and relevant deduc-
tion.) The material implication ∏ of classical logic is essentially truth-preservation,
expressed as a connective, as can be seen from its truth-table. Furthermore, the
relationship between the classical connective A ∏ B and the rule A ∆ B can be
seen from their deductive equivalence, assuming that the Law of Excluded Middle
(LEM), A‚≥A, and the Disjunctive Syllogism (DS), ≥A, A‚C ∆ C, both hold for
the antecedent A. (We base the deductive equivalence on the basic system Bd, which
is the logic B with the addition of the meta-rule: if A ∆ B then C ‚ A ∆ C ‚ B.)

The inferential connective associated with meaning is an entailment, represent-
ing the containment of the meaning of the consequent in that of the antecedent.
Such a logic, called MC, based on the connective æ representing meaning contain-
ment was introduced by Brady, after some tweaking which dropped the distribution
axiom from an earlier version DJd, set out in Brady [12] and [18]. The logic DJd,
was initially determined using ‘set-theoretic containment’ properties which are in
evidence in its content semantics (see below in Section 4.1 for such content seman-
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tics). This was then modified to ‘intensional set-theoretic containment’ to form the
distribution-less MC, as set out in Brady and Meinander [5], where MC was intro-
duced. The axiomatisation of MC and also its quantificational extension MCQ are
below.

Indeed, there is a strong case made in Brady and Meinander [5] for dropping the
distribution in axiom-form from such a logic, as distribution does not follow from
the standard meanings of conjunction and disjunction. Although the problem with
distribution was initially pointed out in a review of Brady [18] by Restall in [41], it
was Schroeder-Heister in [45] who made it clear to the author that the introduction
and elimination rules for conjunction and disjunction su�ced to uniquely specify
these two concepts, i.e., without the addition of distribution. (See also Schroeder-
Heister [44].)

What Schroeder-Heister showed was the following. Let & and &Õ satisfy the
introduction and elimination rules:

A B

A & B

A B

A &Õ B

A & B

A

A & B

B

A &Õ B

A

A &Õ B

B

Then: A & B

A &Õ B
and A &Õ B

A & B

Thus, A & B and A &Õ B are equivalent and can be substituted in all contexts of
the logic. The same sort of argument applies to A ‚ B and A ‚Õ B, where the
introduction and elimination rules that apply to ‚ also apply to ‚Õ. Thus, we also
have the following equivalence:

A ‚ B

A ‚Õ B

A ‚Õ B

A ‚ B

So, the introduction and elimination rules uniquely specify standard conjunction
and disjunction concepts. Anderson and Belnap in [2] indicated, for their natural
deduction systems for strong relevant logics such as R, that distribution requires a
separate rule, i.e., &‚, over and above the introduction and elimination rules for
conjunction and disjunction. The separation of this rule is also required for logics
weaker than R, as can be seen in Brady [6].

The logic MC is set out as follows:
Primitives: ≥, &, ‚, æ.
Axioms:

1. A æ A

2. A & B æ A
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3. A & B æ B

4. (A æ B) & (A æ C) æ . A æ B & C

5. A æ A ‚ B2

6. B æ A ‚ B

7. (A æ C) & (B æ C) æ . A ‚ B æ C

8. A æ ≥B æ . B æ ≥A

9. ≥≥A æ A

10. (A æ B) & (B æ C) æ . A æ C (conjunctive syllogism)

Rules:

1. A, A æ B ∆ B

2. A, B ∆ A & B

3. A æ B, C æ D ∆ B æ C æ . A æ D

Meta-rule:

1. If A, B ∆ C, then D ‚ A, D ‚ B ∆ D ‚ C

This two-premise meta-rule is deductively equivalent to the one-premise meta-
rule ‘if A ∆ B then C‚A ∆ C‚B’, together with the distribution rule ‘A&(B‚C) ∆

2Over the years, there has been some discussion as to whether A æ A ‚ B and B æ A ‚ B

should be included as axioms in a logic based on meaning containment. Indeed, Kit Fine raised
this issue in Edmonton and we exchanged a series of e-mails on this topic. The objections to these
axioms, in accordance with Analytic Implication, first introduced by Parry (see his account in [38])
and more recently taken up by Fine (see his re-publication in [27]), are based on the respective
lack of B in A and of A in B in these axioms. However, I contend that logic is a representation
of the meanings of the connectives and quantifiers and other non-logical concepts, expressed in a
logical language. This language is only a vehicle for transmitting the logical meanings and one
must thus look into the meaning of A ‚ B as an ‘either . . . or’ rather than how it is expressed
syntactically. A (alternatively B) clearly adds to the meaning of ‘either A or B’ by creating the
witness, establishing that the meaning of A ‚ B is contained within A (and within B). Further,
Lloyd Humberstone pointed out in discussion that A ¡ A & (A ‚ B) holds in MC (as originally
pointed out by Dunn) and if the right hand equivalent is substituted for the first A in A æ A ‚ B

then it becomes A & (A ‚ B) æ A ‚ B, which is then an instance of A & B æ B, which is not under
contention. This then has the e�ect of linking A æ A ‚ B with its De Morgan dual A & B æ A.
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(A&B)‚(A&C)’. Thus, distribution in rule-form still holds in MC, with the inclusion
of MR1.

For the general purposes of this paper, we extend the logic MC to MCQ with
the following quantificational additions:
Primitives: ’, ÷.
a, b, c, . . . range over free variables. x, y, z, . . . range over bound variables. Terms
s, t, u, . . . can be individual constants (when introduced) or free variables.

Quantificational Axioms:

1. ’xA æ At/x, for any term t.

2. ’x(A æ B) æ . A æ ’xB

3. At/x æ ÷xA, for any term t.

4. ’x(A æ B) æ . ÷xA æ B

Quantificational Rule:

1. Aa/x ∆ ’xA, where a is not free in A.

Meta-Rule:
1. If A, Ba/x ∆ Ca/x, then A, ÷xB ∆ ÷xC, where QR1 is not used to generalize on
any free variables occurring in the A nor in the Ba/x of the rule A, Ba/x ∆ Ca/x.
This restriction on QR1 also applies to the rule A, B ∆ C of MR1 for the sentential
component.

Note that the existential distribution rule, A & ÷xB ∆ ÷x(A & B), follows from
R2 and QMR1. However, as with intuitionist logic, the universal distribution rule,
’x(A ‚ B) ∆ A ‚ ’xB, fails, as the universal quantifier ’ and the disjunction
‚ are essentially the same for intuitionist logic as for MCQ, since they are both
constructively interpreted concepts.

Largely, the sentential distribution axiom is an add-on, except where it falls into
place in extensional contexts such as classical logics. Routley–Meyer semantics, set
in classical meta-logic, has no means at its disposal of dropping distribution, without
some further complexity, as can essentially be seen from Dunn and Allwein [1] on
linear logic.

Thus, the Routley–Meyer semantics cannot be used as it stands for the logic MC
of meaning containment. For proof theory however, the lack of distribution generally
simplifies the rules and makes results easier to prove. For the Fitch-style natural
deduction systems, which can be seen in Anderson and Belnap [2] and in Brady [6],
there is an additional distribution rule &‚, over and above the introduction and
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elimination rules for conjunction and disjunction. This rule would be removed for
a distribution-less system. For Gentzen systems, the lack of distribution usually al-
lows one to have only one structural connective instead of two, as can be seen from
Dunn’s Gentzenization of R+ in Anderson and Belnap [2], which has two structural
connectives. Compare this with Brady [13] and [14], where there is only one struc-
tural connective required in the final Gentzen systems for a range of distribution-less
contraction-less logics, with the added bonus of decidability at the quantificational
level. Thus, whilst the lack of distribution would add significant complexity to the
Routley–Meyer semantics when attempted, such a lack would considerably simplify
the standard proof theories.

So, this lack of distribution essentially puts paid to the standard ternary seman-
tics and we will need to consider other structures to provide such a semantics and
to enable invalidity of formulae and other results to be shown. Here, the structures
need not be the same as these two functions do di�er, unlike the Routley–Meyer
semantics and other semantics that attempt to play both the role of semantics and
the role of being a technical vehicle for the proof of a range of results. (There is
further discussion on this point in Section 4.3.)

3 Some Concerns about Truth-theoretic Semantics in
General

3.1 The Discrepancy in the Meanings of Disjunction and Existen-
tial Quantification

The most telling di�erentiation between proof theory and semantics is the discrep-
ancy in the meanings of disjunction and existential quantification. Both disjunction
and existential quantification are characterised by the expression ‘at least one of . . . ’,
the disjunction applying to two sentences and the existential quantification applying
to a predicate expression. The issue is whether this means that there is a witness
disjunct and a witness existential instantiation or whether there need not be such
witnesses. Note that the priming property, ‘if A ‚ B then either A or B’ requires
a disjunctive witness and the existential property, ‘if ÷xA then Aa/x, for some a’
requires an existential witness.

In standard semantics, which are all based on formula-induction, there must be
such witnesses, as seen by the Henkin-style completeness proofs where a canonical
model is built up so as to ensure that all such witnesses are in place. This is achieved
by constructing the canonical model using an enumeration of formulae and, as each
formula is selected, a decision is made on whether to admit it to the constructed
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model or not, so as to ensure each required witness is present. In his completeness
proof for the predicate calculus in [30], Henkin added existential witnesses in the
construction of maximally consistent sets based on an initial consistent set. Since
the LEM holds in classical logic, we can alternatively replace maximal consistency
(ensuring negation-completeness) with disjunctive closure, i.e., requiring that each
disjunction be witnessed by one of its disjuncts, yielding negation-completeness in
particular. Indeed, disjunctive closure occurs in the completeness proof for the
Routley–Meyer semantics, and this can be used for classical logic as well with some
additional semantic postulates. (See Chapter 4 of Routley, Meyer, Plumwood and
Brady [43].)

Fine’s semantics in [27] makes this point clearer. There, Fine uses theories
to capture conjunction and implication, whilst prime theories are used to capture
disjunction and negation. (Fine used the term ‘saturated theories’.) Thus, Fine
separated theories and prime theories in his semantics, instead of bundling them all
into worlds, which are all prime, as in the Routley–Meyer semantics. This emphasises
the fact that it is negation and disjunction that minimally require priming. The
reason negation is a�ected here is largely because of De Morgan’s Laws which relate
disjunction with conjunction through negation.

In proof theory however, there is no requirement for such witnesses. Consider
the ‚E and ÷E rules of Fitch-style natural deduction below, where a general argu-
ment to a common conclusion su�ces, whether for each disjunct or for any possible
instantiation.

‚S: If A ‚ Ba, A æ Cb and B æ Cb, then Cafib.

÷E: If ÷xAa and ’x(A æ B)b, then Bafib.

Both these rules can have a restriction on the index sets a and b, in accordance with
the particular logic involved. (See Brady [6] for details of this.) This is appropriate
as hypotheses can be disjunctive or existential, where no specification of a witness
would be required. An assumption of A ‚ B need not spell out which disjunct
applies and an assumption of ÷xA need not spell out which instantiation of x in A
applies. This is quite appropriate as A ‚ B or ÷xA can be assumptions or premises
of an argument, where it may not be part of such an assumption to name or imply a
particular disjunct or a particular existential instantiation. So, there is a discrepancy
in the meaning of disjunction and existential quantification between the semantics
and this proof theory (and other proof theories follow suit). And, it does seem overly
restrictive to insist on a witness disjunct or existential instantiation that may not
exist in many cases.

764



Some Concerns Regarding Ternary-relation Semantics . . .

It depends too on one’s view of logic here, i.e., whether logic is about arguments
from premises to conclusions or about worlds specified by formula-induction based
on atoms.

3.2 What is Logic About?

To attempt to answer this last question, we need to briefly examine the classical
account and its influence on worlds semantics. There, logic is about propositions
which are either true or false, but not both. This essentially locks in classical two-
valued logic, with its truth-tables determining the truth-values of the connectives
and hence its subsequent analyticities. It relies on a body of truths, initially taken
from the real world. Falsity is just a fall-back position for sentences that are not
true, since there is no other value they can take. Worlds are built up from atomic
propositions by using a formula-induction process, which then extends to the univer-
sal and existential quantifiers. The objects of the domain of quantification initially
consist of the existing things of the real world. As Quine said “To be is to be the
value of a bound variable.” In such a case, logic is abstracted from the real world.
However, this domain can be extended in various ways by using truth-bearers. It is
this world semantics that is taken to be the semantics of the classical predicate logic,
and extended to possible worlds by Kripke for modal logics, using binary relations
between these worlds. Then, Routley and Meyer, using ternary relations, extended
this style of semantics to include relevant implications and entailments, but impor-
tantly the worlds can be impossible as well as possible. (Initially, such worlds were
called set-ups by Routley to distinguish them from possible worlds.) And, people like
David Lewis have attempted to give some reality to possible worlds whilst Meinong
and Priest attempted to give some sort of reality to impossible worlds. Nevertheless,
such semantics is still based on worlds of a sort, which are determined using formula-
induction, based on atoms, but incorporating binary or ternary relations between
worlds, largely to capture modal and inferential concepts, whilst maintaining the
true-false dichotomy. One should note that for the Routley–Meyer semantics, the
ú-function is used, under the Australian Plan, to maintain this true-false dichotomy,
despite its negation being non-classical.

The main alternative is to take logic to be about the proof of conclusions from
premises. This broadens logic to include arguments and concepts that do not fit the
worlds picture, i.e., as considered in Section 3.1 above, they may include witness-less
disjunctions and existentials. In the case of classical worlds, before one can even pro-
ceed with a piece of reasoning, every question must have a yes-or-no answer in order
to establish the two values, truth and falsity. In most practical reasoning, not every
question is answered, though allowances are made for this in the Routley–Meyer
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semantics through the use of their ú-function but not in Kripke semantics. Never-
theless, Routley–Meyer semantics still requires each disjunction to have a witness,
and an extension of the semantics to include quantifiers over a constant domain
would still require every existential quantification to have an instantiation.

Further, a proof account does attempt to capture the logical and non-logical
concepts being dealt with in its axioms, premises and rules. However, a concept
may not be completely captured in the logical system that underspecifies it, giving
rise to negation-incompleteness. On the other hand, concepts may sometimes be
overspecified in a logical system, giving rise to contradictions, but here we generally
try to eliminate them by removing a conceptual clash or tightening up the concepts
so that they are not overspecified. (Brady [24] and [25] has some recent discussion
on this point.) This attempt to capture concepts axiomatically is, we believe, at the
heart of logic and the worlds approach is too restrictive as not all logical concepts
precisely fit the worlds picture. Indeed, most logical reasoning proceeds without all
questions being answered and without all witnesses being determined in advance.

3.3 What is the Meta-logic?

What is not generally realized is that a proof-theoretic view of logic requires one to
review the meta-logic. Firstly, the meta-logic should be the same logic as that used
for the object language, specialised to that logic which applies to formal systems.
Following on from Section 3.2, in the classical account, the meta-logic would be
classical as it is pre-determined by the nature of propositions, regardless of whether
they apply in the object theory or its meta-theory. This carries over to the Kripke
semantics for classical modal logics as well. For the Routley–Meyer semantics, even
though negation can be non-classical, the use of the Routley ú enables the meta-
theory to be two-valued in that each valuation in the semantics can only take the
values T and F. So, for such semantics as these, classical meta-logic is universally
used. Part of the reason for this too is that formalized logic is taken to be an object
of mathematical study and that mathematics uses classical logic, having done so for
at least a century. Whilst this is hard to shift, one should consider logic seriously,
for its own sake, and hence apply it in accordance with its own principles to meta-
theory and to mathematics generally, despite the fact that more work is needed in
this process.

We now consider the case where logic is about proof. Here, decidability is im-
portant for a classical meta-logic as any undecided formula would clearly amount to
a proof-gap, which would then become a truth-value-gap for the meta-logic. This
would make the meta-logic three-valued with respect to proof, given the formal sys-
tem is not contradictory regarding proofs. Such a contradiction would require a
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formula to be both provable and not provable, and we would assume this to be not
so, on the grounds that a formal system is a conceivable concept, with ‘not provable’
at least lying within the classical fall-back position of ‘non-proof’.

A decidable logical system would then have a classical two-valued meta-logic, as
each formula could be either proved or its non-proof be established as not provable.
However, a problem here is that some strong relevant logics such as R, E and T
are undecidable even at the sentential level (see Urquhart [48]). Nevertheless, the
logic DJd, which is of some related interest, is decidable at the sentential level (see
Fine [26] and Brady [15] and [16]). And, the logic MC is decidable using normalised
natural deduction, as sketched in Section 4.3, whilst its quantified logic MCQ has
good prospects for being decidable. However, this latter result is still work to be
completed.

3.4 The Deception of Completeness

Semantic completeness is deceptive in that it fails for many applied logics and holds
mainly for pure logics and, as argued in Section 2.1 above, logics need to be applied
to be worthwhile. Soundness, however, is not a problem and so we do focus on
completeness. If one considers the classical semantics for predicate logic, for example,
completeness is proved in Henkin [30]. In the application to Peano arithmetic,
assuming consistency, completeness will fail, due to Gödel’s first theorem. In order
to make such a Henkin-style completeness proof work for standard truth-theoretic
semantics for a quantified logic, one would need an infinite supply of existential
witnesses, which may not be available if one is focussed on a specific domain as
one often is for applications, where a standard model is invoked. Consider Peano
arithmetic with its standard domain of natural numbers, where one cannot add an
infinite number of witnesses that may be needed over and above the natural numbers.
That is, one cannot guarantee that a given domain is adequate for all the witnesses
needed in a completeness proof. Even for disjunctive witnesses, one may need to
add disjuncts that may be too specific for the concepts that are being captured in
some other applications. A case here would be a concept based on an unwitnessed
disjunctive property. So, logics need to be applied and completeness can quite often
fail for such applications.

To clarify this, the di�erence between pure and applied logics is that standard
models are used in applications that have domains specific to the application. Pure
logics, on the other hand, use all models that are appropriate for the generality of the
connectives and quantifiers. This then provides su�cient generality for completeness
to be proved using disjunctive and existential witnesses. Further, as we saw in
Section 2.1, there are di�culties even for the pure quantified relevant logics to be
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complete with respect to constant-domain semantics, due to this need for existential
witnesses, and constant-domain semantics is appropriate for applications generally.
This would then reduce the main completeness results to the sentential level for
such logics, which reduces their usage even further. As seen from Section 3.3 above,
decidability is important for all logics, so that they can have a classical meta-logic
and indeed this is more important than completeness that can easily fail above the
sentential level.

In operating applied systems such as arithmetic, one needs to go back to the
mathematical-style of proof, which consists of a Hilbert-style axiomatization, with
some use of natural deduction to make deductions easier and more perspicuous.
Semantical methods, such as truth-trees, are not of much value here. So, the use of
completeness is largely limited to pure logics and of major value for sentential logics
at that.

Completeness, together with soundness, enables one to say that proof theory
and semantics are di�erent representations of the logic involved. However, logic is
about capturing concepts, and proof theory and semantics do di�er conceptually
in their interpretation of disjunction and existential quantification, as argued above
in Section 3.1. Further, we favoured proof theory in Section 3.2, as truth-theoretic
semantics does not capture the connectives and quantifiers precisely, and proof-
theoretic semantics, as studied for example by Schroeder-Heister in [44] and [45],
could o�er a better capture of these concepts.

4 Concluding Directions
In conclusion, we examine two alternatives to standard semantics, followed by dis-
cussion of some proof-theoretic systems.

4.1 Content Semantics
Content semantics, as set out in Brady [12] and [18], o�ers a good capture of logical
concepts. The contents used are logical contents that are best understood as analytic
closures. One considers a sentence, engages in repeated meaning analysis of concepts
from the sentence until such a process closes, and the set of sentences thus obtained
is the analytic closure of that initial sentence. This analytic closure of the sentence
is then its logical content, which is a deductively closed set. We can then quite
reasonably use this to capture an entailment A æ B, based on meaning containment
by simply taking its content as that of the set-theoretic containment statement of
the content of the consequent B in the content of the antecedent A. However,
more recently after dropping distribution in Brady and Meinander [5], we have had
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to modify this set-theoretic containment to reflect the absence of distribution, as
argued in Section 2.3. Now, we use the term ‘intensional set-theoretic containment’
instead, in order to represent set-theoretic containment but narrowed down to reflect
the intensional meanings of conjunction, disjunction and the two quantifiers, in
particular.

We now consider the contents of the connectives and quantifiers. The content
of a conjunction of two sentences is the closure of the set-theoretic union of the two
contents. The reason the closure is needed is that the two sentences may interact
in producing conclusions that are not provable from either of the two sentences
individually. The content of a disjunction is simply the set-theoretic intersection of
their respective contents, whilst the content of an entailment is as described above.
Negations can be dealt with using the dual concept of range, related to contents
via De Morgan properties, but below we use the simpler ú-function on contents.
(Note that in Brady [18], it was seen that this ú-function relates ranges and contents
through its definition, but in the final analysis the ranges can be dropped in favour
of the ú.) The contents of the two quantifiers are similar unions and intersections
to those of conjunction and disjunction, but are set unions and intersections where
the set is controlled by the individual predicates used to generate them. We also
have to take bound variables into account. With apologies, the quantificational
extension of the content semantics is omitted which, though understandable in its
interpretation, does add quite some complexity, due to the predicates and the bound
variables. However, as discussed below and also in Section 4.3, being a semantics of
meaning rather than truth, it is not so clear cut in its determinations and hence not
so able to act as a vehicle for wide-ranging technical results.

The content semantics for the logic MC is set out as follows, as in Brady [18],
but taking into account the tweaking of the logic occurring in Brady and Meinander
[5] and the adopting of Mares’ treatment of the closed union as a content of the
set-theoretic union of two contents in his [32].3

A content model structure (c.m.s) consists of the following 4 concepts: T, C, ú, c,
where C is a set of sets (called contents), T ”= ÿ, T ™ C (the non-empty set of all true
contents), ú is a 1-place function on C (the ú-function on contents), and c is a 1-place
function from containment sentences, c1 ´ c2, and also unions c1 fi c2, concerning
contents c1 and c2 of C, to members of C, subject to the semantic postulates p1–
p15, below. The concepts fl, fi, = and ´, are taken from the background set theory,
fi and fl being a 2-place functions on C (the union and intersection of contents,

3Mares in his [32, on p. 202], expresses this union as c(c1 fi c2), where c is the same content
operator as used for c1 ´ c2 but applied to the set-theoretic union c1 fi c2. This is preferable to
the author’s treatment in [12] and [18], as it reinforces the use of standard set-theoretic concepts
within the content semantics.
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respectively), = being a 2-place relation on C (identity), and ´ being a 2-place
relation on C (content containment).

The semantic postulates are:

p1. c(c1 fi c2) ´ c1, c(c1 fi c2) ´ c2

p2. If c1 ´ c2 and c1 ´ c3, then c1 ´ c(c2 fi c3).

p3. c1 ´ c1 fl c2, c2 ´ c1 fl c2

p4. If c1 ´ c3 and c2 ´ c3, then c1 fl c2 ´ c3.

p5. cúú
1 = c1

p6. If c1 ´ c2, then cú
2 ´ cú

1.

p7. If c1 ´ c2 and c1 œ T , then c2 œ T .

p8. If c1 œ T and c2 œ T , then c(c1 fi c2) œ T .

p9. If c1 fl c2 œ T , then c1 œ T or c2 œ T .

p10. c(c(c1 ´ c2) fi c(c2 ´ c3)) ´ c(c1 ´ c3)

p11. c(c(c1 ´ c2) fi c(c1 ´ c3)) ´ c(c1 ´ c(c2 fi c3))

p12. c(c(c1 ´ c3) fi c(c2 ´ c3)) ´ c(c1 fl c2 ´ c3)

p13. c(c1 ´ c2) ´ c(cú
2 ´ cú

1)

p14. c(c1 ´ c2) œ T i� c1 ´ c2.

p15. If c1 ´ c2, then c(c3 ´ c1) ´ c(c3 ´ c2) and c(c2 ´ c3) ´ c(c1 ´ c3).

An interpretation I on a c.m.s. is an assignment, to each sentential variable, of an
element of C. An interpretation I is extended to all formulae, inductively as follows:

(i) I(≥A) = I(A)ú

(ii) I(A & B) = c(I(A) fi I(B))

(iii) I(A ‚ B) = I(A) fl I(B)

(iv) I(A æ B) = c(I(A) ´ I(B))
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A formula A is true under an interpretation I on a c.m.s. M i� I(A) œ T .
A formula A is valid in a c.m.s. M i� A is true under all interpretations I on M .
A formula A is valid in the content semantics i� A is valid in all c.m.s.

Soundness (if A is a theorem of MC then A is valid in the content semantics)
follows readily and completeness (if A is valid in the content semantics then A
is a theorem of MC) follows by the usual Lindenbaum method for algebraic-style
semantics, but here there is a slight di�erence. In constructing the canonical models,
instead of taking equivalence classes of formulae as the contents, we put the content
[A] of A as { C : A æ C œ T Õ }, where T Õ is constructed as a prime extension of the
set of theorems which does not include a non-theorem B. This essentially means that
these canonical contents are closed under entailment, i.e., they are analytic closures
of the sentence (or sentences) involved, since the set T of theorems is already prime,
due to the logic MC being metacomplete (see Section 4.2). Since entailments here
are understood as meaning containments, closure under entailment is closure under
meaning containment and hence closure under the analysis of the meanings of words.

Thus, this semantics captures the meaning of the logical concepts in that it
has transparency of concepts, shown by using the real set theoretic concepts of
union, intersection, identity and containment in setting up the semantics. With
the use of ranges to capture negation, this semantics is a “real” semantics, this
being quite di�erent from the use of semantic primitives with postulates, which
have completely general interpretations restricted only by the postulates themselves,
as occurs in the algebraic-style of content semantics in Brady [8] and [9]. Unlike
truth-theoretic semantics, this semantics requires some understanding of content
containment to work the semantics in showing invalidity (as was pointed out by
Restall in discussion). As such, it would reject the axiom-form of distribution, for
example. Further, this content semantics represents the logics MC and MCQ alone,
unlike the author’s earlier contents semantics of [8] and [9], which were quite wide-
ranging, generally applying to logics in the range from BB right through to classical
logic.

4.2 Metavaluations

Metavaluations combine features of proof theory and semantics to yield a technique
that can produce results that would be hard or impossible for a truth-theoretic
semantics to emulate. In particular, it can be used to prove the simple consistency of
Peano arithmetic using finitary methods, for a quantified version of the logic MC (see
Brady [21]). Though metavaluations are set up using truth-functions, it is essentially
a proof theory, using formula-induction without worlds to capture that part of proof
that behaves in a formula-inductive fashion. This inductive part of proof focuses on
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that part of a formula that sits between maximal entailment sub-formulae and the
whole formula in a formula tree, i.e., the technique does not enable one to access
any sub-formula inside a maximal entailment sub-formula. However, there is an
exception for negated entailments where, for the so-called M2-metavaluations (see
below), the metavaluation is essentially expressed in terms of its antecedent and its
negated consequent.

Meyer introduced metavaluations in his [34] where he showed that the metaval-
uation technique can be very generally applied to positive logics, both sentential
and quantified. However, the technique only works for certain logics once negation
is added, as shown by Slaney in [46] and [47]. Once soundness and completeness
is derived, with or without negation, such a logic is called a metacomplete logic.
Slaney in [47] introduced two types of metavaluation, M1 and M2, depending re-
spectively on whether there are no negated entailment theorems in the logic or
whether a negated entailment is a theorem if and only if its antecedent and its
negated consequent are both theorems. Indeed, the corresponding M2-logics have
A, ≥B ∆ ≥(A æ B) as a derived rule, with the converse as an admissible rule,
where for corresponding M1-logics this derived rule is absent from the logic. MC
and MCQ are M1-metacomplete logics, and as such contain no negated entailment
theorems. Thus, they are entailment-focussed logics.

Slaney’s metavaluations v and vú are as follows, with my symbolism and a slightly
simplified layout:

(i) v(p) = F ; vú(p) = T , for sentential variables p.

(ii) v(A & B) = T i� v(A) = T and v(B) = T ;
vú(A & B) = T i� vú(A) = T and vú(B) = T .

(iii) v(A ‚ B) = T i� v(A) = T or v(B) = T ;
vú(A ‚ B) = T i� vú(A) = T or vú(B) = T .

(iv) v(≥A) = T i� vú(A) = F ; vú(≥A) = T i� v(A) = F .

(v) v(A æ B) = T i� „ A æ B, if v(A) = T then v(B) = T , and if vú(A) = T
then vú(B) = T .
vú(A æ B) = T , for M1-logics.
vú(A æ B) = T i�, if v(A) = T then vú(B) = T , for M2-logics.

We add the quantificational metavaluations, as follows:

(vi) v(’xA) = T i� v(At/x) = T , for all terms t.
vú(’xA) = T i� vú(At/x) = T , for all terms t.
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(vii) v(÷xA) = T i� v(At/x) = T , for some term t.
vú(÷xA) = T i� vú(At/x) = T , for some term t.

The following key properties are then derivable (see Meyer [34] and Slaney [46]
and [47]):

Completeness: If v(A) = T then „ A, for all formulae A, and hence if vú(A) = F
then „ ≥A.
Consistency: If v(A) = T then vú(A) = T .
Soundness: If „ A then v(A) = T , and hence if „ ≥A then vú(A) = F .
Metacompleteness: „ A i� v(A) = T , and hence „ ≥A i� vú(A) = F .
Priming Property: If „ A ‚ B then „ A or „ B.
Negated Entailment Property: Not-„ ≥(A æ B) (for M1-logics);
„ ≥(A æ B) i� „ A and „ ≥B (for M2-logics).
Existential Property: If „ ÷xA then „ At/x, for some term t.

The metavaluational technique can reject some non-theorems of the stronger
metacomplete logics for which the technique applies. In particular, it can be used to
reject the LEM, A ‚ ≥A, and the Modus Ponens Axiom, A & (A æ B) æ B in the
logic MC. Still to be researched is the good prospect of further metavaluations af-
fecting negated entailments in di�erent ways, which would reject other non-theorems
in particular metacomplete logics. (This possibility is flagged in Slaney [46].) As
stated above, Peano arithmetic can be shown to be simply consistent using finitary
methods using metavalutions and this proof relies heavily on specific properties of
metavaluations that cannot be duplicated using standard truth-theoretic semantics.
(Here, in accordance with finitary methodology, mathematical induction is incorpo-
rated into the formulation of the metavaluations for the quantifiers, so as to ensure
that all universal formulae can be proved through use of mathematical induction.)
The specific properties of metacomplete logics can also be used to establish the
simple consistency of naive set theory, the proof of which uses a single transfinite
sequence of metavaluations (see Brady [22] for details).

4.3 Proof-Theoretic Methods
More familiar proof-theoretic methods include cut-free Gentzen systems and nor-
malized natural deduction systems. Both of these can take advantage of the lack of
distribution to make simplifications.

Of the three cut-free Gentzen systems set out in Brady [18, pp. 93–140], the best
one for our purposes would be the left-handed cut-free Gentzen system for the logic
DJ, which is MC + A&(B ‚C) æ (A&B)‚ (A&C) ≠ MR1, i.e., essentially adding
back the distribution axiom. Such a Gentzen system just consists of structures,
to which an initial axiom together with rules apply. As it stands, the system has
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four structural connectives, and one would expect to delete the extensional and the
corresponding k-intensional ones, with the removal of distribution as required for
MC. That would leave us with what are called the i-intensional and j-intensional
structural connectives, the i-intensional one ‘:’ being interpreted as cotenability ü,
defined as A ü B =df ≥(A æ ≥B), and the j-intensional one ‘;’ being interpreted
as fusion ‘¶’, axiomatically introduced by the two-way rule, A ¶ B æ C … A æ
. B æ C. The j-intensional connective can be inverted around the standard i-
intensional connective, much as Belnap did in his [4] paper on Display Logics, with
each derivable structure having an i-intensional connective as its main structural
connective, which serves in lieu of a turnstile. To illustrate, these inversion rules,
for structures –, — and “, are as follows (see Brady [18, p. 133]):

(Ii) – : (— : “) / (– ; —) : “ (Ij) – : (— ; “) / (“ : –) : —

Further, as stated in Brady [16, pp. 350–351], quantifiers can be added to this
Gentzen system in a fairly standard way.

However, there is a problem with proving decidability of DJ with this system in
that the rule, (CSij) (– ; —) : (– ; ”) / – : (— : ”), representing conjunctive syllogism,
is a form of contraction for the structure –, with the structures — and ” as parametric.
Though decidability of DJ has been proved in Fine [26], and in Brady [15] and [16]
by a semantic method, it remains to be proved in this setting. It should be noted
that this semantic method as it stands, cannot be used once the distribution axiom
is removed from DJ to form the logic MC.

In any case, Gentzen systems are rather stylized and are good if suitable systems
are available for the logics of interest. This leads us to our preferred proof-theoretic
method of representing the logics MC and MCQ or indeed other similar logics, that
is, by normalized natural deduction systems. This is because they would capture
reasoning most closely, roughly as it would occur in practice in closely reasoned
contexts and, due to normalisation, in a way that proceeds straight to the point of
the conclusion without detouring in and out of connectives and quantifiers. In Brady
[19], there is such a system for DW, which is DJ ≠ (A æ B) & (B æ C) æ .A æ C.
This would need further work to make it suitable for MC in not only removing
the distribution axiom but also adding conjunctive syllogism. Another version of
normalized natural deduction, called ‘Free Semantics’, appears in Brady [20], where,
in the process of establishing a semantics based on natural deduction, a normalized
version of that is given for the logic LDW, which is DW without the distribution
axiom. Here, we would need to add to the restrictions on the T æ E rule to embrace
conjunctive syllogism, i.e., we add case (iii) to T æ E (i) and (ii) below. So, in Brady
[20], the logic MC is covered as well as LDW, giving a normalised natural deduction
system for MC in the process of establishing such a “free semantics.”
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We set up the following natural deduction system MMC for the logic MC. The
system MMC is a modified natural deduction system that is set up as a preliminary
system so that normalization can then take place. MMC is somewhat simpler, but
we will subsequently indicate what is needed for this normalisation process. MMC
is taken from Brady [19], which contains a normalized natural deduction system for
the logic DW, but we make a slight simplification to remove distribution and we
also extend it to include conjunctive syllogism, yielding a system for MC. Reference
to this normalised natural deduction system is made in Brady [20], but there the
principle focus was on tableau and reductio systems for the logic LDW rather than
that for MC.

We now present the rules of MMC, which is a Fitch-style natural deduction
system, set out in the manner of Anderson and Belnap [2], but with modifications
to help pin down the structure of it to suit the logic in hand. As part of this
process, we use signed formulae TA and FA instead of a formula A, and structure
them inductively as follows.

(1) If S is a sign T or F , and A is a formula then SA is a structure.

(2) If – and — are structures then (–, —) is a structure.

Each whole structure has a single index set, which is of one of the two types: ÿ or
a complete set of natural numbers { j, . . . , k }, which is a finite set of natural numbers
in order with no numerical gaps. Structures are to be understood disjunctively and
threads of proof within a subproof are obtained by following the signed formulae
through in a particular position within a structure, just like a subproof within the
subproof. (These threads of proof are defined in detail on [19, pp. 40–42], except, to
remove distribution, one needs to remove the concept of a thread of proof extending
another thread of proof, but the linkage between the previous thread of proof and the
its continuation after the removal of these extended threads of proof remains. See
[20, p. 522] for details of this.) That is, threads act as mini-subproofs, but without
introducing a new index in the process as occurs in Anderson and Belnap [2].
Hyp. A signed formula of the form TH may be introduced as the hypothesis of a
new subproof, with a subscript { k }, where k is the depth of this new subproof in the
main proof. (Depth is defined as on p. 70 of Anderson and Belnap [2], but is called
‘rank’. Also, see Brady [7] for ‘depth relevance’.) Any hypothesis thus introduced
must subsequently be eliminated by an application of the rule T æ I below.
T æ I. From a subproof with conclusion TBa on a hypothesis TA{ k }, infer TA æ
Ba≠{ k } in its immediate superproof, where a = { j, . . . , k } and either:

(i) a ≠ { k } = ÿ with j = k = 1, or
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(ii) a ≠ { k } = { j, . . . , k ≠ 1 } with k Ø 2, 1 Æ j Æ k ≠ 1.

The conclusion and hypothesis need not be distinct in (i). In both cases, TA æ B
can also occur inside a structure, within a thread of proof.
T æ E. From TAa and TA æ Bb, infer TBafib. (Direct version) From FBa

and TA æ Bb, infer FAafib. (Contraposed version) Whilst TAa (or FBa) and its
conclusion TBafib (or FAafib) are located in a proof P , either TA æ Bb is in the
main proof or it is located in P ’s immediate superproof, in accordance with the
proviso below. T æ E carries the proviso that either:

(i) b = ÿ, in which case a fi b = a, or

(ii) a = { k }, k Ø 2, b = { j, . . . , k ≠ 1 }, 1 Æ j Æ k ≠ 1, in which case
a fi b = { j, . . . , k }, or

(iii) a = { j, . . . , k }, k Ø 2, b = { j, . . . , k ≠ 1 }, 1 Æ j Æ k ≠ 1, and hence
a fi b = { j, . . . , k }.

We say that T æ E is applied to a proof containing TA æ B into a proof containing
TA (or FB) and TB (or FA). Such applications of T æ E (ii) must be made en bloc
(into a proof) to all the signed formulae of a (whole) structure, thereby, maintaining
its common index set. However, T æ E (iii) can be subsequently applied singly, i.e.,
to a single thread of proof, with the following exception.

For T æ E (iii) to be applied for the first time into a thread of proof, it must
also be applied to its adjacent thread(s) of proof. (See F & E and T ‚ E below for
adjacent threads of proof. Also, F & E and T ‚ E can initiate further adjunct pairs
to which T æ E (iii) would also be applied in this case.) Subsequent applications
of T æ E (iii) into these threads of proof can then be made singly.

T≥I. From FAa, infer T≥Aa.

T≥E. From T≥Aa, infer FAa.

F≥I. From TAa, infer F≥Aa.

F≥E. From F≥Aa, infer TAa.

T & I. From TAa and TBa, infer TA & Ba. (all applied within the same thread)

T & E. From TA & Ba, infer TAa. From TA & Ba, infer TBa.

F & I. From FAa, infer FA & Ba. From FBa, infer FA & Ba.

F & E. From FA & Ba, infer (FAa, FBa). (introducing an adjacent pair of threads)
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T ‚ I. From TAa, infer TA ‚ Ba. From TBa, infer TA ‚ Ba.

T ‚ E. From TA ‚ Ba, infer (TAa, TBa). (introducing an adjacent pair of threads)

F ‚ I. From FAa and FBa, infer FA ‚ Ba. (all applied within the same thread)

F ‚ E. From FA ‚ Ba, infer FAa. From FA ‚ Ba, infer FBa.

, E. From SAa, SAa, infer SAa. (eliminating an adjacent pair of threads)

A formula A is a theorem of MMC i� TAÿ is provable in the main proof (with a null
index set).

To convert MMC into the normalized natural deduction system NMC, we need to
be able to contrapose an entire subproof in the process, and to do this we distinguish
T - and F -subproofs, introduce two new rules, F æ I and F æ E, which are
contraposed versions of the corresponding T æ E and T æ I rules, interchange the
signs T and F , and also interchange each thread with a corresponding strand. These
strands are introduced in a similar way to that of threads but through T & E and
F ‚E and eliminated through T &I and F ‚I. Thus, these strands are conjunctively
separated, in a similar way to the separation of threads by disjunction. (See Brady
[19] for further details about how all this is done.)

As in Brady [19], any formula instance B occurring in a normalized proof of
a formula A is a subformula of A, and the index set a of such a formula instance
B lies in a subproof whose depth, max(a), is equal to the depth of B in A. (We
take max(ÿ) to be 0 and the depth of the main proof to be 0, to make this identity
work.) Thus, using these properties, decidability can be shown for MC, as it is for
DJ in Brady [17], for DW in Brady [19] and for LDW in Brady [20]. However, the
quantificational logic MCQ still needs a normalised natural deduction system, and
this still needs to be researched.

4.4 In Conclusion

In reference to the di�ering interpretations of proof theory and semantics, as pre-
sented in Section 3.1, we conclude the discussion by considering two related pairs of
concepts that need separating: truth and meaning, on one hand, and semantics and
technical systems used for proving results, on the other.

The content semantics shows us that meaning does not need to be expressed
using truth-conditions, and this real semantics expressing the meanings of the logical
words is not necessarily ideal for the proof of results, as it may not have the sharpness
required to produce good technical results.
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Truth and meaning drive di�erent inferences: deductive inference and meaning
containment. Deductive inference preserves truth, but is represented by a rule ‘∆’,
as it concerns deduction within the formal system as a whole, whilst meaning con-
tainment is represented by a connective ‘æ’, relating two sentences. (See Brady [23]
for discussion on this.) It is instructive in this regard to examine negated inferences.
Truth-preservation can be easily falsified when the antecedent or premise is true and
the consequent or conclusion is false. It is not so easy to falsify meaning contain-
ment and there are di�erent positions one can take on this. This can be clearly
seen by considering the M1- and M2-metavaluations, where the corresponding M1-
logics have no negated entailment theorems whilst for the corresponding M2-logics
≥(A æ B) is a theorem i� A and ≥B are theorems. And, as predicted in Slaney [46],
there are likely to be other metavaluations where negated entailment theorems have
di�erent properties again. This illustrates the di�culty in pinning down meaning
containment.

The true-false dichotomy provides a sharpness which is needed for proofs of
technical results and so truth-theoretic semantics is ideal for such purposes. On
the other hand, meaning is not so clear-cut and thus real semantics is less suitable
for these technical purposes. This adds an interesting twist to the direction of this
paper, giving some value to the truth-theoretic approach to semantics.
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