1,855 research outputs found

    Enhancing volleyball training:empowering athletes and coaches through advanced sensing and analysis

    Get PDF
    Modern sensing technologies and data analysis methods usher in a new era for sports training and practice. Hidden insights can be uncovered and interactive training environments can be created by means of data analysis. We present a system to support volleyball training which makes use of Inertial Measurement Units, a pressure sensitive display floor, and machine learning techniques to automatically detect relevant behaviours and provides the user with the appropriate information. While working with trainers and amateur athletes, we also explore potential applications that are driven by automatic action recognition, that contribute various requirements to the platform. The first application is an automatic video-tagging protocol that marks key events (captured on video) based on the automatic recognition of volleyball-specific actions with an unweighted average recall of 78.71% in the 10-fold cross-validation setting with convolution neural network and 73.84% in leave-one-subject-out cross-validation setting with active data representation method using wearable sensors, as an exemplification of how dashboard and retrieval systems would work with the platform. In the context of action recognition, we have evaluated statistical functions and their transformation using active data representation besides raw signal of IMUs sensor. The second application is the “bump-set-spike” trainer, which uses automatic action recognition to provide real-time feedback about performance to steer player behaviour in volleyball, as an example of rich learning environments enabled by live action detection. In addition to describing these applications, we detail the system components and architecture and discuss the implications that our system might have for sports in general and for volleyball in particular.</p

    Multi-sensor human action recognition with particular application to tennis event-based indexing

    Get PDF
    The ability to automatically classify human actions and activities using vi- sual sensors or by analysing body worn sensor data has been an active re- search area for many years. Only recently with advancements in both fields and the ubiquitous nature of low cost sensors in our everyday lives has auto- matic human action recognition become a reality. While traditional sports coaching systems rely on manual indexing of events from a single modality, such as visual or inertial sensors, this thesis investigates the possibility of cap- turing and automatically indexing events from multimodal sensor streams. In this work, we detail a novel approach to infer human actions by fusing multimodal sensors to improve recognition accuracy. State of the art visual action recognition approaches are also investigated. Firstly we apply these action recognition detectors to basic human actions in a non-sporting con- text. We then perform action recognition to infer tennis events in a tennis court instrumented with cameras and inertial sensing infrastructure. The system proposed in this thesis can use either visual or inertial sensors to au- tomatically recognise the main tennis events during play. A complete event retrieval system is also presented to allow coaches to build advanced queries, which existing sports coaching solutions cannot facilitate, without an inordi- nate amount of manual indexing. The event retrieval interface is evaluated against a leading commercial sports coaching tool in terms of both usability and efficiency

    Hierarchical Hidden Markov Model in Detecting Activities of Daily Living in Wearable Videos for Studies of Dementia

    Get PDF
    International audienceThis paper presents a method for indexing activities of daily living in videos obtained from wearable cameras. In the context of dementia diagnosis by doctors, the videos are recorded at patients' houses and later visualized by the medical practitioners. The videos may last up to two hours, therefore a tool for an efficient navigation in terms of activities of interest is crucial for the doctors. The specific recording mode provides video data which are really difficult, being a single sequence shot where strong motion and sharp lighting changes often appear. Our work introduces an automatic motion based segmentation of the video and a video structuring approach in terms of activities by a hierarchical two-level Hidden Markov Model. We define our description space over motion and visual characteristics of video and audio channels. Experiments on real data obtained from the recording at home of several patients show the difficulty of the task and the promising results of our approach

    Semantic Restructuring of Natural Language Image Captions to Enhance Image Retrieval

    Get PDF
    semantic, multimedia,information retrievalsemantic, multimedia,information retrievalsemantic, multimedia,information retrievalsemantic, multimedia,information retrieva

    Multimedia Retrieval

    Get PDF

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate

    Browse-to-search

    Full text link
    This demonstration presents a novel interactive online shopping application based on visual search technologies. When users want to buy something on a shopping site, they usually have the requirement of looking for related information from other web sites. Therefore users need to switch between the web page being browsed and other websites that provide search results. The proposed application enables users to naturally search products of interest when they browse a web page, and make their even causal purchase intent easily satisfied. The interactive shopping experience is characterized by: 1) in session - it allows users to specify the purchase intent in the browsing session, instead of leaving the current page and navigating to other websites; 2) in context - -the browsed web page provides implicit context information which helps infer user purchase preferences; 3) in focus - users easily specify their search interest using gesture on touch devices and do not need to formulate queries in search box; 4) natural-gesture inputs and visual-based search provides users a natural shopping experience. The system is evaluated against a data set consisting of several millions commercial product images. © 2012 Authors
    corecore