7,189 research outputs found

    Finger Vein Template Protection with Directional Bloom Filter

    Get PDF
    Biometrics has become a widely accepted solution for secure user authentication. However, the use of biometric traits raises serious concerns about the protection of personal data and privacy. Traditional biometric systems are vulnerable to attacks due to the storage of original biometric data in the system. Because biometric data cannot be changed once it has been compromised, the use of a biometric system is limited by the security of its template. To protect biometric templates, this paper proposes the use of directional bloom filters as a cancellable biometric approach to transform the biometric data into a non-invertible template for user authentication purposes. Recently, Bloom filter has been used for template protection due to its efficiency with small template size, alignment invariance, and irreversibility. Directional Bloom Filter improves on the original bloom filter. It generates hash vectors with directional subblocks rather than only a single-column subblock in the original bloom filter. Besides, we make use of multiple fingers to generate a biometric template, which is termed multi-instance biometrics. It helps to improve the performance of the method by providing more information through the use of multiple fingers. The proposed method is tested on three public datasets and achieves an equal error rate (EER) as low as 5.28% in the stolen or constant key scenario. Analysis shows that the proposed method meets the four properties of biometric template protection. Doi: 10.28991/HIJ-2023-04-02-013 Full Text: PD

    Handbook of Vascular Biometrics

    Get PDF

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Visible, near infrared and thermal hand-based image biometric recognition

    Get PDF
    Biometric Recognition refers to the automatic identification of a person based on his or her anatomical characteristic or modality (i.e., fingerprint, palmprint, face) or behavioural (i.e., signature) characteristic. It is a fundamental key issue in any process concerned with security, shared resources, network transactions among many others. Arises as a fundamental problem widely known as recognition, and becomes a must step before permission is granted. It is supposed that protects key resources by only allowing those resources to be used by users that have been granted authority to use or to have access to them. Biometric systems can operate in verification mode, where the question to be solved is Am I who I claim I am? or in identification mode where the question is Who am I? Scientific community has increased its efforts in order to improve performance of biometric systems. Depending on the application many solutions go in the way of working with several modalities or combining different classification methods. Since increasing modalities require some user inconvenience many of these approaches will never reach the market. For example working with iris, face and fingerprints requires some user effort in order to help acquisition. This thesis addresses hand-based biometric system in a thorough way. The main contributions are in the direction of a new multi-spectral hand-based image database and methods for performance improvement. The main contributions are: A) The first multi-spectral hand-based image database from both hand faces: palmar and dorsal. Biometric database are a precious commodity for research, mainly when it offers something new like visual (VIS), near infrared (NIR) and thermography (TIR) images at a time. This database with a length of 100 users and 10 samples per user constitute a good starting point to check algorithms and hand suitability for recognition. B) In order to correctly deal with raw hand data, some image preprocessing steps are necessary. Three different segmentation phases are deployed to deal with VIS, NIR and TIR images specifically. Some of the tough questions to address: overexposed images, ring fingers and the cuffs, cold finger and noise image. Once image segmented, two different approaches are prepared to deal with the segmented data. These two approaches called: Holistic and Geometric define the main focus to extract the feature vector. These feature vectors can be used alone or can be combined in some way. Many questions can be stated: e.g. which approach is better for recognition?, Can fingers alone obtain better performance than the whole hand? and Is thermography hand information suitable for recognition due to its thermoregulation properties? A complete set of data ready to analyse, coming from the holistic and geometric approach have been designed and saved to test. Some innovative geometric approach related to curvature will be demonstrated. C) Finally the Biometric Dispersion Matcher (BDM) is used in order to explore how it works under different fusion schemes, as well as with different classification methods. It is the intention of this research to contrast what happen when using other methods close to BDM like Linear Discriminant Analysis (LDA). At this point, some interesting questions will be solved, e.g. by taking advantage of the finger segmentation (as five different modalities) to figure out if they can outperform what the whole hand data can teach us.El Reconeixement Biomètric fa referència a la identi cació automàtica de persones fent us d'alguna característica o modalitat anatòmica (empremta digital) o d'alguna característica de comportament (signatura). És un aspecte fonamental en qualsevol procés relacionat amb la seguretat, la compartició de recursos o les transaccions electròniques entre d'altres. És converteix en un pas imprescindible abans de concedir l'autorització. Aquesta autorització, s'entén que protegeix recursos clau, permeten així, que aquests siguin utilitzats pels usuaris que han estat autoritzats a utilitzar-los o a tenir-hi accés. Els sistemes biomètrics poden funcionar en veri cació, on es resol la pregunta: Soc jo qui dic que soc? O en identi cació on es resol la qüestió: Qui soc jo? La comunitat cientí ca ha incrementat els seus esforços per millorar el rendiment dels sistemes biomètrics. En funció de l'aplicació, diverses solucions s'adrecen a treballar amb múltiples modalitats o combinant diferents mètodes de classi cació. Donat que incrementar el número de modalitats, representa a la vegada problemes pels usuaris, moltes d'aquestes aproximacions no arriben mai al mercat. La tesis contribueix principalment en tres grans àrees, totes elles amb el denominador comú següent: Reconeixement biometric a través de les mans. i) La primera d'elles constitueix la base de qualsevol estudi, les dades. Per poder interpretar, i establir un sistema de reconeixement biomètric prou robust amb un clar enfocament a múltiples fonts d'informació, però amb el mínim esforç per part de l'usuari es construeix aquesta Base de Dades de mans multi espectral. Les bases de dades biomètriques constitueixen un recurs molt preuat per a la recerca; sobretot si ofereixen algun element nou com es el cas. Imatges de mans en diferents espectres electromagnètics: en visible (VIS), en infraroig (NIR) i en tèrmic (TIR). Amb un total de 100 usuaris, i 10 mostres per usuari, constitueix un bon punt de partida per estudiar i posar a prova sistemes multi biomètrics enfocats a les mans. ii) El segon bloc s'adreça a les dues aproximacions existents en la literatura per a tractar les dades en brut. Aquestes dues aproximacions, anomenades Holística (tracta la imatge com un tot) i Geomètrica (utilitza càlculs geomètrics) de neixen el focus alhora d'extreure el vector de característiques. Abans de tractar alguna d'aquestes dues aproximacions, però, és necessària l'aplicació de diferents tècniques de preprocessat digital de la imatge per obtenir les regions d'interès desitjades. Diferents problemes presents a les imatges s'han hagut de solucionar de forma original per a cadascuna de les tipologies de les imatges presents: VIS, NIR i TIR. VIS: imatges sobre exposades, anells, mànigues, braçalets. NIR: Ungles pintades, distorsió en forma de soroll en les imatges TIR: Dits freds La segona àrea presenta aspectes innovadors, ja que a part de segmentar la imatge de la ma, es segmenten tots i cadascun dels dits (feature-based approach). Així aconseguim contrastar la seva capacitat de reconeixement envers la ma de forma completa. Addicionalment es presenta un conjunt de procediments geomètrics amb la idea de comparar-los amb els provinents de l'extracció holística. La tercera i última àrea contrasta el procediment de classi cació anomenat Biometric Dispersion Matcher (BDM) amb diferents situacions. La primera relacionada amb l'efectivitat respecte d'altres mètode de reconeixement, com ara l'Anàlisi Lineal Discriminant (LDA) o bé mètodes com KNN o la regressió logística. Les altres situacions que s'analitzen tenen a veure amb múltiples fonts d'informació, quan s'apliquen tècniques de normalització i/o estratègies de combinació (fusió) per millorar els resultats. Els resultats obtinguts no deixen lloc per a la confusió, i són certament prometedors en el sentit que posen a la llum la importància de combinar informació complementària per obtenir rendiments superiors

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper
    • …
    corecore