108 research outputs found

    物理複製不能関数における安全性の評価と向上に関する研究

    Get PDF
    In this thesis, we focus on Physically Unclonable Functions (PUFs), which are expected as one of the most promising cryptographic primitives for secure chip authentication. Generally, PUFbased authentication is achieved by two approaches: (A) using a PUF itself, which has multiple challenge (input) and response (output) pairs, or (B) using a cryptographic function, the secret key of which is generated from a PUF with a single challenge-response pair (CRP). We contribute to:(1) evaluate the security of Approach (A), and (2) improve the security of Approach (B). (1) Arbiter-based PUFs were the most feasible type of PUFs, which was used to construct Approach (A). However, Arbiter-based PUFs have a vulnerability; if an attacker knows some CRPs, she/he can predict the remaining unknown CRPs with high probability. Bistable Ring PUF (BR-PUF) was proposed as an alternative, but has not been evaluated by third parties. In this thesis, in order to construct Approach (A) securely, we evaluate the difficulty of predicting responses of a BR-PUF experimentally. As a result, the same responses are frequently generated for two challenges with small Hamming distance. Also, particular bits of challenges have a great impact on the responses. In conclusion, BR-PUFs are not suitable for achieving Approach (A)securely. In future work, we should discuss an alternative PUF suitable for secure Approach (A).(2) In order to achieve Approach (B) securely, a secret key ? generated from a PUF response?should have high entropy. We propose a novel method of extracting high entropy from PUF responses. The core idea is to effectively utilize the information on the proportion of ‘1’s including in repeatedly-measured PUF responses. We evaluate its effectiveness by fabricated test chips. As a result, the extracted entropy is about 1.72 times as large as that without the proposed method.Finally, we organize newly gained knowledge in this thesis, and discuss a new application of PUF-based technologies.電気通信大学201

    A Survey of hardware protection of design data for integrated circuits and intellectual properties

    No full text
    International audienceThis paper reviews the current situation regarding design protection in the microelectronics industry. Over the past ten years, the designers of integrated circuits and intellectual properties have faced increasing threats including counterfeiting, reverse-engineering and theft. This is now a critical issue for the microelectronics industry, mainly for fabless designers and intellectual properties designers. Coupled with increasing pressure to decrease the cost and increase the performance of integrated circuits, the design of a secure, efficient, lightweight protection scheme for design data is a serious challenge for the hardware security community. However, several published works propose different ways to protect design data including functional locking, hardware obfuscation, and IC/IP identification. This paper presents a survey of academic research on the protection of design data. It concludes with the need to design an efficient protection scheme based on several properties

    A survey on security analysis of machine learning-oriented hardware and software intellectual property

    Get PDF
    Intellectual Property (IP) includes ideas, innovations, methodologies, works of authorship (viz., literary and artistic works), emblems, brands, images, etc. This property is intangible since it is pertinent to the human intellect. Therefore, IP entities are indisputably vulnerable to infringements and modifications without the owner’s consent. IP protection regulations have been deployed and are still in practice, including patents, copyrights, contracts, trademarks, trade secrets, etc., to address these challenges. Unfortunately, these protections are insufficient to keep IP entities from being changed or stolen without permission. As for this, some IPs require hardware IP protection mechanisms, and others require software IP protection techniques. To secure these IPs, researchers have explored the domain of Intellectual Property Protection (IPP) using different approaches. In this paper, we discuss the existing IP rights and concurrent breakthroughs in the field of IPP research; provide discussions on hardware IP and software IP attacks and defense techniques; summarize different applications of IP protection; and lastly, identify the challenges and future research prospects in hardware and software IP security

    Design, Fabrication, and Run-time Strategies for Hardware-Assisted Security

    Get PDF
    Today, electronic computing devices are critically involved in our daily lives, basic infrastructure, and national defense systems. With the growing number of threats against them, hardware-based security features offer the best chance for building secure and trustworthy cyber systems. In this dissertation, we investigate ways of making hardware-based security into a reality with primary focus on two areas: Hardware Trojan Detection and Physically Unclonable Functions (PUFs). Hardware Trojans are malicious modifications made to original IC designs or layouts that can jeopardize the integrity of hardware and software platforms. Since most modern systems critically depend on ICs, detection of hardware Trojans has garnered significant interest in academia, industry, as well as governmental agencies. The majority of existing detection schemes focus on test-time because of the limited hardware resources available at run-time. In this dissertation, we explore innovative run-time solutions that utilize on-chip thermal sensor measurements and fundamental estimation/detection theory to expose changes in IC power/thermal profile caused by Trojan activation. The proposed solutions are low overhead and also generalizable to many other sensing modalities and problem instances. Simulation results using state-of-the-art tools on publicly available Trojan benchmarks verify that our approaches can detect Trojans quickly and with few false positives. Physically Unclonable Functions (PUFs) are circuits that rely on IC fabrication variations to generate unique signatures for various security applications such as IC authentication, anti-counterfeiting, cryptographic key generation, and tamper resistance. While the existence of variations has been well exploited in PUF design, knowledge of exactly how variations come into existence has largely been ignored. Yet, for several decades the Design-for-Manufacturability (DFM) community has actually investigated the fundamental sources of these variations. Furthermore, since manufacturing variations are often harmful to IC yield, the existing DFM tools have been geared towards suppressing them (counter-intuitive for PUFs). In this dissertation, we make several improvements over current state-of-the-art work in PUFs. First, our approaches exploit existing DFM models to improve PUFs at physical layout and mask generation levels. Second, our proposed algorithms reverse the role of standard DFM tools and extend them towards improving PUF quality without harming non-PUF portions of the IC. Finally, since our approaches occur after design and before fabrication, they are applicable to all types of PUFs and have little overhead in terms of area, power, etc. The innovative and unconventional techniques presented in this dissertation should act as important building blocks for future work in cyber security

    Hardware Intellectual Property Protection Through Obfuscation Methods

    Get PDF
    Security is a growing concern in the hardware design world. At all stages of the Integrated Circuit (IC) lifecycle there are attacks which threaten to compromise the integrity of the design through piracy, reverse engineering, hardware Trojan insertion, physical attacks, and other side channel attacks — among other threats. Some of the most notable challenges in this field deal specifically with Intellectual Property (IP) theft and reverse engineering attacks. The IP being attacked can be ICs themselves, circuit designs making up those larger ICs, or configuration information for the devices like Field Programmable Gate Arrays (FPGAs). Custom or proprietary cryptographic components may require specific protections, as successfully attacking those could compromise the security of other aspects of the system. One method by which these concerns can be addressed is by introducing hardware obfuscation to the design in various forms. These methods of obfuscation must be evaluated for effectiveness and continually improved upon in order to match the growing concerns in this area. Several different forms of netlist-level hardware obfuscation were analyzed, on standard benchmarking circuits as well as on two substitution boxes from block ciphers. These obfuscation methods were attacked using a satisfiability (SAT) attack, which is able to iteratively rule out classes of keys at once and has been shown to be very effective against many forms of hardware obfuscation. It was ultimately shown that substitution boxes were naturally harder to break than the standard benchmarks using this attack, but some obfuscation methods still have substantially more security than others. The method which increased the difficulty of the attack the most was one which introduced a modified SIMON block cipher as a One-way Random Function (ORF) to be used for key generation. For a substitution box obfuscated in this way, the attack was found to be completely unsuccessful within a five-day window with a severely round-reduced implementation of SIMON and only a 32-bit obfuscation key

    FPGA-Based PUF Designs: A Comprehensive Review and Comparative Analysis

    Get PDF
    Field-programmable gate arrays (FPGAs) have firmly established themselves as dynamic platforms for the implementation of physical unclonable functions (PUFs). Their intrinsic reconfigurability and profound implications for enhancing hardware security make them an invaluable asset in this realm. This groundbreaking study not only dives deep into the universe of FPGA-based PUF designs but also offers a comprehensive overview coupled with a discerning comparative analysis. PUFs are the bedrock of device authentication and key generation and the fortification of secure cryptographic protocols. Unleashing the potential of FPGA technology expands the horizons of PUF integration across diverse hardware systems. We set out to understand the fundamental ideas behind PUF and how crucially important it is to current security paradigms. Different FPGA-based PUF solutions, including static, dynamic, and hybrid systems, are closely examined. Each design paradigm is painstakingly examined to reveal its special qualities, functional nuances, and weaknesses. We closely assess a variety of performance metrics, including those related to distinctiveness, reliability, and resilience against hostile threats. We compare various FPGA-based PUF systems against one another to expose their unique advantages and disadvantages. This study provides system designers and security professionals with the crucial information they need to choose the best PUF design for their particular applications. Our paper provides a comprehensive view of the functionality, security capabilities, and prospective applications of FPGA-based PUF systems. The depth of knowledge gained from this research advances the field of hardware security, enabling security practitioners, researchers, and designers to make wise decisions when deciding on and implementing FPGA-based PUF solutions.publishedVersio
    corecore