130 research outputs found

    Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats

    Full text link
    Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.Comment: ACM Computing Surveys, 2022, 35 pages, 10 Figures, 8 Table

    Privacy Preservation Intrusion Detection Technique for SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems face the absence of a protection technique that can beat different types of intrusions and protect the data from disclosure while handling this data using other applications, specifically Intrusion Detection System (IDS). The SCADA system can manage the critical infrastructure of industrial control environments. Protecting sensitive information is a difficult task to achieve in reality with the connection of physical and digital systems. Hence, privacy preservation techniques have become effective in order to protect sensitive/private information and to detect malicious activities, but they are not accurate in terms of error detection, sensitivity percentage of data disclosure. In this paper, we propose a new Privacy Preservation Intrusion Detection (PPID) technique based on the correlation coefficient and Expectation Maximisation (EM) clustering mechanisms for selecting important portions of data and recognizing intrusive events. This technique is evaluated on the power system datasets for multiclass attacks to measure its reliability for detecting suspicious activities. The experimental results outperform three techniques in the above terms, showing the efficiency and effectiveness of the proposed technique to be utilized for current SCADA systems

    Intrusion Detection in Industrial Networks via Data Streaming

    Get PDF
    Given the increasing threat surface of industrial networks due to distributed, Internet-of-Things (IoT) based system architectures, detecting intrusions in\ua0 Industrial IoT (IIoT) systems is all the more important, due to the safety implications of potential threats. The continuously generated data in such systems form both a challenge but also a possibility: data volumes/rates are high and require processing and communication capacity but they contain information useful for system operation and for detection of unwanted situations.In this chapter we explain that\ua0 stream processing (a.k.a. data streaming) is an emerging useful approach both for general applications and for intrusion detection in particular, especially since it can enable data analysis to be carried out in the continuum of edge-fog-cloud distributed architectures of industrial networks, thus reducing communication latency and gradually filtering and aggregating data volumes. We argue that usefulness stems also due to\ua0 facilitating provisioning of agile responses, i.e. due to potentially smaller latency for intrusion detection and hence also improved possibilities for intrusion mitigation. In the chapter we outline architectural features of IIoT networks, potential threats and examples of state-of-the art intrusion detection methodologies. Moreover, we give an overview of how leveraging distributed and parallel execution of streaming applications in industrial setups can influence the possibilities of protecting these systems. In these contexts, we give examples using electricity networks (a.k.a. Smart Grid systems).We conclude that future industrial networks, especially their Intrusion Detection Systems (IDSs), should take advantage of data streaming concept by decoupling semantics from the deployment

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade's Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade’s Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods

    Get PDF
    Over the last five years there has been an increase in the frequency and diversity of network attacks. This holds true, as more and more organisations admit compromises on a daily basis. Many misuse and anomaly based Intrusion Detection Systems (IDSs) that rely on either signatures, supervised or statistical methods have been proposed in the literature, but their trustworthiness is debatable. Moreover, as this work uncovers, the current IDSs are based on obsolete attack classes that do not reflect the current attack trends. For these reasons, this paper provides a comprehensive overview of unsupervised and hybrid methods for intrusion detection, discussing their potential in the domain. We also present and highlight the importance of feature engineering techniques that have been proposed for intrusion detection. Furthermore, we discuss that current IDSs should evolve from simple detection to correlation and attribution. We descant how IDS data could be used to reconstruct and correlate attacks to identify attackers, with the use of advanced data analytics techniques. Finally, we argue how the present IDS attack classes can be extended to match the modern attacks and propose three new classes regarding the outgoing network communicatio

    Importance of Machine Learning Techniques to Improve the Open Source Intrusion Detection Systems

    Get PDF
    Nowadays, it became difficult to ensure data security because of the rapid development of information technology according to the Vs of Big Data. To secure a network against malicious activities and to ensure data protection, an intrusion detection system played a very important role. The main objective was to obtain a high-performance solution capable of detecting different types of attacks around the system. The main aim of this paper is to study the lacks of traditional and open source Intrusion Detection Systems and the Machine Learning techniques commonly used to overcome these lacks. A comparison of some existing works by Intrusion Detection System type, detection method, algorithm and accuracy was provided

    A critical review of intrusion detection systems in the internet of things : techniques, deployment strategy, validation strategy, attacks, public datasets and challenges

    Get PDF
    The Internet of Things (IoT) has been rapidly evolving towards making a greater impact on everyday life to large industrial systems. Unfortunately, this has attracted the attention of cybercriminals who made IoT a target of malicious activities, opening the door to a possible attack on the end nodes. To this end, Numerous IoT intrusion detection Systems (IDS) have been proposed in the literature to tackle attacks on the IoT ecosystem, which can be broadly classified based on detection technique, validation strategy, and deployment strategy. This survey paper presents a comprehensive review of contemporary IoT IDS and an overview of techniques, deployment Strategy, validation strategy and datasets that are commonly applied for building IDS. We also review how existing IoT IDS detect intrusive attacks and secure communications on the IoT. It also presents the classification of IoT attacks and discusses future research challenges to counter such IoT attacks to make IoT more secure. These purposes help IoT security researchers by uniting, contrasting, and compiling scattered research efforts. Consequently, we provide a unique IoT IDS taxonomy, which sheds light on IoT IDS techniques, their advantages and disadvantages, IoT attacks that exploit IoT communication systems, corresponding advanced IDS and detection capabilities to detect IoT attacks. © 2021, The Author(s)
    • …
    corecore