224 research outputs found

    Automated Reasoning over Deontic Action Logics with Finite Vocabularies

    Full text link
    In this paper we investigate further the tableaux system for a deontic action logic we presented in previous work. This tableaux system uses atoms (of a given boolean algebra of action terms) as labels of formulae, this allows us to embrace parallel execution of actions and action complement, two action operators that may present difficulties in their treatment. One of the restrictions of this logic is that it uses vocabularies with a finite number of actions. In this article we prove that this restriction does not affect the coherence of the deduction system; in other words, we prove that the system is complete with respect to language extension. We also study the computational complexity of this extended deductive framework and we prove that the complexity of this system is in PSPACE, which is an improvement with respect to related systems.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Harnessing Higher-Order (Meta-)Logic to Represent and Reason with Complex Ethical Theories

    Get PDF
    The computer-mechanization of an ambitious explicit ethical theory, Gewirth's Principle of Generic Consistency, is used to showcase an approach for representing and reasoning with ethical theories exhibiting complex logical features like alethic and deontic modalities, indexicals, higher-order quantification, among others. Harnessing the high expressive power of Church's type theory as a meta-logic to semantically embed a combination of quantified non-classical logics, our work pushes existing boundaries in knowledge representation and reasoning. We demonstrate that intuitive encodings of complex ethical theories and their automation on the computer are no longer antipodes.Comment: 14 page

    Cut-free Calculi and Relational Semantics for Temporal STIT Logics

    Get PDF
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames

    Temporal Alethic Dyadic Deontic Logic and the Contrary-to-Duty Obligation Paradox

    Get PDF
    A contrary-to-duty obligation (sometimes called a reparational duty) is a conditional obligation where the condition is forbidden, e.g. “if you have hurt your friend, you should apologise”, “if he is guilty, he should confess”, and “if she will not keep her promise to you, she ought to call you”. It has proven very difficult to find plausible formalisations of such obligations in most deontic systems. In this paper, we will introduce and explore a set of temporal alethic dyadic deontic systems, i.e., systems that include temporal, alethic and dyadic deontic operators. We will then show how it is possible to use our formal apparatus to symbolise contrary-to-duty obligations and to solve the so-called contrary-to-duty (obligation) paradox, a problem well known in deontic logic. We will argue that this response to the puzzle has many attractive features. Semantic tableaux are used to characterise our systems proof theoretically and a kind of possible world semantics, inspired by the so-called T× W semantics, to characterise them semantically. Our models contain several different accessibility relations and a preference relation between possible worlds, which are used in the definitions of the truth conditions for the various operators. Soundness results are obtained for every tableau system and completeness results for a subclass of them

    Quantified temporal alethic-deontic logic

    Get PDF
    The purpose of this paper is to describe a set of quantified temporal alethic-deontic systems, i.e., systems that combine temporal alethicdeontic logic with predicate logic. We consider three basic kinds of systems: constant, variable and constant and variable domain systems. These systems can be augmented by either necessary or contingent identity, and every system that includes identity can be combined with descriptors. All logics are described both semantically and proof theoretically. We use a kind of possible world semantics, inspired by the so-called T Ă— W semantics, to characterize them semantically and semantic tableaux to characterize them proof theoretically. We also show that all systems are sound and complete with respect to their semantics

    Encapsulating deontic and branching time specifications

    Get PDF
    In this paper, we investigate formal mechanisms to enable designers to decompose specifications (stated in a given logic) into several interacting components in such a way that the composition of these components preserves their encapsulation and internal non-determinism. The preservation of encapsulation (or locality) enables a modular form of reasoning over specifications, while the conservation of the internal non-determinism is important to guarantee that the branching time properties of components are not lost when the entire system is obtained. The basic ideas come from the work of Fiadeiro and Maibaum where notions from category theory are used to structure logical specifications. As the work of Fiadeiro and Maibaum is stated in a linear temporal logic, here we investigate how to extend these notions to a branching time logic, which can be used to reason about systems where non-determinism is present. To illustrate the practical applications of these ideas, we introduce deontic operators in our logic and we show that the modularization of specifications also allows designers to maintain the encapsulation of deontic prescriptions; this is in particular useful to reason about fault-tolerant systems, as we demonstrate with a small example.Fil: Castro, Pablo Francisco. Universidad Nacional de RĂ­o Cuarto; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Maibaum, Thomas S. E.. Mc Master University; Canad
    • …
    corecore