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TEMPORAL ALETHIC DYADIC DEONTIC
LOGIC AND THE CONTRARY-TO-DUTY

OBLIGATION PARADOX

Abstract. A contrary-to-duty obligation (sometimes called a reparational
duty) is a conditional obligation where the condition is forbidden, e.g. “if
you have hurt your friend, you should apologise”, “if he is guilty, he should
confess”, and “if she will not keep her promise to you, she ought to call
you”. It has proven very difficult to find plausible formalisations of such
obligations in most deontic systems. In this paper, we will introduce and
explore a set of temporal alethic dyadic deontic systems, i.e., systems that
include temporal, alethic and dyadic deontic operators. We will then show
how it is possible to use our formal apparatus to symbolise contrary-to-duty
obligations and to solve the so-called contrary-to-duty (obligation) paradox,
a problem well known in deontic logic. We will argue that this response to
the puzzle has many attractive features. Semantic tableaux are used to
characterise our systems proof theoretically and a kind of possible world
semantics, inspired by the so-called T × W semantics, to characterise them
semantically. Our models contain several different accessibility relations
and a preference relation between possible worlds, which are used in the
definitions of the truth conditions for the various operators. Soundness
results are obtained for every tableau system and completeness results for
a subclass of them.

Keywords: T × W logics; temporal logic; modal logic; dyadic deontic logic;
semantic tableaux; conditional norms; contrary-to-duty obligations, the
contrary-to-duty (obligation) paradox

1. Introduction

This paper will introduce and explore a set of temporal alethic dyadic
deontic systems, i.e., systems that include temporal, alethic and dyadic
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deontic operators. Semantic tableaux (see Section 4) are used to char-
acterise our systems proof theoretically and a kind of possible world
semantics, inspired by the so-called T × W semantics (see Section 3),
to characterise them semantically. Our models contain several different
accessibility relations and a preference relation between possible worlds,
which are used in the definitions of the truth conditions for the various
operators. Soundness results are obtained for every tableau system and
completeness results for a subclass of them.

The systems developed in this essay are modifications and extensions
of the dyadic deontic systems and temporal alethic-deontic systems in-
troduced by Rönnedal [43] and Rönnedal [44]. (See also Rönnedal [46].)
The task of combining these systems is not trivial for several reasons.
Firstly, if we want to obtain logics that are philosophically plausible, we
have to add an alethic accessibility relation to our frames and models,
an accessibility relation that is relativised to moments in time. In other
words, the alethic accessibility relation is a ternary relation. A possible
world ω′ might be accessible from a possible world ω at time τ , even
though ω′ is not accessible from ω at time τ ′. This accessibility relation
plays an important part in the formulation of the alternative truth con-
ditions for the various normative sentences introduced in Section 3.1.3.
[43] does not include any alethic accessibility relation. Secondly, in our
so-called supplemented frames and models, we relativise our preference
relation between possible worlds to possible worlds; i.e., our preference
relation between possible worlds is treated as a ternary relation in this
paper, not as a binary relation as in [43]. The reason for this is connected
to the fact that we do not assume that every possible world is alethi-
cally accessible from every possible world (at every moment of time) (see
Section 3.2.3). Thirdly, we must modify some semantic conditions (e.g.
Cα3 , C-Dα3 in this paper) and tableau rules (e.g. Tα3 , T -Dα3 in this
paper) introduced by [43] and [44]; we have to delete some semantic con-
ditions (e.g. Ca6 ) and also add some new conditions (e.g. C-Dδ6 ) and
rules (e.g. T -DMO) to our systems (sections 3 and 4). In addition, we
consider some tableau rules that do not have any counterparts in [43], [44]
or [46] (T -Dd4 , T -Dd5 , T -Dd7 , T -Dad4 , T -Dad5 ) and we prove several
interesting theorems. We can, for example, show that all of the following
conditional obligations are equivalent in some systems (see Section 5):
O[A]B, O(A → B), and A → OB, given that A is “non-future”. Nothing
similar can be proved in the dyadic deontic systems in [43]. Furthermore,
in this paper we explore how the so-called ordinary (unsupplemented)
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models are related to the so-called supplemented models (see Theorem
1) in detail; some relationships of this kind were only hinted at in [43].
Therefore, the results in this paper are logically interesting.

Sven Danielsson [20], Bengt Hansson [28], Bas van Fraassen [54, 55],
David Lewis [34, 35], Frans von Kutschera [56], Lennart Åqvist [61, 62,
64], Nicholas Rescher [41] and Georg Henrik von Wright [58] are some
of the pioneers in dyadic deontic logic. Many of the systems introduced
by these logicians are included in our temporal alethic dyadic deontic
systems (see [43], Theorems 17 and 18, for more information about this1).

Several philosophers and logicians have developed logical systems
that deal with various combinations of the conditions governing tempo-
ral, alethic and deontic elements (e.g. Chellas [14], Bailhache [3, 4, 5, 6],
van Eck [51], Thomason [48, 49], Åqvist and Hoepelman [68], Åqvist [67],
Bartha [7], Horty [30], Belnap, Perloff and Xu [8], Brown [9, 10, 11]).
However, as far as we know, no one has developed any tableau systems
of the kind introduced in this paper. All of the systems in this essay are
entirely new.

Many temporal alethic-deontic logicians use an axiomatic proof the-
ory; semantically, they describe some kind of tree-like structure. An
early contribution to this tradition is Prior [40]. In this paper, we use
semantic tableaux instead.

Other works that deal with combinations of tense and modality in-
clude Ciuni and Zanardo [17], DiMaio and Zanardo [21], von Kutschera
[57], Zanardo [60], Åqvist [65] and Wölfl [59]. For some informal philo-
sophical reflections, see e.g. [1] and [22]. For more information on various
mono-modal systems and on how to combine different systems, see e.g.
[4, 5, 6], [12], [15], [26, 27], [32], [42], [63].

Roughly, temporal alethic-deontic logicians have used three kinds of
semantics: T × W semantics (e.g. [3, 4, 5, 6, 14, 50, 68, 67]), moment-
based (branching time) semantics (e.g. [7, 30, 8]) and branch-based se-
mantics (e.g. [9, 10]). We use a kind of T × W semantics in this essay.
According to this approach, truth is relativised to world-moment pairs.
A sentence may be true in one possible world at a time and false in
another possible world at the same time, or true in one possible world

1 Similar theorems can be proved about our temporal alethic dyadic deontic
systems. This is straightforward, but the proofs are tedious and we will not labour
the details.
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at a time and false in the same world at another time. This leads to a
quite rich and flexible semantics.

There are many philosophically good reasons to be interested in the
systems in this paper. It seems, for instance, that we need systems
of this kind to be able to adequately formalise so-called contrary-to-
duty obligations and overridable obligations, and to solve Arthur Prior’s
[39] paradoxes of derived obligation and Roderick M. Chisholm’s so-
called contrary-to-duty (obligation or imperative) paradox [16]. Of these
puzzles, the second is probably the more important. Many different
solutions to the contrary-to-duty paradox have been suggested in the
literature (for an introduction, see e.g. [13]). But it seems to us that
one of the most plausible is the one that uses some kind of temporal
alethic dyadic deontic logic. In Section 6, we will briefly describe the
contrary-to-duty (obligation) paradox and we will show how we can use
our formal systems to solve this puzzle. We will also consider some of the
reasons why this is a plausible response to the paradox in comparison
to many other solutions. Another nice feature of the systems discussed
in this paper is that we can introduce some interesting definitions of the
comparative evaluative expressions “better than”, “at least as good as”,
and “equally good as” in our systems.

The essay is divided into seven sections. In Section 2, we describe the
syntax of our systems and in Section 3, their semantics. Section 4 deals
with the proof-theoretic characterisation of our logics, and Section 5
includes some examples of theorems. In Section 6, we briefly describe
the contrary-to-duty (obligation) paradox and we show how our formal
systems can be used to solve this puzzle. Finally, Section 7 contains
soundness proofs for every system and completeness proofs for a subclass
of them. Our conjecture is that at least all of the systems based on
ordinary models are complete, but we have not been able to prove this.

2. Syntax

Alphabet. 1. A denumerably infinite set Prop of proposition letters p, q,
r, s, p1, q1, r1, s1, p2, q2, r2, s2, . . .

2. A denumerably infinite set NT of names of times t0, t1, t2, t3 . . .

3. The primitive truth functional connectives ¬ (negation), ∧ (con-
junction), ∨ (disjunction), → (material implication) and ↔ (material
equivalence).
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4. The alethic operators U, M, �, and ♦.
5. The temporal operators R, A, S, G, H, F, and P.
6. The (dyadic) deontic operators O, P, and F.
7. ⊤ (verum), ⊥ (falsum) and the brackets ), (, ], and [.

Language. The language L is the set of well-formed formulas (wffs) gen-
erated by the usual clauses for proposition letters and propositionally
compound sentences, and the following clauses:

1. If A is a wff, then UA (“it is universally (or absolutely) necessary
that A”), MA (“it is universally (or absolutely) possible that A”), �A

(“it is historically necessary (or settled) that A”), ♦A (“it is historically
possible that A”).

2. If A is a wff, then AA (“it is always the case that A”), SA (“it is
some time the case that A”), GA (“it is always going to be the case that
A”), HA (“it has always been the case that A”), FA (“it will some time
in the future be the case that A”), PA (“it was some time in the past
the case that A”), are wffs.

3. If A is a wff and t is in NT, then RtA (“it is realised at time t that
A”) is a wff.

4. If A and B are wffs, so are O[B]A (“it ought to be the case that
(it is obligatory that) A given B”), P[B]A (“it is permitted that A given
B”), and F[B]A (“it is forbidden that A given B”).

4. Nothing else is a wff.
Capital letters “A”, “B”, “C” . . . are used to represent arbitrary

(not necessarily atomic) formulas of the object language. The upper
case Greek letter Γ represents an arbitrary set of formulas. Brackets
around sentences are usually dropped if the result is not ambiguous.

Definitions.

1. ♦–A (“it is historically impossible that A”) =df ¬♦A

2. ▽A (“it is historically contingent that A”) =df ♦A ∧ ♦¬A

3. △ A (“it is historically non-contingent that A”) =df ¬▽A

(or �A ∨ �¬A)
4. [G]A =df A ∧ GA

5. 〈F〉A =df ¬[G]¬A (or A ∨ FA)
6. [H]A =df A ∧ HA

7. 〈P〉A =df ¬[H]¬A (or A ∨ PA)
8. OA (“it ought to be the case that A”) =df O[⊤]A
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9. PA (“it is permitted that A”) =df P[⊤]A
10. FA (“it is forbidden that A”) =df F[⊤]A
11. O

′[B]A =df P[B]⊤ ∧ O[B]A
12. P

′[B]A =df ¬O
′[B]¬A (or O[B]⊥ ∨ P[B]A)

13. F
′[B]A =df ¬P

′[B]A (or O
′[B]¬A or (P[B]⊤ ∧ F[B]A))

14. A ≥ B (“A is at least as good as B”) =df O[A ∨ B]⊥ ∨ P[A ∨ B]A
(or P

′[A ∨ B]A)
15. A > B (“A is better than B”) =df P[A ∨ B]⊤ ∧ O[A ∨ B]¬B

(or O
′[A ∨ B]¬B)

16. A = B (“A is as good as B”) =df O[A∨B]⊥∨(P[A∨B]A∧P[A∨B]B)
(or P

′[A ∨ B]A ∧ P
′[A ∨ B]B)2

3. Semantics

3.1. Basic concepts

3.1.1. Temporal alethic dyadic deontic frame

We will consider two kinds of frames in this essay: ordinary and sup-
plemented (temporal alethic dyadic deontic) frames. An ordinary (tem-
poral alethic dyadic deontic) frame F is a relational structure 〈W, T, <,

R, {SA : A ∈ L}〉, where W is a non-empty set of possible worlds, T

is a non-empty set of times, < is a binary relation on T (< ⊆ T × T ),
R is a ternary alethic accessibility relation (R ⊆ W × W × T ), and
{SA : A ∈ L} is a set of ternary dyadic deontic accessibility relations,
one for each sentence, A, in L (SA ⊆ W × W × T ).

A supplemented (temporal alethic dyadic deontic) frame Fs is a re-
lational structure 〈W, T, <, R, {SA : A ∈ L} ≥〉, where W , T , <, R, and
{SA : A ∈ L} are exactly as in an ordinary frame, and ≥ is a ternary
preference relation defined over the elements in W (≥ ⊆ W × W × W ).

2 Definitions 8–16 have been suggested by several logicians, see e.g. [64]. O
′[B]A

is an alternative explication of the expression “It is obligatory that A given B”; P
′[B]A

is an alternative explication of the expression “It is permitted that A given B”, etc.
It should be noted that P[A]⊤ is equivalent to ♦A in many systems, e.g. in STADDL
(See Section 4.3). Hence, P[A ∨ B]⊤ is equivalent to ♦(A ∨ B) in those systems.
Furthermore, in many systems, e.g. in STADDL, O[A ∨ B]¬B entails O[A ∨ B]A.
Intuitively, this means that “A > B” (A is better than B) is true in the possible
world ω at the time τ just in case A or B is true at τ in some possible world that
is alethically accessible from ω at τ , and A is true and B false in all the best “A or
B”-worlds that are alethically accessible from ω at τ .
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If it is clear that we are talking about a supplemented frame, we will
sometimes drop the subscript.

R “corresponds” to the alethic operators � and ♦; < to the temporal
operators G, F, H, and P; SA and ≥ to the dyadic deontic operators O,
P, and F. Informally, τ < τ ′ says that the time τ is before the time
τ ′ (or that τ ′ is later than τ), Rωω′τ says that the possible world ω′ is
alethically accessible from the possible world ω at time τ , SAωω′τ says
that the possible world ω′ is A-accessible from the possible world ω at
time τ , and ω ≥ω′ ω′′ says that the possible world ω is at least as good as
the possible world ω′′ (in, according to, or relative to the possible world
ω′). To “decide” whether ω ≥ω′ ω′′, we place ourselves in world ω′, and
ask which world is better, ω or ω′′. We can think of ω ≥ω′ ω′′ as a dyadic
preference relation relativised to ω′. In temporal alethic dyadic deontic
logic it is also possible to relativise our preference relation to points in
time (or just points in time or both). However, we will not do this in the
present paper. Here we are interested in the comparative goodness over
whole possible worlds, not in the comparative goodness over possible
worlds at particular moments in time. If the different possible worlds
are ordered in the same way in every possible world, we can treat ≥
as a binary preference relation between possible worlds and not as a
ternary relation. Intuitively, ω ≥ ω′′ then says that the possible world
ω is at least as good as the possible world ω′′ (see condition C-Dδ6 in
Section 3.2.6).

3.1.2. Temporal alethic dyadic deontic model

We will use two kinds of models in this essay: ordinary and supplemented
(temporal alethic dyadic deontic) models. An ordinary model M is a
triple 〈F, V, v〉, where: (i) F is a temporal alethic dyadic deontic frame;
(ii) V is a valuation or interpretation function, which to every proposition
letter p in Prop assigns a subset of W × T , i.e., a set of ordered pairs
〈ω, τ〉, where ω ∈ W and τ ∈ T ; and (iii) v is a function which to each
temporal name in NT assigns a time in T .

A supplemented model Ms is a triple 〈Fs, V, v〉 where: Fs is a sup-
plemented frame, and V and v are exactly as in an ordinary model.

We will sometimes drop the subscript if it is clear from the context
that we are talking about supplemented models (or if we are talking
about any model whatsoever, ordinary or supplemented).

Let M, ω, τ  A abbreviate “A is true in the possible world ω at the
time τ in the model M” (or “A is true at the pair 〈ω, τ〉 in M”), and
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let ω, ω′, ω′′, etc., be possible worlds in W . In a supplemented model,
the dyadic deontic accessibility relations can be defined in terms of the
preference relation over our possible worlds in the following way:

C-Dγ0 For every A: SAωω′τ if and only if (iff) Rωω′τ and
M, ω′, τ  A and ∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′).

Intuitively, this condition says that the possible world ω′ is A-accessible
from the possible world ω at the time τ iff ω′ is one of the best alethically
accessible worlds according to ω in which A is true at τ . The “free”
variables are taken to be implicitly bound by universal quantifiers.3

Note that M stands for a class of models and F for a class of frames.

3.1.3. Truth in a model, validity, satisfiability, logical consequence, etc.

Let M be any (ordinary or supplemented) temporal alethic dyadic de-
ontic model, based on a frame 〈W, T, <, R, {SA : A ∈ L}〉 (〈W, T, <, R,

{SA : A ∈ L}, ≥〉). Let ω ∈ W , τ ∈ T and let A be a well-formed
sentence in L. The truth conditions for proposition letters and com-
plex sentences are given in the following list. Those for truth functional
connectives are the usual ones (illustrated by conjunction):

M, ω, τ  p iff 〈ω, τ〉 ∈ V (p) for any p in Prop

M, ω, τ  A ∧ B iff M, ω, τ  A and M, ω, τ  B

M, ω, τ  �A iff ∀ω′ ∈ W s.t. Rωω′τ : M, ω′, τ  A

M, ω, τ  ♦A iff ∃ω′ ∈ W s.t. Rωω′τ : M, ω′, τ  A

M, ω, τ  AA iff ∀τ ′ ∈ T : M, ω, τ ′  A

M, ω, τ  SA iff ∃τ ′ ∈ T : M, ω, τ ′  A

M, ω, τ  GA iff ∀τ ′ ∈ T s.t. τ < τ ′ : M, ω, τ ′  A

M, ω, τ  FA iff ∃τ ′ ∈ T s.t. τ < τ ′ : M, ω, τ ′  A

M, ω, τ  HA iff ∀τ ′ ∈ T s.t. τ ′ < τ : : M, ω, τ ′  A

M, ω, τ  PA iff ∃τ ′ ∈ T s.t. τ ′ < τ : M, ω, τ ′  A

3 Some deontic logicians might want to reject the condition (C-Dγ0 ), and also
the condition (C-Dα1 ) that follows from (C-Dγ0 ) (see Theorem 1). For if we accept
(C-Dγ0 ) we can prove that O[A]A is valid, and O[A]A might seem counterintuitive.
See e.g. [18] for some critique of this sentence. Personally, however, we are inclined
to believe that this is a reasonable theorem if it is interpreted in the “right” way.
Intuitively, the formula only says that A is true in all the best possible A-worlds,
which seems quite plausible. Note that O[A]A is not equivalent to A → OA, and from
O[A]A and A we cannot, in general, derive the unconditional obligation OA.
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M, ω, τ  RtA iff M, ω, v(t)  A, for all t ∈ NT

M, ω, τ  UA iff ∀ω′ ∈ W and ∀τ ′ ∈ T : M, ω′, τ ′  A

M, ω, τ  MA iff ∃ω′ ∈ W and ∃τ ′ ∈ T : M, ω′, τ ′  A

M, ω, τ  O[A]B iff ∀ω′ ∈ W s.t. SAωω′τ : M, ω′, τ  B

M, ω, τ  P[A]B iff ∃ω′ ∈ W s.t. SAωω′τ : M, ω′, τ  B

M, ω, τ  F[A]B iff ∀ω′ ∈ W s.t. SAωω′τ : M, ω′, τ  ¬B

O[A]B is true in a possible world ω at time τ iff B is true in all
possible worlds that are A-accessible from ω at τ . P[A]B is true in a
possible world ω at time τ iff B is true in at least one possible world
that is A-accessible from ω at τ , etc. If we define the dyadic deontic
accessibility relations in terms of the preference relation as in (C-Dγ0 ),
we can derive the following truth conditions:

• M, ω, τ  O[A]B iff ∀ω′ s.t. Rωω′τ , and M, ω′, τ  A, and
∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′): M, ω′, τ  B.

• M, ω, τ  P[A]B iff ∃ω′ s.t. Rωω′τ , and M, ω′, τ  A, and
∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′): M, ω′, τ  B.

• M, ω, τ  F[A]B iff ∀ω′ s.t. Rωω′τ , and M, ω′, τ  A, and
∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′): M, ω′, τ  ¬B.

In (“non-temporal”) dyadic deontic logic the truth conditions for the
various dyadic deontic operators are often defined in such a way that
O[A]B is true in a possible world iff B is true in all the best A-worlds,
where an A-world is a world where A is true. P[A]B is true in a possible
world iff B is true in at least one of the best A-worlds. And F[A]B is true
in a possible world iff B is false in all the best A-worlds. In temporal
alethic dyadic deontic logic, of the kind we are considering in this paper,
we are not interested in all the best A-worlds. Instead we focus on all
the best A-worlds that are alethically accessible from a particular world
at a particular time. Roughly, O[A]B is true in the world ω at the time
τ iff B is true at τ in all the best A-worlds that are alethically accessible
from ω at τ . P[A]B is true in the world ω at the time τ iff B is true at τ

in at least one of the best A-worlds that are alethically accessible from
ω at τ . And F[A]B is true in the world ω at the time τ iff B is false at
τ in all the best A-worlds that are alethically accessible from ω at τ .

Other basic semantic concepts like validity, satisfiability, logical con-
sequence, etc. are defined as in [44].
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3.2. Conditions on frames and models

In this section, we will consider several different frame- and model-
conditions that can be used to characterise and classify our temporal
alethic dyadic deontic frames and models. Many of these conditions are
modifications of conditions introduced by [43], [44], or [46].

The symbols ∧, →, ↔, ∀ and ∃ in tables 1–5 are used as metalogical
symbols in the standard way. Let F be a temporal alethic dyadic deontic
frame, M a temporal alethic dyadic deontic model based on F , {SA : A ∈
L} the set of dyadic deontic accessibility relations and ≥ the preference
relation in F .

If for all SA in {SA : A ∈ L}, ∀τ∀ω∀ω′(SAωω′τ → M, ω′, τ  A),
we say that SA satisfies or fulfills condition C-Dα1 and also that M

satisfies or fulfills condition C-Dα1 and similarly in all other cases. C-
Dα1 is called “C-Dα1” because the tableau rule T -Dα1 “corresponds”
to C-Dα1 and the sentence TDα1 is valid in the class of all models that
satisfy condition C-Dα1 and similarly in all other cases. Let C be any
of the conditions we explore. Then a C-model is a model that satisfies
condition C and similarly for the frame-conditions. If it is clear that we
are talking about a condition, the initial C will often be dropped.

3.2.1. Conditions on the alethic accessibility relation R and the
temporal accessibility relation <

We use the same conditions on the alethic accessibility relation R, and
the temporal accessibility relation < as in [44] and [46]. Intuitively,
it is often reasonable to treat the alethic accessibility relation R as an
equivalence relation. This relation “corresponds” to historical necessity,
possibility, etc.

3.2.2. Conditions on the dyadic deontic accessibility relations SA

The conditions on the dyadic deontic accessibility relations SA are pre-
sented in Table 1. In this table “Dd” stands for “Dyadic deontic”. The
condition C-Dd4 is similar to the familiar condition 4 in monomodal
logic, which says that the ordinary modal accessibility relation is tran-
sitive. The same goes for the other conditions. If it is clear from the
context that we are talking about dyadic deontic conditions, we can drop
“C-D” and talk about d4 , d5 etc. instead. We will sometimes abbreviate
other semantic conditions in a similar way. d4 ′, d5 ′, dT ′ and dB′ are
“temporal” versions of similar conditions introduced by [43].
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Condition Formalisation of condition

C-Dd4 ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ SAω′ω′′τ) → SAωω′′τ)
C-Dd4 ′ ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ SBω′ω′′τ) → SBωω′′τ)
C-Dd5 ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ SAωω′′τ) → SAω′ω′′τ)
C-Dd5 ′ ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ SBωω′′τ) → SBω′ω′′τ)
C-DdT ′ ∀τ∀ω∀ω′(SAωω′τ → SAω′ω′τ)
C-DdB′ ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ SAω′ω′′τ) → SAω′′ω′τ)
C-Dd7 ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ SAωω′′τ) → ω′ = ω′′)

Table 1. Conditions for relations SA

Condition Formalisation of condition

C-DMO ∀τ∀ω∀ω′(SAωω′τ → Rωω′τ)
C-Dad4 ∀τ∀ω∀ω′∀ω′′((Rωω′τ ∧ SAω′ω′′τ) → SAωω′′τ)
C-Dad5 ∀τ∀ω∀ω′∀ω′′((Rωω′τ ∧ SAωω′′τ) → SAω′ω′′τ)

Table 2. Conditions concerning the relation between R and SA

Note that C-Dd4 ′ entails C-Dd4 , but not vice versa. C-Dd5 ′ entails
C-Dd5 , but not vice versa. O[B]A → O[B]O[B]A is valid in every model
that satisfies C-Dd4 ; and O[B]A → O[C]O[B]A is valid in every model
that satisfies C-Dd4 ′. P[B]A → O[B]P[B]A is valid in every model
that satisfies C-Dd5 ; and P[B]A → O[C]P[B]A is valid in every model
that satisfies C-Dd5 ′. C-Dd5 ′ entails C-DdT ′ and C-DdB ′; and C-Dd5
entails C-DdT ′ and C-DdB ′.

Condition C-Dd7 is theoretically interesting but intuitively problem-
atic. O[B]A ∨ F[B]A, O[B]A ∨ O[B]¬A, and P[B]A → O[B]A are valid
in every model that satisfies this condition. In every model that satisfies
C-Dα3 (see Table 3), ♦B → (O[B]A → P[B]A) is valid. So, in models
that satisfy C-Dd7 and C-Dα3 , the distinction between permissions and
obligations collapses, nothing is optional and everything is either obliga-
tory or forbidden, given that the condition B is possible. This amounts
to a kind of “black and white thinking” or “moral rigorism”.

3.2.3. Conditions concerning the relation between R and SA

The conditions concerning the relation between R and SA are presented
in Table 2.

Note that O[B]A → �O[B]A and F[B]A → �F[B]A are valid in
every model that satisfies C-Dad4 (“Dyadic alethic deontic 4”). And
P[B]A → �P[B]A is valid in every model that satisfies C-Dad5 (“Dyadic
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alethic deontic 5”). So, in all models that satisfy C-Dad4 and C-
Dad5 , all norms are historically necessary. Even though they are his-
torically necessary, they are not necessarily absolutely necessary; neither
O[B]A → UO[B]A, P[B]A → UP[B]A, nor F[B]A → UF[B]A is valid.
According to C-DMO, every dyadic deontic accessibility relation is in-
cluded in the alethic accessibility relation. This is a reasonable condition
if we assume that norms primarily concern things that are historically
possible. �A → O[B]A4 and (OA∧�(A → B)) → OB are valid in every
model that satisfies C-DMO (“Dyadic Must-Ought”). So, in models of
this kind, a version of the means-end principle is valid. According to
the means-end principle every necessary consequence of something that
ought to be itself ought to be.

C-Dad4 and C-DMO entail C-Dd4 ′. C-Dad5 and C-DMO entail
C-Dd5 ′. C-Dd4 ′ and C-Dd5 ′ follow if we assume that SAωω′τ means
that ω′ is one of the best accessible A-worlds from ω at τ , that the
ordering of the possible worlds is the same in every possible world, and
that C-a4 (the alethic accessibility relation R is transitive) and C-a5
(the alethic accessibility relation R is Euclidean) hold. [43] introduces
a condition called “C-a6 ” ( = ∀ω∀ω′∀ω′′(SAωω′ → SAω′′ω′)). C-a6 ′

( = ∀τ∀ω∀ω′∀ω′′(SAωω′τ → SAω′′ω′τ)) is a temporal version of C-
a6 . C-a6 ′ entails C-Dd4 ′, C-Dd5 ′, C-Dad4 and C-Dad5 . C-a6 might
be a reasonable condition in (non-temporal) dyadic deontic logic, given
certain interpretations. However, C-a6 ′ is no longer intuitively plausible.
For not all possible worlds are necessarily alethically accessible from all
possible worlds at a particular point in time. ω′′′ might, for instance,
be one of the best alethically accessible worlds from ω′ at τ in which A

is true, even though ω′′′ is not alethically accessible from ω′′ at τ , and

4 Some might think that this formula is unreasonable and, hence, that we should
reject C-DMO. They might think so because �A → O[B]A seems to have counter-
intuitive instances. Consider, for example, the following instance: “If it is necessary
that 2 + 2 = 4, then it is obligatory that 2 + 2 = 4 given that the earth is flat”. It
might be interesting to note that we can avoid conclusions of this kind by using a
trick inspired by Alan Ross Anderson [2]. We can define a new deontic operator in
terms of O in the following way: O[B]A =df O[B]A ∧ ¬�A. Then we can use this
new operator to symbolise the expression “It is obligatory that A given B”. If we use
this operator instead, we avoid counterintuitive implications of the kind mentioned
above. However, personally we are inclined to believe that the formula �A → O[B]A
can be defended, even though we will not try to do so in the present paper. Many
things that sound very strange may nevertheless be true. So, we are not sure we need
this new operator.
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For all A and for all B

C-Dα0 ∀τ∀ω∀ω′((‖A‖M,ω,τ = ‖B‖M,ω,τ ) → (SAωω′τ ↔ SBωω′τ))
C-Dα1 ∀τ∀ω∀ω′(SAωω′τ → M, ω′, τ  A)
C-Dα2 ∀τ∀ω∀ω′((SAωω′τ ∧ M, ω′, τ  B) → SA∧Bωω′τ)
C-Dα3 ∀τ∀ω(∃ω′(Rωω′τ ∧ M, ω′, τ  A) → ∃ω′′SAωω′′τ)

C-Dα4
∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ M, ω′, τ  B)
→ (SA∧Bωω′′τ → (SAωω′′τ ∧ M, ω′′, τ  B)))

Table 3. Conditions concerning the relation between R, SA and V

hence not one of the best alethically accessible A-worlds in ω′′ at τ . So,
we will not say anything more about C-a6 ′ in the present paper.

3.2.4. Conditions concerning the relation between R, SA and V

The conditions concerning the relation between R, SA and V are pre-
sented in Table 3. These conditions are “temporal” versions of conditions
introduced by [43]. Note that ‖A‖M,ω,τ is the set of all alethically acces-
sible A-worlds from ω at τ (in M). Hence, ‖A‖M,ω,τ = ‖B‖M,ω,τ is true
iff M, ω, τ  �(A ↔ B). Furthermore, note that in C-Dα3 we require
that the world ω′ in which A is true must be alethically accessible from
the world ω to be able to “derive” the consequent. It is not enough
that A is true in some world ω′′ at τ ; for ω′′ might not be alethically
accessible from ω at τ . In this sense, C-Dα3 in Table 3 is different from
the corresponding condition in [43]. ♦B → (O[B]A → P[B]A) is valid,
but MB → (O[B]A → P[B]A) is not valid, in every model that satisfies
C-Dα3 .

3.2.5. Conditions concerning the relation between R, < and V

The conditions concerning the relation between R, < and V (see Ta-
ble 4) are exactly the same as in [44] and [46]. C-SP , C-FT and C-BT
correspond to the tableau rules T -SP, T -FT and T -BT (see Table 11).
See Table 14 for some examples of theorems that can be proved in some
systems that include T -FT and T -BT . [44] includes some examples of
provable sentences in systems containing T -SP.

3.2.6. Conditions involving the preference relation at least as

good as ≥

The conditions involving the preference relation at least as good as ≥
are presented in Table 5. Some of these conditions are similar to some
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Condition Formalisation of condition

C-SP ∀τ∀τ ′∀ω∀ω′((τ < τ ′ ∧ Rωω′τ ′) → Rωω′τ)
C-FT If Rω′ω′′τ and A is an atomic sentence true in ω′ at τ ,

then A is true in ω′′ at τ .
C-BT If Rω′ω′′τ and A is an atomic sentence true in ω′′ at τ ,

then A is true in ω′ at τ .

Table 4. Conditions concerning the relation between R, < and V

For all A and for all B

C-Dγ0 ∀τ∀ω∀ω′(SAωω′τ ↔ (Rωω′τ ∧
M, ω′, τ  A ∧ ∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′)))

C-Dδ2 ∀ω∀ω′∀ω′′((ω′ ≥ω ω′′ ∨ ω′′ ≥ω ω′) ∨ (ω′ ≥ω ω′′ ∧ ω′′ ≥ω ω′))

C-Dδ3
If ‖A‖M,ω,τ 6= ∅

then {ω′ ∈ ‖A‖M,ω,τ : (∀ω′′ ∈ ‖A‖M,ω,τ ) ω′ ≥ω ω′′} 6= ∅
C-Dδ4 ∀ω∀ω′∀ω′′∀ω′′′((ω′ ≥ω ω′′ ∧ ω′′ ≥ω ω′′′) → ω′ ≥ω ω′′′)
C-Dδ5 ∀ω∀ω′ω ≥ω′ ω

C-Dδ6 ∀ω∀ω′∀ω′′∀ω′′′(ω ≥ω′′ ω′ → ω ≥ω′′′ ω′)
C-Dδ7 ∀ω∀ω′∀ω′′((ω′ ≥ω ω′′ ∧ ω′′ ≥ω ω′) → ω′ = ω′′)

Table 5. Conditions concerning ≥

conditions introduced by [43]. However, in this paper we use a ternary
instead of a binary preference relation. C-Dδ6 and C-Dδ7 have no
counterparts in [43].

We have already mentioned the condition C-Dγ0 (see Section 3.1.2).
C-Dγ0 entails C-DMO, C-Dα0 , C-Dα1 and C-Dα2 (see Theorem 1
below). In any C-Dγ0 -model, the following schemas are valid: �A →
O[B]A, �(A ↔ B) → (O[A]C ↔ O[B]C), O[A]A, �(A → B) → O[A]B,
and O[A ∧ B]C → O[A](B → C).

Intuitively, C-Dδ2 means that ≥ω is “complete” (strongly connected,
total), i.e., world ω′ is at least as good as world ω′′ (relative to world ω) or
ω′′ is at least as good as ω′ (relative to ω) (or ω′ and ω′′ are equally good
(relative to ω)). ∀ω∀ω′∀ω′′((ω′ ≥ω ω′′ ∨ ω′′ ≥ω ω′) ∨ (ω′ ≥ω ω′′ ∧ ω′′ ≥ω

ω′)) is equivalent to ∀ω∀ω′∀ω′′(ω′ ≥ω ω′′ ∨ ω′′ ≥ω ω′).
Condition C-Dδ3 contains some free variables. These are supposed

to be implicitly bound by universal quantifiers. So, if the condition
holds, it holds for all ω, ω′, τ , etc. It follows that if the condition is
true, then ∀ω′∀τ((∃ωRω′ωτ ∧ M, ω, τ  A) → ∃ω′′(Rω′ω′′τ ∧ M, ω′′, τ 

A ∧ ∀ω′′′((Rω′ω′′′τ ∧ M, ω′′′, τ  A) → ω′′ ≥ω′ ω′′′))). Roughly, this
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condition says that if A is true in at least one alethically accessible
world, then A is true in at least one of the best alethically accessible
worlds (in which A is true). The assumption prohibits that there are no
best alethically accessible A-worlds, only an infinite sequence of better
and better alethically accessible A-worlds (given that there is at least
one alethically accessible A-world), so to speak. C-Dγ0 and C-Dδ3
entail C-Dα3 (see Theorem 1). ♦B → (O[B]A → P[B]A) is valid in any
γ0δ3 -model.

According to C-Dδ4 , ≥ω is “transitive”, i.e., if world ω′ is at least
as good as world ω′′ (relative to world ω) and ω′′ is at least as good
as world ω′′′ (relative to ω), then ω′ is at least as good as ω′′′ (relative
to ω).

Intuitively, C-Dδ5 says that ≥ω′ is “reflexive”, i.e., every world ω is
at least as good as itself (relative to any world ω′).

According to the condition C-Dδ6 , the possible worlds are ordered
in the same way in every possible world. More precisely, the condition
says that for all possible worlds ω, ω′, ω′′ and ω′′′: if ω is at least as
good as ω′ (according to ω′′), then ω is at least as good as ω′ (according
to ω′′′). In one sense we can say that this condition entails that the
ordering of possible worlds is not relative to possible worlds. For if ω is
at least as good as ω′ in some world, then ω is at least as good as ω′ in
any world according to C-Dδ6 . C-Dγ0 , C-Dδ6 , C-a4 and C-a5 entail
C-ad4 and C-ad5 (see Theorem 1). C-a4 and C-a5 are introduced by
[44]. C-a4 says that R is transitive and C-a5 says that R is Euclidean.
O[B]A → �O[B]A, F[B]A → �F[B]A and P[B]A → �P[B]A are valid
in any model that satisfies C-Dγ0 , C-Dδ6 , C-a4 and C-a5 .

Intuitively C-Dδ7 says that ≥ω is “antisymmetric”. If world ω′ is at
least as good as world ω′′ (relative to the world ω) and ω′′ is at least as
good as ω′ (relative to ω), then ω′ is identical to ω′′, i.e., there are no
two distinct worlds that are equally good relative to a possible world ω.
C-Dγ0 and C-Dδ7 entail C-Dd7 . O[B]A ∨ F[B]A, O[B]A ∨ O[B]¬A,
and P[B]A → O[B]A are valid in every model that satisfies C-Dγ0 and
C-Dδ7 .

3.3. Classification of model classes and the logic of a class of models

The conditions on our models listed in tables 1–5 can be used to obtain
a categorisation of the set of all models into various kinds. We shall say
that M(C1, . . . , Cn) is the class of all models that satisfies the conditions
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C1, . . . , Cn. E.g. M(C-Dd4 , C-DMO, C-Dα1 ) is the class of all models
that satisfies C-Dd4 , C-DMO, and C-Dα1 . If it is clear from the context
that we are speaking about models, we can abbreviate these expressions
by omitting redundant letters. A γ0δ6a45 -model is, for instance, a
model that satisfies C-Dγ0 , C-Dδ6 , C-a4 , and C-a5 .

We shall say that a T-model is a model that satisfies all conditions
in tables 1–5, and whose alethic accessibility relation is an equivalence
relation (at every moment in time), and whose temporal accessibility
relation is transitive and comparable and does not branch towards the
future or the past. The tableau system T is sound with respect to the
class of all T-models (see Section 4.3 and Soundness Theorem II).

The set of all sentences (in L) that are valid in a class of models M is
called the logical system of (the system of or the logic of) M, in symbols
S(M) = {A ∈ L : M  A}. E.g. S(M(C-Dd4 , C-DMO, C-Dα1 )) is the
set of all sentences that are valid in the class of all models that satisfies
C-Dd4 , C-DMO, and C-Dα1 .

The following theorem tells us something about the relations between
the conditions introduced in Section 3.2.

Theorem 1. 1. Every supplemented γ0 -model satisfies the conditions

DMO, α0 , α1 , and α2 .

2. Every supplemented γ0δ3 -model satisfies α3 .

3. Every supplemented γ0δ4 -model satisfies α4 .

4. Every supplemented γ0δ6a45 -model satisfies ad4 and ad5 .

5. Every supplemented γ0δ7 -model satisfies Dd7 .

Proof. In the following proof, “CL” means that the step is valid in
“classical logic”.

Ad 1. For DMO: Trivial.
For α0 : Suppose that ||A||M,ω,τ = ||B||M,ω,τ and SAωω′τ . Then

Rωω′τ ∧ M, ω′, τ  A ∧ ∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′), by
C-Dγ0 . Hence, by CL and the definition of ||A||M,ω,τ , we have Rωω′τ ∧
M, ω′, τ  B ∧ ∀ω′′(Rωω′′τ ∧ M, ω′′, τ  B → ω′ ≥ω ω′′). So SBωω′τ ,
by C-Dγ0 . Thus, by CL, SAωω′τ → SBωω′τ ; SBωω′τ → SAωω′τ ;
SAωω′τ ↔ SBωω′τ . So if ||A||M,ω,τ= ||B||M,ω,τ then SAωω′τ ↔ SBωω′τ .

For α1 : Assume that SAωω′τ . Then Rωω′τ ∧ M, ω′, τ  A ∧
∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′), by C-Dγ0 . Hence SAωω′τ →
M, ω′, τ  A, by CL. So ∀τ∀ω∀ω′(SAωω′τ → M, ω′, τ  A), by CL.

For α2 : Assume that SAω′ωτ , M, ω, τ  B, and not-SA∧Bω′ωτ .
Then Rω′ωτ and M, ω, τ  A, by C-Dγ0 . So M, ω, τ  A ∧ B, by CL.
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Hence not-(Rω′ωτ ∧M, ω, τ  A∧B∧∀ω′′(Rω′ω′′τ ∧M, ω′′, τ  A∧B →
ω ≥ω′ ω′′)), by C-Dγ0 . So ∃ω′′(Rω′ω′′τ ∧ M, ω′′, τ  A ∧ B ∧ ¬(ω ≥ω′

ω′′)); Rω′ω′′τ ∧M, ω′′, τ  A∧B∧¬(ω ≥ω′ ω′′); and Rω′ω′′τ ∧M, ω′′, τ 

A. Thus, by C-Dγ0 , we obtain Rω′ω′′τ ∧ M, ω′′, τ  A → ω ≥ω′ ω′′.
So ω ≥ω′ ω′′. Accordingly ⊥. So (SAω′ωτ ∧ M, ω, τ  B) → SA∧Bω′ωτ .
Hence ∀τ∀ω∀ω′((SAωω′τ ∧ M, ω′, τ  B) → SA∧Bωω′τ), by CL.

Ad 2. For α3 : Assume that ∃ω′(Rωω′τ ∧ M, ω′, τ  A). Then
‖A‖M,ω,τ 6= ∅, by the definition of ‖A‖M,ω,τ . So {ω′ ∈ ‖A‖M,ω,τ :
(∀ω′′ ∈ ‖A‖M,ω,τ ) ω′ ≥ω ω′′} 6= ∅, by C-Dδ3 and CL. Hence ∃ω′(Rωω′τ

and M, ω′, τ  A and ∀ω′′((Rωω′′τ and M, ω′′, τ  A) → ω′ ≥ω ω′′).
Thus, by C-Dγ0 and CL, ∃ω′′SAωω′′τ ; ∃ω′(Rωω′τ ∧ M, ω′, τ  A) →
∃ω′′SAωω′′τ ; and ∀τ∀ω(∃ω′(Rωω′τ ∧ M, ω′, τ  A) → ∃ω′′SAωω′′τ).

Ad 3. For α4 : Note that ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ M, ω′, τ  B) →
(SA∧Bωω′′τ → (SAωω′′τ ∧ M, ω′′, τ  B))) is equivalent to ∀τ∀ω∀ω′

(∃ω′′(SAω′ω′′τ ∧ M, ω′′, τ  B) → (SA∧Bω′ωτ → (SAω′ωτ ∧ M, ω, τ 

B))). So to prove the former it suffices to prove the latter.
Suppose that ∃ω′′(SAω′′′ω′′τ ∧ M, ω′′, τ  B), SA∧Bω′′′ωτ , and not-

(SAω′′′ωτ ∧M, ω, τ  B). Then Rω′′′ωτ ∧M, ω, τ  A∧B∧∀ω′′(Rω′′′ω′′τ

∧ M, ω′′, τ  A ∧ B → ω ≥ω′′′ ω′′), by C-Dγ0 and CL. So Rω′′′ωτ ∧
M, ω, τ  B, and not-SAω′′′ωτ or not M, ω, τ  B, by CL. Hence not-
SAω′′′ωτ . Therefore also not-(Rω′′′ωτ ∧ M, ω, τ  A ∧ ∀ω′′(Rω′′′ω′′τ ∧
M, ω′′, τ  A → ω ≥ω′′′ ω′′)), by C-Dγ0 and CL. Moreover, Rω′′′ωτ ∧
M, ω, τ  A. So not-∀ω′′(Rω′′′ω′′τ ∧ M, ω′′, τ  A → ω ≥ω′′′ ω′′)
and ∃ω′′(Rω′′′ω′′τ ∧ M, ω′′, τ  A ∧ ¬(ω ≥ω′′′ ω′′)). Hence Rω′′′ω′τ ∧
M, ω′, τ  A ∧ ¬(ω ≥ω′′′ ω′). Thus, we obtain SAω′′′ω′′′′τ ∧ M, ω′′′′, τ 

B. Consequently Rω′′′ω′′′′τ ∧ M, ω′′′′, τ  A ∧ B, by C-Dγ0 and CL. So
ω ≥ω′′′ ω′′′′. Moreover, ∀ω′′′′′(Rω′′′ω′′′′′τ ∧ M, ω′′′′′, τ  A → ω′′′′ ≥ω′′′

ω′′′′′), by C-Dγ0 and CL. So ω′′′′ ≥ω′′′ ω′. Hence ω ≥ω′′′ ω′, by C-Dδ4 .
So we obtain ⊥. Thus, ∀τ∀ω∀ω′(∃ω′′(SAω′ω′′τ ∧ M, ω′′, τ  B) →
(SA∧Bω′ωτ → (SAω′ωτ ∧ M, ω, τ  B))).

Ad 4. For C-Dad4 : Assume that Rωω′τ , and SAω′ω′′τ , and not-
SAωω′′τ . Then Rω′ω′′τ ∧ M, ω′′, τ  A ∧ ∀ω′′′(Rω′ω′′′τ ∧ M, ω′′′, τ 

A → ω′′ ≥ω′ ω′′′), by C-Dγ0 . Hence Rωω′′τ , by C-a4 . So Rωω′′τ and
M, ω′′, τ  A. Moreover, ∀ω′′′(Rω′ω′′′τ ∧ M, ω′′′, τ  A → ω′′ ≥ω′ ω′′′)
and not-(Rωω′′τ ∧ M, ω′′, τ  A ∧ ∀ω′′′(Rωω′′′τ ∧ M, ω′′′, τ  A →
ω′′ ≥ω ω′′′)), by assumption, the definition of SAωω′′τ , and CL. So
∃ω′′′(Rωω′′′τ ∧M, ω′′′, τ  A∧¬(ω′′ ≥ω ω′′′)). Hence Rωω′′′τ ∧M, ω′′′, τ

 A ∧ ¬(ω′′ ≥ω ω′′′). Moreover, Rω′ω′′′τ ∧ M, ω′′′, τ  A → ω′′ ≥ω′ ω′′′.
But (Rωω′τ ∧ Rωω′′′τ) → Rω′ω′′′τ , by C-a5 and CL. So Rω′ω′′′τ ,
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Rω′ω′′′τ and M, ω′′′, τ  A. Hence ω′′ ≥ω′ ω′′′. Accordingly, ω′′ ≥ω′

ω′′′ → ω′′ ≥ω ω′′′, by C-Dδ6 and CL. Hence ω′′ ≥ω ω′′′. So we obtain
⊥. Thus, SAωω′′τ . In conclusion, (Rωω′τ ∧ SAω′ω′′τ) → SAωω′′τ and
∀τ∀ω∀ω′∀ω′′((Rωω′τ ∧ SAω′ω′′τ) → SAωω′′τ).

For C-Dad5 : Similarly.
Ad 5. For C-Dd7 : Suppose that SAωω′τ and SAωω′′τ . By C-Dγ0 ,

SAωω′τ iff Rωω′τ , M, ω′, τ  A and ∀ω′′(Rωω′′τ and M, ω′′, τ  A →
ω′ ≥ω ω′′). Moreover, by C-Dγ0 , SAωω′′τ iff Rωω′′τ and M, ω′′, τ 

A and ∀ω′′′(Rωω′′′τ ∧ M, ω′′′, τ  A → ω′′ ≥ω ω′′′). So Rωω′τ and
M, ω′, τ  A, and ∀ω′′(Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′). Hence
Rωω′′τ and M, ω′′, τ  A, and ∀ω′′′(Rωω′′′τ ∧ M, ω′′′, τ  A → ω′′ ≥ω

ω′′′). Therefore, Rωω′τ ∧M, ω′, τ  A. Moreover, ∀ω′′(Rωω′′τ ∧M, ω′′, τ

 A → ω′ ≥ω ω′′). Hence Rωω′′τ ∧ M, ω′′, τ  A. But ∀ω′′′(Rωω′′′τ ∧
M, ω′′′, τ  A → ω′′ ≥ω ω′′′) and Rωω′′τ ∧ M, ω′′, τ  A → ω′ ≥ω ω′′.
So Rωω′τ ∧ M, ω′, τ  A → ω′′ ≥ω ω′, ω′ ≥ω ω′′, and ω′′ ≥ω ω′. But,
by C-Dδ7 , we have (ω′ ≥ω ω′′ ∧ ω′′ ≥ω ω′) → ω′ = ω′′. So ω′ = ω′′. In
conclusion, ∀τ∀ω∀ω′∀ω′′((SAωω′τ ∧ SAωω′′τ) → ω′ = ω′′). ⊣

4. Proof theory

4.1. Semantic tableaux

In this section, we describe a set of tableau systems. The proposi-
tional part is similar to systems introduced by Raymond Smullyan [47]
and Richard Jeffrey [31]. The alethic modal part is inspired by e.g.
Melvin Fitting and Graham Priest [24, 25, 38]. The concepts of se-
mantic tableau, branch, open and closed branch, etc., are essentially
defined as in [44, 46, 38]. For more information on semantic tableaux,
see D’Agostino, Gabbay, Hähnle and Posegga [19].

4.2. Tableau rules

Many rules that we use in temporal alethic dyadic deontic logic are de-
scribed by [44] and [46]. In addition, we will consider some new tableau
rules for the dyadic deontic operators and some new rules that “cor-
respond to” the conditions imposed on the dyadic deontic accessibility
relations that were introduced in Section 3.2.

We use the same propositional rules, basic alethic and temporal rules,
and alethic and temporal accessibility rules as in [44] and [46].
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D O-pos (O) D P-pos (P) D F-pos (F)

O[A]B, witj P[A]B, witj F[A]B, witj

sAwiwktj ↓ ↓
↓ sAwiwktj O[A]¬B, witj

B, wktj B, wktj

where wk is new

D O-neg (¬O) D P-neg (¬P) D F-neg (¬F)

¬O[A]B, witj ¬P[A]B, witj ¬F[A]B, witj

↓ ↓ ↓
P[A]¬B, witj O[A]¬B, witj P[A]B, witj

Table 6. Basic dyadic deontic rules (b dd-rules)

CUT TId(I) TId(II) AId(I) AId(II)

∗ A(ti) A(ti) A(wi) A(wi)
ւց ti = tj tj = ti wi = wj wj = wi

¬A, witj A, witj ↓ ↓ ↓ ↓
A(tj) A(tj) A(wj) A(wj)

Table 7. CUT, TId(I), TId(II), AId(I) and AId(II)

We will include CUT and all the identity rules, TId(I), TId(II),
AId(I), and AId(II), in every tableau system. However, in many systems
these rules are redundant. “TId(I)” stands for “Temporal Identity I”,
“AId(I)” stands for “Alethic Identity I”, etc. Intuitively “ti = tj” says
that the temporal point ti is identical to the temporal point tj ; and “wi =
wj” says that the possible world wi is identical to the possible world wj.
A(tj) is exactly as A(ti) except that “ti” has been replaced by “tj”, etc.5

4.3. Tableau systems

A tableau system is a set of tableau rules. A temporal alethic dyadic
deontic tableau system includes all propositional rules, all basic alethic
rules, all basic dyadic deontic rules, all basic temporal rules (includ-
ing the rules for A and S; see [46]), CUT and all identity rules (ta-
bles 6–7). The minimal temporal alethic dyadic deontic tableau sys-
tem is called “T”. By adding any subset of the rules introduced in
tables 8–11, or various accessibility rules introduced by [44] or [46],

5 We need TId(I) and TId(II) if we add some temporal accessibility rules, for
example T -FC , introduced by [44] or [46], to our systems.
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T -Dd4 T -Dd4 ′ T -Dd5 T -Dd5 ′

sAwiwjtl sAwiwjtl sAwiwjtl sAwiwjtl

sAwjwktl sBwjwktl sAwiwktl sBwiwktl

↓ ↓ ↓ ↓
sAwiwktl sBwiwktl sAwjwktl sBwjwktl

T -DdT ′ T -DdB′ T -Dd7

sAwiwjtl sAwiwjtl sAwiwjtl

↓ sAwjwktl sAwiwktl

sAwjwjtl ↓ ↓
sAwkwjtl wj = wk

Table 8. Dyadic deontic accessibility rules (dd-rules)

T -DMO T -Dad4 T -Dad5

sAwiwjtk rwiwjtl rwiwjtl

↓ sAwjwktl sAwiwktl

rwiwjtk ↓ ↓
sAwiwktl sAwjwktl

Table 9. Alethic dyadic deontic accessibility rules (add-rules)

T -Dα0 T -Dα1 T -Dα2 T -Dα3 T -Dα4

If D is of the form sAwiwjtk sAwiwjtk rwiwjtl sAwiwjtl

�(A ↔ B) → ↓ B, wjtk A, wjtl B, wjtl

(O[A]C ↔ O[B]C), A, wjtk ↓ ↓ sA∧Bwiwktl

D, witj can be added sA∧Bwiwjtk sAwiwktl ↓

to any open branch where wk sAwiwktl

on which wi and tj occur is new B, wktl

Table 10. Rules concerning R, SA and V

T -FT T -BT T -SP
A, witk A, wjtk rwiwjtl

rwiwjtk rwiwjtk tk < tl

↓ ↓ ↓
A, wjtk A, witk rwiwjtk

where A is atomic where A is atomic

Table 11. Rules concerning R, < and V (adt-rules)

we obtain an extension of T (note that some of these are deductively
equivalent). We use the following conventions for naming systems. We



Temporal alethic dyadic deontic logic . . . 23

write “aA1 . . . AidB1...BjαC1...CkadD1...DltE1...EmadtF1...Fn”, where
A1 . . . Ai is a list (possibly empty) of a-rules (see [44]), B1 . . . Bj is a
list (possibly empty) of dd-rules, C1 . . . Ck is a list (possibly empty) of
α-rules, D1 . . . Dl is a list (possibly empty) of add-rules, E1 . . . Em is
a list (possibly empty) of t-rules (see [44, 46]), and F1 . . . Fn is a list
(possibly empty) of adt-rules. We sometimes abbreviate by omitting
“redundant” letters in a name, if it does not lead to any ambiguity.
E.g. aTd4 ′5 ′α12adDMOt4adtSP is the temporal alethic dyadic deontic
system that includes the rules T -aT , T -Dd4 ′, T -Dd5 ′, T -Dα1 , T -Dα2 ,
T -DMO, T -t4 , and T -SP. Let us call the system that includes all basic
rules, all a-rules, and all rules in tables 8–11 except T -Dd7 Strong tem-
poral alethic dyadic deontic logic or STADDL. We shall call the system
that includes all rules in tables 6–11, all alethic rules that correspond to
the fact that the alethic accessibility relation is an equivalence relation
and the temporal rules that correspond to the fact that the temporal
accessibility relation is transitive and comparable and does not branch
towards the future or the past T. T is sound with respect to the class of
all T-models (see Section 3.3 and Soundness Theorem II).6

4.4. Some proof-theoretical concepts

The concepts of proof, theorem, derivation, consistency, inconsistency in
a system, etc., are defined as in [44] and [46]. Let S be a tableau system.
Then the logic (or the logical system) of S, L(S), is the set of all sentences
(in L) that are provable in S, in symbols L(S) = {A ∈ L : ⊢S A}. E.g.
L(aTdT ′α123t4 ) is the set of all sentences that are provable in the system
aTdT ′α123t4 , i.e., in the system that includes all the basic rules and the
(non-basic) rules T -aT , T -DdT ′, T -Dα1 , T -Dα2 , T -Dα3 and T -t4 [44].

5. Examples of theorems

In this section, we will consider some examples of theorems in some sys-
tems. The proofs are usually straightforward and are left to the reader.
We will say that a schema is a theorem (in a system S) iff every instance
of this schema is a theorem (in S).

6 STADDL includes some redundant rules and there are several systems with
fewer primitive rules that are deductively equivalent. The same is true of T. However,
we will not say anything more about this in the present paper.
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Name Theorem System

DK O[r](p → q) → (O[r]p → O[r]q) T

TDd4 O[r]p → O[r]O[r]p Dd4

TDd4 ′
O[r]p → O[s]O[r]p Dd4 ′

TDd5 P[r]p → O[r]P[r]p Dd5

TDd5 ′
P[r]p → O[s]P[r]p Dd5 ′

TDdT ′
O[r](O[r]p → p) DdT ′

TDdB′
O[r](p → O[r]P[r]p) DdB′

— O[r](P[r]O[r]p → p) DdB′

TDd7 P[q]p → O[q]p Dd7

— O[q]p ∨ F[q]p Dd7

— O[q]p ∨ O[q]¬p Dd7

— O[p](q ∨ r) → (O[p]q ∨ O[p]r) Dd7

Table 12. Examples of theorems

Name Theorem System
TDMO �q → O[p]q DMO

— P[p]q → ♦q DMO

TDad4 O[p]q → �O[p]q Dad4

— F[p]q → �F[p]q Dad4

TDad5 P[p]q → �P[p]q Dad5

Tα0 �(p ↔ q) → (O[p]r ↔ O[q]r) Dα0

— �(p ↔ q) → (P[p]r ↔ P[q]r) Dα0

— �(p ↔ q) → (F[p]r ↔ F[q]r) Dα0

TDα1 O[p]p Dα1

— �(p → q) → O[p]q Dα1DMO

TDα2 O[p ∧ q]r → O[p](q → r) Dα2

TDα3 ♦p → (O[p]q → P[p]q) Dα3

TDα4 P[p]q → (O[p](q → r) → O[p ∧ q]r) Dα4

Table 13. Examples of theorems

Theorem 2. The sentences in tables 12 and 13 are theorems in the in-

dicated systems. E.g. TDMO is a theorem in every system that includes

T -DMO, TDd4 ′ in every system that includes T -Dd4 ′ and TDα1 in

every system that includes T -Dα1 , etc.

Several theorems that can be proved in dyadic deontic systems are
mentioned by [43]. Many of these can be proved in the “corresponding”
temporal alethic dyadic deontic systems in this paper. However, since
our systems do not have any counterpart of the tableau rule Ta6 , and
since T -Dα3 is somewhat different from Tα3 , the systems in this paper
do not “match” the systems in [43] perfectly. Furthermore, note that
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Theorems
�p → (O[p]q ↔ O(p → q))

�p → (O(p → q) ↔ (p → Oq))
�p → (O[p]q ↔ (p → Oq))
�¬p → (O[p]q ↔ O(p → q))

�¬p → (O(p → q) ↔ (p → Oq))
�¬p → (O[p]q ↔ (p → Oq))
△ p → (O[p]q ↔ O(p → q))

△ p → (O(p → q) ↔ (p → Oq))
△ p → (O[p]q ↔ (p → Oq))

Table 14. Examples of theorems

the modal operators �, ♦, and ♦– are interpreted as so-called universal
modalities in the dyadic deontic systems introduced by [43], while this
is not the case in our systems in this essay. In this paper, U and M rep-
resent absolute necessity and possibility, respectively, while �, ♦, and ♦–
stand for historical necessity, possibility, and impossibility, respectively.

Theorem 3. 1. If a system S includes T -a4 , T -a5 (see [44]), T -DMO,

T -Dad4 , T -Dad5 , T -Dα1 , and T -Dα3 , then the following schemas

are theorems in S: O
′[B]A → �O

′[B]A, P
′[B]A → �P

′[B]A, and

F
′[B]A → �F

′[B]A.

2. Every theorem mentioned by [43] is a theorem in STADDL.

Note that not all instances of the following schemas are theorems
(not even in our strongest system): O[A]B ↔ O(A → B), O(A → B) ↔
(A → OB), O[A]B ↔ (A → OB). However, we do have the following
interesting result.

Theorem 4. Let S be a dyadic deontic tableau system that includes

the rules T -DMO, T -Dα0 , T -Dα2 , T -Dα3 , T -Dα4 , T -FT , and T -BT .

Then all sentences in Table 14 are theorems in S.

So, when p is non-contingent, i.e., when either p or ¬p is histor-
ically necessary, all the conditional obligations O[p]q, O(p → q) and
p → Oq are equivalent. Furthermore, note that not every instance of
(A ∧ O[A]B) → OB [(A ∧ O(A → B)) → OB] is valid. Hence, we
cannot always detach an unconditional obligation from the conditional
obligation O[A]B [O(A → B)] and the condition A. In other words,
it is not true that if it ought to be the case that B given A and A,
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then it ought to be that B, for every A and B. However, if the con-
dition is historically necessary, we can detach an unconditional obliga-
tion, at least in some systems. The following schemas can be proved in
STADDL (and also in some weaker systems): (�A ∧ O[A]B) → OB and
(�A ∧ O(A → B)) → OB. (A ∧ (A → OB)) → OB is provable in every
system, and (�A ∧ (A → OB)) → OB is provable in every system that
includes the tableau rule T -aT [44].

Let us say that A is “non-future” iff A does not contain any operator
of the form G, F, S, A, or Rt (at least if v(t) is a time later than the time
of the valuation of the sentence). Now let A be non-future. Then �A

and △ A are theorems in STADDL (and every extension of this system).
Furthermore, if A is non-future, then all of the following conditional
obligations are equivalent in STADDL: O[A]B, O(A → B) and A →
OB. Since (�A ∧ O[A]B) → OB, it follows that we can detach the
unconditional obligation OB in STADDL from O[A]B and A, if A is
non-future. The same is also true for conditional obligations of the forms
O(A → B) and A → OB.

These facts may shed some light on the so-called dilemma of com-
mitment and detachment (see [51, chapters II and IV] and Reason 12 in
Section 6.3 below).

6. Contrary-to-duty obligations and the contrary-to-duty
(obligation) paradox

In this section, we will briefly describe the so-called contrary-to-duty
(obligation) paradox (Section 6.1). Then we will show how we can use
our formal systems to solve this puzzle (Section 6.2). Finally, we consider
some reasons why we think this solution is attractive (Section 6.3).

A contrary-to-duty obligation is an obligation telling us what ought
to be the case if something forbidden is true. Here are some examples of
contrary-to-duty obligations (or sentences that express such obligations):
• If you are guilty, you should confess.
• If he has hurt his friend, he should apologise to her.
• If she will not keep her promise to him, she ought to call him.
We might also say that a contrary-to-duty obligation is a conditional
obligation where the condition (in the obligation) is forbidden, or where
the condition is fulfilled only if a primary obligation is violated. You
should not be guilty; but if you are, you should confess. He should not
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have hurt his friend; but if he has, he should apologise. She should keep
her promise to him; but if she will not, she ought to call him.

Contrary-to-duty obligations turn up in discussions concerning guilt,
blame, confession, restoration, reparation, punishment, repentance, re-
tributive justice, etc., and hence they form an important part of our
moral thinking. Consequently, we want to know how to symbolise them
adequately in some deontic system. The rationale of a contrary-to-duty
obligation is the fact that most of us do neglect our primary duties from
time to time and yet it is reasonable to believe that we should make the
best of a bad situation, or at least that it matters what we do when this
is the case.

However, it is difficult to find a satisfactory symbolisation of such
sentences in many deontic systems. This is shown by the so-called
contrary-to-duty (obligation) paradox, sometimes called the contrary-
to-duty imperative paradox. Roderick Chisholm [16] was one of the first
philosophers to address this puzzle. The contrary-to-duty paradox arises
when we try to formalise certain intuitively consistent sets of ordinary
language sentences, sets that include at least one contrary-to-duty obli-
gation sentence, by means of ordinary counterparts available in various
monadic deontic systems, such as for instance so-called Standard Deontic
Logic and similar systems. In many of these systems the resulting sets
are inconsistent in the sense that it is possible to deduce contradictions
from them, or else they violate some other intuitively plausible condition,
e.g. that the members of the sets should be independent of each other.7

6.1. Description of the contrary-to-duty paradox

Scenario I: contrary-to-duty obligations concerning promises

Consider the following scenario. It is Monday and you promise a friend
to meet her on Friday to help her with some task. Suppose further that
you always meet your friend on Saturdays. In this example the following
sentences all seem to be true:

N-CTD
N1. (On Monday it is true that) You ought to keep your promise

(and see your friend on Friday).
N2. (On Monday it is true that) It ought to be that if you keep your

promise, you do not apologise (when you meet your friend on Saturday).

7 For a general introduction to many contrary-to-duty paradoxes and an overview
of several different solutions, see Carmo and Jones [13]. See also [45, pp. 60–118].
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N3. (On Monday it is true that) If you do not keep your promise
(i.e., if you do not see your friend on Friday and help her out), you ought
to apologise (when you meet her on Saturday).

N4. (On Monday it is true that) You do not keep your promise (on
Friday).

Let N-CTD := {N1, N2, N3, N4}. N3 is a contrary-to-duty obligation
(or expresses a contrary-to-duty obligation). If the condition is true, the
primary obligation that you should keep your promise (expressed by N1)
is violated. The set N-CTD seems to be consistent: it does not seem
to entail any contradiction. However, if we try to formalise N-CTD in
so-called Standard Deontic Logic, for instance, we run into problems.
Consider the following symbolisation:

SDL-CTD

SDL1 Ok

SDL2 O(k → ¬a)
SDL3 ¬k → Oa

SDL4 ¬k

where k formalises “You keep your promise (meet your friend on Friday
and help her with her task)” and a formalises “You apologise (to your
friend for not keeping your promise)”. In this symbolisation SDL1 is
supposed to express a primary obligation and SDL3 a contrary-to-duty
obligation telling us what ought to be the case if the primary obligation
is violated.

As is well known, the set SDL-CTD := {SDL1, SDL2, SDL3, SDL4}
is not consistent in Standard Deontic Logic. O¬a follows from SDL1
and SDL2, and from SDL3 and SDL4 we can derive Oa. Together these
sentences entail the following formula: Oa ∧ O¬a (“It is obligatory that
you apologise and it is obligatory that you do not apologise”), which
directly contradicts the so-called axiom D, i.e., the schema ¬(OA∧O¬A),
which rules out explicit moral dilemmas and is included in Standard
Deontic Logic. Since N-CTD seems to be consistent, while SDL-CTD
is inconsistent, something must be wrong with our formalisation, with
Standard Deontic Logic or with our intuitions. In a nutshell, this puzzle
is the contrary-to-duty (obligation) paradox.8

8 This is, of course, just one example of a contrary-to-duty paradox. But many
other similar puzzles have the same or a very similar structure. So, much of what we
say about this example can be generalised in a more or less obvious way.
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6.2. Solution to the contrary-to-duty paradox in temporal
alethic dyadic deontic logic

Many different solutions to this paradox have been suggested in the lit-
erature. We can try to find some alternative formalisation of N-CTD,
we can try to develop some other kind of deontic logic or we can tin-
ker with our intuitions about N-CTD. This is not the place to consider
and evaluate all such attempts9, even though we will briefly mention
some possible solutions in Section 6.3. We will instead describe how
the contrary-to-duty paradox can be solved in temporal alethic dyadic
deontic logic. Then, we will consider some reasons why this solution is
attractive (Section 6.3).10

In temporal alethic dyadic deontic logic N-CTD can be symbolised
in the following way:

F-CTD

F1. Rt1O[⊤]Rt2k

F2. Rt1O[Rt2k]Rt3¬a

F3. Rt1O[Rt2¬k]Rt3a

F4. Rt1Rt2¬k [⇔ Rt2¬k]

where k and a are interpreted as in SDL-CTD, t1 refers to the moment
on Monday when you make your promise, t2 refers to the moment on
Friday when you should keep your promise and t3 refers to the moment
on Saturday when you should apologise if you do not keep your promise
on Friday. So, F1 is read as “It is true on Monday that you ought to
keep your promise on Friday”. F2 is read as “It is true on Monday that
it ought to be the case that you do not apologise on Saturday given that
you keep your promise on Friday”. F3 is read as “It is true on Monday
that it ought to be the case that you apologise on Saturday given that
you do not keep your promise on Friday”. F4 is read as “It is true on
Monday that it is true on Friday that you do not keep your promise”.
This seems to be a plausible rendering of N-CTD.

Some sentences in temporal alethic dyadic deontic logic are tempo-
rally settled. This means that if they are true (in a possible world), they
are true at every moment of time (in this possible world), and if they
are false (in a possible world), they are false at every moment of time

9 For a discussion of some possible solutions, see e.g. [45, pp. 60–118].
10 For some solutions that are similar to the one presented in this paper, see e.g.

van Eck [51, 52, 53], Feldman [22, 23], Loewer and Belzer [36], and Åqvist [66].
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(in this possible world). All the sentences F1–F4 are temporally settled.
O[⊤]Rt2k, O[Rt2k]Rt3¬a and O[Rt2¬k]Rt3a are examples of sentences
that are not temporally settled, as their truth values may vary from one
moment of time to another (in one and the same possible world).

It is true on Monday that it is true on Friday that you do not keep
your promise iff it is true on Friday that you do not keep your promise.
Rt1Rt2¬k is equivalent to Rt2¬k. So, from now on, we will use Rt2¬k

as a symbolisation of N4. (We mention Rt1Rt2¬k because we want to
know what is true on Monday, and according to our scenario, it is true
on Monday that you will not keep your promise on Friday.) Note that it
might be true on Monday that you will not keep your promise on Friday
(in some possible world) even though this is not a settled fact, i.e., even
though it is not historically necessary. In some possible worlds you will
keep your promise on Friday and in some possible worlds you will not.
F4 is true at t1 (i.e. on Monday) in the possible worlds where you do not
keep your promise at t2 (i.e. on Friday).

Let F-CTD := {F1, F2, F3, F4}. We will show that F-CTD is consis-
tent in all systems weaker than or deductively equivalent to the system
T (see Section 4.3). Most philosophically interesting temporal alethic
dyadic deontic systems (of the kind used in this paper) are included in
this set.11 (In Section 6.3 we will show that F-CTD has many other
intuitively plausible properties, for instance that it is non-redundant.)
To show this, it is enough to establish that this is true in the system T.
Then it follows that the result holds in all weaker systems too. Hence,
we can solve the contrary-to-duty paradox in temporal alethic dyadic
deontic logic.

Model I. Consider the following supplemented temporal alethic dyadic
deontic model. W = {ω1, ω2, ω3, ω4}. The model satisfies all conditions
in tables 4 and 5 (and thus all conditions in tables 1–3), i.e., > (better
than) is transitive, etc. Hence, the ranking is the same in every possible
world in the model: ω1 > ω2 > ω3 > ω4. This means, for instance,
that ω1 is better than ω2 in every possible world, i.e., ω1 > ω2 is an

11 It is possible to construct several systems that are stronger than T by adding
temporal rules to this system, e.g. we can add rules that correspond to the fact that
time is dense or that there is no first or last point in time. As far as we can see, the
results in this section can be extended to all such systems that are philosophically
interesting. However, we will not explicitly consider these examples since we want to
keep our models as simple as possible, e.g. we want to avoid models with an infinite
number of temporal points.
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abbreviation of the following conditions: ω1 >ω1
ω2, ω1 >ω2

ω2, ω1 >ω3

ω2, ω1 >ω4
ω2, etc. Since ω1 is better than ω2 and ω2 is better than ω3,

ω1 is better than ω3, etc. In other words, ω1 is the best member of W , ω2

the second best, etc. The alethic accessibility relation is an equivalence
relation (i.e., it is reflexive, symmetric, transitive (at every moment in
time) etc.). T = {τ1, τ2, τ3}, where τ1 < τ2 < τ3. The temporal relation
is transitive, comparable, and it does not branch towards the future or
the past. At τ1 all possible worlds are alethically accessible from all
possible worlds. At τ2, ω2 is alethically accessible from ω1 and ω1 is
alethically accessible from ω2. At τ2, ω3 can see ω4 alethically and ω4

can see ω3 alethically. At all times every possible world is alethically
accessible to itself. The deontic accessibility relations are defined by
C − Dγ0. v(t1) = τ1, v(t2) = τ2, and v(t3) = τ3. k is true in ω1 and
ω2 at τ2 and k is false in ω3 and ω4 at τ2. a is false in ω1 and ω4 at τ3

and a is true in ω2 and ω3 at τ3. For our purposes, we do not need any
further information about this model. Model I is a so-called T-model
(see Section 3.3).

We are now in a position to prove the following theorem:

Theorem 5. F-CTD is consistent in all systems weaker than or deduc-

tively equivalent to the system T.

Proof. Every sentence in F-CTD is true in ω3 at τ1 in Model I. Hence,
F-CTD is satisfiable in this model. By the definition of T and the
soundness results in Section 7.1, it follows that F-CTD is consistent in
T. Let us verify that every sentence in F-CTD is true in ω3 at τ1 in
Model I.

F1. Rt1O[⊤]Rt2k. Rt1O[⊤]Rt2k is true in ω3 at τ1 iff O[⊤]Rt2k is true
in ω3 at τ1. O[⊤]Rt2k is true in ω3 at τ1 iff Rt2k is true in all the best
worlds that are alethically accessible from ω3 at τ1 where ⊤ is true at τ1.
Since ⊤ is true in every possible world at every moment in time, ω1 is
the best world that is alethically accessible from ω3 at τ1 in which ⊤ is
true. Since k is true in ω1 at τ2, it follows that Rt2k is true in ω1 at τ1.
So, Rt2k is true in all the best worlds that are alethically accessible from
ω3 at τ1 where ⊤ is true. Consequently, O[⊤]Rt2k is true in ω3 at τ1. In
conclusion, Rt1O[⊤]Rt2k is true in ω3 at τ1.

F2. Rt1O[Rt2k]Rt3¬a. Rt1O[Rt2k]Rt3¬a is true in ω3 at τ1 iff
O[Rt2k]Rt3¬a is true in ω3 at τ1. O[Rt2k]Rt3¬a is true in ω3 at τ1 iff
Rt3¬a is true in all the best worlds that are alethically accessible from
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ω3 at τ1 in which Rt2k is true at τ1. Rt2k is true at τ1 in ω1 and ω2. The
best of these worlds is ω1. It follows that O[Rt2k]Rt3¬a is true in ω3 at
τ1 iff Rt3¬a is true in ω1 at τ1. Rt3¬a is true in ω1 at τ1 iff ¬a is true
in ω1 at τ3. Since a is false in ω1 at τ3, ¬a is true in ω1 at τ3. Hence,
Rt3¬a is true in ω1 at τ1. Consequently, O[Rt2k]Rt3¬a is true in ω3 at
τ1. It follows that Rt1O[Rt2k]Rt3¬a is true in ω3 at τ1.

F3. Rt1O[Rt2¬k]Rt3a. Rt1O[Rt2¬k]Rt3a is true in ω3 at τ1 iff
O[Rt2¬k]Rt3a is true in ω3 at τ1. O[Rt2¬k]Rt3a is true in ω3 at τ1 iff Rt3a

is true in all the best worlds that are alethically accessible from ω3 at τ1

in which Rt2¬k is true at τ1. Rt2¬k is true at τ1 in ω3 and ω4. The best of
these worlds is ω3. Hence, O[Rt2¬k]Rt3a is true in ω3 at τ1 iff Rt3a is true
in ω3 at τ1. Rt3a is true in ω3 at τ1 iff a is true in ω3 at τ3. But a is true in
ω3 at τ3. Accordingly, Rt3a is true in ω3 at τ1. Therefore, O[Rt2¬k]Rt3a

is true in ω3 at τ1. It follows that Rt1O[Rt2¬k]Rt3a is true in ω3 at τ1.
F4. Rt2¬k. Rt2¬k is true in ω3 at τ1 iff ¬k is true in ω3 at τ2. ¬k is

true in ω3 at τ2 iff k is false in ω3 at τ2. Since k is false in ω3 at τ2, it
follows that Rt2¬k is true in ω3 at τ1. ⊣

6.3. Reasons why the solution to the contrary-to-duty paradox in
temporal alethic dyadic deontic logic is attractive

In this section, we will consider 12 reasons why the solution to the
contrary-to-duty paradox suggested in Section 6.2 is attractive. Taken
individually, each reason might not seem that impressive, but together
they really show how powerful this solution is. Without further ado, let
us turn to our reasons.

Reason 1 (F-CTD is consistent). N-CTD seems to be consistent, i.e.,
it does not seem to be the case that we can derive a contradiction from
this set. Hence, we want our symbolisation of N-CTD to be consistent.
We have already shown that this is the case (Theorem 5).

Reason 2 (F-CTD is non-redundant). N-CTD seems to be non-redun-
dant, i.e., it seems to be the case that no member of this set is derivable
from the others. Therefore, we want our symbolisation of N-CTD to be
non-redundant. In monomodal deontic logic, for instance Standard De-
ontic Logic, we can solve the contrary-to-duty paradox by finding some
other formalisation of the sentences in N-CTD. Instead of SDL2 we can
use k → O¬a and instead of SDL3 we can use O(¬k → a). Then we
obtain three consistent alternative symbolisations of N-CTD. However,
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these alternatives are not non-redundant. For O(¬k → a) follows from
Ok in every so-called normal deontic logic, including Standard Deontic
Logic, and k → O¬a follows from ¬k by propositional logic. But intu-
itively, N3 does not seem to follow from N1, and N2 does not seem to
follow from N4. In temporal alethic dyadic deontic logic, we can avoid
this problem since we can prove the following theorem:

Theorem 6. F-CTD is non-redundant in all systems weaker than or

deductively equivalent to the system T.

To prove this theorem, we must establish propositions 1–4 below.

Proposition 1. F1 is not derivable from {F2, F3, F4} in T. To prove

that F1 is not derivable from {F2, F3, F4} it is sufficient to come up

with a T-model M , a world ω in M and a time τ in M such that all

members of {F2, F3, F4} are true in ω at τ and F1 false in this world

at this time. For T is strongly sound with respect to the class of all

T-models. Consider the following model.

Model II. This model is exactly like Model I except that we use the
following ranking of possible worlds instead: ω3 > ω1 > ω2 > ω4. In
world ω4 at time τ1 all members of {F2, F3, F4} are true and F1 false.
Hence, F1 is not derivable from {F2, F3, F4} in T (or any weaker system).

Proposition 2. F2 is not derivable from {F1, F3, F4} in T. The fol-

lowing model proves this proposition.

Model III. This model is exactly like Model I except that a is true in
ω1 at τ3 and that we use the following ranking for the possible worlds:
ω1 > ω3 > ω2 > ω4. In ω4 at τ1 all members of {F1, F3, F4} are true
and F2 false. Consequently, F2 is not derivable from {F1, F3, F4} in T.

Proposition 3. F3 is not derivable from {F1, F2, F4} in T. To prove

this claim we use the following model.

Model IV. This model is exactly like Model I except that we use the
same ranking as in Model III and that a is false in ω3 at time τ3. In
world ω4 at time τ1 all members of {F1, F2, F4} are true and F3 false.
Accordingly, F3 is not derivable from {F1, F2, F4} in T.

Proposition 4. F4 is not derivable from {F1, F2, F3} in T. To prove

this proposition, we can use Model I. In world ω2 at time τ1 all members

of {F1, F2, F3} are true and F4 false.
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Reason 3 (F-CTD is dilemma free). One way of avoiding the contrary-
to-duty paradox in monomodal deontic systems is to give up the axiom D,
¬(OA∧O¬A) (“It is not obligatory that A and obligatory that not-A”).
Without this axiom (or something equivalent), it is no longer possible
to derive a contradiction from SDL1–SDL4. In the so-called smallest
normal deontic system K, for instance, SDL-CTD is consistent. Some
might think that there are independent reasons for rejecting D since they
think there are, or could be, genuine moral dilemmas. But even if this
were true (which is debatable), rejecting D does not seem to be a good so-
lution to the contrary-to-duty paradox for several reasons. Firstly, even
if we reject axiom D, it is problematic to assume that a dilemma follows
from N-CTD. We can still derive the sentence Oa∧O¬a from SDL-CTD
in every normal deontic system, which says that it is obligatory that
you apologise and it is obligatory that you do not apologise. And this
proposition does not seem to follow from N-CTD. Secondly, if there are
any moral dilemmas of this kind, we can derive the claim that everything
is both obligatory and forbidden in every normal deontic system, which
is absurd (see Reason 4 below). Thirdly, such a solution might still have
problems with the so-called pragmatic oddity (see Reason 5 below).

Our solution in temporal alethic dyadic deontic logic avoids this prob-
lem. From F1 and F2 we can derive the sentence Rt1O[⊤]Rt3¬a (in some
systems) (see Reason 10 below) and from F3b and F4 we can derive
the sentence Rt2O[⊤]Rt3a (in some systems under some circumstances)
(see Reason 11 below). And from this we can derive the following for-
mula: Rt1O[⊤]Rt3¬a ∧ Rt2O[⊤]Rt3a, from {F1, F2, F3b, F4} (in certain
systems). But this is not a moral dilemma. Rt1O[⊤]Rt3¬a says “On
Monday [when you have not yet broken your promise] it ought to be
the case that you do not apologise on Saturday”, and Rt2O[⊤]Rt3a says
“On Friday [when you have broken your promise] it ought to be the
case that you apologise on Saturday”. But O[⊤]Rt3a and O[⊤]Rt3¬a

are not true at the same time. Neither Rt1O[⊤]Rt3¬a ∧ Rt1O[⊤]Rt3a

nor Rt2O[⊤]Rt3¬a ∧ Rt2O[⊤]Rt3a is derivable from F-CTD in T or any
weaker temporal alethic dyadic deontic system. N-CTD seems to be
dilemma free. So, we want our formalisation of N-CTD to be dilemma
free too. The following theorem shows that F-CTD is dilemma free in
T and any weaker temporal alethic dyadic deontic system:

Theorem 7. F-CTD is dilemma free in T and any weaker temporal

alethic dyadic deontic system.
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Proof. Consider Model I. Every sentence in F-CTD is true in ω3 at τ1

in this model. However, Rt1O[⊤]Rt3a is false in this world at this time.
Hence, Rt1O[⊤]Rt3¬a ∧ Rt1O[⊤]Rt3a is also false in this world at this
time. Since Model I is a T-model and T is sound with respect to the class
of all T-models, it follows that Rt1O[⊤]Rt3¬a∧Rt1O[⊤]Rt3a is not deriv-
able from F-CTD in T or any weaker temporal alethic dyadic deontic
system. Rt2O[⊤]Rt3¬a is also false in ω3 at τ1. Hence, Rt2O[⊤]Rt3¬a ∧
Rt2O[⊤]Rt3a is false in this world at this time. It follows that
Rt2O[⊤]Rt3¬a ∧ Rt2O[⊤]Rt3a is not derivable from F-CTD in T. ⊣

Reason 4 (It is not possible to derive the proposition that everything is
both obligatory and forbidden from F-CTD). In every so-called normal
deontic logic (even without the axiom D), we can derive the conclusion
that everything is both obligatory and forbidden if there is at least one
moral dilemma. This follows from the equivalence FA iff O¬A and the
fact that Oa ∧ O¬a entails Or for any r. This is clearly absurd. N-CTD
does not seem to entail that everything is both obligatory and forbidden.
Hence, we do not want our symbolisation to entail this. Our solution
in temporal alethic dyadic deontic logic has no such consequences. We
have already seen that F-CTD is dilemma free (Reason 3 above). The
following theorem shows that our solution avoids this problem:

Theorem 8. F-CTD does not entail that for every A it is both obligatory

that A and obligatory that not-A in T or any weaker temporal alethic

dyadic deontic system.

Proof. Again, we can use Model I to prove this. Every sentence in
F-CTD is true in ω3 at time τ1 in this model. However, Rt1O[⊤]Rt3¬a

is true while Rt1O[⊤]¬Rt3¬a and Rt1F [⊤]Rt3¬a are false in this world
at this time. From this our theorem follows easily. ⊣

Reason 5 (F-CTD avoids the so-called pragmatic oddity). Pragmatic
oddity is a problem for many possible solutions to the contrary-to-duty
paradox. In every so-called normal deontic logic (with or without the
axiom D) it is possible to derive the following sentence from SDL-CTD:
O(k ∧ a), which says that it is obligatory that you keep your promise
and apologise (for not keeping your promise). Several solutions that use
bimodal alethic-deontic logic or counterfactual deontic logic, for instance,
also have this problem. The sentence O(k ∧ a) is not inconsistent, but
it is certainly very odd and it does not seem to follow from N-CTD that
you should keep your promise and apologise. Hence, we do not want



36 Daniel Rönnedal

our formalisation of N-CTD to entail this counterintuitive conclusion
or anything similar to it. The following theorem shows that neither
Rt1O[⊤](Rt2k ∧Rt3a) nor Rt2O[⊤](Rt2k ∧Rt3a) is derivable from F-CTD
in T or any weaker system:

Theorem 9. Neither Rt1O[⊤](Rt2k ∧Rt3a) nor Rt2O[⊤](Rt2k ∧Rt3a) is

derivable from F-CTD in T.

Proof. We have seen that all sentences in F-CTD are true in ω3 at τ1 in
Model I. However, neither Rt1O[⊤](Rt2k∧Rt3a) nor Rt2O[⊤](Rt2k∧Rt3a)
is true in this world at this time (in this model). Now our theorem follows
easily from this fact. ⊣

Reason 6 (The solution in temporal alethic dyadic deontic logic is ap-
plicable to (at least apparently) actionless contrary-to-duty examples).
It might be possible to solve some contrary-to-duty paradoxes by com-
bining deontic logic with some kind of action logic, for instance some
kind of Stit (“Seeing to it”) logic, or dynamic logic. However, there also
seem to be examples of contrary-to-duty paradoxes that involve action-
less contrary-to-duty obligations. And it is difficult to see how to solve
these paradoxes in such systems.

Scenario II: Contrary-to-duty paradoxes involving (apparently)
actionless contrary-to-duty obligations

Consider the following scenario. At t1, you are about to get into your
car and drive somewhere. Then at t1 it ought to be the case that the
doors are closed at t2, when you are in your car. If the doors are not
closed, then a warning light ought to appear on the car instrument panel
(at t3, a point in time as soon as possible after t2). It ought to be that if
the doors are closed (at t2), then it is not the case that a warning light
appears on the car instrument panel (at t3). Furthermore, the doors are
not closed (at t2 when you are in the car). In this example, all of the
following sentences seem to be true:

N2-CTD
AN1. (At t1) The doors ought to be closed (at t2).
AN2. (At t1) It ought to be that if the doors are closed (at t2), then

it is not the case that a warning light appears on the car instrument
panel (at t3).

AN3. (At t1) If the doors are not closed (at t2) then a warning light
ought to appear on the car instrument panel (at t3).
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AN4. (At t1 it is the case that at t2) The doors are not closed.

N2-CTD is similar to N-CTD. In this set, AN1 expresses a primary
obligation (or ought), and AN3 expresses a contrary-to-duty obligation.
The condition in AN3 is satisfied only if the primary obligation expressed
by AN1 is violated. But AN3 does not seem to tell us anything about
what you or someone else ought to do. AN3 seems to be an actionless
contrary-to-duty obligation. It tells us something about what ought to
be the case if the world is not as it ought to be according to AN1.

In temporal alethic dyadic deontic logic, we have no trouble sym-
bolising such (apparently) actionless contrary-to-duty obligations. The
logical form of the sentences in N2-CTD exactly parallels the logical form
of the sentences in N-CTD. Contrary-to-duty paradoxes of this kind can
therefore be solved in exactly the same way as we solved our original
paradox.

Reason 7 (We can assign formal sentences with analogous structures to
all conditional obligations in N-CTD in temporal alethic dyadic deontic
logic). Some deontic logicians have suggested that a formalisation of N-
CTD is adequate only if the formal sentences assigned to N2 and N3
have the same (or analogous) logical form (see e.g. [13]). Our solution
in temporal alethic dyadic deontic logic satisfies this requirement, in
contrast to many other solutions. F2 and F3 have the “same” logical
form; both are formalised using dyadic obligation.

Reason 8 (We can express the idea that an obligation has been vio-
lated in temporal alethic dyadic deontic logic). It might be possible to
solve some contrary-to-duty paradoxes by applying ordinary concepts
of defeasibility from so-called non-monotonic logic. However, it is not
obvious that such solutions can explain the difference between violation
and defeat. If you will not see your friend and help her, the obligation to
keep your promise will be violated. It is not the case that this obligation
is defeated, overridden or cancelled. It is not the case that one of the
conditional norms in N-CTD defeat or override the other. Nor is it the
case that they cancel each other out.

In temporal alethic dyadic deontic logic, we can express the idea that
an obligation has been violated. Nevertheless, we must be careful when
we describe the facts. At τ2, when it is already settled that you do not
keep your promise, it is no longer obligatory that you keep your promise,
since by then it is no longer possible to keep it (in the strong models,
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for instance the T-models, we are considering). However, the following
sentence is still true (in ω1 and ω2 at τ2): Rt1O[⊤]Rt2k, i.e., it is still
true at τ2 (in the worlds where you do not keep your promise) that you
should have kept your promise. So, when you do not keep your promise,
you violate this earlier duty.

Reason 9 (We can symbolise higher order contrary-to-duty obligations
in temporal alethic dyadic deontic logic). There are contrary-to-duty
obligations of a higher order or degree. Consider the following variation
of Scenario I:

Scenario III

One could claim that what you ought to do on Monday if you will not
help your friend on Friday is call her on Wednesday, tell her that you will
not keep your promise and apologise. If you neither keep your promise
on Friday nor call your friend on Wednesday, then you ought to apologise
(when you meet your friend on Saturday). If you keep your promise, then
you ought not to apologise (when you meet your friend on Saturday)
and you ought not to call her (on Wednesday). In this scenario all of the
following sentences seem to be true:

N-HCTD

HN1. (On Monday it is true that) You ought to keep your promise
(and see your friend on Friday).

HN2. (On Monday it is true that) It ought to be that if you keep your
promise, you do not apologise (when you meet your friend on Saturday).

HN3. (On Monday it is true that) If you do not keep your promise
(i.e., if you will not see your friend on Friday and help her out), you ought
to call her (tell her that you will not keep your promise and apologise
on Wednesday).

HN4. (On Monday it is true that) You do not keep your promise (on
Friday).

HN5. (On Monday it is true that) If you do not keep your promise
(on Friday) and you do not call your friend (on Wednesday), you ought
to apologise (when you meet your friend on Saturday).

HN6. (On Monday it is true that) You do not call your friend (on
Wednesday).

HN7. (On Monday it is true that) It ought to be that if you keep
your promise, you do not call your friend (on Wednesday).
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Let N-HCTD := {HN1, . . . , HN7}. Here HN3 is an ordinary, first-order
or first-degree contrary-to-duty obligation that tells us what ought to be
the case if the primary obligation expressed by HN1 is violated. HN5
expresses a contrary-to-contrary to duty obligation, a second-order or
second-degree contrary-to-duty obligation. The condition in this obliga-
tion is fulfilled only if the primary obligation expressed by HN1 is vio-
lated and the first-order contrary-to-duty obligation to call your friend
is violated.

A reasonable solution to the contrary-to-duty paradox should be able
to deal with higher-order contrary-to-duty obligations as well as ordinary
first-degree contrary-to-duty obligations. In our temporal alethic dyadic
deontic systems, we do not seem to have any trouble symbolising such
higher-order contrary-to-duty obligations. N-HCTD can, for instance, be
symbolised in the following way in temporal alethic dyadic deontic logic:

F-HCTD

HF1. Rt1O[⊤]Rt3k

HF2. Rt1O[Rt3k]Rt4¬a

HF3. Rt1O[Rt3¬k]Rt2c

HF4. Rt1Rt3¬k [⇔ Rt3¬k]
HF5. Rt1O[Rt3¬k ∧ Rt2¬c]Rt4a

HF6. Rt1Rt2¬c [⇔ Rt2¬c]
HF7. Rt1O[Rt3k]Rt2¬c

Let F-HCTD := {HF1, . . . , HF7}. F-HCTD is also consistent, non-
redundant, etc. Not all solutions to the contrary-to-duty paradox seem
to accommodate such examples.

Reason 10 (In temporal alethic dyadic deontic logic we can derive
“ideal” obligations). It seems to follow that you ought not to apologise
from N1 and N2. Ideally you ought to keep your promise, and ideally it
ought to be that if you keep your promise, then you do not apologise (for
not keeping your promise). Hence, ideally you ought not to apologise.
We want our formalisation of N-CTD to reflect this intuition. In every
tableau system that includes T -Dα0 and T -Dα2, Rt1O[⊤]Rt3¬a is deriv-
able from F1 (Rt1O[⊤]Rt2k) and F2 (Rt1O[Rt2k]Rt3¬a). To illustrate
how to use our tableau systems we will now show this.

In our derivation below (and in the derivation in Reason 11), we will
use two derived rules. According to the first derived rule, DR1, we may
add ¬A, wit to any open branch in a tree that includes ¬RtA, witj .
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This rule holds in every system. According to the second derived rule,
DR2, we may add O[⊤](A → B), witj to any open branch in a tree
that contains O[A]B, witj . This derived rule holds in every system that
includes the rules T -Dα0 and T -Dα2 .

(1) Rt1O[⊤]Rt2k, w0t0

(2) Rt1O[Rt2k]Rt3¬a, w0t0

(3) ¬Rt1O[⊤]Rt3¬a, w0t0

(4) ¬O[⊤]Rt3¬a, w0t1 [3, DR1]
(5) P[⊤]¬Rt3¬a, w0t1 [4, ¬O]

(6) s⊤w0w1t1 [5, P]
(7) ¬Rt3¬a, w1t1 [5, P]
(8) ¬¬a, w1t3 [7, DR1]

(9) O[⊤]Rt2k, w0t1 [1, Rt]
(10) Rt2k, w1t1 [9, 6, O]

(11) k, w1t2 [10, Rt]
(12) O[Rt2k]Rt3¬a, w0t1 [2, Rt]

(13) O[⊤](Rt2k → Rt3¬a), w0t1 [12, DR2]
(14) Rt2k → Rt3¬a, w1t1 [13, 6, O]

ւ ց
(15) ¬Rt2k, w1t1 [14, →] (16) Rt3¬a, w1t1 [14, →]

(17) ¬k, w1t2 [15, DR1] (18) ¬a, w1t3 [16, Rt]
(19) * [11, 17] (20) * [8, 18]

According to Rt1O[⊤]Rt3¬a, it is true at t1, i.e., on Monday, that
it ought to be the case that you will not apologise on Saturday when
you meet your friend. For, ideally, you keep your promise on Friday.
Note, however, that Rt2O[⊤]Rt3¬a does not follow from F1 and F2 (see
Reason 3 above). On Friday, when you have broken your promise, and
when it is no longer historically possible for you to keep your promise,
then it is not obligatory that you do not apologise on Saturday. In fact,
then it is obligatory that you apologise when you meet your friend on
Saturday (see Reason 11). But on Monday it is not a settled fact that
you will not keep your promise. Hence, it is reasonable to claim that it is
true on Monday that it ought to be the case that you do not apologise on
Saturday. For on Monday it is still possible for you to keep your promise
on Friday, which you ought to do. All of these conclusions that follow
from F-CTD correspond well with our intuitions about Scenario I.

Reason 11 (In temporal alethic dyadic deontic logic we can derive “ac-
tual” obligations in certain circumstances). It seems to follow that you
ought to apologise from N3 and N4. Ideally you ought to keep your
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promise. But if you do not keep your promise, you ought to apologise.
And in fact, you do not keep your promise. Hence, you should apologise.
We want our formalisation of N-CTD to reflect this intuition. Accord-
ingly, we will assume that the conditional (contrary-to-duty) obligation
expressed by N3 is still in force at time t2 (τ2), i.e., we assume that the
following sentence is true:

F3b. Rt2O[Rt2¬k]Rt3a.

According to F3b it is true at t2 (i.e., on Friday) that if you do not keep
your promise on Friday, then you ought to apologise on Saturday. In
every tableau system that includes T -Dα0 , T -Dα2 , T -DMO (the dyadic
must-ought principle), and T -BT (backward transfer), Rt2O[⊤]Rt3a is
derivable from F4 (Rt2¬k) and F3b. According to Rt2O[⊤]Rt3a, it is
true at t2, i.e., on Friday when you have broken your promise to your
friend, that it ought to be the case that you apologise to your friend on
Saturday when you meet her.

Note that Rt1O[⊤]Rt3a is not derivable from F3 (or F3b or F3 and
F3b) and F4 (see Reason 3). Rt1O[⊤]Rt3a says that it is true at t1, i.e.,
on Monday, that you should apologise to you friend on Saturday when
you meet her. But on Monday it is not yet a settled fact that you will
not keep your promise to your friend. Hence, it is not true on Monday
that you should apologise on Saturday. On Monday it is still open to
you to keep your promise on Friday. And since you ought to keep your
promise, and it ought to be that if you keep your promise then you do
not apologise, it follows that it is true on Monday that it ought to be
the case that you do not apologise on Saturday (see Reason 10). All of
these facts correspond well with our intuitions about Scenario I.

Here is our derivation of Rt2O[⊤]Rt3a from F3b and F4; this deriva-
tion also illustrates how to use our tableau systems:

(1) Rt2¬k, w0t0

(2) Rt2O[Rt2¬k]Rt3a, w0t0

(3) ¬Rt2O[⊤]Rt3a, w0t0

(4) ¬O[⊤]Rt3a, w0t2 [3, DR1]
(5) P[⊤]¬Rt3a, w0t2 [4, ¬O]

(6) s⊤w0w1t2 [5, P]
(7) ¬Rt3a, w1t2 [5, P]
(8) ¬a, w1t3 [7, DR1]

(9) rw0w1t2 [6, T -DMO]
(10) ¬k, w0t2 [1, Rt]
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(11) O[Rt2¬k]Rt3a, w0t2 [2, Rt]
(12) O[⊤](Rt2¬k → Rt3a), w0t2 [11, DR2]

(13) Rt2¬k → Rt3a, w1t2 [6, 12, O]
ւ ց

(14) ¬Rt2¬k, w1t2 [13, →] (15) Rt3a, w1t2 [13, →]
(16) ¬¬k, w1t2 [14, DR1] (17) a, w1t3 [15, Rt]

(18) k, w1t2 [16, ¬¬] (19) * [8, 17]
(20) k, w0t2 [9, 18, T -BT ]

(21) * [10, 20]

F3 and F3b are independent of each other (in T and weaker systems).
But if this is true and we assume that the contrary-to-duty obligation
to apologise, given that you do not keep your promise, is still in force
at t2, should not N3 be symbolised by a conjunction of F3 and F3b or
something similar? It might be interesting to note that we can do this
without affecting the main results in this section. {F1, F2, F3, F3b, F4}
is, for instance, consistent, non-redundant, etc. (in T and weaker sys-
tems). So, we can use such an alternative formalisation of N3 instead of
F3. Furthermore, note that the symbolisation of N2 can be modified in
a similar way.

Reason 12 (We can avoid the so-called dilemma of commitment and
detachment in temporal alethic dyadic deontic logic). (Factual) Detach-
ment is an inference pattern that allows us to infer or detach an un-
conditional obligation from a conditional obligation and this conditional
obligation’s condition. For example, if detachment holds for the condi-
tional (contrary-to-duty) obligation that you should apologise if you do
not keep your promise (if detachment is possible), then we can derive
the unconditional obligation that you should apologise given that you
do not keep your promise.

According to the so-called dilemma of commitment and detachment
[52, p. 263]: (1) Detachment should be possible, for we cannot take
seriously a conditional obligation if it cannot, by way of detachment, lead
to an unconditional obligation. (2) Detachment should not be possible,
for if detachment is possible, the following kind of situation would be
inconsistent  A, it ought to be the case that B given that A; and C, it
ought to be the case that not-B given C. But, such a situation is not
necessarily inconsistent.

This dilemma seems to be a problem for solutions to the contrary-to-
duty paradox in pure dyadic deontic logic. In pure dyadic deontic logic,
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we cannot derive the unconditional obligation that it is obligatory that
A (OA) from the dyadic obligation that it is obligatory that A given B

(O[B]A) and B. But how can we then take such conditional obligations
seriously? Be that as it may, in temporal alethic dyadic deontic logic
we can solve this dilemma. In Section 5, we saw that we cannot always
detach an unconditional obligation from a conditional obligation and its
condition, but that we can detach the unconditional obligation OB (in
STADDL) from O[A]B and A if A is non-future or historically necessary.
This seems to give us exactly the correct answer to our current puzzle.
Detachment holds, but it does not hold unrestrictedly. We saw above
that Rt2O[⊤]Rt3a, but not Rt1O[⊤]Rt3a, is derivable from Rt2¬k and
Rt2O[Rt2¬k]Rt3a in certain systems. In other words, we can detach the
former sentence, but not the latter. From this it does not follow that a
set of the following kind must be inconsistent: {A, O[A]B, C, O[C]¬B};
this seems to be exactly what we want.

This concludes our discussion of the reasons for the solution to the
contrary-to-duty paradox discussed in the present paper. All other solu-
tions that have been suggested in the literature so far seem to lack at least
some of the features mentioned above. This makes the symbolisation of
N-CTD in temporal alethic dyadic deontic logic very attractive.

7. Soundness and completeness theorems

The soundness and completeness proofs in this section are modifications
and extensions of proofs found in [43] and [44].

Let S = “aA1...AidB1...BjαC1...CkadD1...DltE1...EmadtF1...Fn” be
a temporal alethic dyadic deontic tableau system as defined above. Then
we shall say that the class of models, M, corresponds to S just in case
M = M(C-A1, ..., C-Ai, C-B1, ..., C-Bj , C-C1, ..., C-Ck, C-D1, ..., C-Dl,

C-E1, ..., C-Em, C-F1, ..., C-Fn).
S is strongly sound with respect to M iff for all Γ and A: Γ ⊢S A

(i.e., A is derivable from Γ in S) entails M, Γ  A (i.e., A follows from Γ
in M). S is strongly complete with respect to M just in case M, Γ  A

entails Γ ⊢S A.

7.1. Soundness theorems

Let M be any (ordinary) model and b any branch of a tableau. Then
b is satisfiable in M iff there is a function f from w0, w1, w2, . . . to
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W and a function g from t0, t1, t2, . . . to T such that (i) A is true
in f(wi) at g(tj) in M , for every node A, witj on b, (ii) if rwiwjtk

is on b, then Rf(wi)f(wj)g(tk) in M , (iii) if sAwiwjtk is on b, then
SAf(wi)f(wj)g(tk) in M , (iv) if ti < tj is on b, then g(ti) < g(tj) in M ,
(v) if wi = wj is on b, then f(wi) = f(wj) in M , (vi) if ti = tj is on b,
then g(ti) = g(tj) in M . If these conditions are fulfilled, we say that f

and g show that b is satisfiable in M .

Lemma 10 (Soundness Lemma). Let b be any branch of a tableau and

M be any temporal alethic dyadic deontic model. If b is satisfiable in M

and a tableau rule is applied to it, then it produces at least one extension,

b′, of b such that b′ is satisfiable in M .

Proof. The proof proceeds by going through all the tableau rules. Here
are some steps to illustrate the method.

For T -DdT ′: Assume that sAwiwjtl is on b, and that we apply T −
DdT ′ to give an extended branch of b including sAwjwjtl. Since b is
satisfiable in M , SAf(wi)f(wj)g(tl). Accordingly, SAf(wj)f(wj)g(tl),
since M satisfies the condition C-DdT ′.

For T -Dα2 : Suppose that sAwiwjtl and B, wjtl are on b, and that
we apply T -Dα2 to give an extended branch of b containing sA∧Bwiwjtl.
Since b is satisfiable in M , SAf(wi)f(wj)g(tl) and B is true in f(wj) at
g(tl). Accordingly, SA∧Bf(wi)f(wj)g(tl), since M satisfies C-Dα2 .

For T -Dα4 : Suppose that sAwiwjtl, B, wjtl, and sA∧Bwiwktl are on
b, and that we apply T -Dα4 to give an extended branch of b containing
sAwiwktl and B, wktl. Since b is satisfiable in M , SAf(wi)f(wj)g(tl),
SA∧Bf(wi)f(wk)g(tl) and B is true in f(wj) at g(tl). Accordingly,
SAf(wi)f(wk)g(tl) and B is true in f(wk) at g(tl), since M satisfies
the condition C-Dα4 . ⊣

Theorem 11 (Soundness Theorem I). Let S be any of the tableau sys-

tems discussed in this essay and let M be the class of models that

corresponds to S. Then S is strongly sound with respect to M.

Proof. Once Soundness Lemma is established, the proof is an easy
modification of similar proofs found e.g. in [38, 43, 44, 46]. ⊣

From the above theorem and Theorem 1 we obtain:

Theorem 12 (Soundness Theorem II). 1. α012 is sound with respect

to the class of all supplemented models that satisfies C-Dγ0 .



Temporal alethic dyadic deontic logic . . . 45

2. α0123 is sound with respect to the class of all supplemented models

that satisfies C-Dγ0 and C-Dδ3 .

3. α01234 is sound with respect to the class of all supplemented models

that satisfies C-Dγ0 , C-Dδ3 , and C-Dδ4 .

4. a45d4 ′5 ′α012ad45 is sound with respect to the class of all supple-

mented models that satisfies C-Dγ0 , C-a4 , C-a5 and C-Dδ6 .

5. d7α012 is sound with respect to the class of all supplemented mod-

els that satisfies C-Dγ0 , and C-Dδ7 . (Soundness results for other
combinations of these conditions are easily obtained.)

6. The tableau system T (see Section 4.3) is sound with respect to the

class of all T-models (see Section 3.3).

7.2. Completeness theorems

Let b be an open complete branch of a tableau and let I be the set of
numbers on b immediately preceded by a “t”. We shall say that i ⇋ j just
in case i = j, or “ti = tj” or “tj = ti” occurs on b. ⇋ is an equivalence
relation and [i] is the equivalence class of i. Furthermore, let K be the
set of numbers on b immediately preceded by a “w”. We shall say that
k ≈ l just in case k = l, or “wk = wl” or “wl = wk” occurs on b. ≈ is an
equivalence relation and [k] is the equivalence class of k.

Definition 13 (Induced model). The temporal alethic dyadic deontic
model, M = 〈W, T, < R, {SA : A ∈ L}, V, v〉, induced by b is defined
as follows. W = {ω[k] : k ∈ K}, T = {τ[i] : i ∈ I}, τ[i] < τ[j] iff
ti < tj occurs on b, Rω[i]ω[j]τ[k] iff rwiwjtk occurs on b, SAω[i]ω[j]τ[k] iff
sAwiwjtk occurs on b. If p, witj occurs on b, then p is true in ω[i] at τ[j]

(i.e., then 〈ω[i], τ[j]〉 ∈ V (p)); if ¬p, witj occurs on b, then p is false in ω[i]

at τ[j] (i.e., then it is not the case that 〈ω[i], τ[j]〉 ∈ V (p)). If ti occurs on
b, then v(ti) = τ[i].

If our tableau system neither includes T -FC , T -PC (see [44]) nor
T -C (see [46]), ⇋ is reduced to identity and [i] = i. Hence, in such
systems, we may take T to be {τi : ti occurs on b} and dispense with
the equivalence classes. Likewise, if our tableau system does not include
T -Dd7 , ≈ is reduced to identity and [k] = k. Accordingly, in such
systems, we may take W to be {ωi : wi occurs on b} and dispense with
the equivalence classes.
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Lemma 14 (Completeness Lemma). Let b be an open branch in a com-

plete tableau and let M be a temporal alethic dyadic deontic model

induced by b. Then:

(i) A is true in ω[i] at τ[j], if A, witj is on b,

(ii) A is false in ω[i] at τ[j], if ¬A, witj is on b.

Proof. The proof is by induction on the complexity of A.
We will only go through one example to illustrate the method.
A = O[B]C. Suppose A, witk occurs on b, i.e., O[B]C, witk is on

b. Since b is complete (O) has been applied to O[B]C, witk. Thus,
for all wj on b such that sBwiwjtk, C, wjtk is on b. By the induction
hypothesis, for all ω[j] such that SBω[i]ω[j]τ[k], C is true in ω[j] at τ[k].
Hence, O[B]C is true in ω[i] at τ[k]. Suppose that ¬A, witk occurs on
b, i.e., ¬O[B]C, witk is on b. Then P[B]¬C, witk is on b (by ¬O). For
b is complete. Furthermore, since b is complete (P) has been applied
to P[B]¬C, witk. Thus, for some wj , sBwiwjtk and ¬C, wjtk are on b.
By the induction hypothesis, SBω[i]ω[j]τ[k] and C is false in ω[j] at τ[k].
Hence, O[B]C is false in ω[i] at τ[k]. ⊣

Theorem 15 (Completeness Theorem). Let S be any of the tableau

systems discussed in this essay, not including T -Dα0 , and let M be the

class of models that corresponds to S. Then S is strongly complete with

respect to M.12

Proof. The proof is a modification of similar proofs in [43, 44] (see also
[38, 46]).

First we show that the weakest system is complete. Then we have to
check that the model induced by the open branch, b, is of the right kind
in every case. We only consider some cases to illustrate the method.

For C-DdT ′: Suppose that SAω[i]ω[j]τ[k]. Then sAwiwjtk occurs on
b [by the definition of an induced model]. Since the tableau is com-
plete, T -DdT ′ has been applied and sAwjwjtk occurs on b. Hence,
SAω[j]ω[j]τ[k], as required (by the definition of an induced model).

For C-DMO: Suppose that SAω[i]ω[j]τ[k]. Then sAwiwjtk occurs on b

(by the definition of an induced model). Since b is complete, (T −DMO)

12 We have excluded systems that contain T -Dα0 because we have not been able
to prove that these systems are complete. It should be noted that this does not mean
that we have proven that they are incomplete. Our conjecture is that all systems
in this paper are complete with respect to their (ordinary) semantics (including all
systems that contain T -Dα0 ). Hopefully, someone will be able to prove this in the
future or refute this conjecture.
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has been applied and rwiwjtk occurs on b. Accordingly, Rω[i]ω[j]τ[k], as
required (by the definition of an induced model).

For C-Dα3 : Assume that Rω[i]ω[j]τ[l] and that A is true in ω[j] at τ[l].
Then rwiwjtl [by the definition of an induced model]. Since the tableau
is complete CUT has been applied and either A, wjtl or ¬A, wjtl is on b.
Suppose that ¬A, wjtl is on b. Then A is false in ω[j] at τ[l] (by Complete-
ness Lemma). But this is absurd. Hence, A, wjtl is on b. Since the tableau
is complete T -Dα3 has been applied. So, sAwiwktl is on b. Accordingly,
SAω[i]ω[k]τ[l], as required (by the definition of an induced model).

For C-Dα4 : Suppose that SAω[i]ω[j]τ[l], SA∧Bω[i]ω[k]τ[l] and that B

is true in ω[j] at τ[l]. Then sAwiwjtl and sA∧Bwiwktl occur on b (by
the definition of an induced model). Since the tableau is complete CUT

has been applied and either B, wjtl or ¬B, wjtl is on b. Assume that
¬B, wjtl is on b. Then B is false in ω[j] at τ[l] (by Completeness Lemma).
But this is absurd. So, B, wjtl is on b. Since the tableau is complete
T -Dα4 has been applied and sAwiwktl and B, wktl occur on b. It follows
that SAω[i]ω[k]τ[l] and that B is true in ω[k] at τ[l], as required (by the
definition of an induced model and Completeness Lemma). ⊣

Problem. Whether any other system discussed in this paper is complete
is left as an open question.
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