54,282 research outputs found

    A Systems Dynamics Simulation Study of Network Public Opinion Evolution Mechanism

    Get PDF
    The factors that affect formation and dissemination of public opinion have been studied for a long time. However, the findings are disparate and fragmented, given the characteristics of netizens and new media in the Big Data era. To this end, this article introduces eight mechanisms working on formation and dissemination of public opinion on network. Based on system dynamics, this article further proposes a comprehensive causal relationship model to explore the factors affecting the consequence of public opinion on network. Particularly, the role of government is taken into consideration in this model. A simulation with Vensim PLE is conducted. The results of the simulation indicate that group polarization among netizens, opinion leaders, the quantity of media audience, the frequency of media report, government attention, and warning mechanism for public opinion crisis affect the consequence of public opinion on network significantly. Implications of the findings are discussed

    Can extremism guarantee pluralism?

    Get PDF
    Many models have been proposed to explain opinion formation in groups of individuals; most of these models study opinion propagation as the interaction between nodes/agents in a social network. Opinion formation is a complex process and a realistic model should also take into account the important feedbacks that the opinions of the agents have on the structure of the social networks and on the characteristics of the opinion dynamics. In this paper we will show that associating to different agents different kinds of interconnections and different interacting behaviours can lead to interesting scenarios, like the coexistence of several opinion clusters, namely pluralism. In our model agents have opinions uniformly and continuously distributed between two extremes. The social network is formed through a social aggregation mechanism including the segregation process of the extremists that results in many real communities. We show how this process affects the opinion dynamics in the whole society. In the opinion evolution we consider the different predisposition of single individuals to interact and to exchange opinion with each other; we associate to each individual a different tolerance threshold, depending on its own opinion: extremists are less willing to interact with individuals with strongly different opinions and to change significantly their ideas. A general result is obtained: when there is no interaction restriction, the opinion always converges to uniformity, but the same is happening whenever a strong segregation process of the extremists occurs. Only when extremists are forming clusters but these clusters keep interacting with the rest of the society, the survival of a wide opinion range is guaranteed.Comment: 20 pages, 10 figure

    Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    Get PDF
    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalised clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.Comment: 16 pages, 5 figure

    Controllability of Social Networks and the Strategic Use of Random Information

    Get PDF
    This work is aimed at studying realistic social control strategies for social networks based on the introduction of random information into the state of selected driver agents. Deliberately exposing selected agents to random information is a technique already experimented in recommender systems or search engines, and represents one of the few options for influencing the behavior of a social context that could be accepted as ethical, could be fully disclosed to members, and does not involve the use of force or of deception. Our research is based on a model of knowledge diffusion applied to a time-varying adaptive network, and considers two well-known strategies for influencing social contexts. One is the selection of few influencers for manipulating their actions in order to drive the whole network to a certain behavior; the other, instead, drives the network behavior acting on the state of a large subset of ordinary, scarcely influencing users. The two approaches have been studied in terms of network and diffusion effects. The network effect is analyzed through the changes induced on network average degree and clustering coefficient, while the diffusion effect is based on two ad-hoc metrics defined to measure the degree of knowledge diffusion and skill level, as well as the polarization of agent interests. The results, obtained through simulations on synthetic networks, show a rich dynamics and strong effects on the communication structure and on the distribution of knowledge and skills, supporting our hypothesis that the strategic use of random information could represent a realistic approach to social network controllability, and that with both strategies, in principle, the control effect could be remarkable

    Dynamics-Driven Evolution to Structural Heterogeneity in Complex Networks

    Full text link
    The mutual influence of dynamics and structure is a central issue in complex systems. In this paper we study by simulation slow evolution of network under the feedback of a local-majority-rule opinion process. If performance-enhancing local mutations have higher chances of getting integrated into its structure, the system can evolve into a highly heterogeneous small-world with a global hub (whose connectivity is proportional to the network size), strong local connection correlations and power law-like degree distribution. Networks with better dynamical performance are achieved if structural evolution occurs much slower than the network dynamics. Structural heterogeneity of many biological and social dynamical systems may also be driven by various dynamics-structure coupling mechanisms.Comment: Figure 2 updated. Final version as appear in Physica

    Can Extremism Guarantee Pluralism?

    Get PDF
    Many models have been proposed to explain the opinion formation in a group of individuals; most of these models study the opinion propagation as the interaction between nodes/agents in a social network. Opinion formation is a very complex process and a realistic model should also take into account the important feedbacks that the opinions of the agents have on the structure of the social networks and on the characteristics of the opinion dynamics. In this paper we will show that associating to different agents different kind of interconnections and different interacting behaviour can lead to interesting scenarios, like the co-existence of several opinion clusters, namely pluralism. In our model agents have opinions uniformly and continuously distributed between two extremes. The social network is formed through a social aggregation mechanism including the segregation process of the extremists that results in many real communities. We show how this process affects opinion dynamics in the whole society. In the opinion evolution we consider the different predisposition of single individuals to interact and to to modify each other's opinions; we associate to each individual a different tolerance threshold, depending on its own opinion: extremists are less willing to interact with individuals with strongly different opinions and to change significantly their ideas. A general result is obtained: when there is no interaction restriction, the opinion always converges to uniformity, but the same is happening whenever a strong segregation process of the extremists occurs. Only when extremists are forming clusters but these clusters keep interacting with the rest of the society, the survival of a wide opinion range is guaranteed.Extremists, Segregation, Opinion Dynamics
    • …
    corecore