1,422 research outputs found

    Unleash Physical Limitations: Virtual Emergency Preparedness Planning Simulation Training, Methodology and a Case Study

    Get PDF
    Simulation is perhaps the most widely used method for training emergency management workers. Despite its wide application, traditional simulation suffers from several constraints and limitations, which motivate us to pursue a different way – virtual simulation, as an alternative and supplement for the traditional training method. Utilization of groupware, network, and other information technologies makes virtual simulation more flexible and easier to prepare. Although virtual simulation can overcome some of the constraints related to physical simulation, so far there are little evidences that this new method can achieve similar or even better training effects compared with traditional simulation training method. To test the effects of this new training approach and the methodology to run it, several pilot trials have been conducted in the U.S. and Europe. This article is an exploratory study of a pilot emergency preparedness planning virtual simulation conducted in NJIT in late 2004. This study will help us understand the nature of virtual simulation, and help us improve the theories and designs of virtual simulation for emergency preparedness

    A CONCEPTUAL FRAMEWORK FOR MOBILE GROUP SUPPORT SYSTEMS

    Get PDF
    The rapid development of wireless communication and mobile devices has created a great opportunity to support mobile group coordination at a more efficient level than before. This article presents a framework for Mobile Group Support Systems (MGSS) that considers four dimensions: supporting whom, supporting what, where to support and how to support. A good MGSS design should take consideration with the characteristics of each dimension: the system should be able to support mobile users working jointly with members from multiple parties; using available and advanced mobile technology, the system should be able to support context freedom, context dependent, and ad hoc coordination under dynamic, uncertain, frequent disrupting, time and space stretched and fluid context. To meet these requirements, we discuss the issues related to three basic functions of MGSS: mobile communication, group coordination, and context awareness

    Introducing Real-Time Collaboration Systems: Development of a Conceptual Scheme and Research Directions

    Get PDF
    This paper presents Real-Time Collaboration (RTC), a new and emerging type of Information and Communication Technology (ICT) system that has its roots in both the telecommunications and groupware market. The aim of the paper is twofold. First, it outlines the evolution of RTC systems and offers a conceptualization of RTC consisting of usage scenarios and four main building blocks - integration of communication channels, presence information, context integration, and further collaboration features. Second, in order to understand the organizational implications of this complex and socially embedded information system, the paper intends to offer a starting point for future research on RTC by touching upon and systematizing different directions and typical questions for researching RTC and its organizational implications

    User-Driven Designs in Medical Informatics:Developing and Implementing Support forInter-departmental Coordination of Hospital Work using Electronic Whiteboard

    Get PDF
    We present an ethnographic study of the organizational aspects of the use of an electronic whiteboard (EW) system implemented in a Danish hospital located in Nykøbing Falster (NFH). The EW system had originally been developed for the emergency department (ED), but had later been extended to the entire hospital, and the study was conducted about 10 months its implementation. The study focuses on coordination regarding inter-departmental ordering of surgical operations via the EW system. The research question asked whether clinicians experienced impacts, and challenges in this respect. The results of the study show that the EW system had been configured, and the use of it organized, in a manner that facilitates support of inter-departmental coordination of work. We identify, describe and discuss the challenges related to the difficulty of accommodating the heterogeneous practices and demonstrate the complexity of organizing cooperative work using artefacts and technology across organizational units

    The assessment of information technology maturity in emergency response organizations

    Full text link
    [EN] In emergency response organizations, information technologies are not adequately explored. Sometimes, the mere adoption of new information technologies is not productive, as their efficient use depends on other interrelated technologies and the environment where they are installed. This work describes a model to help organizations understand their capability in respect to the adoption of these technologies. The model also helps the performing of the evaluation from different perspectives, making it suitable to collaborative evaluation. Using the proposed model, an organization can measure its maturity level in different aspects of the evaluation and guide the investment on its capabilities. Part of the model has been developed for emergency response organizations and the information technology dimension of the model has been applied to two fire department installations.Marcos R. S. Borges was partially supported by grants No. 560223/2010-2 and 480461/2009-0 from CNPq (Brazil). Work of José H. Canós is partially funded by the Spanish Ministerio. de Educación y Ciencia (MEC) under grant TIPEX (TIN2010–19859-C03-03). The cooperation between the Brazilian and the Spanish research groups was partially sponsored by the CAPES/MECD Cooperation Program, Project #169/ PHB2007-0064-PC.Santos, RS.; Borges, MRS.; Canos Cerda, JH.; Gomes, JO. (2011). The assessment of information technology maturity in emergency response organizations. Group Decision and Negotiation. 20(5):593-613. doi:10.1007/s10726-011-9232-zS593613205Bigley G, Roberts KH (2001) The incident command system: high reliability organizing for complex and volatile task environments. Acad Manag J 44(6): 1281–1299Chinowsky P, Molenaar K, Realph A (2007) Learning organizations in construction. J Manag Eng 23(1): 27–34Diniz VB, Borges MRS, Gomes JO, Canós JH (2008) Decision making support in emergency response. In: Encyclopedia of decision making, Information Science Reference (an imprint of IGI Global), New York, pp 184–191Dörner R, Grimm P, Seiler C (2001) ETOILE—an environment for team, organizational and individual learning. CG Top 13(3): 5–6Dykstra E (2003) Concept paper: toward an international system model in emergency management. In: Proceedings of toward an international system model in emergency management, Public Entity Risk InstituteFederal Emergency Management Agency (FEMA) (1998) Emergency management guide for business and industry: a step-by-step approach to emergency planning, response and recovery for companies of all sizesGu Q, Mendonça D (2005) Patterns of group information seeking in a simulated emergency response environment. In: Proceedings of the 2nd international ISCRAM conference, Brussels, BelgiumHale J (1997) A layered communication architecture for the support of crisis response. J Manag Inf Syst 14(1): 235–255King W, Teo T (1997) Integration between business planning and information systems planning: validating a stage hypothesis. Decis Sci 28(2): 279–307Lachner J, Hellwagner H (2008) Information and communication systems for mobile emergency response. Lecture notes in business information processing, vol 5. pp 213–224Lavoie D, Culbert A (1978) Stages in organization and development. Human Relat 31(5): 417–438Lindel MK, Prater C, Perry RW (2007) Emergency management. Wiley, New YorkLlavador M, Letelier P, Penadés MC, Borges MRS, Solís C (2006) Precise yet flexible specification of emergency resolution procedures. In: Proceedings of the information systems for crisis response and management (ISCRAM), pp 110–120Meissner A, Wang Z, Putz W, Grimmer J (2006) MIKoBOS: a mobile information and communication system for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New JerseyNonaka I, Takeuchi H (1995) The knowledge creating company: how Japanese companies create the dynamics of innovation. Oxford University Press, OxfordOchoa S, Neyem A, Pino JA, Borges MRS (2007) Supporting group decision making and coordination in urban disasters relief efforts. J Decis Syst 16(2): 143–172Paton D, Flin R (1999) Disaster stress: an emergency management perspective. Disaster Prev Manag 8(4): 261–267Paulk MC, Weber C, Curtis B, Chrissis M (1995) The capability maturity model: guidelines for improving the software process. Addison-Wesley, ReadingQuarantelli EL (1997) Problematical aspects of the information/communication revolution for disaster planning and research: ten non-technical issues and questions. Disaster Prev Manag 6(2): 94–106Santos RS, Borges MRS, Gomes JO, Canós JH (2008) Maturity levels of information technologies in emergency response organizations. In: Proceedings of the international workshop on groupware, Omaha, Nebraska, USA. Groupware: design, implementation and use. Lecture notes in computer science, vol 5411. Springer, Berlin, pp 135–150Schoenharl T, Szabo G, Madey G, Barabasi AL (2006) WIPER: a multi-agent system for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New JerseyTuroff M (2002) Past and future emergency response information systems. Commun ACM 45(4): 29–33Turoff M, Chumer M, Hiltz R, Clasher R, Alles M, Vasarhelyi M, Kogan A (2004a) Assuring homeland security: continuous monitoring, control and assurance of emergency preparedness. J Inf Technol Theor Appl (JITTA) 6(3): 1–24Turoff M, Chumer M, Vande Walle B, Yao X (2004b) The design of a dynamic emergency response management information system (DERMIS). J Inf Technol Theor Appl (JITTA) 5(4): 1–35Van der Lee MDE, Van Vugt M (2004) IMI—An information system for effective multidisciplinary incident management. In: Proceedings of the 1st international ISCRAM conference, Brussels, BelgiumYuan Y, Deltor B (2005) Intelligent mobile crisis response systems. Commun ACM 28(2): 95–98Zimmerman R, Restrepo CE (2006) Information technology (IT) and critical infrastructure interdependencies for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New Jerse

    ELECTRONIC REQUIREMENTS NEGOTIATION – A LITERATURE SURVEY ON THE STATE-OF-THE-ART (23)

    Get PDF
    In the software development process, requirements negotiation is an essential part in which stakeholders jointly have to come to an agreement. Such a negotiation process is often conducted using information systems, which makes it an electronic requirements negotiation process. The aim of the current paper is to present the state-of-the-art in electronic requirements negotiations. We elicit the state-of-the-art by analysing relevant literature, extracting areas of current research, and describing the status quo of each area. The identified areas of research are foundations of electronic requirements negotiation, electronic requirements negotiation methodology, automation of electronic requirements negotiation, computer- mediated communication, and social communication

    Designing Community Collaboration Support System to Facilitate the Resilience of Supply Chains During Crises

    Get PDF
    This study explores how to design an information system that facilitates the resilience of supply chains and the collaboration of different stakeholders during various crises. The ultimate objective of this study is to develop a knowledge base for formalizing design principles essential for designing and conceptualizing the Community Collaboration Support System to facilitate the resilience of supply chains during a crisis. To derive the design principles, we followed the design science research approach. Drawing from the literature, this paper used kernel theories as a part of the process. The design principles are well positioned and aligned with the acquired knowledge base. This study contributes to the existing research in distributed and collaboration technology. Additional explanatory studies are needed to validate posited design principles

    Investigations of collaborative design environments: A framework for real-time collaborative 3D CAD

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.This research investigates computer-based collaborative design environments, in particular issues of real-time collaborative 3D CAD. The thesis first presents a broad perspective of collaborative design environments with a preliminary case study of team design activities in a conventional and a computer mediated setting. This study identifies the impact and the feasibility of computer support for collaborative design and suggests four kinds of essential technologies for a successful collaborative design environment: information-sharing systems, synchronous and asynchronous co- working tools, project management systems, and communication systems. A new conceptual framework for a real-time collaborative 3D design tool, Shared Stage, is proposed based upon the preliminary study. The Shared Stage is defined as a shared 3D design workspace aiming to smoothly incorporate shared 3D workspaces into existing individual 3D workspaces. The addition of a Shared Stage allows collaborating designers to interact in real-time and to have a dynamic and interactive exchange of intermediate 3D design data. The acceptability of collaborative features is maximised by maintaining consistency of the user interface between 3D CAD systems. The framework is subsequently implemented as a software prototype using a new software development environment, customised by integrating related real-time and 3D graphic software development tools. Two main components of the Shared Stage module in the prototype, the Synchronised Stage View (SSV) and the Data Structure Diagram (DSD), provide essential collaborative features for real-time collaborative 3D CAD. These features include synchronised shared 3D representation, dynamic data exchange and awareness support in 3D workspaces. The software prototype is subsequently evaluated to examine the usefulness and usability. A range of quantitative and qualitative methods is used to evaluate the impact of the Shared Stage. The results, including the analysis of collaborative interactions and user perception, illustrate that the Shared Stage is a feasible and valuable addition for real-time collaborative 3D CAD. This research identifies the issues to be addressed for collaborative design environments and also provides a new framework and development strategy of a novel real-time collaborative 3D CAD system. The framework is successfully demonstrated through prototype implementation and an analytical usability evaluation.Financial support from the Department and from the UK government through the Overseas Research Studentship Awards
    corecore