41 research outputs found

    A new pretopological way of identifying spreaders in propagation diffusion phenomena

    Get PDF
    In a world that's increasingly connected, many crises are related to propagation phenomena where we need to either repress the spreading (e.g. epidemics, computer viruses, fake news...) or try to accelerate it (e.g. the diffusion of a new anti-virus patch). A good understanding of such phenomena involves a knowledge of both the structure of the whole system and the specifics of the transmission process. The standard way to deal with the former has been through a characterization of the structure by the use of networks, where nodes are the components of the system where the propagation occurs, and links exist between them if there's a possibility of transmission from one component to the other. This allows to identify the super-spreaders (i.e. components that diffuse in a disproportionally large amount) as nodes with certain particular network properties. Here we propose the use of pretopology as a framework to characterize the structure of a system, as well as a new pretopological metric for the identification of super-spreaders. Since the metric can easily be transformed into an equivalent network metric, it is easy to compare its performance with some of the classical network indices of node importance. The relevance of the metric is tested by the use of some standard agent-based models of epidemics and opinion dynamics. Finally, a pretopological model of opinion diffusion is also proposed and studied

    The Differential Scheme and Quantum Computation

    Get PDF
    It is well-known that standard models of computation are representable as simple dynamical systems that evolve in discrete time, and that systems that evolve in continuous time are often representable by dynamical systems governed by ordinary differential equations. In many applications, e.g., molecular networks and hybrid Fermi-Pasta-Ulam systems, one must work with dynamical systems comprising both discrete and continuous components. Reasoning about and verifying the properties of the evolving state of such systems is currently a piecemeal affair that depends on the nature of major components of a system: e.g., discrete vs. continuous components of state, discrete vs. continuous time, local vs. distributed clocks, classical vs. quantum states and state evolution. We present the Differential Scheme as a unifying framework for reasoning about and verifying the properties of the evolving state of a system, whether the system in question evolves in discrete time, as for standard models of computation, or continuous time, or a combination of both. We show how instances of the differential scheme can accommodate classical computation. We also generalize a relatively new model of quantum computation, the quantum cellular automaton, with an eye towards extending the differential scheme to accommodate quantum computation and hybrid classical/quantum computation. All the components of a specific instance of the differential scheme are Convergence Spaces. Convergence spaces generalize notions of continuity and convergence. The category of convergence spaces, Conv, subsumes both simple discrete structures (e.g., digraphs), and complex continuous structures (e.g., topological spaces, domains, and the standard fields of analysis: R and C). We present novel uses for convergence spaces, and extend their theory by defining differential calculi on Conv. It is to the use of convergence spaces that the differential scheme owes its generality and flexibility

    Problems in the Theory of Convergence Spaces

    Get PDF
    We investigate several problems in the theory of convergence spaces: generalization of Kolmogorov separation from topological spaces to convergence spaces, representation of reflexive digraphs as convergence spaces, construction of differential calculi on convergence spaces, mereology on convergence spaces, and construction of a universal homogeneous pretopological space. First, we generalize Kolmogorov separation from topological spaces to convergence spaces; we then study properties of Kolmogorov spaces. Second, we develop a theory of reflexive digraphs as convergence spaces, which we then specialize to Cayley graphs. Third, we conservatively extend the concept of differential from the spaces of classical analysis to arbitrary convergence spaces; we then use this extension to obtain differential calculi for finite convergence spaces, finite Kolmogorov spaces, finite groups, Boolean hypercubes, labeled graphs, the Cantor tree, and real and binary sequences. Fourth, we show that a standard axiomatization of mereology is equivalent to the condition that a topological space is discrete, and consequently, any model of general extensional mereology is indistinguishable from a model of set theory; we then generalize these results to the cartesian closed category of convergence spaces. Finally, we show that every convergence space can be embedded into a homogeneous convergence space; we then use this result to construct a universal homogeneous pretopological space

    Closure Hyperdoctrines

    Get PDF
    (Pre)closure spaces are a generalization of topological spaces covering also the notion of neighbourhood in discrete structures, widely used to model and reason about spatial aspects of distributed systems. In this paper we present an abstract theoretical framework for the systematic investigation of the logical aspects of closure spaces. To this end, we introduce the notion of closure (hyper)doctrines, i.e. doctrines endowed with inflationary operators (and subject to suitable conditions). The generality and effectiveness of this concept is witnessed by many examples arising naturally from topological spaces, fuzzy sets, algebraic structures, coalgebras, and covering at once also known cases such as Kripke frames and probabilistic frames (i.e., Markov chains). By leveraging general categorical constructions, we provide axiomatisations and sound and complete semantics for various fragments of logics for closure operators. Hence, closure hyperdoctrines are useful both for refining and improving the theory of existing spatial logics, and for the definition of new spatial logics for new applications

    Topological Properties of Generalized Context Structures

    Get PDF
    Práce je zaměřena na vzájemnou interakci několika odvětví matematiky. Hlavní myšlenkou práce bylo najít závislosti, vztahy a analogie mezi nimi. První část práce se týká vztahu mezi formální pojmovou analýzou, topologií a parciálními metrikami. Formální kontext je velice obecná matematická struktura, která může reprezentovat ostatní matematické struktury v jednotné a sjednocené formě. Přirozeným způsobem bychom mohli reprezentovat informaci podobně jako v tabulce, reprezentující formální kontext (s respektem ke všem množinově-teoretickým omezením) a generovat určité topologie na množinách atributů a objektů. V druhé části studujeme především pretopologické systémy jako speciální případ formálních kontextů. Od topologických systémů se pretopologické systémy liší především obecnější uspořádanou strukturou na množině atributů, reprezentujících zobecněné otevřené množiny. Vlastnosti tohoto uspořádání podstatně ovlivňují chování celé struktury a proto mu věnujeme zvláštní pozornost v závěru kapitoly, kde se mj. zabýváme konstrukcí analogie de Grootova duálu, včetně jeho iterovaných vlastností. Třetí část práce je zasvěcena struktuře framework, která má přirozenou strukturu formálního kontextu. Framework se skládá ze dvojice množin, z nichž první je množina míst a druhá obsahuje jistý systém podmnožin první množiny, aniž by bylo vyžadováno splnění nějakých axiómů. Struktura je opatřena jednoduchou konstrukcí duality, umožňující přepínání mezi klasickým, bodově-množinovým přístupem, podobně jako v topologii a bezbodovou reprezentací topologických vztahů. V závěru navrhujeme a studujeme, jak aproximovat libovolný framework pomocí usměrněného souboru konečných frameworků z hlediska generované topologie. V poslední části práce používáme metody obecné topologie ke korekci a zlepšení jednoho ze základních teorémů teorie her. Dokázali jsme mimo jiné, že pro hru v normální formě, v níž má i-tý hráč spojitou výherní funkci a množina jeho strategií je skoro-kompaktní, má tento hráč nedominovanou strategii. Kromě tohoto výsledku v poslední a předposlední kapitole ukazujeme, že teorie her přirozeným způsobem generuje velmi obecné, například nehausdorffovské topologické a kontextové struktury, čímž posouvá tradiční chápání reality neobvyklým směrem.This work is focused on the interaction of several branches of mathematics. The main idea was to nd dependencies, relationships and analogies between them. First part of the work is concerned to the relationship between Formal Concept Analysis, General Topology and Partial Metrics. A formal context is a very general mathematical structure that can represent other mathematical structures in a unied form. In a natural way, we could represent an information in a cross-table-like view of a formal context (fully respecting all set-theoretical limitations) and generate a topology on an attribute and object sets. In the second part the we study especially the pretopological systems as a special case of the formal contexts. They dier from topological systems especially by a more general poset structure of the set of attributes, representing the generalized open sets. Since the properties of this order structure are essential for the behavior of the whole structure, we pay them a special attention at the end of the chapter. Among others, we construct and study an analogue of the de Groot dual for posets, including its iteration properties. The third part is devoted to a mathematical structure called framework that has a contextual nature. A framework consists of two sets, rst one is a set of places, and the second one is a family of some its subsets, without the necessity of any external axioms to be fullled. The structure is equipped with a simple duality construction, allowing to switch between the classical point-set representation (like in topological spaces) and the point-less representation of topological relationships. At the end of the chapter, we suggest and study how a framework could be approximated by a directed family of nite frameworks from the point of view of the generated topology. In the last part the general topology methods were used to correct and improve one of the fundamental theorems in the game theory. It was showed that in a normal form game if i-th player has a continuous utility function and if the set of his strategies is almost-compact then he has an undominated strategy. In addition to this result, in the last two chapters we show that game theory naturally generates very general, for instance non-Hausdor topological and context structures, which shifts the traditional perception of reality in unexpected direction.

    Neighborhood spaces

    Get PDF

    Similarity Structure on Scientific Theories

    Get PDF
    I review and amplify on some of the many uses of representing a scientific theory in a particular context as a collection of models endowed with a similarity structure, which encodes the ways in which those models are similar to one another. This structure, which is related to topological structure, proves fruitful in the analysis of a variety of issues central to the philosophy of science. These include intertheoretic reduction, emergent properties, the epistemic connections between modeling and inference, the semantics of counterfactual conditionals, and laws of nature. The morals are twofold: first, the further adoption of formal methods for describing similarity (and related topological) structure has the potential to aid in decisive progress in philosophy of science; and second, the selection and justification of such structure is not a matter of technical convenience, but rather often involves great conceptual and philosophical subtlety. I conclude with various directions for future research
    corecore